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RECOVERY OF A TIME-DEPENDENT BOTTOM TOPOGRAPHY
FUNCTION FROM THE SHALLOW WATER EQUATIONS VIA AN

ADJOINT APPROACH\ast 
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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop an adjoint approach for recovering the topographical function included in
the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely,
the shallow water equations, in an effort to recover the riverbed topography. The novelty of this work
is the ability to robustly recover the bottom topography using only noisy boundary data from one
measurement event and the inclusion of two regularization terms in the iterative update scheme. The
adjoint scheme is determined from a linearization of the forward system and is used to compute the
gradient of a cost function. The bottom topography function is recovered through an iterative process
given by a three-operator splitting method which allows the feasibility of including two regularization
terms. Numerous numerical tests demonstrate the robustness of the method regardless of the choice
of initial guess and in the presence of discontinuities in the solution of the forward problem.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . inverse problems, adjoint methods, discontinuous Galerkin methods, hyberbolic
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1. Introduction. Various phenomena arising frequently in natural, engineering,
and socio-economical applications can be modeled by hyperbolic conservation and
balance laws. Examples of conservation laws include models for traffic flow [15], fluid
dynamics [12], and supply chains [3]. Moreover, conservation laws with source terms,
also known as balance laws, are used in different models, e.g., the gas pipeline flow
[24], shallow water flow [63, 42], gas dynamics under a gravitational field [64], and
blood flow through arteries [66]. A variety of theoretical studies have been conducted
to understand the underlying mathematical structure and a wide range of numerical
approaches dedicated to solving for the state variables have been developed in the
past few decades. On the other hand, optimization, control, and recovery of the
system parameters is a problem of great interest due to its high practical value. In
this work, we derive an inverse problem algorithm for a specific system of hyperbolic
balance laws, in which a time-dependent topographical profile is recovered based on
the measurement from the boundary.

Various optimization and control methods have been developed for conservation
and balance laws such as backstepping [61, 20], Lyapunov-based [61], derivative-free
[43], and optimal control methods [35]. In this work we employ an adjoint approach,
which is often praised for its efficiency. Its computational cost (of each iteration)
is comparable to that of solving a partial differential equation (PDE) once, instead
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of depending on the number of control variables or design parameters as in other
optimization methods.

Adjoint methods were introduced for optimal control problems in 1971 by Lions
[46] in the context of shape optimization of aerodynamic bodies. A few years later the
methods were extended to fluid dynamics by Pironneau [53]. Jameson popularized
the techniques for potential flow and the Euler equations [37, 38]. The methods have
also been applied to biological systems in the search of parameter identification [55].
Estimation of open water states [5] and traffic states on the freeways [34] have also
been accomplished via the adjoint optimization method.

The adjoint method for computing the gradient of a cost function can be accom-
plished in a variety of manners. The discrete adjoint approach [25, 41, 19] begins
with discretizing the forward system of PDEs while the continuous adjoint approach
[25, 36, 47, 57] begins with the continuous forward system. Both cases result in dis-
crete adjoint equations. The continuous approach allows one to obtain an explicit
gradient formulation [56] while automatic differentiation techniques can be applied
to ease discrete approach solvers [50, 17]. With regards to scalar conservation laws,
Holden, Priuli, and Risebro [31] developed a reconstruction procedure for the coef-
ficient inverse problem in which a spatially dependent coefficient of the flux term
is recovered. B\"urger, Coronel, and Sep\'ulveda [4] solved the inverse scalar conserva-
tion law modeling sedimentation numerically by assuming a variational form of the
problem. The flux function of a scalar conservation law was reconstructed using the
information from the shock that forms in the work by Kang and Tanuma [39]. In a
more general setting for balance laws, Montecinos et al. [49] derived a unified scheme
for solving the forward and adjoint problems simultaneously. Methodology for the
scalar Burgers' equation was presented by Lellouche, Devenon, and Dekeyser [44] in
which the authors aimed to find the best approximation for the measured data by
means of boundary control and an adjoint approach. Ferlauto [13] obtained opti-
mal geometric shapes for aerodynamic bodies by solving an inverse problem for the
three-dimensional incompressible Euler equations.

Numerical computation of optimization problems for conservation laws have been
studied extensively due to the theoretical and numerical challenges that arise. As
the exact solution of conservation laws often contains discontinuities, one challenge in
the related optimization problem is that nonnegligible numerical errors may occur in
capturing the discontinuities. Some of these difficulties are mitigated via introduction
of Lax--Friedrichs schemes [18] or relaxation methods [1], for instance. Convergence
analyses have been provided for optimization problems in the aforementioned works.
The fact that many conservation laws are nonlinear presents another challenge because
this can lead to nonconvex formulations of the optimization problem. One method
to tackle this difficulty is to use linear programming methods once the discretization
scheme is ``relaxed"" [21, 67]. This allows for a global optimum to be found and reduces
computational cost, but the linearization may not be a good physical representation of
the original system [56]. To maintain the nonlinearity of the system, a more expensive
method, such as gradient descent, can be used, but may not ensure a global optimum
is achieved.

In this paper, we focus on an inverse problem that arises in first order nonlinear
hyperbolic balance laws. Many difficulties arise in this research field as a result of un-
certainties in data, measurements, and the use of complex data. It is very important
to develop highly accurate, easy to implement, and cost-efficient methods with high
resolution to study fluvial environments numerically. Although the method we em-
ploy can be quite general, for the sake of simplicity and better illustrative purposes,
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we focus on a prototype example of hyperbolic balance laws in this work, namely,
the nonlinear shallow water equations (SWEs), also referred to as the Saint-Vernant
equations. This system models fluvial environments such as flood plane dynamics,
coastal and tidal flows, and flow and sediment transport. It has wide applications
in ocean, environmental, and hydraulic engineering, as well as atmospheric modeling.
The model parameter we aim to recover in this context is the riverbed topography,
however, other terms such as friction may also be of interest to reconstruct.

Ground surveys of riverbeds or direct topographical data collection are not always
effective for determining underwater topography because the operations are costly and
time consuming. Numerical techniques of constructing riverbed topography can offer
many benefits over aerial and ground techniques in terms of cost reduction, efficiency,
as well as flexibility. Heining and Aksel [27] used a direct approach to reconstruct the
bottom topography of steady-state thin-film flow. Castaings et al. [5] presented an
automatic differentiation technique and free surface information to reconstruct river
bed topology. Honnorat et al. [32] derived a method for recovering channel topology
from a steady-state solution of the forward problem using an optimization technique
called variational data assimilation. A direct approach from the one-dimensional
SWEs was used by Gessese et al. [16] to reconstruct the river bed from free surface
data. Last, a stable finite volume scheme in the presence of wetting-drying fronts and
inverse computational algorithms (based on a variational approach) were presented
in [48]. All methods developed in these studies dealt with time-independent bottom
topography functions.

The main objective of this paper is to develop a robust algorithm that requires
less data to reconstruct a dynamic bottom function, thereby allowing the construction
of a more accurate and inexpensive model. We assume the measurements, possibly
with noise, are taken only at the two boundaries of the spatial domain in a given
time period. Traditionally, the bottom topography in the SWEs is a function of space
alone within the framework of the inverse problem construction. Here, we consider
the time-dependent bottom topography function, which allows for the recovery of the
bottom topography with less data considering the fact that movement in the forward
problem solution coming from the change of the bottom topography allows more
information propagation to the boundary measurements. Usually inverse problems
are more difficult when we need to recover both the temporal and spatial profile. In
this work, as a first step, we assume a special form of the topographical profile which
represents two known spatial profiles and an unknown temporal interaction. This
time-dependent bottom topography can practically describe a physical phenomenon
when two platonic plates with known topography are moving against one another,
e.g., an earthquake, underwater volcanic buildup, or a moving sand bottom. We aim
to recover only the temporal profile representing, e.g., the pulse of the earthquake.
After constructing the adjoint formulation, we present the cost function with two
regularization terms added to suppress noise and handle the ill-posedness of this
problem. An iterative update scheme based on a three-operator splitting scheme
is employed to update the targeting function. This splitting scheme requires each
operator to be computed only once per iteration and is straightforward to implement.

This paper is organized as follows. In section 2 we introduce the primal equations
used throughout the paper. The discontinuous Galerkin (DG) numerical scheme is
also presented as the method used for solving the forward problem. Section 3 includes
a discussion on the formulation of the inverse problem. The adjoint equations are
derived from a linearized system and used to derive the gradient formulation of the
cost function. This section also contains the description of the iterative updating
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procedure for determining the desired source term, as well as a discussion on the
choice of regularization terms. Numerical examples are presented in section 4, and
conclusions are discussed in section 5.

2. Forward problem. In this section, we present the hyperbolic PDE system
used to define the forward (or primal) problem. The forward system will be used in
section 3 to determine the adjoint formulation, which in turn is employed to derive
the gradient of a cost function and iteratively update the time-dependent bottom
topography function. We will discuss the PDE system as well as the numerical scheme
used to solve the forward problem.

