Answer the following questions by filling in the appropriate circle on your scantron sheet. You can use 1 cheat sheet.

The first 6 questions deal with some the particles listed below. For each question, select the best fit from this list. You may or may not use a particle more than once

- a n
- b e^-
- c ν
- d e^+
- e $\bar{\nu}$
- (1.) Nucleon with no electric charge
- (2.) Positron

$$(3.) e^+ + e^- \longrightarrow \nu + ?$$

- (4.) Escapes directly from the Sun's core
- (5.) lepton with no charge
- (6.) The Sun, a garden variety star, derives its energy from
 - a gravitational heating
 - b chemical burning
 - c thermonuclear fusion
 - d conversion of rotation into mechanical energy
- (7.) Stellar death occurs when
 - a core cannot reach temperatures necessary for further fusion
 - **b** an iron core is reached
 - c a black hole swallows the entire star, envelope and all
 - d either (a) or (b)
 - e both (b) and (c)

(8.) Gas pressure inside the Sun is (fill in the blank) the weight of the outer layers of the Sun.

- a greater than
- b less than
- c equal to
- d unrelated to
- (9.) Which of the following is the correct ordering according to size (from smallest to largest)?
 - a mass of neutrino, mass of proton, mass of positron
 - b atom, nucleus, nucleon, molecule
 - c white dwarf, neutron star, main sequence star
 - d nucleon, nucleus, atom, molecule
 - e proton, uranium nucleus, alpha-particle, helium atom

(10.) Rank, from longest to shortest, the lifetimes associated with the 3 possible mechanisms of stellar energy (chemical, nuclear, gravitational):

- a $\tau_{grav},\,\tau_{che\,m},\,\tau_{nuke}$
- b τ_{nuke} , $\tau_{grav},$ τ_{chem}
- c τ_{nuke} , $\tau_{chem},\,\tau_{grav}$

(11.) Which of the following β decays of tritium $\binom{3}{1}H$ are allowed?

- a ${}^3_1H \longrightarrow {}^4_2He + e^- + \nu$
- b ${}^{3}_{1}H \longrightarrow {}^{3}_{2}He + e^{+} + \nu$
- c ${}^3_1H \longrightarrow {}^3_2He + e^- + \bar{\nu}$
- d ${}^{3}_{1}H \longrightarrow {}^{3}_{2}He + e^{+} + \bar{\nu}$
- $e_1^3H \longrightarrow_2^3 He + e^- + 2\nu$

(12.) Which of the following concepts required the existence of the neutrino?

- a conservation of energy in β -decay
- b degenerate electron pressure
- c Pauli Exclusion Principle
- d all of the above

(13.) Which of the following most accurately describes the ratio of typical energies involved in nuclear reactions to that of chemical reactions?

- a about the same
- b about 10 times greater
- c about 10^6 times less
- d about 10^6 times greater
- e about 10^3 times greater
- (14.) How old is the Universe?
 - a 6000 years old
 - b 10 million years old
 - c 10 billion years old

d 10^{10} years old

e both (c) and (d)

(15.) In class we learned that when the Sun burns $4p \rightarrow {}^{4}He + 25$ Mev it can last 10 billion years. If it had to burn 8 protons (instead of 4 protons) to generate the same amount of energy per reaction, how long would it last?

- a 10 billion years
- b 5 billion years
- c 20 billion years
- d 40 billion years

(16.) Which of the following is an accurate description of the behavior of the nucleons in the reaction $p+p \rightarrow {}^{2}H + e^{+} + \nu$?

- a one neutron changes to a proton
- **b** one proton changes to a neutron
- c the nucleons retain their identities
- d none of the above
- (17.) Which of the following statements are TRUE?
 - a photons travel straight to Earth from the core of the Sun
 - b the Sun radiates from its surface like a black body radiator
 - c the Sun is powered by the thermonuclear fusion of 3 $\rm ^{4}He$ nuclei to $\rm ^{12}C$ in its core
 - d the speed of the Earth orbiting the Sun does not depend on the Sun's mass
- (18.) Which of the following processes is most likely to be seen in Nature?

a
$$p + p \longrightarrow e^+ + e^+ + \gamma$$

b
$$p \longrightarrow e^+ + \gamma$$

- c $\nu + n \longrightarrow p + e^-$
- d $_1^2H + n \longrightarrow _2^3He + e^+ + e^- + \nu$
- $e \ p \longrightarrow e^- + n + \nu$

(19.) A white dwarf is not

- a powered by thermonuclear fusion
- **b** supported by degenerate electron pressure
- c the end state of the evolution of stars similar to the Sun
- d made up of carbon and oxygen $% \left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right.}$
- (20.) We know that neutrinos come from the core of the Sun because
 - a neutrinos interact much more weakly than photons or charged particles
 - **b** neutrinos exert a pressure, helping the Sun oppose gravitational collapse
 - **c** neutrinos are emitted when protons change to neutrons
 - d both (a) and (c)
 - e all of the above