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Abstract

Creating conversational systems for niche do-
mains is a challenging task, further exacerbated
by a lack of quality datasets. We explore the
construction of safer conversational systems for
guiding patients in preparing for colonoscopies.
This has required a data generation pipeline
to generate a minimum viable dataset to boot-
strap a semantic parser, augmented by auto-
matic paraphrasing. Our study suggests large
language models (e.g., GPT-3.5 & GPT-4) are
a viable alternative to crowd sourced paraphras-
ing, but conversational systems that rely upon
language models’ ability to do temporal reason-
ing struggle to provide accurate responses. A
neural-symbolic system that performs temporal
reasoning on an intermediate representation of
user queries shows promising results compared
to an end-to-end dialogue system, improving
the number of correct responses while vastly
reducing the number of incorrect or misleading
ones.

1 Introduction

Colorectal cancer is the second leading cause of
cancer-related deaths worldwide. Colonoscopy is a
safe and effective strategy to screen asymptomatic
individuals for precursors of colorectal cancer, but
it requires a precisely timed multi-day, multi-step
procedure to clear the colon. In today’s standard
practice, patients are given information sheets to
help them prepare for the procedure, which instruct
them to follow a low-fiber diet for several days
prior to the procedure (among other restrictions)
and to drink a preparatory mix that cleanses the
colon. Unfortunately, these information sheets are
frequently ineffective, resulting in rescheduled pro-
cedures with large economic, health-related and
social costs.

In this paper, we report on our initial steps to
develop a conversational assistant to improve the
ease of following colonoscopy preparation instruc-
tions. To avoid information overload, the assistant

is designed to coach patients through the process
(known as “prep”), reminding patients when it is
time to carry out each step in the instructions and
allowing them to ask questions at any time about
the procedure and the diet changes they need to
make at different stages of the preparatory period.
Additionally, the assistant will escalate questions
to health-care providers when necessary to answer
complex questions or reschedule.

Existing efforts to make it easier to follow
colonoscopy prep instructions give strong evidence
that our approach can greatly enhance patient suc-
cess. Engaging patients with automatic text re-
minders greatly improved colonoscopy prep ad-
herence (90% vs. 62%) when patients were in-
vited to ask follow up questions with health-care
providers (Mahmud et al., 2019), but a larger scale
trial where patients were not invited to reply to the
text messages (for lack of personnel) found no im-
provements over the control group (Mahmud et al.,
2021). The capacity to answer questions—which
we seek to automate for the first time—appears
to have been the crucial difference (Clancy and
Dominitz, 2021).

Embodied conversational agents (ECA) from the
Northeastern Relational Agents Lab have been de-
veloped for a variety of health-care communication
scenarios over many years. In particular, Ehren-
feld et al. (2010) develop an ECA for counsel-
ing patients on their options for anesthesia prior
to surgery, but the system cannot answer specific
questions patients ask in their own words.

With no existing data in this domain, we seek
to take advantage of pretrained and large language
models (PLMs/LLMs) to develop our system in a
data-efficient way while robustly avoiding unsafe
behavior. Recent years have witnessed enormous
progress on a wide range of NLP tasks, including
conversational AI ones, thanks to engineering ad-
vances in training large scale, transformer-based
neural language models (Bowman and Dahl, 2021;



et al., 2022; Wei et al., 2022; OpenAI, 2023; Laskar
et al., 2023; Hosseini-Asl et al., 2020). However,
their deployment for practical tasks has been hin-
dered by concerns about safety, such as the propen-
sity of these models to regurgitate toxic language
or hallucinate fake news (Bender et al., 2021; Wei-
dinger et al., 2021; Dinan et al., 2022). In health-
care settings, these concerns are especially prob-
lematic, as with insufficient controls PLMs could
give harmful or even deadly advice (Bickmore
et al., 2018).

To address these safety concerns, we have de-
signed a neuro-symbolic system that uses PLMs for
contextual natural language understanding (NLU)
together with a rule-based dialogue manager and
knowledge base. To bootstrap the system, we
have used state machines to create simulated dia-
logues (Campagna et al., 2020) together with LLMs
for paraphrasing, rather than crowdworkers as in
the overnight method (Wang et al., 2015); further
enhancement using Wizard-of-Oz (Kelley, 1984)
methods is left to future work.

2 Methods

2.1 Conversational State Machine

A state machine can be used to model a multi-
turn conversation for simulation purposes (Jurafsky
et al., 1997; Campagna et al., 2020). Our imple-
mentation of conversational state machine models
different conversational states as states in the state
machine. The transitions in the state machine rep-
resent user and agent utterances that are possible
for the given conversation state.

