
Reining in CCG Chart Realization

Michael White

School of Informatics, University of Edinburgh
Edinburgh EH8 9LW, UK

http://www.iccs.informatics.ed.ac.uk/~mwhite/

Abstract. We present a novel ensemble of six methods for improv-
ing the efficiency of chart realization. The methods are couched in the
framework of Combinatory Categorial Grammar (CCG), but we con-
jecture that they can be adapted to related grammatical frameworks
as well. The ensemble includes two new methods introduced here—
feature-based licensing and instantiation of edges, and caching of cate-
gory combinations—in addition to four previously introduced methods—
index filtering, LF chunking, edge pruning based on n-gram scores, and
anytime search. We compare the relative contributions of each method
using two test grammars, and show that the methods work best in combi-
nation. Our evaluation also indicates that despite the exponential worst-
case complexity of the basic algorithm, the methods together can con-
strain the realization problem sufficiently to meet the interactive needs
of natural language dialogue systems.

1 Introduction

Chart realization algorithms [1–6] perform the inverse task of chart parsing al-
gorithms: that is, rather than transducing strings to logical forms (LFs), they
transduce logical forms to strings, a task often called surface (or linguistic or
syntactic) realization. As Kay [2] explains, chart realization algorithms are gen-
erally exponential in the worst case, though in practice their behavior can vary
greatly depending on the specific algorithm and grammar. In this paper, we
address the question whether chart realization using Steedman’s [7, 8] Combina-
tory Categorial Grammar (CCG)—with its theoretically attractive accounts of
coordination and intonation—can be practically employed in natural language
dialogue systems, even in the presence of mild overgeneration. In a case study,
we show for the first time that by employing a novel ensemble of methods for im-
proving the efficiency of CCG chart realization, one can reliably realize sentences
in a dialogue system fast enough for interactive use.1

The methods have been implemented in the OpenCCG2 open source CCG
realizer, which takes advantage of the multi-modal extensions to CCG developed
1 Though the amount of time that can be allocated to realization without introducing

undue response latencies varies for different dialogue systems, as a rule of thumb,
we have been aiming to keep realization times under a second.

2 http://openccg.sourceforge.net/

mwhite
To appear in the Proceedings of INLG-04

by Baldridge and Kruijff [9, 10]. It has also been deployed in two prototype
dialogue systems, COMIC [11] and FLIGHTS [12]. Initial experience with these
systems suggests that realization times are satisfactory.

2 Efficiency Methods

In this section, we review the methods for improving the efficiency of CCG chart
realization described in [6, 13], then introduce two new methods here. For space
reasons, we omit a description of the chart realization algorithm itself.

Index Filtering In the OpenCCG realizer, an edge is a CCG sign (string-category
pair) plus various bookkeeping data structures. These include two bit vectors
that make it possible to instantly check whether two edges cover disjoint parts
of the input LF, and whether they have any indices in common. Both of these
tests must succeed in order for the algorithm to attempt to create new edges by
combining the pair using the combinatory rules.

Our approach to index filtering essentially follows Kay [2] and Carroll et al.
[4]. The twist with CCG [6] is that a check must be made for paired indices in the
input LF in order to handle argument cluster coordination, since the type-raised
NPs which need to compose into an argument cluster do not have any indices
in common. If index filtering is turned off, the search space can quickly become
unmanageable [6, 13].

Anytime Search The anytime search method [6] involves integrating n-gram scor-
ing of possible realizations into the chart realization algorithm, as proposed by
Varges and Mellish [14], rather than ranking all complete realizations by their
n-gram score as a post-process, as in the pioneering work of Knight and Hatzi-
vassiloglou [15] and their successors. With this method, the search is formulated
as a best-first anytime algorithm that can return the best available realization
(according to its n-gram score) at “any time.” Implementing this method simply
requires treating the agenda as a priority queue sorted by n-gram scores, and
adding a protocol for time-outs.

The anytime search method partially addresses the problem that the gram-
mar may license an exponential number of possible realizations for a given input.
This method is particularly appropriate for the needs of natural language dia-
logue systems, where response times must be kept short in order to achieve
sufficient interactivity.

