Connectionist-Inspired Incremental PCFG Parsing

Marten van Schijndela, Andy Exleyb, William Schulera
aDept Linguistics, The Ohio State University
bDept Computer Science and Engineering, University of Minnesota

June 7, 2012
Introduction

Goals and Motivation

Create a cognitively-motivated parser

- [Schuler, 2009] outlines a cognitively-motivated parser, which requires book-keeping nodes built in to work with PCFGs (engineering fix).
- We’d like to be able to strip out elements included solely for engineering.
Background

Why PCFGs? [Jurafsky, 1996]

- Simple
- Widespread use, community understanding
- Easily integrated with other technologies
- Latent variable training procedures easily obtained [Petrov et al., 2006]
- Tractable recognition $O(n^3)$

Problems with CKY

- Not incremental $O(n^3)$
- In certain applications, word/phrase breaks not certain (ASR, MT, etc)
Background

Why Incremental?

- Operates on incomplete information
- Can make use of information about recent content/structure
- $O(n)$
- Streaming task

Must operate on a beam to efficiently stream
The Setup

S
 NP
 DT the
 NN fund
 VP
 VB bought
 NP
date
 RB
today

S/VP
 NP
 DT two
 JJ regional
 NN banks

S/VP
 NP
 DT the
 NN fund
date
 RB
today

V/NN
 NN
date

The Setup

Marten van Schijndel, Andy Exley, William Schuler
Connectionist-Inspired Incremental PCFG Parsing
Corresponding structure seen in C-R axis of DL-PFC (proximal to Broca’s) [Petrides, 1987, Botvinick, 2007]
Cognitive Motivation

- Can define graph-theory **connected components** (sub-graphs) of a semantic dependency graph (of ‘concepts’ [Kintsch, 1988] or discourse referents)
- F-node = create new independent connected component linked via an episodic trace [Sederberg et al., 2008] to previous connected component
- Connected components act as ‘chunks’ [Miller, 1956]
Design Motivations

Schuler (2009) based on:

- HHMM [Murphy and Paskin, 2001] but too general (next slide)
- 4 layers [Cowan, 2001]

Serial recall chunking [Miller, 1956] seems to be different from language chunking or chunking with distractions [Cowan, 2001].

[Schuler et al., 2010] found 4 layers yielded >99.9% coverage of WSJ.
Single Expansion, Single Reduction

NP	VP
the fund | bought regional banks

NP	VP
two NN | regional

VP/NN	VP/NP
the fund | the two bought

VP/NN	VP
regional banks | bought today
The Model
Tree Training

Split-Merge Berkeley Grammar Trainer
[Petrov et al., 2006]

- Input: TB-annotated sentences
 \((S (ADVP \text{happily}) (NP-SUBJ \text{John})\ldots) \)
Tree Training

Split-Merge Berkeley Grammar Trainer
[Petrov et al., 2006]

- Input: TB-annotated sentences
 \((S (ADVP happily) (NP-SUBJ John)\ldots)\)
- EM classification performed over a given number of split-merge cycles
- Output: Subcat-Annotated PCFG
 \((S^{g}_{10} \rightarrow ADVP^{g}_{21} NP^{g}_{4} 1.462527E-18)\)

Profit:
- More specialized and informative PCFG

Cost:
- Training time
- Increased size of grammar
Testing Methodology
Internal Testing
 ▶ Timing Comparisons [Hidden State Factoring]
External Testing
 ▶ Roark (2001) Parser [Incremental]
Accuracy Results

<table>
<thead>
<tr>
<th>System</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuler et al. 2008/2010</td>
<td>83.4</td>
<td>83.7</td>
<td>83.5</td>
</tr>
<tr>
<td>Roark 2001</td>
<td>86.6</td>
<td>86.5</td>
<td>86.5</td>
</tr>
<tr>
<td>Schuler 2009* (2000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>van Schijndel et al (250)</td>
<td>85.6</td>
<td>87.1</td>
<td>86.3</td>
</tr>
<tr>
<td>van Schijndel et al (500)</td>
<td>86.8</td>
<td>87.4</td>
<td>87.1</td>
</tr>
<tr>
<td>van Schijndel et al (1000)</td>
<td>87.4</td>
<td>87.6</td>
<td>87.5</td>
</tr>
<tr>
<td>van Schijndel et al (2000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>van Schijndel et al (5000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>Petrov Klein (Binary)</td>
<td>88.1</td>
<td>87.8</td>
<td>88.0</td>
</tr>
<tr>
<td>Petrov Klein (+Unary)</td>
<td>88.3</td>
<td>88.6</td>
<td>88.5</td>
</tr>
</tbody>
</table>

Without grammar trainer, Schuler 2009 (2000) F-Score = 75.06.
Table: Speed comparison using a beam-width of 500 elements

<table>
<thead>
<tr>
<th>System</th>
<th>Sec/Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuler 2009</td>
<td>74</td>
</tr>
<tr>
<td>Current Model</td>
<td>12</td>
</tr>
</tbody>
</table>
Future Work

- Incremental Dependency Parsing (including Unbounded)
- Incremental Semantic Role Labelling
- Interactive associative memory access
- Coreference resolution
Questions?