2.1. Forward problem formulation. Hyperbolic balance laws are conserva-
tion laws with a source term. A few examples of such systems include the nonlinear
SWEs, the arterial blood flow model, the Euler equations under gravity, and the te-
legrapher's equations. A source term might arise as a result of many factors, such as
a friction term or a topographical term.

In this work, we only consider the one-dimensional systems of m hyperbolic bal-
ance laws which take the form

(2.1)

\Biggl\{ 
\partial t\bfitU + \partial x\bfitF (\bfitU ) = \^\bfitS (\bfitU ,\bfitB ), (x, t) \in (x0, xL)\times (0, T ],

\bfitU (x, 0) = \bfitU 0(x), x \in (x0, xL),

where \bfitU are the state variables, \bfitF (\bfitU ) are the fluxes, and \bfitU 0(x) are the initial condi-
tions. The vector \bfitB represents the model parameters we aim to recover in the inverse
problem which are only present in the source term, \^\bfitS (\bfitU ,\bfitB ). The source term can

be rewritten in the form \^\bfitS (\bfitU ,\bfitB ) = \bfitS (\bfitU ,\bfitB )\bfitU in which \bfitS (\bfitU ,\bfitB ) \in \BbbR m \times \BbbR m is a
matrix.

Alternatively, the system can be written in quasi-linear form using the Jacobian
matrix \bfitA (\bfitU ) = \partial \bfitF 

\partial \bfitU ,

(2.2)

\Biggl\{ 
\partial t\bfitU +\bfitA (\bfitU )\partial x\bfitU = \bfitS (\bfitU ,\bfitB )\bfitU , (x, t) \in (x0, xL)\times (0, T ],

\bfitU (x, 0) = \bfitU 0(x), x \in (x0, xL).

To determine the solution of a forward problem, one seeks to determine the state
variables \bfitU with the model parameters \bfitB given. In this work, we will only consider
the case when we have a single topographical function, denoted by B. While the
information in B is traditionally a function of space alone, here we consider B as a
function depending on both space and time as follows:

(2.3) B(x, t) = B0(x) + p(t)B1(x),

where we assume B0(x) and B1(x) to be known and p(t) to be the component we
wish to recover.

In this paper we will focus on the SWEs with a nonflat bottom topography, one
of the most well-known systems of hyperbolic balance laws. In particular, we aim to
recover the riverbed topography function, denoted by b. This term occurs only in the
source term of the momentum equation in the form of its derivative, \partial xb, so we define

(2.4) B = \partial xb(x, t) = \partial xb0(x) + p(t)\partial xb1(x).

The state variables, flux terms, and source term for the SWEs are given by:

(2.5) \bfitU =

\biggl[ 
h
hu

\biggr] 
, \bfitF (\bfitU ) =

\biggl[ 
hu

hu2 + 1
2gh

2

\biggr] 
, \^\bfitS (\bfitU , B) =

\biggl[ 
0

 - ghB

\biggr] 
=

\biggl[ 
0

 - gh\partial xb

\biggr] 
,
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by following the form (2.1). Here, h(x, t) \geq 0 is the water height, (hu)(x, t) is the
water discharge with u(x, t) being the depth averaged velocity, and g = 9.812 is the
gravitational constant. On the other hand, under the quasi-linear formulation, we
write:

(2.6) \bfitA (\bfitU ) =

\biggl[ 
0 1

gh - u2 2u

\biggr] 
, \bfitS (\bfitU , B) =

\biggl[ 
0 0

 - g\partial xb 0

\biggr] 
.

Time-dependent bottom topography functions have been considered in the lit-
erature. In a more complicated model, e.g., [59, 29, 33, 45, 42], the change of the
bottom function in the SWEs may depend on other state variables. For instance,
the bottom function may be determined by erosion, sediment transport, dam breaks,
or landslides due to floods. In such cases, additional equations to model the evolu-
tion of bottom topography may arise in the system in order to better describe this
dependence. However, these models are different from the one we consider in this
work.

2.2. DG method for the forward problem. The DG method will be used to
solve the forward problem (2.6). It is a high order accurate scheme that has gained
significant attention in the last decade. The method is advantageous for hyperbolic
conservation laws because it is both stable, similar to the finite volume method, and
flexible, like the finite element method. The arbitrary order feature of the DG method
can provide accurate results on a coarse mesh. In particular, in an inverse problem
algorithm, a forward solver is usually employed during each iteration, hence the use of
a coarser mesh is ideal in an effort to reduce computation cost in the iterative process.
Last, the DG scheme is able to capture the discontinuous solutions well and help us
locate the interfaces accurately.

The computational domain, I = [x0, xL], is first discretized into N cells. The jth
cell is denoted by Ij = [xj - 1

2
, xj+ 1

2
] with xj being the center of the cell. The size of

the jth cell is denoted by \Delta xj = xj+ 1
2
 - xj - 1

2
and we let h = maxj \Delta xj . We seek

an approximation \bfitU h of the solution \bfitU in which \bfitU 
(i)
h for i = 1, . . . ,m belongs to the

finite-dimensional piecewise polynomial space

(2.7) \BbbV k
h = \{ v : v| Ij \in P k(Ij), j = 1, . . . , J\} ,

where P k(Ij) denotes the space of polynomials of degree up to k on Ij . The topo-
graphical source term variable, B, is also projected into \BbbV k

h, and is written as Bh.
The scheme does not require \bfitU h to be continuous at the cell interface xj+ 1

2
, so we

introduce the notation \bfitU +
h,j+ 1

2

as the limit of the solution \bfitU h at xj+ 1
2
from the right

cell Ij+1, and \bfitU  - 
h,j+ 1

2

as the limit from the left cell Ij .

The DG scheme in each cell Ij is based on a modification of the weak formulation
of the PDE,
(2.8)\int 

Ij

\partial t\bfitU h\bfitv dx - 
\int 
Ij

\bfitF (\bfitU h)\partial x\bfitv dx+ \^\bfitF j+ 1
2
\bfitv  - 
j+ 1

2

 - \^\bfitF j - 1
2
\bfitv +
j - 1

2

=

\int 
Ij

\^\bfitS (\bfitU h, Bh)\bfitv dx,

where \bfitv (x) is a vector of test functions from the test space \BbbV k
h, and the numerical

flux \^\bfitF j+ 1
2
= f(\bfitU  - 

h,j+ 1
2

,\bfitU +
h,j+ 1

2

) is a function that takes information from both the

left and right side of the cell interface. We implement the simple Lax--Friedrichs flux

(2.9) f(a, b) =
1

2

\Bigl( 
\bfitF (a) + \bfitF (b) - \alpha (b - a)

\Bigr) 
,
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where \alpha is chosen to be the maximum of the largest eigenvalue of \bfitA (\bfitU ) over the
entire computational domain or locally in each cell. In the case of the SWEs, let
\alpha = max (| u| +

\surd 
gh).

The semidiscrete method (2.8) can be rewritten in the ODE form as

\partial t\bfitU h = \scrF (\bfitU h)

after representing \bfitU h as a linear combination of the basis functions of \BbbV k
h. In order to

advance the scheme in time, we use the high order strong-stability preserving Runge--
Kutta (SSP-RK) temporal discretization [23]. Throughout this paper, the third order
SSP-RK method of the form

\bfitU 
(1)
h = \bfitU n

h +\Delta t\scrF (\bfitU n
h ),

\bfitU 
(2)
h =

3

4
\bfitU n

h +
1

4

\Bigl( 
\bfitU 

(1)
h +\Delta t\scrF 

\bigl( 
\bfitU 

(1)
h

\bigr) \Bigr) 
,

\bfitU n+1
h =

1

3
\bfitU n

h +
2

3

\Bigl( 
\bfitU 

(2)
h +\Delta t\scrF 

\bigl( 
\bfitU 

(2)
h

\bigr) \Bigr) 
,

(2.10)

is used. Furthermore, the equation for the space- and time-dependent bottom to-
pography function (2.3) must also involve a temporal discretization. As \scrF (\bfitU n

h ) is

evaluated at time tn, \scrF 
\bigl( 
\bfitU 

(1)
h

\bigr) 
is evaluated at time tn+\Delta t, and \scrF 

\bigl( 
\bfitU 

(2)
h

\bigr) 
is evaluated

at time tn + 1
2\Delta t, we evaluate B(x, t) at the same time values for each Runge--Kutta

step. When the function values at tn + 1
2\Delta t are unavailable, they are determined via

quadratic interpolation.

3. Inverse problem. In this section, we describe the inverse problem of our fo-
cus, which is the reconstruction of the topographical source function B from boundary
data of the hyperbolic conservation law (2.1) from a single measurement event. We
reduce the inverse problem to an optimization problem of a residual functional coming
from boundary measurements, with an addition of two regularization terms, which
will be described more concretely later in this section.