LF Chunking The LF chunking method [13] addresses the problem, noted by
Kay [2], that chart realization algorithms can waste a great deal of time on gener-
ation paths containing semantically incomplete phrases. As Kay observes, chart
realization in its naive form generates sentences for all subsets of the predicates
corresponding to syntactically optional modifiers, only one of which is seman-
tically complete. For example, with an input LF for Kay’s sentence Newspaper
reports said that the tall young Polish athlete ran fast, a naive chart realizer pro-
duces syntactically complete sentences for all subsets of the modifiers newspaper,

tall, young, Polish, and fast, yielding a grand total of 32 strings, 31 of which are
useless.

Our approach to this problem is to make use of a small set of rules, written
by the grammar author, for chunking input logical forms into sub-problems to
be solved independently prior to further combination, thereby avoiding a prolif-
eration of semantically incomplete edges. The default rule is to chunk sub-trees
in the input LF. With Kay’s sentence, this rule would ensure that the edges for
the two NPs are semantically complete before allowing them to combine with
the verb, thus avoiding unwanted edges such as the athlete ran.

A handful of exceptions to the default rule are generally required. For ex-
ample, an exception must be made for negation, since the syntactic position of
not is incompatible with chunking the negated proposition. If no exception were
made, the chunking constraint would force the edges for the subject and verb
phrase that realize the proposition to combine before allowing combinations with
the edge for not, effectively blocking all desired derivations.

An advantage of Kay’s original approach to avoiding semantically incomplete
phrases over the present one is that his solution is fully automatic, and does
not require the insights of the grammar author. On the other hand, the LF
chunking method is more flexible than Kay’s solution, and also extends to cases
not considered by Kay. In particular, it can help to more efficiently realize non-
standard coordinated constituents [13].

As an alternative to Kay’s approach, Carroll et al. [4] propose to delay the in-
sertion of all intersective modifiers until the rest of the chart has been completed,
and then to add them via adjunction. An advantage of their solution over Kay’s
is that it further reduces unwanted edges by avoiding extra intermediate results.
However, it is unclear how well delaying the handling of intersective modifiers
until the end would fit with our anytime approach to realization, and for this
reason we have not pursued their solution.

N-Best Edge Pruning While the chunking rules cut down the search space by
keeping semantically incomplete phrases from proliferating, a grammar may still
license an exponential number of phrases for a given input—especially when the
grammar is intentionally allowed to overgenerate, in order to take advantage
of an n-gram scoring function’s ability to select preferred word orders. The n-
best edge pruning method [13] is designed to help keep the realizer from getting
bogged down in the face of cases where the grammar leaves word order relatively
free. It does so by limiting the number of edges in the chart that can have
equivalent categories (but different strings), removing the edge whose string
has the lowest n-gram score when the limit is exceeded. Note that since edge
pruning only takes place within groups of edges sharing the same syntactic and
semantic category, there is no way that edge pruning can prevent the search
from turning up any complete realizations. However, as a heuristic method, n-
best edge pruning can prevent the realization with the best n-gram score from
ever being found, if applied too aggressively.

Caching of Category Combinations To efficiently implement pruning, a hash map
is used to group edges together with equivalent categories. This same hashing
strategy can be reused to cache the results of the combinatory rules when applied
to an edge or pair of edges, according to the categories involved. In this way,
the application of the combinatory rules can be short-circuited when an edge
or pair of edges is encountered whose categories have been seen before. Instead
of applying the combinatory rules as usual, the previous results of applying the
rules are adapted to create new edges; the resulting edges share the same cate-
gory, but have different strings appropriate to the current edge or pair of edges.
Using cached category combinations achieves some of the same improvements in
efficiency as using packed representations, as in [3, 16], since both methods serve
to group edges with equivalent combinatory potential. The advantage of caching
category combinations is that it fits better with the anytime search approach.

Feature-Based Licensing and Instantiation As Carroll et al. [4] point out, seman-
tically null words such as case-marking prepositions or particles, complementiz-
ers, and infinitival to (depending on the grammar) can significantly worsen per-
formance, since the edges for these words do not have indices to constrain their
potential combinations. To lessen the problem they pose, Carroll et al. suggest
using ad hoc filters to avoid using edges for semantically null words, in cases
where the input semantics contains no evidence that they are needed.