Figure 1 illustrates the overall structure of our
data generation pipeline. Each transition can
yield multiple synthetic user utterances via ran-
dom choices in an attribute grammar, along with a
canonical, context-independent version of the user
utterance. An SCFG translates the canonical string
into a JSON string that represents the meaning in
intent-and-slot style. The dialogue manager uses
this formal representation to determine the system
response, expressing it with simple templates.

By polling the state machine and recording the
utterance emissions for each transition, we can gen-
erate a diverse dataset of conversations that a pa-
tient preparing for a colonoscopy might have with
the patient prep system (Figure 2). The state ma-
chine also encodes the dialogue context, which
allows the system to reference previous utterances.
This allows for insertion of coreferential anaphors

(“it” or “that”) as well as generating follow-up ques-
tions: “Agent: You can’t eat strawberries so close
to the procedure. User: How about bananas?” Sim-
ilarly, we expect “why?” questions to be very ellip-
tical and only interpretable in context (Figure 2).

2.2 System Design

Contextual NLU via semantic parsing converts the
user utterance into a valid canonical string, taking
the previous context into account (Shin et al., 2021).
As detailed in the next section, we train neural mod-
els for this task, without using an explicit module
for dialogue state tracking. If the semantic parser
does not return a valid canonical string (e.g., for an
out-of-scope user question), the SCFG translation
will fail to return a formal representation, triggering
a request for the user to rephrase.

Once the semantic parsing module correctly
parses the user utterance to a formal representa-
tion, it is processed by the dialogue manager. The
dialogue manager has 4 modules to respond to user
questions, one for each of the categories Food, Pro-
cedure, Task, and General. Each module has prede-
fined rule-based templates that ensure the informa-
tion provided to the patients is accurate, safe, and
not misleading (Table 4, Appendix A).

Questions in the food category are time sensitive
and thus the most challenging to handle. The food
module answers questions after first consulting a
food knowledge graph to calculate when a patient
must stop consuming the item relative to the pro-
cedure. For example, in permission questions like
“Can I eat strawberries?” the answer is “no” if the
procedure is less than 5 days away, but “Yes, but
you must stop eating strawberries on [stop_date]”
if it is 5 or more days away.

Our knowledge graph is used to store the stop-
page time for different food (or more generally, in-
gestible) items. Each item, based on its entity type
(solid, liquid, medicine, supplement), has attributes
such as “has seeds” or “has leaves” which deter-
mine the stoppage time. The existing FoodOn (He
et al., 2018) and FoodKG (Fernández et al., 2020)
resources do not cover relations such as “has_skin”
or “has_seeds”, so we augmented our knowledge
graph by asking ChatGPT to list the 200 common
food items and beverages, along with 25 common
over-the-counter medications and supplements in-
cluding items that are mentioned in the informa-
tion sheet provided to the patients. We then used
ChatGPT to provide values for the essential food at-



Figure 1: Generating a simulated conversation cycles through four stages. (1) Transitioning in the state machine,
which triggers a unique attribute grammar production rule. (2) The production rule translates to a canonical
production, which is (3) transformed into a JSON formal representation. (4) The dialogue manager utilizes this
representation to create an agent response, and the cycle begins again.

Figure 2: An example conversation generation using the state machine, with utterances emitted on transitions.
“Why?” is an incomplete query in isolation, requiring conversation context for full interpretation.



tributes by asking it yes/no questions (e.g., whether
apples have seeds), followed by manual inspection
to remove erroneous information.

2.3 Simulated and Challenge Datasets
To create a dataset of simulated conversations, we
ran the conversational state machine 25,000 times,
yielding 11,388 unique conversations that were
split 80/5/15 into training, validation, and test sets,
respectively; at the turn level, there is 3.84% over-
lap between our training and test set. For each
conversation, the procedure date is set randomly 1
to 10 days in the future.

While the simulated conversations include a vari-
ety of synthetic user utterances, they lack linguistic
diversity. To enrich these utterances, we used GPT-
3.5 and GPT-4 (OpenAI, 2023) to paraphrase 200
conversations from the test set.1 Since we found
the paraphrases from GPT-3.5 to be as good or bet-
ter than those of GPT-4, we then used GPT-3.5 to
paraphrase the entire training set, for a total cost of
approximately $10.

To aid in the analysis of our system, we also
created a handcrafted dataset of 25 conversations
that cover all possible use cases of our system,
which we refer to as the challenge set. This set was
created by one of the authors without access to the
attribute grammar or the automatic paraphrases in
the simulated dataset. Of these 25 conversations, 15
are within the scope of the current system, though
the conversations often diverge from the simulated
ones, especially in their use of follow-up questions.

Sample paraphrased conversations appear in a
supplement to the paper along with challenge ones.