In our work, we adopt the adjoint method to numerically obtain a gradient of our
functional. We will describe the cost function we wish to minimize, the derivation of
the adjoint formulation for the gradient calculation, and the iterative update scheme
for determining the time component, p(t), of the source function B. The numerical
solution to the adjoint problem will be calculated using the DG method.

We assume that noisy measurements of\bfitU are taken only at both boundaries of the
spatial domain, given a period of time [0, T ] in one single measurement event. During
the numerical reconstruction process, we assume that only these noisy solutions at
the boundary of the spatial domain are known to us. For notational sake, we denote
these noisy measurements as \^\Lambda noisy = \^\Lambda \mu , where the multiplicative noise is uniformly
distributed, \mu \sim \scrU 

\bigl[ 
1 - 1

2\eta meas, 1 +
1
2\eta meas

\bigr] 
, with a given noise level \eta meas. The goal

of the inverse scheme is to find the function, p(t), that provides the best approximation
\Lambda (B(p)) \approx \^\Lambda noisy. The map \Lambda (B(p)) = \bfitU | \{ x0,xL\} \times [0,T ] represents the forward map
with the input, B(p), as the topographical function and the output as the solutions,
\bfitU , at the boundary points, \{ x0, xL\} , over the time interval [0, T ]. We thus declare the
control to be p(t) and the number of control variables to be equivalent to the number
of time steps in the numerical scheme. On the other hand, the observation values are
\Lambda (B(p)) = \bfitU | \{ x0,xL\} \times [0,T ]. The number of observation values is determined by taking
the product of the number of state variables (m), the number of boundary points (two
in 1 dimension), and the number of time steps in the numerical scheme.
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Finding the best approximation reduces to minimizing the error or residue of
the predicted and measured data for all time at the boundary of the computational
domain. This corresponds to minimizing the functional

(3.1) \bfitJ (p) := \bfitJ 0(p) +\bfitR (p) :=

\int T

0

1

2
| [\scrE (p)] (x0, t)| 2 +

1

2
| [\scrE (p)] (xL, t)| 2 dt+\bfitR (p),

where the error function, \scrE , for a given p is defined as

(3.2) [\scrE (p)] (x, t) = \Lambda (B(p))(x, t) - \^\Lambda noisy(x, t).

The term \bfitR (p) is a regularization term that will be discussed in section 3.3.2.
The optimization problem becomes

minimize \bfitJ (p) := \bfitJ 0(p) +\bfitR (p) subject to (2.2).(3.3)

We employ a descent method to minimize the above functional, in which the (formal)
gradient \nabla \bfitJ will be obtained via the adjoint method following a linearization process
of (2.2).

3.1. Gradient derivation. In an effort to determine \nabla \bfitJ 0, we begin by calcu-
lating the variational derivative (in the sense of the Gateaux differential) of \bfitJ 0 and
dualize it using L2-pivoting. In what follows, we would like to denote, for a functional
\scrF , the variational derivative of \scrF at p along \~p as

(3.4) \delta \scrF (p; \~p) := lim
\epsilon \rightarrow 0

\scrF (p+ \epsilon \~p) - \scrF (p)

\epsilon 

whenever it exists. Furthermore, whenever \delta \scrF (p; \~p) is linear with respect to \~p, we
(formally) dualize the variational derivative \delta \scrF (p; \~p) using L2-pivoting and define the
gradient, \nabla \scrF (p), such that it satisfies the relation

(3.5) \delta \scrF (p; \~p) :=

\int T

0

[\nabla \scrF (p)] (t) \~p(t) dt.

With these notions at hand, we readily compute that

\bfitdelta \bfitJ 0(p; \~p) = lim
\epsilon \rightarrow 0

\bfitJ 0(p+ \epsilon \~p) - \bfitJ 0(p)

\epsilon 

=

\int T

0

\biggl( \bigl[ 
\delta \scrE T (p; \~p) \scrE (p)

\bigr] 
(x0, t) +

\bigl[ 
\delta \scrE T (p; \~p) \scrE (p)

\bigr] 
(xL, t)

\biggr) 
dt ,

(3.6)

where the superscript T now represents the transpose of a matrix (and not the ad-
joint operator). From the definition of \scrE , we quickly realize that \delta \scrE (p; \~p)(x, t) =
\delta \Lambda (B(p);B(\~p)). Hence, (3.6) reduces to

\bfitdelta \bfitJ 0(p; \~p) =

\int T

0

\bigl( \bigl[ 
\delta \Lambda T (B(p);B(\~p)) \scrE (p)

\bigr] 
(x0, t) +

\bigl[ 
\delta \Lambda T (B(p);B(\~p)) \scrE (p)

\bigr] 
(xL, t)

\bigr) 
dt .

(3.7)

We now see the necessity of evaluating the term \delta \Lambda (B(p);B(\~p)) explicitly. Albeit
seemingly complicated, the difficulty of the evaluation will be mitigated via the solving
of a related adjoint equation, which will be described in the next subsection.
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3.2. Linearization and adjoint formulation. The adjoint formulation can be
understood from multiple perspectives. One way is the Lagrange framework in which
the adjoint variables are Lagrange multipliers. This method, commonly used in the
aeronautical community, was popularized by Jameson [37], because it provided a solid
connection to theories of constrained optimal control and optimization. Another type
of approach, the duality framework, requires one to linearize the system in order
to derive the adjoint equations. We will use the duality framework in this paper,
however, the Lagrange framework provides the exact same adjoint formulation.

3.2.1. Linearization of the forward system. In this subsection, we aim to
linearize the forward system (2.2) as follows. We consider an \epsilon -perturbation of B,
B\varepsilon := B + \epsilon \~B along the direction \~B, and we see how the resulting \bfitU that satisfies
(2.2) is perturbed. We denote \bfitU \epsilon as the solution to (2.2) given B\varepsilon and define

\~\bfitU := lim
\epsilon \rightarrow 0

\bfitU \epsilon  - \bfitU 

\epsilon 
,(3.8)

whenever it exists. Now we quickly realize that

(3.9) \~\bfitU (x, 0) = lim
\epsilon \rightarrow 0

\bfitU \epsilon (x, 0) - \bfitU (x, 0)

\epsilon 
= 0,

as the initial conditions of \bfitU \epsilon and \bfitU shall coincide. Moreover, taking the differences
of the respective equations coming from (2.2) for \bfitU \epsilon and \bfitU directly gives

0 = lim
\epsilon \rightarrow 0

1

\epsilon 
(\partial t[\bfitU 

\epsilon  - \bfitU ] + [\bfitA (\bfitU \epsilon )\partial x\bfitU 
\epsilon  - \bfitA (\bfitU )\partial x\bfitU ] - [\bfitS (\bfitU \epsilon , B\epsilon )\bfitU \epsilon  - \bfitS (\bfitU , B)\bfitU ]) ,

(3.10)

and each term in the bracket can be simplified whenever they exist. For instance, we
directly have

lim
\epsilon \rightarrow 0

1

\epsilon 
\partial t (\bfitU 

\epsilon  - \bfitU ) = \partial t \~\bfitU .(3.11)

Meanwhile, we may simplify the flux term as

lim
\epsilon \rightarrow 0

1

\epsilon 
[\bfitA (\bfitU \epsilon )\partial x\bfitU 

\epsilon  - \bfitA (\bfitU )\partial x\bfitU ]

(3.12)

= lim
\epsilon \rightarrow 0

1

\epsilon 

\Bigl[ 
\bfitA (\bfitU )

\Bigl( 
\partial x

\Bigl( 
\bfitU + \epsilon \~\bfitU 

\Bigr) 
 - \partial x(\bfitU )

\Bigr) 
+
\Bigl( 
\bfitA (\bfitU + \epsilon \~\bfitU ) - \bfitA (\bfitU )

\Bigr) 
\partial x(\bfitU + \epsilon \~\bfitU )

\Bigr] 
= \bfitA (\bfitU )\partial x \~\bfitU +

\Biggl( 
m\sum 

k=1

\partial \bfitU k
A(\bfitU ) \~\bfitU k

\Biggr) 
\partial x\bfitU 

= \bfitA (\bfitU )\partial x \~\bfitU +

\left(  m\sum 
j=1

\partial \bfitU j
A(\bfitU )\partial x\bfitU 

\right)  \~\bfitU 

= \bfitA (\bfitU )
\Bigl[ 
\partial x \~\bfitU 

\Bigr] 
+ [\partial x\bfitA (\bfitU )] \~\bfitU 

= \partial x

\Bigl[ 
\bfitA (\bfitU ) \~\bfitU 

\Bigr] 
.

