
Evaluation Order Effects in Dynamic Continuized CCG:
From Negative Polarity Items to Balanced Punctuation

Michael White
mwhite@ling.osu.edu

Evaluation Order Effects in Dynamic Continuized CCG:
From Negative Polarity Items to Balanced Punctuation

Michael White
mwhite@ling.osu.edu

Motivation

• Combinatory Categorial Grammar’s (CCG; Steedman, 2000) flexible
treatment of word order and constituency enable it to employ a com-
pact lexicon

• This is an important factor in CCG’s successful application to a range of
NLP problems but can be problematic for linguistic phenomena where
linear order plays a crucial role

Conclusion

The enhanced control over evaluation order afforded by Barker & Shan’s
Continuized CCG makes it possible to not only implement an improved
analysis of negative polarity items in Dynamic Continuized CCG (White,
Charlow, Needle & Bumford, 2017) but also to develop an accurate treat-
ment of balanced punctuation (Nunberg, 1990; Briscoe, 1994)

Dynamic Continuized CCG and NPI Licensing

No one enjoyed anything

S�/(S•\NP) (S�\NP)/NP S•$\(S•$/NP)
<

S•\NP
>

S�

(a)

⇤Kim gave anyone nothing

NP ((S�\NP)/NP)/NP S•$\(S•$/NP) S�$\(S•$/NP)
<

(S•\NP)/NP
<

S�\NP
<

S�

(b)

Figure 1: Negative Polarity Item Licensing in CCG

be applied twice rather than using explicit lifting.
The final representations are derived by collapsing
the towers using the recursively defined Lower (#)
operation in Figure 3c, which repeatedly applies
the continuized semantics to the identity continu-
ation �k.k.

The polarity types in Figure 2 interact to cor-
rectly derive Kim gave no one anything and cor-
rectly rule out *Kim gave anyone nothing. In
Figure 2a, the licensor no one both precedes and
outscopes the NPI anything, yielding a clause with
neutral polarity, which is compatible with the root-
level positive polarity requirement.8 By contrast,
in Figure 2b, the NPI anyone precedes its licensor,
leading to a derivation that ends with S�, which
is incompatible with root-level positive polarity.9

Figure 4 illustrates how the account makes the cor-
rect predictions even when Steedman’s CCG, with
its flexible approach to word order, is employed
on the tower bottom: Kim gave nothing to any-
one is correctly ruled in, and *Kim gave to anyone
nothing is correctly ruled out, even when the type-
raised NPI PP (abbreviated as PP") swaps places
places with its NP licensor using the backwards
crossed composition combinatory rule (< B⇥).

8The Lower rule is compatible with subtypes of S at the
tower upper right.

9The derivation does not go through even if nothing in-
verts to outscope anyone, as the nothing’s negation-canceling
effect ends up on the wrong level. See (Barker and Shan,
2014) for discussion.

4 Flexible Word Order and Balanced
Punctuation

To better serve the needs of generation, White and
Rajkumar (2008) implement an approach to mak-
ing the treatment of punctuation in a broad cover-
age grammar extracted from the CCGbank (2007)
more precise by adding lexicalized punctuation
categories to deal with constructions involving
punctuation. In doing so, however, they observe
that CCG’s flexible treatment of word order is
problematic when it comes to implementing a
grammar-based approach to balanced punctuation,
for reasons we review in this section. (Nunberg
1990 gives extensive arguments that writers have
implicit knowledge of the grammar of punctuation
that is comparable in intricacy to their grammati-
cal knowledge of spoken language. Whether one
agrees with Nunberg or not, there is practical value
to grammars that treat punctuation with sufficient
precision to satisfy the needs of parsing and gen-
eration.)

