
LSTM
Hypertagging
Reid Fu, Ohio State Computer Science and Engineering

Michael White, Ohio State Linguistics and Facebook Conversational AI

INLG, 6 November 2018

LSTM Hypertagging Works!

´ Espinosa et al. (2008) coin the term hypertagging as short for supertagging for
surface realization (aka fine-grained syntactic tagging a la Joshi and
Bangalore)

´ They show that maximum entropy hypertagging yields substantial performance
improvements for broad coverage deep CCG realization

´ More recently, Lewis et al. (2016) show large gains for CCG parsing using an
LSTM supertagger instead of a maxent one

´ We likewise show large gains in hypertagging accuracy and downstream
realization quality with OpenCCG using an LSTM hypertagger
´ … especially when using English-like input linearization

´ ... yielding a 28% reduction in tagging error
´ … and an 8% increase in grammatically complete derivations
´ … leading to substantially preferred realizations

Who cares?

´ Is anyone still doing grammar-based surface realization?

(… stay tuned for discussion of related work at the end …)

The Task

aa1

heh3

he
h2

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

s[b]\np/np

np/n

np

n

s[dcl]\np/np

s[dcl]\np/(s[to]\np)

np

Predicted lexical categories are used
in OpenCCG derivations

He has a point he wants to make

np sdcl\np/np np/n n np sdcl\np/(sto\np) sto\np/(sb\np) sb\np/np
> >T >B

np s/(s\np) sto\np/np
>B

sdcl\np/np
>B

sdcl/np

np\np
<np
>

sdcl\np
<sdcl

Figure 1: Syntactic derivation from the CCGbank for He has a point he wants to make [. . .]

particular, the features and unification constraints
in the categories related to semantically empty
function words such complementizers, infinitival-
to, expletive subjects, and case-marking preposi-
tions are adjusted to reflect their purely syntactic
status.

In the second step, a grammar is extracted from
the converted CCGbank and augmented with log-
ical forms. Categories and unary type chang-
ing rules (corresponding to zero morphemes) are
sorted by frequency and extracted if they meet the
specified frequency thresholds. A separate trans-
formation then uses a few dozen generalized tem-
plates to add logical forms to the categories, in a
fashion reminiscent of (Bos, 2005). As shown in
Figure 2, numbered semantic roles are taken from
PropBank when available, and more specific rela-
tions are introduced in the categories for closed-
class items such as determiners.

After logical form insertion, the extracted and
augmented grammar is loaded and used to parse
the sentences in the CCGbank according to the
gold-standard derivation. If the derivation can
be successfully followed, the parse yields a log-
ical form which is saved along with the corpus
sentence in order to later test the realizer. Cur-
rently, the algorithm succeeds in creating logical
forms for 98.85% of the sentences in the develop-
ment section (Sect. 00) of the converted CCGbank,
and 97.06% of the sentences in the test section
(Sect. 23). Of these, 95.99% of the development
LFs are semantic dependency graphs with a sin-
gle root, while 95.81% of the test LFs have a sin-
gle root. The remaining cases, with multiple roots,
are missing one or more dependencies required to
form a fully connected graph. Such missing de-
pendencies usually reflect remaining inadequacies
in the logical form templates.

An error analysis of OpenCCG output by Ra-
jkumar et al. (2009) recently revealed that out of

2331 named entities (NEs) annotated by the BBN
corpus (Weischedel and Brunstein, 2005), 238
were not realized correctly. For example, multi-
word NPs like Texas Instruments Japan Ltd. were
realized as Japan Texas Instruments Ltd. Accord-
ingly, inspired by Hogan et al.’s (2007)’s Experi-
ment 1, Rajkumar et al. used the BBN corpus NE
annotation to collapse certain classes of NEs. But
unlike Hogan et al.’s experiment where all the NEs
annotated by the BBN corpus were collapsed, Ra-
jkumar et al. chose to collapse into single tokens
only NEs whose exact form can be reasonably ex-
pected to be specified in the input to the realizer.
For example, while some quantificational or com-
paratives phrases like more than $ 10,000 are an-
notated as MONEY in the BBN corpus, Rajkumar
et al. only collapse $ 10,000 into an atomic unit,
with more than handled compositionally accord-
ing to the semantics assigned to it by the gram-
mar. Thus, after transferring the BBN annotations
to the CCGbank corpus, Rajkumar et al. (partially)
collapsed NEs which are CCGbank constituents
according to the following rules: (1) completely
collapse the PERSON, ORGANIZATION, GPE,
WORK OF ART major class type entitites; (2) ig-
nore phrases like three decades later, which are
annotated as DATE entities; and (3) collapse all
phrases with POS tags CD or NNP(S) or lexical
items % or $, ensuring that all prototypical named
entities are collapsed.