Here, the first equality is derived from rewriting the flux term after adding and sub-
tracting \bfitA (\bfitU )\partial x\bfitU 

\epsilon and applying the definition (3.8). The second equality follows
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BOTTOM TOPOGRAPHY RECOVERY OF SWES A2989

from applying the limit in which the second term is the result of partial derivatives
involving the chain rule. The third equality is determined from the symmetry relation
\partial Uk

\bfitA ij(U) = \partial Uk
\partial Uj

\bfitF i(U) = \partial Uj
\bfitA ik(U). The last equality follows from the product

rule.
Likewise, we can simplify the source term and obtain

lim
\epsilon \rightarrow 0

1

\epsilon 
(\bfitS (\bfitU \epsilon , B\epsilon )\bfitU \epsilon  - \bfitS (\bfitU , B)\bfitU )(3.13)

= lim
\epsilon \rightarrow 0

1

\epsilon 
(\bfitS (\bfitU , B) (\bfitU \epsilon  - \bfitU ) + (\bfitS (\bfitU \epsilon , B\epsilon ) - \bfitS (\bfitU , B))\bfitU \epsilon )

= \bfitS (\bfitU , B) \~\bfitU + lim
\epsilon \rightarrow 0

1

\epsilon 

\Bigl( 
\bfitS (\bfitU + \epsilon \~\bfitU , B + \epsilon \~B) - \bfitS (\bfitU , B)

\Bigr) \Bigl( 
\bfitU + \epsilon \~\bfitU 

\Bigr) 
= \bfitS (\bfitU , B) \~\bfitU +

\Biggl( 
m\sum 
i=1

\partial \bfitU i\bfitS (\bfitU , B) \~\bfitU i + \partial B\bfitS (\bfitU , B) \~B

\Biggr) 
\bfitU 

:= (\bfitS (\bfitU , B) +\bfitC (\bfitU , B)) \~\bfitU + \partial B\bfitS (\bfitU , B)\bfitU \~B,

where \bfitC denotes the matrix \bfitC ij =
\sum m

k=1
\partial \bfitS ik

\partial \bfitU j
\bfitU k. The first equality is derived from

rewriting the original equality after adding and subtracting the term \bfitS (\bfitU , B)\bfitU \epsilon . The
second equality follows from applying the limit to the first term and from applying
the definitions in (3.8) and of B\epsilon to the second term. The third equality follows from
taking partial derivatives which involves the chain rule and applying the limit. Last,
the fourth equality is the result of a symmetry relation.

Substituting (3.11), (3.12), and (3.13) into (3.10), and combining that with the
initial condition (3.9), we therefore obtain the following linear system for \~\bfitU ,
(3.14)\Biggl\{ 

(\partial t  - \bfitS  - \bfitC ) \~\bfitU + \partial x

\Bigl( 
\bfitA \~\bfitU 

\Bigr) 
= (\partial B\bfitS (\bfitU , B)\bfitU ) \~B, (x, t) \in (x0, xL)\times (0, T ],

\~\bfitU (x, 0) = 0, x \in [x0, xL] ,

which serves as the linearization of the forward system (2.2).

3.2.2. The adjoint system. With the linearization process given in the pre-
vious subsection, we may proceed to obtain \delta \Lambda (B(p);B(\~p)) at the boundary points,
and thereby evaluate \bfitdelta \bfitJ 0(p; \~p) appropriately.

We start by considering \bfitsigma which satisfies the following adjoint system with final
time condition and boundary conditions:

(3.15)

\left\{         
(\partial t +\bfitA T\partial x + \bfitS T +\bfitC T )\bfitsigma = 0, x \in (x0, xL)\times (0, T ],

\bfitsigma (x, T ) = 0, x \in (x0, xL),

\bfitsigma (x0, t) =  - (\bfitA T ) - 1(x0, t) [\scrE (p)] (x0, t), t \in (0, T ],

\bfitsigma (xL, t) = (\bfitA T ) - 1(xL, t) [\scrE (p)] (xL, t) t \in (0, T ] .

In the particular case of the SWEs, the matrices appearing in (3.15) are given by

(3.16) \bfitA T =

\biggl[ 
0 gh - u2

1 2u

\biggr] 
, \bfitS T =

\biggl[ 
0  - g\partial xb
0 0

\biggr] 
, \bfitC T = 0.
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Taking the inner product of the solution \bfitsigma from (3.15) and the weak formulation
of the linearized system in (3.14), we get\int T

0

\int xL

x0

\bfitsigma T (\partial B\bfitS (\bfitU , B)\bfitU ) \~B dxdt

=

\int T

0

\int xL

x0

\bfitsigma T (\partial t + \partial x\bfitA  - \bfitS  - \bfitC ) \~\bfitU dxdt

=  - 
\int T

0

\int xL

x0

\~\bfitU T
\bigl( 
\partial t +\bfitA T\partial x + \bfitS T +\bfitC T

\bigr) 
\bfitsigma dxdt

+

\int xL

x0

\~\bfitU T\bfitsigma 

\bigm| \bigm| \bigm| \bigm| t=T

t=0

dx+

\int T

0

\~\bfitU T\bfitA T\bfitsigma 

\bigm| \bigm| \bigm| \bigm| x=xL

x=x0

dt,

(3.17)

where we simplify further, with (3.15), to obtain\int T

0

\int xL

x0

\bfitsigma T (x, t) (\partial B\bfitS (\bfitU , B)\bfitU ) (x, t) \~B(x, t) dxdt

=

\int T

0

\Bigl[ 
\delta \Lambda T (B(p); \~B(p)) \scrE (p)

\Bigr] 
(xL, t) dt

+

\int T

0

\Bigl[ 
\delta \Lambda T (B(p); \~B(p)) \scrE (p)

\Bigr] 
(x0, t) dt.

(3.18)

Here the last equality follows from the choice of boundary conditions described in
(3.15) and the fact that \bfitU = \Lambda (B(p)) implies \~\bfitU = \delta \Lambda (B(p); \~B(p)). We may now
readily substitute (3.18) into the expression (3.7) to obtain

\bfitdelta \bfitJ 0(p; \~p) =

\int T

0

\int xL

x0

\bfitsigma T (x, t) (\partial B\bfitS (\bfitU , B)\bfitU ) (x, t) \~B(x, t) dxdt.(3.19)

By utilizing the fact that

(3.20)
\Bigl[ 
\~B(p)

\Bigr] 
(x, t) = \delta B(p; \~p) = [\delta (B0 + pB1)](p; \~p) = B1(x) \~p(t),

we further simplify (3.19) to

\bfitdelta \bfitJ 0(p; \~p) =

\int T

0

\biggl( \int xL

x0

\bfitsigma T (x, t) (\partial B\bfitS (\bfitU , B)\bfitU ) (x, t)B1(x) dx

\biggr) 
\~p(t) dt.(3.21)

Therefore from definition (3.5), we obtain the following (formal) gradient from (3.21):

(3.22) \nabla \bfitJ 0(p)(t) =

\int xL

x0

\bfitsigma T (x, t) (\partial B\bfitS (\bfitU , B)\bfitU ) (x, t)B1(x) dx .

We again remark that, in the case of the SWEs, we have

(3.23) \partial B\bfitS (\bfitU , B)\bfitU =

\biggl[ 
0 0
 - g 0

\biggr] \biggl[ 
h
hu

\biggr] 
=

\biggl[ 
0

 - gh

\biggr] 
, B1 = \partial xb1,

and therefore the gradient is simplified to the form

\nabla \bfitJ 0(p) =

\int xL

x0

\Biggl( \biggl[ 
\sigma 1

\sigma 2

\biggr] T \biggl[ 
0

 - gh

\biggr] \Biggr) 
(x, t)\partial xb1(x) dx

=

\int xL

x0

 - g\sigma 2(x, t)h(x, t)\partial xb1(x) dx,

(3.24)

where \bfitsigma = [ \sigma 1
\sigma 2

] is the solution of the adjoint equation (3.15).
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3.3. Numerical scheme for the inverse problem. In this subsection we
will discuss the numerical algorithms for the inverse problem. The DG scheme will
be employed to solve the adjoint problem (3.15) and an iterative method will be
presented to update the function p with the suitably chosen regularization terms.