Thanks!
More slides!
<table>
<thead>
<tr>
<th>System</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuler et al. 2008/2010</td>
<td>83.4</td>
<td>83.7</td>
<td>83.5</td>
</tr>
<tr>
<td>Roark 2001</td>
<td>86.6</td>
<td>86.5</td>
<td>86.5</td>
</tr>
<tr>
<td>Schuler 2009 (2000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>van Schijndel et al (50)</td>
<td>75.9</td>
<td>84.6</td>
<td>80.0</td>
</tr>
<tr>
<td>van Schijndel et al (100)</td>
<td>81.7</td>
<td>85.6</td>
<td>83.6</td>
</tr>
<tr>
<td>van Schijndel et al (250)</td>
<td>85.6</td>
<td>87.1</td>
<td>86.3</td>
</tr>
<tr>
<td>van Schijndel et al (500)</td>
<td>86.8</td>
<td>87.4</td>
<td>87.1</td>
</tr>
<tr>
<td>van Schijndel et al (1000)</td>
<td>87.4</td>
<td>87.6</td>
<td>87.5</td>
</tr>
<tr>
<td>van Schijndel et al (1500)</td>
<td>87.6</td>
<td>87.7</td>
<td>87.7</td>
</tr>
<tr>
<td>van Schijndel et al (2000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>van Schijndel et al (5000)</td>
<td>87.9</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>Petrov Klein (Binary)</td>
<td>88.1</td>
<td>87.8</td>
<td>88.0</td>
</tr>
<tr>
<td>Petrov Klein (+Unary)</td>
<td>88.3</td>
<td>88.6</td>
<td>88.5</td>
</tr>
</tbody>
</table>
How does it work?

Theory/Equation time

Most likely sequence

\[\hat{q}_{1:T}^{1..D} \overset{\text{def}}{=} \arg\max_{q_{1:T}^{1..D}} \prod_{t=1}^{T} P_{\theta_Q}(q_t^{1..D} \mid q_{t-1}^{1..D} p_{t-1}) \cdot P_{\theta_{P,d'}}(p_t \mid b_t^{d'}) \cdot P_{\theta_X}(x_t \mid p_t) \] (1)

where \(d' \) is the lowest non-empty \(q_t^d \)
How does it work?

Theory/Equation time

Right-Corner: Single expansion, Single reduction
E-R+, E-R-, E+R+, E+R-

\(\theta_Q \)

\[
P_{\theta_Q}(q_t^{1..D} | q_{t-1}^{1..D}, p_{t-1})
\]

\[
def = P_{\theta_F}(\cdot'0' | b_{t-1}^{d'} p_{t-1}) \cdot P_{\theta_{A,d'}(\cdot' | b_{t-1}^{d'-1} a_{t-1}^{d'}) \cdot [a_{t}^{d'-1} = a_{t-1}^{d'-1}] \cdot P_{\theta_{B,d'}-1}(b_{t-1}^{d'-1} | b_{t-1}^{d'-1} a_{t-1}^{d'})
\]

\[
\quad \cdot [q_t^{1..d'-2} = q_{t-1}^{1..d'-2}] \cdot [q_t^{d'+..D} = \cdot']
\]

\[
+ P_{\theta_F}(\cdot'0' | b_{t-1}^{d'} p_{t-1}) \cdot P_{\theta_{A,d'}(a_{t}^{d'} | b_{t-1}^{d'-1} a_{t-1}^{d'}) \cdot P_{\theta_{B,d'}(b_{t}^{d'} | a_{t}^{d'} a_{t-1}^{d'+1})}
\]

\[
\quad \cdot [q_t^{1..d'-1} = q_{t-1}^{1..d'-1}] \cdot [q_t^{d'+1..D} = \cdot']
\]

\[
+ P_{\theta_F}(\cdot'1' | b_{t-1}^{d'} p_{t-1}) \cdot P_{\theta_{A,d'}(a_{t}^{d'} | b_{t-1}^{d'} p_{t-1}) \cdot [a_{t}^{d'} = a_{t-1}^{d'}] \cdot P_{\theta_{B,d'}(b_{t}^{d'} | b_{t-1}^{d'} p_{t-1})}
\]

\[
\quad \cdot [q_t^{1..d'-1} = q_{t-1}^{1..d'-1}] \cdot [q_t^{d'+1..D} = \cdot']
\]

\[
+ P_{\theta_F}(\cdot'1' | b_{t-1}^{d'} p_{t-1}) \cdot P_{\theta_{A,d'}(a_{t}^{d'+1} | b_{t-1}^{d'} p_{t-1}) \cdot P_{\theta_{B,d'}(b_{t}^{d'+1} | a_{t}^{d'+1} p_{t-1})}
\]

\[
\quad \cdot [q_t^{1..d'} = q_{t-1}^{1..d'}] \cdot [q_t^{d'+2..D} = \cdot']
\]

(2)
The right-corner transform (tree)
The right-corner transform (grammar)

\[c_\eta \rightarrow c_{\eta 0} \, c_{\eta 1} \in G' \]
\[c_\eta / c_{\eta 1} \rightarrow c_{\eta 0} \in G'' \quad (1) \]

\[c_{\eta \ell} \rightarrow c_{\eta \ell 0} \, c_{\eta \ell 1} \in G', \ c_\eta \in C' \]
\[c_\eta / c_{\eta \ell 1} \rightarrow c_\eta / c_{\eta \ell} \, c_{\eta \ell 0} \in G'' \quad (2) \]

\[c_{\eta \ell} \rightarrow x_{\eta \ell} \in G', \ c_\eta \in C' \]
\[c_\eta \rightarrow c_\eta / c_{\eta \ell} \, c_{\eta \ell} \in G'' \quad (3) \]