The original CCGbank corpus does not have
lexical categories for punctuation; instead, punc-
tuation marks carry categories derived from their
part of speech tags and form part of a binary
rule. It is assumed that there are no dependen-
cies between words and punctuation marks and
that the result of punctuation rules is the same
as the non-punctuation category. Binary rules of
this kind miss out on many linguistic general-
izations, most glaringly the presence of manda-

• CCG fails to rule out examples where the licensor of an NPI follows the NPI in a verb phrase (Fig. 1b)

• Barker & Shan’s (2014 account in Continuized CCG, using the tower top for licensing, carries over straightforwardly
to the present framework

• Word order changes on the tower bottom are unproblematic (Fig. 4, right)

Kim gave nothing to anyone

NP ((S\NP)/PP)/NP

S� S�

NP

S� S�

PP
"L,>

S� S�

(S\NP)/PP
C,>

S� S�

S\NP
"L,<

S� S�

S
#

S�

⇤Kim gave to anyone nothing

NP ((S\NP)/PP)/NP

S� S�

PP"
S� S�

NP
"L,<B⇥

S� S�

(S\NP)/NP
C,>

S� S�

S\NP
"L,<

S� S�

S
*** #
S�

Figure 4: Word Order Flexibility and NPI Licensing

(2) a. , ` nph1ibal=�,end=nil\nph1iend=nil/?nph3iend=nil

b. , ` nph1ibal=+,end=comma\nph1iend=nil/?punct[,]/?nph3iend=nil

Figure 5: Categories for Unbalanced and Balanced Appositive Commas in CCG (White and Rajkumar,
2008)

itive commas. Here, the unbalanced appositive
comma has the category in (2a) where the comma
selects as argument the appositive NP and con-
verts it to a nominal modifier. For balanced ap-
positives, the comma in (2b) selects the appositive
NP and the balancing comma to form a nominal
modifier. As these categories show, this approach
involves the incorporation of syntactic features for
punctuation (bal and end) into atomic categories
so that certain combinations are blocked. To en-
sure proper appositive balancing sentence finally,
the rightmost element in the sentence should trans-
mit these features to the clause level, which the full
stop can then check for the presence of right-edge
punctuation; elsewhere, categories should ensure
that their leftward arguments are balanced. The
approach ensures that (1a)–(1f) above are all cor-
rectly generated or blocked.

The first issue with this aproach is that it does
not work when crossing composition is used with
adverbs in heavy-NP shift contructions, as illus-
trated in Figure 6.10 Here the category for loves
is intended to pass up the end punctuation fea-
ture from its direct object NP to the clause level
(via the PE variable). Meanwhile, the category for

10The appositive here is shortened to just CEO for illustra-
tion; naturally the object NP would need to be longer to count
as a felicitous heavy NP.

madly is designed to combine with a balanced VP
on the left to make a VP that has no end punc-
tuation, which would be appropriate if madly ap-
peared at the end of the verb phrase. However,
when this category is used with backwards cross-
ing composition as shown here, the result is cate-
gory that claims to have no end punctuation when
in fact it ends in a comma.

The second issue with the approach is that it is
not adequate to deal with extraction involving di-
transitive verbs, as shown in Figure 7. Here the
comma at the end of the relative clause is not prop-
agated to the root level. This is because the end
feature for the relative clause should depend on the
first (indirect) object of gave, rather than the sec-
ond (direct) object as in a full ditransitive clause.
Since CCG uses the same category for main and
relative clauses, however, the right end punctua-
tion is not correctly tracked.

As an interim solution to avoid overgeneration
in such cases, White and Rajkumar (2008) imple-
ment an ad hoc post-filter on derivations to elimi-
nate improperly balanced punctuation. In the next
section, we’ll see that continuized CCG makes
it possible to successfully incorporate such con-
straints into the grammar itself.