It is worth noting that improvements in our
corpus-based grammar engineering process—
including a more precise treatment of punctuation,
better named entity handling and the addition of
catch-all logical form templates—have resulted in
a 13.5 BLEU point improvement in our baseline
realization scores on Section 00 of the CCGbank,
from a score of 0.6567 in (Espinosa et al., 2008)
to 0.7917 in (Rajkumar et al., 2009), contribut-
ing greatly to the state-of-the-art results reported

LSTM Hypertagger streamlines method

Maxent Hypertagger
´ Uses graph-local features

´ Original hypertagger first predicts
POS tags, then uses graph-local
POS tags to predict lexical
categories (ie supertags)

´ Unpublished two-stage
hypertagger stacks on a second
stage of predicting lex cats using
initial graph-local supertags

LSTM Hypertagger
´ Uses graph-local features

´ Predicts lexical categories directly

´ Derives contextual evidence via
bi-LSTM

Lewis et al. Architecture (unchanged)

But our inputs are graphs?

´ Could try a graph encoding method (as in Marcheggiani & Perez-
Beltrachini, INLG-18!)

´ Or, could use more conventional bi-LSTM approach and leave a graph-
based method for future work J

´ Doing so requires the input graph to be linearized; we take inspiration from
Konstas et al.’s (2017) AMR generation approach

´ Unlike in their setting, here method of ordering matters:
´ Oracle ≫ English-like > depth-first ≫ random

´ English-like ordering:
´ Det > Poss > Arg0 > Short Mods > Head > Arg1..5 > Short-to-long Mods

Input Linearization Example

´ (he[…] have[…] (a[…] point[…] he[…] want[…] make[…]))

´ where each node has graph-local features

aa1

heh3

he
h2

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

s[b]\np/np

np/n

np

n

s[dcl]\np/np

s[dcl]\np/(s[to]\np)

np

Experiments with OpenCCG CCGbank

Hypertagger

Chart Realizer

Linearized Graph

!-best Supertags

Surface String

Fail?
Next !

Timeout?
Assemble fragments

LSTM achieves high accuracy at much
lower multitagging levels

32

Figure 12: Graph comparison of hypertagging accuracy

Table 2: Comparison on hard cases

Comparison of LSTM hypertagger with MaxEnt 2 hypertagger on predicates that appear
in the development set but not the training set (unseen predicates) and predicates that

appeared in training, but not with the correct tag in development set (unseen predicate-tag
pairs).

 LSTM MaxEnt 2

Unseen predicates 98.69% 94.58%

Unseen predicate-tag pairs 80.13% 69.96%

90	
91	
92	
93	
94	
95	
96	
97	
98	
99	

100	

1	 1.1	 1.2	 1.5	 1.8	 2.2	 3.2	 3.9	

Ac
cu
ra
cy
	(%

)	

Mul8-tag	Level	

Comparison	of	Hypertagging	Accuracy	

LSTM	

MaxEnt	1	

LSTM Hypertagger generalizes better to
difficult cases

60

65

70

75

80

85

90

95

100

Unseen Predicates Unseen Predicate-Tag Pairs

LSTM
Maxent2

BLEU scores increase substantially (+2.5)

80

81

82

83

84

85

86

87

88

89

90

Dev (00) Test (23)

LSTM

Maxent2

Many more complete derivations (+6)

75

80

85

90

95

100

Dev (00) Test (23)

LSTM

Maxent2

An example that gets better

wsj 0004.8 nevertheless , said Brenda Malizia Negus , editor of Money
Fund Report , yields may blip up again before they blip
down because of recent rises in short-term interest rates .

