Renormalization of the Drude Conductivity by the Electron-Phonon Interaction

Andrew Sergeev, Michael Reizer, and John W. Wilkins

Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 10 October 1995)

PACS numbers: 72.10.Bg, 72.10.Di

Three decades ago Prange and Kadanoff [1] studied which electron transport coefficients were renormalized by the electron-phonon interaction. They concluded that the stationary quantum transport equation for electrons interacting with phonons is accurately described by the usual Boltzmann equation without any renormalization factors. Therefore such coefficients as dc electrical conductivity, thermopower, and thermal conductivity would not be affected by the electron-phonon interaction.

Up to now their conclusions have been disputed only for the thermopower. Initially Opsal, Thaler, and Bass [2] found experimentally the renormalization correction with the same temperature dependence as the electron-phonon mass enhancement factor 1 + λ(T), where λ(T) is the electron-phonon coupling. This result attracted many theoretical works [3]. Recent investigations [4,5] show that the quantum interference between electron-phonon and electron-impurity scattering plays a crucial role in the thermopower renormalization. In particular, the sign and magnitude of the renormalization factor depend strongly on the sign and magnitude of the electron-impurity potential, respectively. Except for the thermopower, the strong current opinion (for example, see Refs. [6] and [7]) is that all other electron transport coefficients are not renormalized by the electron-phonon interaction. This is not true.

In this paper we show that if ωDτ > 1 (ωD is the Debye frequency and τ is the electron momentum relaxation rate due to electron-impurity scattering), the phonon renormalization of the Drude conductivity σ0, calculated in the first order in λ, is

$$\sigma = \sigma_0 \left[1 - 2\lambda \left(1 - \frac{q_D}{2p_F} \right)^2 \right].$$

(1)

In Eq. (1), pF is the Fermi momentum, and qD is the Debye wave vector; λ is defined as −dΣe-phonon/dε, where Σe-phon is the electron self-energy due to the electron-phonon interaction (for details see p. 176 of Ref. [8]). When ωDτ < 1, the renormalization effect drops to zero as ωDτ.

For arbitrary interaction, such as the electron-electron, electron-paramagnon, electron-magnon interaction, our result [Eq. (1)] may be extended as follows. If the characteristic energy scale (ω0) of the corresponding electron self-energy (Σ) is larger than the electron-impurity scattering rate (1/τ), the renormalization of the Drude conductivity is described by Eq. (1), where λ = −dΣ/dε. At ω0τ < 1 the renormalization effect is negligible.

We stress that, on the one hand, our results lie outside the scope of the results by Prange and Kadanoff. They discussed the renormalization of the Bloch-Gruneisen term, or, in other words, the phonon renormalization of the electron-phonon scattering processes. We discuss the phonon renormalization of the Drude conductivity due to electron-impurity scattering. On the other hand, we show that terms responsible for the conductivity renormalization in our case were not considered in the original Prange and Kadanoff paper.

Linear response approach.—For linear response calculations either the Matsubara technique or the Keldysh diagrammatic technique can be used. We choose the Keldysh description, because it is ideal for the quantum transport equation, which will be considered in the next.

The electron and phonon subsystem are described by advanced, retarded, and kinetic (Keldysh) Green functions. The retarded and advanced electron Green functions averaged over impurity positions are

$$G_0^R(p, \epsilon) = [G_0^A(p, \epsilon)]^* = \left(\epsilon - \xi_p + i\frac{\epsilon}{2\tau} \right)^{-1},$$

(2)

$$\xi_p = (p^2 - p_F^2)/2m.$$

The phonon Green functions are

$$D_0^R(q, \omega) = [D_0^A(q, \omega)]^* = (\omega - \omega_q + i0)\left(\omega + \omega_q + i0 \right)^{-1}.$$

(3)

The kinetic Green functions in the thermodynamic equilibrium may be written as

$$G_0^C(p, \epsilon) = S_0(\epsilon) \left[G_0^A(p, \epsilon) - G_0^R(p, \epsilon) \right],$$

$$S_0(\epsilon) = -\tanh\left(\frac{\epsilon}{2T} \right).$$

(4)
\[D^C(q, \omega) = [2N(\omega) + 1][D^R(q, \omega) - D^A(q, \omega)], \]

\[2N(\omega) + 1 = \coth\left(\frac{\omega}{2T}\right). \]

In the diagrammatic technique the conductivity is related to the retarded electronic loop with two vector vertices \(ev \cdot n\), where \(e\) is the electron charge, \(v\) is the electron velocity corresponding to the Green function forming the vertex, and \(n\) is a unit vector. All important diagrams are shown in Fig. 1. Under the conditions \(p_F l \gg 1, q_D l \gg 1\) we can neglect other diagrams (not shown in Fig. 1) with additional electron-impurity interaction and inelastic electron-impurity scattering.