Evaluation Order and Balanced Punctuation

• Crossing composition makes it impossible for CCG to accurately track balanced punctuation on the right periphery (Fig. 6; White & Rajkumar, 2008)

• With Dynamic Continuized CCG, the tower top can be successfully used for this purpose (3), and word order changes on the tower bottom are unproblematic (Fig. 8)

⇤Kim loves madly Sandy, CEO, .

np send=PE\np/npend=PE sh1iend=nil\nph2i\(sh1ibal=+\nph2i) npbal=+,end=comma sent\?send=nil
<B⇥

send=nil\np/npend=PE
>

send=nil\np
<send=nil

<
sent

Figure 6: Crossing Composition and End Punctuation Tracking Issue in CCG

that Kim gave Sandy, CEO,

(nend=PE\n)/(send=PE/np) np send=PE\np/npend=PE/np npend=comma
>T >

s/(s\np) send=PE\np/npend=PE

>B
send=PE/npend=PE

>
nend=PE\n

Figure 7: Object Extraction and End Punctuation Tracking Issue in CCG

5 An Evaluation Order Account of
Balanced Punctuation

The approach presented in Section 3 to using
the continuation layer to handle linear order con-
straints on NPI licensing can be generalized to also
successfully track punctuation at the right periph-
ery. As shown earlier, the category at the top left of
the tower can be used to impose requirements on
the preceding context, while the top right category
can track information made available to the sub-
sequent context. The idea for handling balanced
punctuation is illustrated in Figure 8, where a bad
comma-period sequence is correctly blocked de-
spite the use of backwards crossed composition for
heavy-NP shift. Tower categories, such as the one
for Sandy, CEO,, ordinarily require their leftward
context to have balanced punctuation, as shown
with the top-left category Sbal ; the phrase as a
whole is balanced and ends with a comma, as the
category Sbal

comma attests. Punctuation information
on tower categories is propagated through the con-
tinuation layer via the Combination, Lift Left and
Lift Right rules;11 here, the direct object NP punc-
tuation info is propagated up to the clausal level.
At this point, combination with the full stop is
blocked, since the full stop seeks a tower on the
left that has no end punctuation, but the clause
ends in a comma.12 With relative clauses (not

11The Lift and Lift Left rules are modified to require bal-
anced punctuation on the left.

12For readability, Lambek-style (result-on-top) slashes are
used at the tower level, rather than Steedman-style (result-

shown), there is no problem tracking the punc-
tuation at the right edge since this information is
passed along the tower top rather than via the argu-
ments of the CCG categories on the tower bottom,
as in the problematic Figure 7.

The comma category for deriving balanced ap-
positives is given in (3b) in Figure 9; this is the
one whose result is shown in Figure 8. The cor-
responding unbalanced comma category—the one
that would lead to a grammatical derivation—
appears in (3a).

Semantically, with either comma category, the
semantics of the predicative NP is added to that of
the modified NP, taking advantage of the capac-
ity of the monadic dynamic semantics to sequence
constraints on entities. To show how this works,
we first briefly introduce the basic idea of Char-
low’s monadic semantics, following White et al’s
(2017) presentation.

Charlow’s (2014) dynamic semantics makes use
of the State.Set monad (Hutton and Meijer, 1996),
which combines the State monad for handling side
effects with the Set monad for non-determinism.
The State monad pairs ordinary semantic values
with a state, which is threaded through computa-
tions. The Set monad models non-deterministic
choices as sets, facilitating a non-deterministic
treatment of indefinites. For example, the dynamic
meaning of a linguist swims appears in (4): here,
the proposition that x swims, where x is some lin-
guist, is paired with a state that augments the input

first) ones.

Kim loves madly Sandy, CEO, .

NP (S\NP)/NP (S\NP)\(S\NP)

Sbal Sbal
comma

NP

S Snil

S
\ Sbal Sbal

dot

S
<B⇥

(S\NP)/NP
"L,>

Sbal Sbal
comma

S\NP
"L,<

Sbal Sbal
comma

S
*** <

Sbal Sbal
dot

S

Figure 8: Right Edge Tracking through Crossing Composition in Dynamic Continuized CCG

(3) a. , ` S Snil

NP
\ Sbal Sunbal

nil

NP
/

S Snil

NPpred

b. , ` S Snil

NP
\ Sbal Sbal

comma

NP
/

Pcomma
/

S Snil

NPpred

Figure 9: Categories for Unbalanced and Balanced Appositive Commas in Dynamic Continuized CCG

state s with the discourse referent x.