LSTM yields nevertheless may blip up again before they blip
down because of recent rises in short-term interest rates ,
said Brenda Malizia Negus , editor of Money Fund Report .

Maxent2 may nevertheless yields , said Brenda Malizia Negus , editor
of Money Fund Report , again blip up before they blip
down because of recent rises in short-term interest rates .

Human evaluation focuses on change
in complete derivations
´ Two linguistics student judges, blind to the purpose of the study

´ 100 randomly selected sentences in a random order where
1. Either LSTM or Maxent2 yielded a complete derivation (but not both)

2. Both LSTM and Maxent2 yielded a complete derivation or neither did

´ Judges independently chose better/same/worse for adequacy and
fluency in comparison to reference

´ Excluding ties, agreement was 96% for adequacy and 95% for fluency

´ All differences in judgments for the two systems were highly significant
(p < 0.001, sign test)

Judges greatly preferred LSTM system
on ±complete set

0 10 20 30 40 50 60 70 80 90 100

fluency

adequacy

better same worse

Judges also preferred LSTM system
on =complete set, if not the same

0 10 20 30 40 50 60 70

fluency

adequacy

better same worse

Related Work

´ LSTM hypertagging can potentially benefit other grammar-based methods
using lexicalized grammars, e.g. using HPSG (Velldal and Oepen, 2005;
Carroll and Oepen, 2005; Nakanishi et al., 2005) or TAG (Gardent and
Perez-Beltrachini, 2017)

´ Ok — but hasn’t the field moved on to end-to-end neural methods? (Wen
et al., 2015; Dušek and Jurcicek, 2016; Mei et al., 2016; Kiddon et al., 2016;
Konstas et al., 2017; Wiseman et al., 2017)

´ Maybe, but NNLG
´ is difficult to control and understand

´ often yields incomplete outputs and sometimes hallucinates content

´ has not been shown to work better on complex texts as in news genre

A surprising result? Old school HPSG parsing
still beats neural parsing on DeepBank

´ DeepBank (Flickinger et al., 2012) is a conversion of the Penn Treebank to
Minimal Recursion Semantics (Copestake et al., 2005, MRS)
´ DeepBank ≈ OpenCCG semantic graphs ≈ SRST 2011 deep inputs

´ For parsing, Buys and Blunsom (2017) found that their incremental neural
semantic graph parser lags 4-6% behind an HPSG parser using a simple log-
linear model (Toutanova et al., 2005) on DeepBank
´ HPSG parser ≫ B&B (2017) ≫ attentional seq2seq

Grammar-based deep realization may
still exceed neural as well

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSTM GCN+ STUMABA TRANS

SRST 11 Deep

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CCG-08 LFG-07 HPSG-05 CCG-12 CCG-18 FUF-05

PTB Grammar-Based

• LSTM (Marcheggiani & Perez-Beltrachini, 2018), (M&P-B, 2018), (Bohnet et al., 2011), (Zhang et al., 2017)
• CCG-08 (White et al., 2008), LFG (Hogan et al., 2007), HPSG (Nakanishi et al., 2005), CCG-12 (White & Rajkumar, 2012),

CCG-18 (this paper), FUF-05 (Callaway, 2005)

Next steps: Directly compare neural
and grammar-based methods
´ Of course, inputs to grammar-based systems are only (roughly?)

comparable to shared task deep inputs

´ Could try Marcheggiani & Perez-Beltrachini’s (2018) neural method on
inputs to grammar-based systems!

´ Also important to look at performance when augmenting training data with
auto-parsed inputs (Elder & Hokamp, 2018)

´ And can try neuralizing dependency-based (Song et al., 2018) and
grammar-based approaches!

Conclusions

´ We have shown that our LSTM hypertagger significantly outperforms the
existing maxent OpenCCG hypertagger on both tagging accuracy and
downstream realization performance

´ Important role of input linearization suggests looking at graph convolutional
networks for hypertagging

´ Neuralizing realization ranker can be expected to yield further gains

Thanks

´ to the OSU Clippers Group, Alan Ritter and the anonymous reviewers for
helpful comments and discussion

´ to Sarah Ewing and Amad Hussain for their assistance with the evaluation

´ to the US National Science Foundation, the Ohio Supercomputer Center
and Facebook

´ and to YOU for listening!