Pursuing a similar idea, we have devised a systematic way to use features to
license semantically null categories, as well as to instantiate the indices on these
categories where possible. Our method involves having the grammar author con-
cisely specify which features—of those found on the initial categories, accessed
during lexical lookup—should be used for licensing and instantiation. For ex-
ample, the grammar author can specify that the inf value of the vform feature
should be used for both licensing and instantiation.3 As a result, the category
for infinitival to will only be licensed if there is an initial category that subcat-
egorizes for an infinitival verb phrase; furthermore, the index on this category
will be instantiated with the index of the infinitival verb phrase.4

By default, the lex feature is used to license subcategorized case-marking
prepositions or particles. It also receives special treatment, in that it is used to
instantiate the indices on the semantically null edges with new pseudo-indices
created for each value of the lex feature found in the initial categories. For
example, with the phrasal verb pick up, an initial edge is created for the verb
pick, which subcategorizes for a particle where lex=up; thus, an edge for the
particle up will be licensed, which gets instantiated with a new pseudo-index so
that it will combine only with the pick edge.

We have also extended the approach to include the licensing of “marked” cat-
egories, such as inverting categories for auxiliaries which are used in questions,

3 It is also possible to specify that the feature value must appear only on the target
category, or only on an argument category. Features may also be specified as relevant
for licensing only or instantiation only.

4 Multiple edges are created if the relevant index is not unique.

but not ordinary declaratives. Though such marked categories are not semanti-
cally null, in our approach they similarly require licensing by other initial edges.
In this way, some of the benefits of the top-down constraints used in semantic
head–driven approaches to realization [17] become available, without changing
the essentially bottom-up nature of the chart realization algorithm.

3 Case Study

To compare the contributions of the different methods for improving efficiency,
we measured the realizer’s accuracy and speed, under a variety of configurations,
on test suites for two small but linguistically rich grammars:

COMIC The COMIC grammar covers sentences in the domain of bathroom
redesign and has been deployed in the COMIC (COnversational Multimodal In-
teraction with Computers) prototype dialogue system. The grammar partially
implements Steedman’s [7] theory of information structure and prosody in CCG,
and the core of the grammar is shared with the one deployed in the FLIGHTS
system. The test suite contains 549 unique pairs of logical forms and target
sentences, out of which 219 are unique after replacing certain words with se-
mantic classes (e.g., replacing Armonie by SERIES). The test suite was derived
by running the system through a range of simulated dialogues; deduplicating
the generated logical forms; realizing the logical forms using a language model
derived from a smaller regression test suite for the grammar; and manually cor-
recting the resulting realizations to obtain the desired target sentences. The
target sentences average 13.1 words in length, with a minimum of 6 and a max-
imum of 34 words. In these sentences, pitch accents such as H* and L+H* are
considered integral parts of words, whereas boundary tones such as LH% and
LL% are treated as separate words, like punctuation marks. The input logical
forms range from 2 to 20 nodes and have 8.4 nodes on average.5 An example
sentence is once again L+H* LH% there are floral H* motifs H* LH% and ge-
ometric H* shapes H* on the decorative H* tiles LL% , but L here L+H* LH%
the colours are off white H* LH% and dark red H* LL% .

Worldcup The Worldcup grammar is from a linguistic study of extraction and
coordination, and covers heavy NP shift, non-peripheral extraction, parasitic
gaps, particle shift, relativization, right node raising, topicalization, and argu-
ment cluster coordination. The test suite contains five additional invented vari-
ants for each of the 46 phrases discussed in [9], for a total of 276 unique pairs
of logical forms and target phrases, half of which are unique after semantic class
replacement. The phrases average 9.2 words in length, and vary from a minimum
of 4 words to a maximum of 18 words. The number of nodes in the input logical
forms averages 6.8, and ranges from 3 to 13. Example phrases include game that
John watched without enjoying and John knew that Brazil would defeat and Bill
predicted that China would tie with Turkey.
5 The number of nodes essentially corresponds to the number of content words.

While these two grammars use unification in the usual way to handle phe-
nomena such as person, number and case agreement, they still overgenerate to
varying extents. In particular, neither grammar sufficiently constrains modifier
order, which in the case of adverb placement especially can lead to a large num-
ber of possible orderings. Additionally, the COMIC grammar allows for a one to
many mapping from themes or rhemes [7] to boundary tones, yielding many vari-
ants that differ only in boundary tone type or placement. This flexibility makes it
possible to handle discontinuous themes or rhemes, but it does so at the expense
of making the grammar considerably more challenging for the realizer to process
efficiently. Nevertheless, in comparison to most previous work on using n-gram
scoring in realization (going back to [15]), our grammars are narrower in cover-
age and only mildly overgenerate; as a result though, our approach is the only
one capable of achieving near perfect quality, which we consider more important
in dialogue systems than wide coverage. Another difference is that our approach
currently leaves very little lexical choice to the realizer, though in future work,
we plan to investigate allowing the input logical forms to underspecify lexical
choice in a flexible way.