(4) �s.{hswim(x),csxi | linguist(x)}

More formally, the State.Set monad is defined
as in (5). For each type ↵, the corresponding
monadic type M↵ is a function from states of type
s to sets pairing items of type ↵ with such states.
The ⌘ function injects values into the monad, sim-
ply yielding a singleton set consisting of the input
item paired with the input state. The bind opera-
tion (sequences two monadic computations by
sequencing the two computations pointwise, feed-
ing each result of m applied to the input state s
into ⇡ and unioning the results.13 Less formally,
the (operation can be thought of as “run m to de-
termine v in ⇡.” Monadic sequencing with bind is
what allows the meanings of a linguist and swims
to compose with the indicated result.

(5) State.Set Monad

M↵ = s ! ↵⇥ s ! t
a⌘ = �s.{ha, si}

mv (⇡ = �s.
S

ha,s0i2ms ⇡[a/v]s0

13Note that the notation mv (⇡ is just syntactic sugar
for m (�v.⇡, which may be more familiar.

Using these notions, the semantics of the
comma-delimited appositive phrase , CEO of XYZ,
is given in (6a) in Figure 10. As the cate-
gory in (3b) takes a higher-order argument (after
combining with the predicative NP and balancing
comma), the semantics in (6a) takes a continua-
tion argument k0 and returns a continuized mean-
ing (beginning with the second continuized argu-
ment k). The continuation argument k0 applies the
expression �x. . . .; consequently, after combining
with the continuized meaning of Sandy, the con-
stant sandy substitutes for x, as shown in (6b). Via
monadic sequencing, the modified noun phrase
will then supply the constant sandy as the appro-
priate argument of the verb, in essentially the same
way as it would have had Sandy not been modified
by the appositive.

Though it’s beyond the scope of the paper to go
into details, the dynamic appositive semantics pro-
posed here is consistent with Martin’s (2016) treat-
ment of supplements, where their typically projec-
tive behavior is derived by piggybacking the sup-
plement on the scopal behavior of the modified
NP. Moreover, it offers a simplification over Mar-
tin’s account, as there is no need to appeal to an
anaphoric mechanism in order to allow the supple-

Kim loves madly Sandy, CEO, .

NP (S\NP)/NP (S\NP)\(S\NP)

Sbal Sbal
comma

NP

S Snil

S
\ Sbal Sbal

dot

S
<B⇥

(S\NP)/NP
"L,>

Sbal Sbal
comma

S\NP
"L,<

Sbal Sbal
comma

S
*** <

Sbal Sbal
dot

S

Figure 8: Right Edge Tracking through Crossing Composition in Dynamic Continuized CCG

(3) a. , ` S Snil

NP
\ Sbal Sunbal

nil

NP
/

S Snil

NPpred

b. , ` S Snil

NP
\ Sbal Sbal

comma

NP
/

Pcomma
/

S Snil

NPpred

Figure 9: Categories for Unbalanced and Balanced Appositive Commas in Dynamic Continuized CCG

state s with the discourse referent x.

(4) �s.{hswim(x),csxi | linguist(x)}

More formally, the State.Set monad is defined
as in (5). For each type ↵, the corresponding
monadic type M↵ is a function from states of type
s to sets pairing items of type ↵ with such states.
The ⌘ function injects values into the monad, sim-
ply yielding a singleton set consisting of the input
item paired with the input state. The bind opera-
tion (sequences two monadic computations by
sequencing the two computations pointwise, feed-
ing each result of m applied to the input state s
into ⇡ and unioning the results.13 Less formally,
the (operation can be thought of as “run m to de-
termine v in ⇡.” Monadic sequencing with bind is
what allows the meanings of a linguist and swims
to compose with the indicated result.

(5) State.Set Monad

M↵ = s ! ↵⇥ s ! t
a⌘ = �s.{ha, si}

mv (⇡ = �s.
S

ha,s0i2ms ⇡[a/v]s0

13Note that the notation mv (⇡ is just syntactic sugar
for m (�v.⇡, which may be more familiar.