3 Experiments

3.1 Models
The goal of the system is to reliably provide ac-
curate and safe answers to user questions. Be-
fore training our own models, we first qualitatively
tested ChatGPT in a zero-shot setting for our task
by providing it relevant information (patient in-
formation sheet and procedure date) and asking it
questions we envisioned patients asking our system.
We found that it did not reliably provide accurate
answers to questions requiring temporal reasoning,
and that its guardrails against providing medical
advice often prevented it from answering questions
that the system should be able to answer. We thus

1We used gpt-4-0314 and gpt-3.5-turbo-0301 model check-
points via OpenAI’s API.

NLU Soft Match Acc. BLEU
Explicit 88.4 0.918
Implicit 56.3 0.206

Table 1: Our system with explicit NLU dramatically
outperforms the end-to-end, implicit NLU baseline on
the PARA-GPT-3.5 test set according to the automatic
measures of soft match accuracy (see text) and BLEU.

Explicit Implicit
Correct 57 22

Nonresponsive 0 2
Misleading 0 0

Incorrect 3 36

Table 2: The explicit NLU system has only a handful of
incorrect responses according to a manual analysis of
a test set sample, whereas the end-to-end implicit NLU
system responds incorrectly more than half the time,
reflecting the inability of pretrained language models to
reliably perform temporal reasoning.

moved on to training our own smaller, faster mod-
els, which also come with fewer privacy concerns.
We used the Hugging Face implementation of pre-
trained BART (Lewis et al., 2020), fine-tuning the
base model (with 140M parameters) for 2 epochs
with a learning rate of 1e-5. We compared a se-
mantic parsing model trained on the synthetic user
utterances against one trained on the GPT-3.5 para-
phrases, and found that the latter achieved 95.0%
accuracy on the PARA-GPT-3.5 test set, a 6.5%
absolute gain over the former. As a baseline for
comparison, we also trained an end-to-end ques-
tion answering model on the user inputs and system
outputs; this model performs NLU implicitly, by-
passing the dialogue manager and KB.

3.2 Explicit vs. Implicit NLU

To evaluate the accuracy of our paraphrase-trained
model against the implicit NLU baseline on the
PARA-GPT-3.5 test set, we employed a soft match
for answer polarity, checking if “yes” or “no” is
mentioned in the gold answer and also in the pre-
dicted answer. We qualitatively checked this soft
match metric on a handful of conversations and
found it to be generally effective at identifying
correct/incorrect matches when the gold answer
contains a polarity particle. (Note that when the
gold answer does not contain a polarity particle,
the soft match metric simply returns false, thereby
underestimating true accuracy for both systems.)
Table 1 shows that the soft match accuracy for the



Explicit Implicit
Correct 17 10

Nonresponsive 34 14
Misleading 4 8

Incorrect 4 27

Table 3: The explicit NLU system has many fewer incor-
rect responses on the in-scope challenge set in compari-
son to the end-to-end Implicit NLU system according
to a manual analysis.

explicit NLU model is dramatically higher (30%
absolute) than the implicit NLU baseline, and has
much higher BLEU scores as well.

To verify the results of the automatic evalua-
tion, we conducted a manual analysis of a ran-
dom sample of 60 items from the test set. Two
authors judged the responses as correct, nonrespon-
sive, misleading or incorrect; Table 2 shows the
counts of the stricter judge. Without defining these
terms, chance-corrected agreement as measured
by Krippendorff’s α was an acceptable 0.72. On
the stricter judge’s annotations, a highly significant
difference was found between the two systems (ig-
noring the “misleading” category, which had zero
counts for both systems), χ2 (2, N=60) = 45.4,
p < .001.

Looking at the answers provided by the implicit
NLU baseline, we find that it can reliably answer
questions that can be memorized as static FAQs,
but it does not reliably answer questions requiring
temporal reasoning. For example, whether orange
juice is allowed depends on how close one is to the
procedure date, and thus the baseline model will
sometimes respond to a question like “Can I have
orange juice tomorrow?” with “Yes, you may drink
orange juice tomorrow” when the correct answer
is “No, you cannot have orange juice tomorrow.”
Such incorrect answers could easily lead to a user
being inadequately prepared for a colonoscopy. By
contrast, with the explicit NLU model, when the
system does not respond correctly, the response is
usually recognizable as a non-sequitur, with only a
small number of requests to rephrase.

