A Joint Phrasal and Dependency Model for Paraphrase Alignment

Kapil Thadani, Scott Martin and Michael White
kapil@cs.columbia.edu, {scott,mwhite}@ling.ohio-state.com

Monolingual Alignment

- **Goal**: identify semantically equivalent words and phrases across pairs of text segments
- Monolingual variant of MT alignment
- Useful for paraphrasing, entailment, sentence fusion, QA matching, plagiarism detection etc

Approach

- Supervised structured prediction for pairwise text alignment
- Joint inference to simultaneously align phrases and dependency arcs
- Assumes the score of an alignment factors into scores for phrase edits and arc edits

Joint inference via ILP

Indicator variables for phrase edits \(y \), arc edits \(z \) and token pair alignments \(x \)

Objective: \[
\max \sum y^T_w \Phi(y) + \sum z^T_w \Phi(z)
\]
subject to constraints:
- Only one active \(y \) per token, one active \(z \) per dependency
- Each active \(x \) participates in exactly one active \(y \)
- Each \(z \) activates two \(x \) to pair off its heads and dependents respectively and, conversely, is activated if these \(x \) are active

Challenges

- Phrase-based representations are natural but paraphrase recall is problematic
- ~65% of token alignments in Edinburgh training corpus supported by dependencies

Edinburgh Paraphrase Corpus

- Human-aligned paraphrase corpus (Cohn et al., 2008) from three sources:
 1. Multiple Translation Chinese corpus
 2. Multiple Jules Verne translations
 3. MSR paraphrase corpus
- Retokenized, truecased, NEs collapsed
- 715 training + 305 test instances (70:30 split)

Baseline 1. Meteor (Denkowski & Lavie, 2011)
- MT evaluation metric
- best configuration over training set (**max-accuracy**) Results (F₁)

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Phrase-based</th>
<th>Phrase+Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURE</td>
<td>75.49%</td>
<td>77.85%</td>
<td>79.20%</td>
</tr>
<tr>
<td>SURE + POSSIBLE</td>
<td>73.22%</td>
<td>75.37%</td>
<td>77.57%</td>
</tr>
</tbody>
</table>

Baseline 2. Phrase-based MANLI (Thadani & McKeown, 2011)
- Supervised aligner with ILP inference
- Improvement on MANLI (MacCartney et al., 2008) which outperforms GIZA++ (Och & Ney 2003), HMMs (Liang et al., 2006) and Stanford’s RTE aligner (Chambers et al., 2007)

<table>
<thead>
<tr>
<th></th>
<th>Tokens</th>
<th>Phrase-based</th>
<th>Phrase+Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURE</td>
<td>65.60%</td>
<td>75.10%</td>
<td>76.30%</td>
</tr>
<tr>
<td>SURE + POSSIBLE</td>
<td>62.57%</td>
<td>78.79%</td>
<td>80.92%</td>
</tr>
</tbody>
</table>

All gains significant under Wilcoxon’s signed rank test

Results

- **SURE**
- **POSSIBLE**
- **Sure + Possible**

Learning

- Structured perceptron with averaging (Collins, 2002) to learn weights
- Phrase edit features \(\Phi(y) \) from MANLI (MacCartney et al., 2008): phrase sizes, lexical + contextual similarity, relative positions, etc
- Arc edit features \(\Phi(z) \) note the label category (e.g., subj) of the dependencies

Example: token alignments with syntactic support **missed** by the Meteor aligner (Denkowski & Lavie, 2011)

Can we improve alignment using syntax?

http://www.ling.ohio-state.edu/~mwhite/data/coling12/