Studying the renormalization effect one takes into account only terms proportional to the real part of the electron-impurity scattering. Therefore, if \(n = 1, 2\), the angular integration of the factor \(\frac{1}{2}l_s t_2 s\) gives the renormalization correction displayed in the first order in the electron-phonon interaction. The first and second diagrams cancel exactly for the conductivity.

![Diagram](image)

FIG. 1. Diagrams for the conductivity renormalization to the first order in the electron-phonon interaction. The first and second diagrams cancel exactly for the conductivity.

Eq. (1). If \(\omega_D \tau < 1\), the integration region in Eq. (8) is limited by \(\omega_D\), and therefore the renormalization effect drops to zero as \(\omega_D \tau\).

Quantum transport equation.—The conductivity renormalization is one of many quantum interference phenomena in normal metals for which one should use the rigorous approach capable of accounting for the quantum nonlocal corrections in the form of the Poisson brackets \([4,9,10,11]\). The linearized quantum transport equation for the distribution function \(S\) of electrons scattering from impurities and phonons has the form

\[e(v \cdot E) \frac{\partial S_0}{\partial \epsilon} = I_{e-imp}(S) + I_{e-ph}(S), \]

where \(E\) is the electric field and the oscillation integrals \(I_{e-imp}\) and \(I_{e-ph}\) can be expressed in terms of the corresponding self-energies by the equation \([4,6,9]\)

\[I(S) = -i[\Sigma^C - S(\Sigma^A - \Sigma^R)] + \frac{1}{2} \{\Sigma^A + \Sigma^R, S_0\}, \]

where the Poisson bracket correction is

\[\{A, B\} = eE \left(\frac{\partial A}{\partial \epsilon} \frac{\partial B}{\partial p} - \frac{\partial A}{\partial p} \frac{\partial B}{\partial \epsilon}\right). \]
The dominance of electron-impurity scattering in the momentum relaxation permits the solution of the transport equation [Eq. (11)] by iteration: \(S = S_0 + \phi_0 + \phi_1 \), where \(\phi_0 \) is the nonequilibrium correction determined by electron-impurity scattering

\[
\phi_0(p, \epsilon) = -\tau e(v \cdot E) \frac{\delta S_0(\epsilon)}{\delta \epsilon}.
\]

(14)

The correction \(\phi_1 \) includes the effects of the electron-phonon interaction

\[
\phi_1(p, \epsilon) = \tau I_{e-ph}.
\]

(15)

\[
\delta J_{e} = \delta \sigma E = 2 \int \frac{d^4p}{(2\pi)^4} v[S_0(\epsilon) \Im \phi_0 + \phi_1(p, \epsilon) \Im \phi_0^2(p, \epsilon)].
\]

(16)

The first term in Eq. (8) corresponds to the nonequilibrium correction to \(\Im G^A_0 \) due to \(\phi_0 \),

\[
\delta \phi_0^A(\phi_0) = (\phi_0^A)^2 \Sigma_{e-ph}(\phi_0)
\]

\[
= [\phi_0^A(p, \epsilon)]^2 \int \frac{d^4Q}{(2\pi)^4} |q_g|^2 \tau e(v + \frac{q}{m}) \cdot E \Re D(q, \omega) \frac{\delta S_0(\epsilon + \omega)}{\delta \epsilon} \Im G^A_0(p + q, \epsilon + \omega).
\]

(17)

The second term in Eq. (8) corresponds to the part of \(\phi_1 \) which originates from the nonlocal part of collision integral [the Poisson bracket term in Eq. (12)],

\[
\phi_1(p, \epsilon) = \frac{\tau}{2} \{ \Sigma^A_{e-ph} + \Sigma^R_{e-ph}, S_0 \}
\]

\[
= \frac{\delta S_0(\epsilon)}{\delta \epsilon} \int \frac{d^4Q}{(2\pi)^4} |q_g|^2 \tau e(v + \frac{q}{m}) \cdot E \Re D(q, \omega) S_0(\epsilon + \omega) \Im [G^A_0(p + q, \epsilon + \omega)]^2.
\]

(18)

Performing calculations in Eq. (16) we obtain the result reported in Eq. (1).