3.3.1. DG method for the adjoint problem. Noting that the spatial de-
rivative in the adjoint problem (3.15) is not in the conservative form, we start by
reformulating the adjoint problem as a balance law of the form

(3.25) \partial t\bfitsigma + \partial x
\bigl( 
\bfitA T\bfitsigma 

\bigr) 
= (\partial x\bfitA 

T  - \bfitS T  - \bfitC T )\bfitsigma ,

where \bfitA = \bfitA (\bfitU ) does not depend on the unknown \bfitsigma . Following the same discretiza-
tion strategy as presented in section 2.2, we seek an approximate solution \bfitsigma h in which

\bfitsigma 
(i)
h for i = 1, . . . ,m belong to \BbbV k

h. The DG method in cell Ij becomes\int 
Ij

\partial t\bfitsigma h\bfitv dx - 
\int 
Ij

\bfitA (\bfitU h)
T\bfitsigma h\partial x\bfitv dx+ \^\bfitG j+ 1

2
\bfitv  - 
j+ 1

2

 - \^\bfitG j - 1
2
\bfitv +
j - 1

2

=

\int 
Ij

\bigl( 
\partial x\bfitA 

T (\bfitU h) - \bfitS T (Bh) - \bfitC T
\bigr) 
\bfitsigma h\bfitv dx,

(3.26)

where \bfitv \in \BbbV k
h is a vector of test functions and the Lax--Friedrichs numerical flux takes

the form
(3.27)

\^\bfitG j+ 1
2
=

1

2

\Bigl( 
\bfitA (\bfitU  - 

h,j+ 1
2

)T\bfitsigma  - 
h,j+ 1

2

+\bfitA (\bfitU +
h,j+ 1

2

)T\bfitsigma +
h,j+ 1

2

 - \alpha 
\Bigl( 
\bfitsigma +
h,j+ 1

2

 - \bfitsigma  - 
h,j+ 1

2

\Bigr) \Bigr) 
with the value of \alpha being the same as in the forward DG scheme, described in section
2.2.

3.3.2. Regularization and update scheme. In this subsection, we describe
the numerical method designed to recover the function p(t) via an iterative scheme.
Usually, either a descent type [6], Newton type [30], or a trust region algorithm [60]
is employed. A Newton type algorithm usually provides a certain acceleration to the
convergence, but as a trade-off, it is usually more computationally expensive. In this
work, we employ a descent type algorithm, in light of the fact that our functional is
highly nonlinear and highly nonconvex, applying a higher order method may result
in getting stuck at a local optimum even more easily.

We employ an operator splitting algorithm to update the function p(t). The
scheme is initialized with a random initial guess for p, denoted by p0,noisy. We use
multiplicative noise following a uniform distribution, i.e., p0,noisy = p0\nu , where \nu \sim 
\scrU 
\bigl[ 
1 - 1

2\eta p, 1 +
1
2\eta p
\bigr] 
, to define the random initial guess. Not only is the update of

p dependent on \nabla \bfitJ 0, but it also relies on a regularization term. The regularization
term ensures the optimization problem is locally convex and makes it possible to solve
an ill-posed problem efficiently by incorporating a priori knowledge of the profile to
be reconstructed. Various regularization terms have been constructed for different
purposes. For instance, L1 regularization [65, 22] results in a simpler sparse solution.
On the other hand, TV regularization [58] favors piecewise constant functions of the
coefficients to be recovered, whereas Sobolev regularization [14] favors smoothness of
the coefficients to be reconstructed.

Before we focus on our choice of regularization, we first discuss the update al-
gorithm. To better motivate our choice of algorithm, we start by simplifying our
discussion and considering the situation when there is only one regularization term.
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In this case, the proximal gradient descent method (or forward-backward splitting)
[2, 52] is a common choice. The explicit term is usually assigned as the term coming
from the gradient of a more complicated functional. The implicit term is typically
chosen so that the proximal map is easy to evaluate and the stability of the algorithm
is increased. Consequently, the kth iteration is given by

pk+1 = pk  - \ell k\nabla \bfitJ 0

\bigl( 
pk
\bigr) 
 - \ell k\partial \bfitR 

\bigl( 
pk+1

\bigr) 
,(3.28)

where \ell k is the step size or learning rate and \partial represents the subgradient when the
proximal map of \bfitR can be computed. In our work, we will choose a constant step
size, i.e., \ell k = \ell for all k. The scheme can be rewritten so that the update for iteration
k + 1 only depends on the information from iteration k,

(3.29) pk+1 = (\scrI + \ell \partial \bfitR )
 - 1 \bigl( 

pk  - \ell \nabla \bfitJ 0

\bigl( 
pk
\bigr) \bigr) 

,

where \scrI is the identity matrix and

(3.30) (\scrI + \ell \partial \bfitR )
 - 1

(w) = argmin
y

\biggl\{ 
\bfitR (y) +

1

2\ell 
\| w  - y\| 22

\biggr\} 
= proxR,\ell (w).

This leads to the formulation

(3.31) pk+1 = argmin
y

\biggl\{ 
\bfitR (y) +

1

2\ell 
\| pk  - \ell \nabla \bfitJ 0(p

k) - y\| 22
\biggr\} 
.

A common choice for the regularization is L1 regularization, where \bfitR (y) =
\gamma \| y  - p0\| 1 with p0 being a chosen coefficient of homogeneous background and \gamma 
a scalar parameter, aiming to impose sparsity of the difference between the resulting
optimum and p0. The proximal gradient method coming from this choice of regularizer
is

pk+1 = argmin
y

\biggl\{ 
\gamma \| y  - p0\| 1 +

1

2\ell 
\| pk  - \ell \nabla \bfitJ 0

\bigl( 
pk
\bigr) 
 - y\| 22

\biggr\} 
= \scrS \gamma \ell 

\bigl( 
pk  - \ell \nabla \bfitJ 0

\bigl( 
pk
\bigr) 
 - p0

\bigr) 
+ p0,

(3.32)

where the shrinkage operator \scrS \gamma \ell [10, 9, 65] is given as follows:

(3.33) \scrS \gamma \ell (p) = sign (p)max \{ | p|  - \ell \gamma , 0\} .

After briefly describing the simple motivating example which carries only one
regularization term, we now describe the combination of regularization terms that we
use in our work, and how we perform the operator splitting in our algorithm. In this
paper, the regularization term is taken as a sum of two regularizers

(3.34) \bfitR (p) = \bfitR L1(p - p0) +\bfitR H1(p),

where \bfitR L1(p) = \| p\| 1 represents L1 regularization and \bfitR H1(p) = \| \nabla p\| 22 represents
H1 regularization. The L1 regularization term will aid in removing the noise by
sparsifying it, while the H1 regularization term will be beneficial for the purpose of
smoothing out the noisy data, an advantage over total variation (\| \nabla p\| 1) regulariza-
tion. H1 regularization has been shown to be good for flow control problems [8, 28]
as well as image reconstruction and deblurring [51, 40].
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Now, we wish to minimize \bfitJ 0(p) +\bfitR L1(p) +\bfitR H1(p), which reduces to finding p
so that

(3.35) 0 \in \nabla \bfitJ 0(p) + \partial \bfitR L1(p) +\nabla \bfitR H1(p).

We must be careful in our approach and employ a more complicated splitting scheme
than the proximal gradient descent since we now have an additional operator. In
our work, we adapt the three-operator splitting algorithm [11], which we will de-
scribe in detail in Algorithm 3.1. For simplicity, we introduce the following notation
corresponding to each regularization term,

\scrJ \ell \gamma L\bfitR L1 (\omega ) = (\scrI + \ell \gamma L\bfitR L1)
 - 1

(\omega )

= sign(\omega  - p0)max \{ | \omega  - p0|  - \ell \gamma L, 0\} + p0
(3.36)

and

(3.37) \scrJ \ell \gamma H\bfitR H1 (\omega ) = (\scrI + \ell \gamma H\bfitR H1) - 1(\omega ) = (\scrI  - \ell \gamma H\Delta )
 - 1

(\omega ),

where \gamma L is the L1 regularization parameter and \gamma H is the H1 regularization parame-
ter. Furthermore, we would like to note that the gradient of the cost function is time
dependent, i.e., \nabla \bfitJ 0(p

k, t), but we denote it as \nabla \bfitJ 0(p
k) for the sake of simplifying

notation. The update becomes

(3.38) pk+1 = \scrJ \ell \gamma L\bfitR L1 \circ 
\bigl[ 
zk + \lambda k

\bigl( 
\scrJ \ell \gamma H\bfitR H1 \circ 

\bigl[ 
2pk  - zk  - \ell \nabla \bfitJ 0(p

k)
\bigr] 
 - pk

\bigr) \bigr] 
,

where z0 is originally initialized to be p0 and \lambda k is the relaxation parameter which
can be used to help speed up the rate of convergence of the iterative solutions. We
are now ready to introduce our algorithm.

Algorithm 3.1 Three-operator splitting algorithm.

initialize p0 to be the random initial guess
initialize z0 = p0

set regularization parameters \gamma L, \gamma H
set relaxation parameter (\lambda k)k\geq 0

set learning rate \ell 
for k = 0, 1, . . . do

compute \Lambda (B(pk)) from B(pk) by solving the forward problem (2.2)
compute \bfitsigma from (B(pk),\Lambda (B(pk))) by solving the adjoint problem (3.15)
evaluate \nabla \bfitJ 0(p

k) =
\int xL

x0
\bfitsigma T (x, t) (\partial B\bfitS (\bfitU , B)\bfitU ) (x, t)B1(x) dx

define \kappa k = 2pk  - zk  - \ell \nabla \bfitJ 0(p
k)

evaluate \omega k = \scrJ \ell \gamma H\bfitR H1 (\kappa 
k) = (\scrI  - \ell \gamma H\Delta ) - 1(\kappa k)

update zk+1 = zk + \lambda k(\omega 
k  - pk)

update pk+1 = \scrJ \ell \gamma \bfitR L1 (z
k+1) = sign(zk+1  - p0)max\{ | zk+1  - p0|  - \ell \gamma L, 0\} + p0

end

4. Numerical examples for the SWEs. In this section, we will be consid-
ering the one-dimensional nonlinear SWEs (2.5). We aim to recover the temporal
component p(t) in the bottom topography function b(x, t); see (2.3).