Using these two test suites, we timed how long it took on a 2.2 GHz Linux
PC to realize each logical form using various realizer configurations.6 Before
examining the relative contributions of the efficiency methods, we first assessed
the effect of n-gram scoring on accuracy and search times. To do so, we counted
the number of times the best scoring realization exactly matched the target,
and also computed a simplified version of the Bleu n-gram precision metric [18]
employed in machine translation evaluation. To rank candidate realizations, we
used 5-gram backoff models with semantic class replacement, created using the
SRI language modeling toolkit [19] in a 25-fold cross-validation setup. We then
compared the realization results using the n-gram scorers with two baselines and
one topline. The first baseline assigns all strings a uniform score of zero, and adds
new edges to the end of the agenda, corresponding to breadth-first search. The
second baseline uses the same scorer, but adds new edges at the front of the
agenda, corresponding to depth-first search. The topline uses the modified Bleu
score, computing n-gram precision against just the target string, a technique
which we have found to be very useful for regression testing the grammar.

The results of this comparison appear in Table 1. Since the COMIC gram-
mar is more challenging to process, we employed 3-best edge pruning with the
COMIC test suite, as 3 was the smallest value that allowed the topline method
to achieve perfect accuracy. For both suites, all other efficiency were methods
turned on. With the COMIC test suite, the n-gram scorer succeeded in ranking
the target realization as the best one in all but one case—there is also H* artwork
on the decorative tiles LL%—where it mistakenly preferred also H* fronted, due
to the trigram there is also H* appearing in just this example. With the World-
cup test suite, the n-gram scorer did less well in ranking the target realization
as best, achieving exact matches in only 250 out of 276 cases. However, with the

6 Running the tests under different Linux and Windows Java virtual machines did not
appear to change the relative timings.

COMIC

Accuracy Score First Best
Baseline 1 284/549 0.78 497 (±380) 497 (±380)
Baseline 2 41/549 0.38 400 (±286) 400 (±286)

Topline 549/549 1 152 (±93) 154 (±95)
CV-25 548/549 0.99 206 (±138) 206 (±138)

Mean (±σ) Time 'til
Worldcup

Accuracy Score First Best
Baseline 1 70/276 0.55 181 (±198) 181 (±198)
Baseline 2 67/276 0.53 133 (±152) 133 (±152)

Topline 276/276 1 54 (±36) 55 (±37)
CV-25 250/276 0.93 93 (±60) 93 (±60)

Mean (±σ) Time 'til

Table 1. Effect of n-grams on accuracy and search times (in ms.), with the COMIC
test suite and 3-best pruning, and with the Worldcup test suite and no pruning.

exception of a couple of topicalization7 choices, the 26 non-matching realizations
appear to represent cases of acceptable free variation. Moreover, the scorers man-
aged to avoid many dispreferred variants allowed by the mildly overgenerating
grammar, such as *easily Brazil defeated Germany and *Marcos picked up it. In
regard to realization times, the n-gram scorers also yielded substantial speedups
over the baselines in the time to find the first complete realization. What was
somewhat surprising to observe was that the best scoring realizations nearly
always appeared first, or soon after, with a neglible effect on the average time.

Turning now to the contributions of the various efficiency methods, the re-
alizer configurations we compared are as follows. The Baseline configuration
corresponds to the realizer version described in [6], and uses the index filter plus
“quick-and-dirty” licensing of semantically null edges, where the lex feature is
used to license, but not instantiate, some semantically empty function words.
The All configuration uses the index filter plus LF chunking, caching of cate-
gory combinations, and systematic licensing and instantiation of edges. The No
Chunking, No Licensing and No Caching configurations are like the All
configuration, except with the method in question turned off. Under all configu-
rations, we imposed a time limit of 10 seconds on the search, considering times
over 10 seconds to be clearly too slow for dialogue systems. Had we not imposed
this time limit, the observed improvements would have been more dramatic.