Experimental situation.—Taking into account the result of the present paper, the resistivity of an impure metal can be written as

\[
\rho = \rho_0 + \rho_{\text{ren}} + \rho_{e-ph} + \rho_{e-e} + \rho_{e-ph-\text{imp}}.
\]

(19)

where \(\rho_0 \) = 1/\(\sigma_0 \) is the Drude resistivity, the bare residual resistivity due to electron-impurity scattering; \(\rho_{\text{ren}} = -(\sigma - \sigma_0)/(\sigma_0)^2 \) is the phonon renormalization of the Drude resistivity, calculated in this paper; and \(\rho_{e-ph} \) is the Bloch-Gruneisen term. The last two terms describe the interference between interactions in an impure metal: \(\rho_{e-e} \) is the contributions of the weak localization and of the interference between electron-electron and electron-impurity scattering [10] which are important at helium temperatures. For temperatures somewhat higher the interference between electron-phonon and electron-impurity scattering dominates [11],

\[
\rho_{e-ph-\text{imp}} = \left[\frac{2(\mu L)}{u_i} \right]^3 - 1 + \frac{\pi^2}{16} \frac{4\beta T^2}{\epsilon_F P_F u_i} \int_0^{\theta_0/T} dx \frac{1}{\frac{1}{\exp(x) - 1} - \frac{x \exp(x)}{[\exp(x) - 1]^2}}.
\]

(20)

If \(T \ll \omega_D/5 \), the integral in Eq. (20) tends to \(-\pi^2/6 \). In Eq. (20), \(\beta \) is the kinetic constant of the electron-phonon interaction [12],

\[
\beta = \left(\frac{2}{3} \epsilon_F \right)^2 \frac{\nu(0)}{2\mu u_i^2} = \frac{2\mu}{q_D^2},
\]

(21)

\[
\frac{\rho_{e-ph}}{\rho_0} = \frac{\pi}{2} \frac{\beta T^5}{(P_F u_i)^4} \int_0^{\theta_0/T} dx \frac{x^5}{[\exp(x) - 1][1 - \exp(-x)]}.
\]

(22)

Under the basic assumption of this work, that the dominating mechanism of the electron momentum relaxation is electron-impurity scattering \((\rho_{e-ph} \ll \rho_0) \), Eq. (22) was obtained in Ref. [13] by the quantum transport equation.
Obviously, in this case Eq. (22) corresponds to a "weak" Mattheissen's rule. Note also that Eq. (22) may be obtained solely from terms proportional to Im$D^{\delta}(q, \omega)$ of the third diagram in Fig. 1. These terms correspond to the quasiparticle approximation in the transport equation [14], while terms with Re$D^{\delta}(q, \omega)$, which result in the renormalization, originate from quantum corrections to the transport equation.

The experimental temperature dependencies of the resistivity of an impure metal [15] are well described by the interference and the Bloch-Gruneisen terms [Eqs. (20) and (22)] in the wide temperature interval 3−300 K. In materials with relatively strong electron-impurity scattering ($\tau \sim 3$ fs) the interference contribution dominates over the Bloch-Gruneisen term up to 150 K (see Ref. [16]), but the renormalization of resistivity is small due to inequality $(\omega_D)^{-1} \sim (300 \text{ K})^{-1} \sim 30 \text{ fs} > \tau$. In relatively pure materials with $\tau \sim 100$ fs, where the renormalization of the resistivity is significant, the Bloch-Gruneisen term prevails already for temperatures from 10 K (see Ref. [17]). In the interval from helium to the Debye temperature the change of the renormalization term is of the order of $\Delta \rho_0$, while the change of the Bloch-Gruneisen term is $\sim (\omega_D \tau) \rho_0 \gg \rho_0$. Therefore, it is difficult to extract the renormalization effect from the resistivity temperature dependence. One possible way to study the renormalization effect would be to determine the bare residual resistivity from measurements of the T^2 term using Eq. (20). Comparison with the experimentally determined renormalized residual resistivity would give the renormalization factor. Alternatively, the conductivity renormalization might be investigated via its strong dependence on the electron-impurity scattering rate. As we have already discussed, for pure materials $(\omega_D \tau > 1)$ the renormalization is significant, whereas when the parameter $\omega_D \tau$ decreases the renormalization falls rapidly to zero.

In conclusion, this paper demonstrates that the Drude conductivity is significantly renormalized by the electron-phonon interaction. We calculated the renormalization using both the linear response and quantum transport equation approaches. In the transport equation method the renormalization arises through corrections to the nonequilibrium electron density of states [Eq. (17)] and the nonlocal part of the electron-phonon collision integral [Eq. (18)]. Reference [1] did not consider such terms in the renormalization of the Bloch-Gruneisen conductivity. In the light of this work we expect the renormalization of other kinetic coefficients.

This work is supported by U.S. DOE Contract No. DE-FG02-ER45347.