In all the numerical tests, we use a relaxation parameter of \lambda k = 1, a noise
parameter for the measured data of \eta meas = 0.1 or 5\% noise, a noise parameter
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A2994 J. BRITTON, Y. T. CHOW, W. CHEN, AND Y. XING

for the initial guess p0 of \eta p = 0.25 or 12.5\% noise. A coefficient of homogeneous
background is assumed to be known and taken as p0 = 1. Each test is run for 1,000
iterations. The iteration with the smallest residue, \bfitJ 0(p

k), is selected as the best
recovered representation for the true temporal component of the bottom function
p(t). The measured data are computed using a high order accurate DG method with
a uniform mesh of 400 cells and P 3 piecewise polynomials, with noise added to the
DG solutions to represent noisy measurement. A mesh of 50 uniform cells with P 2

piecewise polynomials is used to solve the forward problem and a uniform mesh of 25
cells with P 1 piecewise polynomials is used to solve the adjoint problem, unless stated
otherwise. The measured data, forward, and adjoint solvers are designed with different
meshes and polynomial degree approximations in an effort to avoid committing an
``inverse crime"" [62].

4.1. Tests for recovering different time profiles of \bfitp (\bfitt ). In this subsec-
tion, we will perform numerical experiments aiming to recover several unknown time
profiles, ptrue(t), from noisy boundary measurements.

We solve the forward problem (2.1) with the DG method described in section 2.2,
where our computational domain is chosen to be [x0, xL] = [0, 1], the initial conditions
are given by

(4.1) h(x, 0) = 7 + exp(sin(2\pi x)), hu(x, 0) = cos(2\pi x),

and the spatial components of the bottom topography function are defined as

(4.2) b0(x) = cos(sin(2\pi x), b1(x) = sin2 (\pi x) .

The final time is set as T = 0.05 and periodic boundary conditions are used.
We examine several choices for the true value of p(t) and the corresponding initial

guesses, which are outlined in Table 1. A constant learning rate of \ell = 0.6 is used in
each test. The regularization parameters are fixed with \gamma L = 1\times 10 - 6 in all examples
and \gamma H = 5 \times 10 - 8 in cases (4.1a), (4.1b), (4.1d), (4.1e), \gamma H = 1 \times 10 - 8 in cases
(4.1c), (4.1d) and \gamma H = 5\times 10 - 9 in case (4.1f).

Table 1
The true function for p(t) denoted as ptrue, and the corresponding initial guess used, p0, with

\beta =  - 10, 000. Multiplicative noise is applied to p0 in the simulations.

Case ptrue(t) p0(t)

(4.1a) e\beta (t - 
1
3
T)2 + 1 e\beta (t - 

2
3
T)2 + 1

(4.1b) e\beta (t - 
2
3
T)2 + 1 e\beta (t - 

1
3
T)2 + 1

(4.1c) e2\beta (t - 
1
4
T)2 + e2\beta (t - 

3
4
T)2 + 1 3

2
e\beta (t - 

1
2
T)2 + 1

(4.1d) e\beta (t - 0.3T )2 + 3
2
e2\beta (t - 0.7T )2 + 1 3 cos2

\bigl( 
10\pi 
T

t
\bigr) 
+ 3

4

(4.1e) 3
2
e\beta (t - 0.3T )2 + e2\beta (t - 0.7T )2 + 1 3 cos2

\bigl( 
10\pi 
T

t
\bigr) 
+ 3

4

(4.1f) e4\beta (t - 
1
4
T)2 + 3

2
e4\beta (t - 

1
2
T)2  - 1

2
e4\beta (t - 

3
4
T)2 + 1 3 cos2

\bigl( 
10\pi 
T

t
\bigr) 
+ 3

4

Cases (4.1a) and (4.1b) represent the situation in which the true value of p(t) is
a bump function that is noncentered with respect to the time interval and the corre-
sponding initial guess is a noisy horizontal shift of ptrue(t). The numerical results are
shown in Figures 1 and 2. In both cases, the amplitude and shape of the true function
and recovered numerical approximation are very close. The figures demonstrate that
the scheme is robust even in the presence of multiplicative noise and the ill-posedness
of the problem.

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

28
.1

46
.1

89
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOTTOM TOPOGRAPHY RECOVERY OF SWES A2995

Fig. 1. Results for case (4.1a). Left: plots of the true p and the numerically recovered p at
iteration 151, corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Fig. 2. Results for case (4.1b). Left: plots of the true p and the numerically recovered p at
iteration 234, corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

In case (4.1c), we examine a true function p that has two bumps of equal amplitude
with an initial guess consisting of one bump with a larger amplitude. The results can
be found in Figure 3. Cases (4.1d) and (4.1e) also include a true p function of two
bumps, however, they have different amplitudes and the corresponding initial guesses
are highly oscillatory trigonometric functions. The corresponding results are shown
in Figures 4 and 5. In the examples with two bumps, the reconstructed function was
also able to identify the two crests. The effect of the parameter \gamma H is explored in
these cases. The value \gamma H = 1\times 10 - 8 is used for cases (4.1c) and (4.1d). We can see
that this smaller choice of \gamma H results in a less smooth solution in comparison to the
results from cases (4.1d) and (4.1e) when \gamma H = 5\times 10 - 8 is used. However, the plots
corresponding to \gamma H = 5\times 10 - 8 while more smooth, are more flattened.

The case (4.1f) contains two crests of different amplitudes and a trough for the
true function with a highly oscillatory trigonometric function as the initial guess.
Plots of the results corresponding to this case can be found in Figure 6. Additionally,
for case (4.1f) we show the solutions of the forward problem in Figure 7 at different
times (t = T

4 ,
T
2 ,

3T
4 , and T ). The water surface height, bottom topography, and

water discharge of the measured data and the numerical solution at the iteration
with the smallest residue are compared. The recovered bottom topography along
with the recovered state variables match the true functions well, even for some more
complicated choices of p(t).

Figures 1--6 each contains a plot of the residues \bfitJ 0, defined by (3.1) and (3.2), at
the endpoints of the spatial domain for each iteration on a log-log scale. We see in each
case a similar behavior occurs in which an ``elbow""-like shape appears. The portion of
this residue curve with a steeper slope corresponds to the situation where the term \bfitJ 0

has a greater impact on the update of the function p, which happens for the beginning
iterations. The flat portion of the residue curve corresponds to the situation when
the iteration starts to enter a small neighborhood where the regularization term \bfitR (p)
convexifies the optimization problem and dominates the update.
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A2996 J. BRITTON, Y. T. CHOW, W. CHEN, AND Y. XING

Fig. 3. Results for case (4.1c). Left: plots of the true p and the numerically recovered p at
iteration 278, corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

(a) \gamma H = 1\times 10 - 8.

(b) \gamma H = 5\times 10 - 8.

Fig. 4. Results for case (4.1d). Left column: plots of the true p and the numerically recovered
p at iteration 715 (top row) and 151 (bottom row), corresponding to the smallest residue; Middle
column: plots of the true p, the noisy initial guess, and various iteration values for p; Right column:
iteration errors on a log-log scale.

Fig. 5. Results for case (4.1e). Left: plots of the true p and the numerically recovered p at
iteration 337, corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Fig. 6. Results for case (4.1f). Left: plots of the true p and the numerically recovered p at
iteration 1, 000, corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.
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BOTTOM TOPOGRAPHY RECOVERY OF SWES A2997

Fig. 7. Comparison between the measured forward solutions and the results from the best
iteration for SWEs case (4.1f) at times t = T

4
, T
2
, 3T

4
, and T . In the top row the bottom topography

function, b, and the water surface heights, h + b, are compared. In the bottom row, the water
discharge, hu, is compared. The measured data and results from the iterative scheme are well
matched for all functions in each of the selected time snapshots.

Table 2
The corresponding initial guesses used, p0 with T = 0.05. Multiplicative noise is applied to p0

in the simulations.