Using these notions, the semantics of the
comma-delimited appositive phrase , CEO of XYZ,
is given in (6a) in Figure 10. As the cate-
gory in (3b) takes a higher-order argument (after
combining with the predicative NP and balancing
comma), the semantics in (6a) takes a continua-
tion argument k0 and returns a continuized mean-
ing (beginning with the second continuized argu-
ment k). The continuation argument k0 applies the
expression �x. . . .; consequently, after combining
with the continuized meaning of Sandy, the con-
stant sandy substitutes for x, as shown in (6b). Via
monadic sequencing, the modified noun phrase
will then supply the constant sandy as the appro-
priate argument of the verb, in essentially the same
way as it would have had Sandy not been modified
by the appositive.

Though it’s beyond the scope of the paper to go
into details, the dynamic appositive semantics pro-
posed here is consistent with Martin’s (2016) treat-
ment of supplements, where their typically projec-
tive behavior is derived by piggybacking the sup-
plement on the scopal behavior of the modified
NP. Moreover, it offers a simplification over Mar-
tin’s account, as there is no need to appeal to an
anaphoric mechanism in order to allow the supple-

Monadic Semantics for Appositives

Kim loves madly Sandy, CEO, .

NP (S\NP)/NP (S\NP)\(S\NP)

Sbal Sbal
comma

NP

S Snil

S
\ Sbal Sbal

dot

S
<B⇥

(S\NP)/NP
"L,>

Sbal Sbal
comma

S\NP
"L,<

Sbal Sbal
comma

S
*** <

Sbal Sbal
dot

S

Figure 8: Right Edge Tracking through Crossing Composition in Dynamic Continuized CCG

(3) a. , ` S Snil

NP
\ Sbal Sunbal

nil

NP
/

S Snil

NPpred

b. , ` S Snil

NP
\ Sbal Sbal

comma

NP
/

Pcomma
/

S Snil

NPpred

Figure 9: Categories for Unbalanced and Balanced Appositive Commas in Dynamic Continuized CCG

state s with the discourse referent x.

(4) �s.{hswim(x),csxi | linguist(x)}

More formally, the State.Set monad is defined
as in (5). For each type ↵, the corresponding
monadic type M↵ is a function from states of type
s to sets pairing items of type ↵ with such states.
The ⌘ function injects values into the monad, sim-
ply yielding a singleton set consisting of the input
item paired with the input state. The bind opera-
tion (sequences two monadic computations by
sequencing the two computations pointwise, feed-
ing each result of m applied to the input state s
into ⇡ and unioning the results.13 Less formally,
the (operation can be thought of as “run m to de-
termine v in ⇡.” Monadic sequencing with bind is
what allows the meanings of a linguist and swims
to compose with the indicated result.

(5) State.Set Monad

M↵ = s ! ↵⇥ s ! t
a⌘ = �s.{ha, si}

mv (⇡ = �s.
S

ha,s0i2ms ⇡[a/v]s0

13Note that the notation mv (⇡ is just syntactic sugar
for m (�v.⇡, which may be more familiar.

Using these notions, the semantics of the
comma-delimited appositive phrase , CEO of XYZ,
is given in (6a) in Figure 10. As the cate-
gory in (3b) takes a higher-order argument (after
combining with the predicative NP and balancing
comma), the semantics in (6a) takes a continua-
tion argument k0 and returns a continuized mean-
ing (beginning with the second continuized argu-
ment k). The continuation argument k0 applies the
expression �x. . . .; consequently, after combining
with the continuized meaning of Sandy, the con-
stant sandy substitutes for x, as shown in (6b). Via
monadic sequencing, the modified noun phrase
will then supply the constant sandy as the appro-
priate argument of the verb, in essentially the same
way as it would have had Sandy not been modified
by the appositive.