The realizer timings for the efficiency comparisons appear in Figures 1-3.
Figure 1 shows the amount of time until the first realization is found for input
logical forms of different sizes, averaged across inputs with the same number of
nodes. Figure 2 shows the amount of time until all realizations are found for
inputs of different sizes, on a logarithmic scale. Finally, Figure 3 compares the
amount of time until the first realization is found to the amount of time until
all realizations are found, both on average and in the worst case.

Reviewing the results in turn, Figure 1 shows that as the inputs get larger,
chunking becomes essential to keep the time until the first realization is found
reliably short, while licensing can contribute a sizeable speedup. Caching only
offers a tiny improvement though, at least with 3-best pruning in use with the
7 With the Worldcup grammar, topicalization has no semantic reflex in the logical

form; in contrast, with the COMIC grammar, topicalization choices in the realizer
are determined by a feature in the input logical form, rather than being left for the
n-grams to try to decide.

Num Count Mean
Nodes Per Baseline No ChunkinNo LicensinNo CachingAll

2 1 279 187 250 208 185
3 11 179.8182 132.3636 170.7273 130.8182 126.6364
4 24 210.0833 150.5 181.9583 141.875 135.25
5 63 228.2063 176.4921 175.4603 139.0159 134.7937
6 63 355.4444 234.6667 270.6667 183.5873 176.8095
7 105 249.2952 184.9238 186.4 137.0667 133.0762
8 52 368.5192 272.4423 225.1538 156.5 156.7308
9 65 413.6615 309.6923 264.7231 181.6769 184.8308

10 42 495.1429 377.9524 317.6429 221.6905 224.6667
11 46 697.3696 486.9783 422.6522 299.587 293.0217
12 26 672.0769 502.6923 382.3846 266.4615 265.2692
13 13 916.6923 664.6154 514.6923 369.7692 361.9231
14 9 1230.333 808.4444 710.7778 467.4444 457.1111
15 6 1797.5 1216.667 765.5 509.1667 482
16 5 2930.4 1803 1087.4 670 647.8
17 6 1753.167 1376.667 753.1667 523.5 505.5
18 8 2441.5 1652.25 952 596.375 554.125
19 2 3592.5 3586 1445.333 810.3333 744.6667
20 1 1986 1456 1167 768 744

COMIC: First

0

1000

2000

3000

4000

2 6 10 14 18

Baseline
No Chunking
No Licensing
No Caching
All

Num Count Mean
Nodes Per Baseline No ChunkinNo LicensinNo CachingAll

3 20 44.3 24.7 43.95 23.1 23.4
4 30 79.96667 58.06667 77.06667 53.53333 54
5 26 139.1538 99.76923 117.4615 83.57692 81.92308
6 50 164.38 118.64 96.1 62.42 62.7
7 54 296.463 225.5 152.5556 106.9444 106.537
8 32 394.9063 308.7188 170.9063 121.0625 121.1875
9 28 424.3214 317.4643 167.0357 112.6071 115.1071

10 18 434.7778 348.1667 187.3889 136 139.3889
11 8 1418.125 982.125 324.625 226.25 223.25
12 8 840.125 603.25 245.25 146.125 140.875
13 2 980.5 603 288.5 224 184.5

Worldcup: First

0

500

1000

1500

3 6 9 12

Baseline
No Chunking
No Licensing
No Caching
All

Fig. 1. Mean time until first realization is found for inputs of different sizes.

Num Count Mean
Nodes Per Baseline No ChunkinNo LicensinNo CachingAll

2 1 825 265 584 353 263
3 11 1196.455 350.3636 750.7273 413.0909 308.1818
4 24 1134.333 368.2083 661.75 375.5417 291.7083
5 63 1701.587 587.6349 591.9206 365.7143 283.3016
6 63 3007.349 980.3968 1015.746 516.4127 403.7937
7 105 3072.876 1157.486 952.181 557.0476 422.8286
8 52 3216.5 1225.712 919.8462 546.1923 419.1731
9 65 4444.538 1987.862 1290.431 757.4615 598.2154