3.3 Challenge Set
We also conducted an exploratory analysis of our
system compared to the implicit NLU baseline on
the in-scope subset of the challenge set.2 Three
authors judged the responses as correct, nonrespon-

2On the out-of-scope conversations, the system mostly
yielded safe requests to rephrase.

sive, misleading or incorrect; Table 3 shows the
majority counts. Without defining these terms,
chance-corrected agreement as measured by Krip-
pendorff’s α was only 0.48. Nevertheless, a highly
significant difference was found between the two
systems, χ2 (3, N=59) = 28.5, p < .001. While
both systems fared rather poorly overall, as the
challenge set included a variety of unanticipated
questions and made richer use of the context, the
implicit NLU system clearly had many more incor-
rect responses. Although looking at the handful
of incorrect responses our system made turned up
some fixable bugs, we expect the misleading re-
sponses to be the more serious research challenge,
as they depend on how patients might interpret
responses in context (Tables 5–6, Appendix A).

4 Conclusions and Future Work

Our initial development of a neuro-symbolic con-
versational guide for colonoscopy prep demon-
strated that automatic paraphrasing of simulated
conversations using GPT models can be success-
fully used to generate a diverse dataset for drawing
meaningful insights into model behavior. We found
that GPT and BART language models struggle with
temporal reasoning; thus systems that rely upon
explicit NLU and temporal reasoning are better
suited for answering critical, time-sensitive ques-
tions. Further, we found few incorrect responses
generated from our system under novel and out-
of-scope situations, but misleading ones remain a
challenging concern.

In future work, we plan to enhance and extend
the system after collecting Wizard-of-Oz data with
patients. We expect these system improvements to
greatly reduce the prevalence of nonresponsive an-
swers when patients use more contextually varied
language, as in our current challenge set experi-
ments. We will also re-evaluate the prevalence of
misleading responses and consider implementing
steps to filter out such responses. We also plan to
experiment with making the system more proac-
tive by quizzing patients on their understanding of
the instructions, in order to investigate whether this
yields improved understanding leading to improved
adherence to the prep protocol.
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A Appendix

Food Category

Permission U: Can I eat a strawberry tomorrow? S: No,
you may not eat strawberries tomorrow.

Duration U: When can I eat a strawberry? S: You can
have strawberries up to 5 days before the procedure.
Your procedure is on 6th April 2023 at 5:00pm, you
can have strawberries up to 5:00pm on 1st April
2023.

Explanation U: Why can I not eat a strawberry tomor-
row? S: Your procedure is 3 days away and you
need to stop having strawberries, as it can cause
errors in the procedure and hence should not be
consumed.

Task Category

Description U: What is in the instructions? S: The in-
structions guide you through the preparation for
the procedure.

Duration U: By when should I read the instructions?
S: You should read the instructions at least a week
before your procedure.

Explanation U: Why should I read the instructions? S:
The instructions help you prepare for the procedure.
It is important that you understand the instructions
and follow them to ensure that you are prepared for
the procedure.

Procedure Category

Description U: What is a colonoscopy? S: A
colonoscopy is an inspection of your colon and
your large intestine.

Duration U: When is my procedure? S: Your procedure
is on 6th April 2023 at 5:00pm.

Explanation U: How long is my procedure? S: The
procedure should be 2 to 4 hours long.

Table 4: Sample responses for different categories and
subtypes of user questions. Notice how food related
questions are time sensitive in nature, while task ques-
tions can be answered without logical reasoning.

User: Can I have ice cream today?
System: Your procedure is four days away. Yes, you

can still have ice cream.
User: What if it has nuts in it? You told me to

avoid nuts.
System: You can have ice cream up to 2 days before

the procedure. Your procedure is on Friday,
19 May at 09:30pm, you can have ice cream
up to 09:30pm on Wednesday, 17 May.

Table 5: Example misleading system response from
challenge set. After the system correctly says that the
patient may have ice cream 4 days in advance of the
procedure, the patient asks whether ice cream is still
allowed if it contains nuts. Here, the system should
say no, but instead says that the patient can have ice
cream up to 2 days before the procedure. While this
response is literally correct, it does not directly answer
the patient’s question; as such, it could easily mislead
the patient into thinking an indirect positive answer had
been given (via a Gricean quantity implicature).

User: Do I have to stop taking my insulin before
my colonoscopy?

System: I am sorry, but I couldn’t understand. Could
you please rephrase?

User: Can you contact my doctor?
System: I am sorry, but I cannot provide information

about insulin.
User: Thank you. What should I do until I hear

from them?
System: The prescription contains Mirolax, Dulco-

lax and Gatorade.

Table 6: Example from out-of-scope portion of chal-
lenge set with incorrect responses that are not mislead-
ing. In this scenario, the user asks the system about ad-
justing their insulin dosage. Ideally our system should
direct the user to seek approval from the doctor. How-
ever, for the first question, our system creates an illegal
canonical string and replies that it does not understand
the user query. For the next question, it creates a legal
canonical string, and responds that it cannot provide
information about insulin as it was not present in our
knowledge graph. In the final turn, the system misun-
derstands the question as pertaining to the prep mix and
responds with a non-sequitur.