Case p0(t)

(4.2a) 1
(4.2b) 4 sin2

\bigl( 
\pi 
T
t
\bigr) 

(4.2c)  - 2 sin2
\bigl( 
\pi 
T
t
\bigr) 
+ 2

(4.2d) 3 cos2
\bigl( 
10\pi 
T

t
\bigr) 
+ 0.75

4.2. Tests for recovering \bfitp (\bfitt ) from different initial guesses. In this sub-
section, we run simulations with different initial guesses of p0(t) to recover the same
ptrue(t). The goal is to demonstrate that the ability of our algorithm in recovering
ptrue(t) does not depend on the initial guess.

We consider the forward problem with the initial conditions in (4.1) and the
spatial bottom topography functions described in (4.2). The true time component of
the bottom topography function is fixed to be

(4.3) p(t) = exp
\bigl( 
\beta (t - 0.3T )2

\bigr) 
+

3

2
exp

\bigl( 
2\beta (t - 0.7T )2

\bigr) 
+ 1

with \beta =  - 10, 000. Four different representative initial guesses, p0(t), listed in Table
2, will be tested. In all cases the final time is T = 0.05 (while the solution is still
smooth) and periodic boundary conditions are used. The remaining hyperparameters
include a learning rate of \ell = 0.6, \gamma L = 1\times 10 - 6, and \gamma H = 1\times 10 - 8.

The numerical results for cases (4.2a), (4.2b), and (4.2c) are shown in Figures
8--10, while the results for case (4.2d) can be found in Figure 4. In all four cases, the
scheme is able to identify that ptrue(t) is a function consisting of two bumps, with
the left bump (occurring earlier in time) having a smaller amplitude than the right
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Fig. 8. Results for case (4.2a). Left: plots of the true p and the p corresponding to the smallest
residue error, at iteration 116; Middle: plots of the true p, the noisy initial guess, and various
iteration values for p; Right: iteration errors on a log-log scale.

Fig. 9. Results for case (4.2b). Left: plots of the true p and the p corresponding to the smallest
residue error, at iteration 103; Middle: plots of the true p, the noisy initial guess, and various
iteration values for p; Right: iteration errors on a log-log scale.

Fig. 10. Results for case (4.2c). Left: plots of the true p and the p corresponding to the
smallest residue error, at iteration 262; Middle: plots of the true p, the noisy initial guess, and
various iteration values for p; Right: iteration errors on a log-log scale.

bump (occurring later in time). This indicates the true function p(t) can be recovered
with the initial condition chosen from a wide range of functions. The numerical
performances are similar in appearance and convergence rate. Cases (4.2a)--(4.2c) all
achieve their best guess in less than 300 iterations. The true p and corresponding p
with the smallest residue error tend to have the some discrepancy near the final time
T . The exception is case (4.2a) in which the initial guess for p at time T is near to
ptrue(T ).

4.3. Convergence and accuracy. We discuss the convergence and accuracy
of our numerical schemes in this section. All numerical simulations presented in this
section consist of the same problem setup as was used in case (4.1d).

First, we discuss the local convergence of the optimization scheme. Since our
problem is ill-posed, we structure our algorithm such that it optimizes the sum of the
residual errors and the regularizers, that is \bfitJ = \bfitJ 0(p) +\bfitR L1(p) +\bfitR H1(p). We apply
our method to \bfitJ , which is locally convex and, therefore, the algorithm converges
locally in first order to a local minimum of J .

For illustrative purpose, Figures 11 and 12 demonstrate the convergence behavior
for two different choices of regularization. The results in Figure 11 correspond to
regularization parameters \gamma L = 1 \times 10 - 6 and \gamma H = 5 \times 10 - 8 while the results in
Figure 12 correspond to slightly higher regularization parameters \gamma L = 5 \times 10 - 6

and \gamma H = 1 \times 10 - 7. In both cases we examine the global and local convergence
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(a) Global convergence behavior. (b) Global convergence behavior.

(c) Front end convergence behavior. (d) Tail end convergence behavior.

Fig. 11. Plots for convergence behavior corresponding to regularization parameters \gamma L = 1 \times 
10 - 6 and \gamma H = 5 \times 10 - 8. Here \bfitJ (n) is the error at iteration n including regularization and \bfitJ (\ast )
is the error at the local minimum. Plots in the top row demonstrate the global convergence behavior
with (a) a log scale on the x-axis and (b) a standard scale on the x-axis. The bottom row of plots
show local convergence behavior overlaid with the best fit linear line. Specifically, (c) demonstrates
the first order convergence for the front end iterations (1 to 20) on a log-log scale with a fit line slope
of  - 1.0417 and (d) demonstrates the first order convergence for the tail iterations (50 to 1, 000) with
a log scale on the y-axis and a fit line slope of  - 0.0079.

behaviors. The difference between the iteration error and the local minimum error
on a log scale is plotted against the log of the iteration number in Figures 11(a)
and 12(a) and against the iteration number in Figures 11(b) and 12(b). These plots
show different convergence behavior at the front end and the tail end of the iterative
process. Hence, local convergence behavior is shown as well. For both cases we plot
the errors against the first 20 iterations on a log-log scale with a best fit line to
show the linear convergence. The results in Figure 11(c) are matched to a best fit
line with a slope of  - 1.0417 showing first order convergence. The best fit line in
Figure 12(c) has a slope of  - 2.0861 showing that an increased rate of convergence
occurs with increased regulation rates. On the other hand, we also plot the errors
corresponding to iterations 50 to 1,000 on a log scale against the iterations with a best
fit line. Since the x-axis, in this case, is not on a log scale, the slope of the best fit
line now corresponds to exponential rate of convergence. The results in Figure 11(d)
correspond to a best fit line consisting of a slope of  - 0.0079 while the results for
the case with higher regularization parameters demonstrated in Figure 12(d) have a
slope of  - 0.0153, which is again twice as large as the case with smaller regularization
parameters.

Second, we discuss the accuracy of the scheme. The solution of the forward
problem is not analytically available, hence the order of accuracy is determined by
comparing the state variables computed on a uniform mesh of cell width \Delta x that is
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(a) Global convergence behavior. (b) Global convergence behavior.

(c) Front end convergence behavior. (d) Tail end convergence behavior.

Fig. 12. Plots for convergence behavior corresponding to regularization parameters \gamma L = 5 \times 
10 - 6 and \gamma H = 1 \times 10 - 7. Here \bfitJ (n) is the error at iteration n including regularization and \bfitJ (\ast )
is the error at the local minimum. Plots in the top row demonstrate the global convergence behavior
with (a) a log scale on the x-axis and (b) a standard scale on the x-axis. The bottom row of plots
show local convergence behavior overlaid with the best fit linear line. Specifically, (c) demonstrates
the first order convergence for the front end iterations (1 to 20) on a log-log scale with a fit line slope
of  - 2.0861 and (d) demonstrates the first order convergence for the tail iterations (50 to 1, 000) with
a log scale on the y-axis and a fit line slope of  - 0.0153.

repeatedly halved. We again consider the problem setup that was used in case (4.1d)
with regularization parameters \gamma L = 1\times 10 - 6 and \gamma H = 5\times 10 - 8 and no noise. The L1

errors and corresponding orders of accuracy for the forward problem computed with
P 0, P 1, and P 2 piecewise polynomials are found in Table 3. We see that an order of
k+1 accuracy is achieved for each polynomial degree k for both state variables h and
hu.

4.4. Impact of inconsistent discretization schemes. In this section we fur-
ther justify the decision to employ different discretization schemes for the forward
and (linearized) adjoint schemes. The primary reason for this choice is to avoid any
speculation of inverse crime. Here we compare the numerical results for case (4.1d)
under two conditions. First, Figure 13 shows the numerical results under consistent
conditions in which the forward and adjoint problems are both discretized using P 2

polynomials and a uniform mesh of 25 cells. Second, Figure 4(b) displays the nu-
merical results under inconsistent conditions. The forward problem was discretized
with P 2 piecewise polynomials and a mesh of 50 uniform cells, while the adjoint prob-
lem was solved with P 1 piecewise polynomials and a uniform mesh of 25 cells. The
inconsistency of the discretized gradient, derived from the discrete adjoint solution,
with the discretized forward model does not contaminate the behavior of the inverse
problem algorithm as evidence by the results in Figure 4(b).
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BOTTOM TOPOGRAPHY RECOVERY OF SWES A3001

Table 3
L1 errors and convergence orders of the accuracy test for the forward problem using P 0, P 1,

and P 2 piecewise polynomials and a uniform mesh of N cells. In each case, k+1 order of accuracy
is achieved.

k = 0 k = 1 k = 2

N L1 Error Order L1 Error Order L1 Error Order

25 0.0490 - 2.9640\times 10 - 3 - 2.4032\times 10 - 3 -
50 0.0260 0.9143 4.9877\times 10 - 4 2.5711 1.1128\times 10 - 5 7.7547

h 100 0.0133 0.9725 1.2434\times 10 - 4 2.0041 1.4679\times 10 - 6 2.9223
200 0.0067 0.9858 3.0999\times 10 - 5 2.0040 1.7730\times 10 - 7 3.0494
400 0.0034 0.9927 7.7396\times 10 - 6 2.0019 2.2152\times 10 - 8 3.0008

25 0.4101 - 5.3311\times 10 - 2 - 5.1219\times 10 - 2 -
50 0.1980 1.0504 5.1953\times 10 - 3 3.3592 8.5791\times 10 - 5 9.2216

hu 100 0.1008 0.9745 1.4146\times 10 - 3 1.8768 1.1960\times 10 - 5 2.8425
200 0.0509 0.9857 3.7772\times 10 - 4 1.9050 1.7950\times 10 - 6 2.7362
400 0.0256 0.9928 9.6943\times 10 - 5 1.9621 2.3099\times 10 - 7 2.9581

Fig. 13. Results for case (4.1d) under consistent conditions. Left: plots of the true p and the p
corresponding to the smallest residue error, at iteration 370; Middle: plots of the true p, the noisy
initial guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Table 4
The regularization parameters tested for case (4.1d).