10 42 6990.452 3564.381 2190.524 1195.548 959.0238
11 46 5662.022 4007.652 2031.022 1009.957 841.7174
12 26 7371.846 5843.577 2062.731 1079.5 885.6154
13 13 7908.462 5752.846 1996.077 1096.462 871.0769
14 9 8258 7159.111 2376.556 1139 924.2222
15 6 7759.333 6473.667 2069.5 1092.167 884.6667
16 5 9013.6 7128.2 3785.6 1542 1252.6
17 6 9080.333 5497.833 2021.333 1060.833 868.3333
18 8 9773.25 6456.5 2535 1169.75 980
19 2 10012.5 9797.333 4020.333 1607 1471.667
20 1 10004 10091 4255 1915 2155

COMIC: All

100

1000

10000

2 6 10 14 18

Baseline
No Chunking
No Licensing
No Caching
All

Num Count Mean
Nodes Per Baseline No ChunkinNo LicensinNo CachingAll

3 20 77.95 32.3 70.7 32.5 30.4
4 30 222.7 100.0667 162.8667 124.4 92.93333
5 26 974.7308 270.8077 478.7692 422.3846 226.0385
6 50 856.68 313.24 236.18 200.16 129.12
7 54 3074.63 1023.37 619.3333 640.1667 350.5185
8 32 2839.594 1164.406 665.5 586.2188 342.6875
9 28 2707.714 1245.857 494.3571 474.3571 308.5357

10 18 3688 1905.778 765 662.9444 431.7222
11 8 10023 10003.75 2767.25 3212.5 1743.5
12 8 3871.875 3137.125 771.25 885.875 438.5
13 2 2727.5 1278 475 449.5 282

Worldcup: All

10

100

1000

10000

3 6 9 12

Baseline
No Chunking
No Licensing
No Caching
All

Fig. 2. Mean time until all realizations are found for inputs of different sizes.

COMIC test suite. All improvements were statistically significant using paired t-
tests, except with caching on the Worldcup test suite. Note that with the largest
input sizes, there are relatively few test cases per size, which is why the curves
become jagged; also, the time scales for the two suites are different, reflecting
the greater difficulty in processing the COMIC grammar.

Figure 2 shows how the various efficiency techniques combine to reduce the
time until all realizations are found: caching yields a small improvement, licensing
a larger one, and chunking a substantial one; and with none of these methods in
operation (the baseline configuration), the time to completion is often an order
of magnitude worse. Note that these curves actually understate the differences
between the configurations, since the 10-second cutoff reduces the average times
when some test cases fail to complete within the time limit. Specifically, with
the COMIC test suite, 87 cases failed to finish within 10 seconds in the baseline
configuration, while 40 cases did not complete in the no chunking configuration;
in the baseline configuration, there was even one case when the first realization
was not found within the time limit. With the Worldcup test suite, 20 cases
failed to complete within 10 seconds in the baseline configuration, and 10 cases
did not finish in the no chunking configuration.

Figure 3 shows that the time until the first realization is found can be much
less than the time until all realizations are found, both on average and in the
worst case, thereby showing the potential for anytime search to yield much more

Mean Max
First All First All

Baseline 500.5365 4185.859 10000 10044
No Chunkin 368.1967 2276.938 6645 10093
No Licensin 303.4044 1319.058 2129 6755
No Caching 211.776 713.2532 1081 2932
All 207.2823 568.0801 1023 2689

NB: Max First for Baseline in file (7104) changed to 10000, since one sentence failed to finis

COMIC: Range

0

2000

4000

6000

8000

10000

First All First All

Mean Max

Baseline
No Chunking
No Licensing
No Caching
All

Mean Max
First All First All

Baseline 302.5435 2145.391 3161 10058
No Chunkin 224.1413 1071.54 1736 10009
No Licensin 137.4746 515.0978 428 3287
No Caching 94.3442 498.5543 306 5035
All 94.19565 290.0471 286 2327

Worldcup: Range

0

2000

4000

6000

8000

10000

First All First All

Mean Max

Baseline
No Chunking
No Licensing
No Caching
All

Fig. 3. Comparison of time until first realization is found vs. time until all realizations
are found, on average and in the worst case.

reliably fast realization times.8 For example, with the COMIC grammar in the
baseline configuration, the average time until the first realization is found is 500
ms, while the average time until all realizations are found is more than eight
times longer; and in the all methods configuration, the average time until the
first realization is found is 207 ms, while the average time until all realizations
are found is 568 ms, more than two and a half times longer. In the worst case,
the situation is more dramatic. For example, with the Worldcup test suite, even
in the all methods case, the maximum time until all realizations are found (2327
ms) is more than eight times longer than the maximum time until the first
realization is found (286 ms).