Though it’s beyond the scope of the paper to go
into details, the dynamic appositive semantics pro-
posed here is consistent with Martin’s (2016) treat-
ment of supplements, where their typically projec-
tive behavior is derived by piggybacking the sup-
plement on the scopal behavior of the modified
NP. Moreover, it offers a simplification over Mar-
tin’s account, as there is no need to appeal to an
anaphoric mechanism in order to allow the supple-

• Monadic sequencing straightforwardly allows multiple predications for NPs with appositives (cf. Martin, 2016)

(6) a. , CEO of XYZ, ` �k0k.k0�xs.{hx, si | ceo(x, xyz)}y (ky

b. Sandy, CEO of XYZ, ` �ks.{hsandy, si | ceo(sandy, xyz)}y (ky

Figure 10: Appositive semantics

mented NP to semantically compose with a verbal
predicate.

6 Conclusion

In this paper, we have shown how Combinatory
Categorial Grammar’s (CCG; Steedman, 2000)
flexible treatment of word order and constituency
can be problematic for linguistic phenomena
where linear order plays a key role. In particular,
we have shown for the first time that linear order
effects can be problematic for Steedman’s (2012)
treatment of negative polarity items, and shown
that the enhanced control over evaluation order
afforded by Continuized CCG (Barker & Shan,
2014) makes it possible to formulate improved
analyses of NPIs that account for these effects
quite naturally even in a system that combines
Steedman’s CCG for predicate-argument structure
with Barker & Shan’s for quantification. In addi-
tion, after reviewing how CCG’s flexible treatment
of word order and constituency are problematic for
implementing constraints on balanced punctuation
in the style of Briscoe (1994), we have shown
how to generalize the approach to encoding eval-
uation order constraints to properly track punc-
tuation information at the right boundary. As a
bonus, we have also taken advantage of Charlow’s
monadic semantics to implement a novel approach
to NP appositives that arguably improves upon
Martin’s (2016) treatment. Natural next steps for
future work include tackling order effects found
with binding and crossover as well as exploring
the use of machine-learned models to guide the
search for derivations.

Acknowledgements

Thanks to Simon Charlow, Dylan Bumford, Jor-
dan Needle, Scott Martin, Mark Steedman and the
anonymous reviewers for helpful comments and
discussion. This work was supported in part by
NSF grant IIS-1319318.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

Chris Barker. 2002. Continuations and the nature
of quantification. Natural Language Semantics,
10(3):211–242.

Chris Barker and Chung-chieh Shan. 2014. Continua-
tions and Natural Language. Oxford Studies in The-
oretical Linguistics.

Raffaella Bernardi. 2002. Reasoning with polarity in
categorial type logic. Ph.D. thesis, Utrecht Institute
of Linguistics (OTS), Utrecht University.

Ted Briscoe. 1994. Parsing (with) punctuation. Tech-
nical report, Xerox, Grenoble, France.

Simon Charlow. 2014. On the semantics of exceptional
scope. Ph.D. thesis, New York University.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493–552.

Christine Doran. 1998. Incorporating Punctuation into
the Sentence Grammar: A Lexicalized Tree Adjoin-
ing Grammar Perspective. Ph.D. thesis, University
of Pennsylvania.

David R. Dowty. 1994. The role of negative polarity
and concord marking in natural language reasoning.
In Proceedings from Semantics and Linguistic The-
ory IV, Ithaca. Cornell University Press.

Martin Forst and Ronald M. Kaplan. 2006. The impor-
tance of precise tokenizing for deep grammars. In
Proc. LREC-06.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
Computational Linguistics, 33(3):355–396.

Graham Hutton and Erik Meijer. 1996. Monadic Parser
Combinators. Technical Report NOTTCS-TR-96-
4, Department of Computer Science, University of
Nottingham.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural CCG parsing with optimality guar-
antees. In Proceedings of the 2016 Conference on

Acknowledgments
Thanks to Simon Charlow, Dylan Bumford, Jordan Needle, Carl Pollard, Scott Martin, Mark Steedman, the OSU Clippers and Synners Groups, and the anonymous reviewers for helpful comments and discussion. This work was supported in part by a Targeted Investment in Excellence
Grant from OSU Arts & Sciences and by NSF grant IIS-1319318.