Case \gamma L \gamma H

(4.5a) 0 5\times 10 - 8

(4.5b) 1\times 10 - 6 0
(4.5c) 0 0

4.5. Impact of regularization terms. In this subsection, we demonstrate the
necessity of the regularization terms discussed in section 3.3.2. First, we demonstrate
what happens when one or more of the regularization terms are completely removed
from the algorithm. Table 4 provides the regularization parameters used for the three
test cases examined which are visualized in Figures 14--16.

Results for case (4.5a), representing the case with no L1 regularization, are dis-
played in Figure 14. While in this case, two peaks of differing heights are recovered,
the recovered peak heights are lower than the true peak locations and occur slightly
earlier in time. Furthermore, the iteration with the smallest error (iteration 1, 000)
occurs in case (4.5a) much later than in case (4.1d) (iteration 151). Case (4.5b) rep-
resents the case with no H1 regularization. The corresponding results can be found
in Figure 15. Not only does the lack of H1 regularization result in a noisy solution,
but also the two peaks are not even recovered after 1, 000 iterations, demonstrating
slowed convergence of the iterative scheme. The situation in which neither L1 nor H1

regularization is implemented, case (4.5c), is shown in Figure 16. Results in this case
are nearly identical to those found in case (4.5b) and Figure 15.
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Fig. 14. Results for case (4.5a). Left: plots of the true p and the numerically recovered p at
iteration 1, 000 corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Fig. 15. Results for case (4.5b). Left: plots of the true p and the numerically recovered p at
iteration 1, 000 corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Fig. 16. Results for case (4.5c). Left: plots of the true p and the numerically recovered p at
iteration 246 corresponding to the smallest residue; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

The second way we demonstrate the impact of regularization is by way of a mod-
ification to the minimization problem presented in (3.3). The modification involves
an additional parameter and takes on the following form:

minimize \bfitJ (p) := \bfitJ 0(p) + \^\gamma \bfitR (p) subject to (2.2).(4.4)

This formulation allows us to perform an L-curve test [26] when running an example
for multiple values of \^\gamma . The L-curve test is a visualization tool used for examining the
impact of regularization and for finding a balance with the residual errors. Here we
consider the same problem setup as in case (4.1d) and set the regularization parameter
to \^\gamma = 10i for the integer i ranging between  - 5 and 5. Note that the choice for \gamma L and
\gamma H stay fixed at 1\times 10 - 6 and 5\times 10 - 8, respectively, for each choice of \^\gamma . Figure 17
shows the smallest residual error over all iterations on the x-axis and the magnitude
of the regularizer from the same iteration on the y-axis, both on a log-scale. The
values of \^\gamma occurring near the elbow of the L-curve correspond to \^\gamma = 1, 10, 100, 1000,
and are reasonable choices of the regularization parameter to use.

4.6. Recovering \bfitp (\bfitt ) with spatial discontinuities in the solutions of the
forward problem. In the previous two subsections, the final stopping time is cho-
sen to ensure that the solutions are smooth over the entire computational region.
One well-known fact of hyperbolic conservation laws is that discontinuities may ap-
pear even when the initial conditions are smooth. In this subsection, we explore the
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Fig. 17. L-curve corresponding to case (4.1d) for regularization parameter \^\gamma = 10i, i \in [ - 5, 5].

Table 5
The true function for p(t) denoted as ptrue and the corresponding initial guess used, p0 with

\beta =  - 700. Multiplicative noise is applied to p0 in the simulations.

Case ptrue(t) p0(t)

(4.6a) e\beta (t - 
1
2
T)2 + 1 1

(4.6b) e4\beta (t - 
1
4
T)2 + 3

2
e4\beta (t - 

1
2
T)2  - 1

2
e4\beta (t - 

3
4
T)2 + 1 1

capability of the proposed inverse algorithms when the solutions contain spatial dis-
continuities. We use the same initial conditions as in (4.1) and spatial components
of the bottom topography functions as in (4.2). We run the forward problem for a
longer time so that discontinuities form in the solutions. Here, we set the final time
as T = 0.2. We consider two choices for ptrue(t) in this subsection, which are listed
in Table 5 along with their corresponding initial guesses.

To capture the discontinuities well and remove the possible oscillations, a slope
limiter is often employed in the DG method. We implement two different slope limiters
for generating the measured data, as well as for solving the forward problem in the
inverse scheme. The simple minmod limiter [7] is employed along the characteristic
direction to generate the measured data. On the other hand, the WENO limiter,
introduced by Qiu and Shu in [54] is used for the forward solver within the iterative
inverse scheme. This limiter is known to be robust and it is able to capture the sharp
transition of the discontinuities. The implementation of two different slope limiters is
in an effort to avoid inverse crime.

A learning rate of \ell = 0.02 was implemented with the regularization parameters
\gamma L = 1 \times 10 - 4 and \gamma H = 1 \times 10 - 6. Results for case (4.6a) are found in Figures 18
and 19 while Figures 20 and 21 contain the results for test (4.6b). Note that periodic
boundary conditions are employed, therefore, the discontinuities can pass the right
boundary and reenter the domain through the left boundary at some time between
3T/4 and T , which means the measured data include the information of discontinu-
ities. In both cases, we observe that our algorithm can recover the exact function
ptrue(t) well, and the results are comparable with those containing smooth data only.
We have included the comparison between the measured data of the water surface
height, bottom topography function, water discharge, and the corresponding numeri-
cal solutions at the iteration with the smallest residue, at different times t = T

4 ,
T
2 ,

3T
4 ,

and T , from which we can observe the numerical solutions match the measured data
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Fig. 18. Results for case (4.6a). Left: plots of the true p and the p corresponding to the
smallest residue error, at iteration 788; Middle: plots of the true p, the noisy initial guess, and
various iteration values for p; Right: iteration errors on a log-log scale.

Fig. 19. Comparison between the measured forward solutions and the numerical results from
the iteration with the smallest residue error for case (4.6a). The results shown are for 4 different
time snapshots. The bottom topography function, b, water surface height, h + b (top row), and the
water discharge, hu (bottom row), are compared.

Fig. 20. Results for case (4.6b). Left: plots of the true p and the p corresponding to the
smallest residue error, at iteration 882; Middle: plots of the true p, the noisy initial guess, and
various iteration values for p; Right: iteration errors on a log-log scale.

well. This elucidates that the numerical scheme developed for the inverse problems
can recover the true p(t) well even when discontinuities develop in the solutions of the
forward problem and hence in the measured data.
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Fig. 21. Comparison between the measured forward solutions and the numerical results from
the iteration with the smallest residue error for case (4.6b). The results shown are for 4 different
time snapshots. The bottom topography function, b, water surface height, h + b (top row), and the
water discharge, hu (bottom row), are compared.

5. Conclusion. In this paper we constructed and validated an adjoint-based
approach for recovering the bottom topography function in the source term of the
one-dimensional SWEs, from the noisy measurement data at two boundaries of the
domain. One novelty of this work is that the reconstruction of the bottom topography
function is accomplished with only boundary data from a single measurement event.
The adjoint scheme was determined by a linearization of the forward system, and has
been derived for general hyperbolic balance laws. Another contribution of this work is
the inclusion of two regularization terms. These extra regularization terms in the nu-
merical approach aided in convexifying and handling the ill-posedness of the problem.
The bottom topography function was recovered through an iterative process using a
three-operator splitting descent method. Extensive numerical tests were carried out,
which demonstrated that a variety of shapes for the true p(t) function could be recov-
ered regardless of the noisy initial guess. As a followup, we would like to develop an
inverse algorithm to recover the general bottom topography B(x, t) and its extension
in higher dimensional problems. It is also worthwhile to extend this framework to
study the inverse problems associated with other hyperbolic balance laws.

Source code. Source code available at
https://github.com/JoleneBritton/AdjointRecoveryOfBottomTopographyFromSWEs.
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