4 Conclusion

In this paper, we have presented a novel ensemble of methods for improving
the efficiency of chart realization, including two new methods, feature-based
licensing and instantiation of edges, and caching of category combinations. The
methods are couched in the framework of Combinatory Categorial Grammar
(CCG), but we conjecture that they can be adapted to related grammatical
frameworks as well. In particular, since the anytime search method requires only
that the agenda be treated as a priority queue sorted by n-gram scores, it should
be directly applicable to other grammatical frameworks.

In evaluating the impact of these methods, we have shown that together
they can enable CCG realization to be practically employed for the first time in
natural language dialogue systems, even in the presence of mild overgeneration.
While we expect that performance may vary substantially with different gram-
mars, the empirical observation that the best scoring realizations appear first
or soon after suggests that one could reliably realize sentences fast enough for
interactive use even with wider coverage grammars. Whether the approach will
continue to work equally well when faced with more underspecified input logical
forms, however, remains a topic for future research.
8 The upward arrows indicate configurations where the times would have been worse

had all cases been allowed to run to completion.

Acknowledgements

Thanks to Mark Steedman, Jason Baldridge, Geert-Jan Kruijff, Johanna Moore,
Jon Oberlander, Mary Ellen Foster, and the anonymous reviewers for helpful
discussion. This work was supported in part by the COMIC (IST-2001-32311)
and FLIGHTS (EPSRC-GR/R02450/01) projects.

References

1. Shieber, S.: A uniform architecture for parsing and generation. In: Proc. of the
14th International Conference on Computational Linguistics. (1988) 614–619

2. Kay, M.: Chart generation. In: Proc. of the 34th Annual Meeting of the Association
for Computational Linguistics. (1996) 200–204

3. Shemtov, H.: Ambiguity Management in Natural Language Generation. PhD
thesis, Stanford University (1997)

4. Carroll, J., Copestake, A., Flickinger, D., Poznański, V.: An efficient chart gener-
ator for (semi-) lexicalist grammars. In: Proc. of the 7th European Workshop on
Natural Language Generation. (1999) 86–95

5. Moore, R.C.: A complete, efficient sentence-realization algorithm for unification
grammar. In: Proc. of the 2nd International Natural Language Generation Con-
ference. (2002)

6. White, M., Baldridge, J.: Adapting Chart Realization to CCG. In: Proc. of the
9th European Workshop on Natural Language Generation. (2003)

7. Steedman, M.: Information structure and the syntax-phonology interface. Linguis-
tic Inquiry 31 (2000) 649–689

8. Steedman, M.: The Syntactic Process. MIT Press (2000)
9. Baldridge, J.: Lexically Specified Derivational Control in Combinatory Categorial

Grammar. PhD thesis, School of Informatics, University of Edinburgh (2002)
10. Baldridge, J., Kruijff, G.J.: Multi-Modal Combinatory Categorial Grammar. In:

Proc. of 10th Annual Meeting of the European Association for Computational
Linguistics. (2003)

11. den Os, E., Boves, L.: Towards ambient intelligence: Multimodal computers that
understand our intentions. In: Proceedings of eChallenges e-2003. (2003)

12. Moore, J., Foster, M.E., Lemon, O., White, M.: Generating tailored, comparative
descriptions in spoken dialogue. In: Proceedings of FLAIRS-04. (2004)

13. White, M.: Efficient Realization of Coordinate Structures in Combinatory Cate-
gorial Grammar. Research on Language and Computation (2004) To appear.

14. Varges, S., Mellish, C.: Instance-based natural language generation. In: Proc. of the
2nd Meeting of the North American Chapter of the Association for Computational
Linguistics. (2001) 1–8

15. Knight, K., Hatzivassiloglou, V.: Two-level, many-paths generation. In: Proc.
ACL. (1995)

16. Langkilde, I.: Forest-based statistical sentence generation. In: Proc. NAACL.
(2000)

17. Shieber, S., van Nord, G., Pereira, F., Moore, R.: Semantic-head–driven generation.
Computational Linguistics 16 (1990) 30–42

18. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a Method for Automatic
Evaluation of Machine Translation. Technical Report RC22176, IBM (2001)

19. Stolcke, A.: SRILM — An extensible language modeling toolkit. In: Proceedings
of ICSLP-02. (2002)

