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We extend the positivity-preserving method of Zhang and Shu [49] to simulate the 
advection of neutral particles in phase space using curvilinear coordinates. The ability to 
utilize these coordinates is important for non-equilibrium transport problems in general 
relativity and also in science and engineering applications with specific geometries. The 
method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of 
phase space and strong stability-preserving, Runge–Kutta (SSP-RK) time integration. Special 
care is taken to ensure that the method preserves strict bounds for the phase space 
distribution function f ; i.e., f ∈ [0, 1]. The combination of suitable CFL conditions and 
the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of 
the distribution function. However, to ensure that the distribution function satisfies the 
upper bound, the discretization must, in addition, preserve the divergence-free property 
of the phase space flow. Proofs that highlight the necessary conditions are presented 
for general curvilinear coordinates, and the details of these conditions are worked out 
for some commonly used coordinate systems (i.e., spherical polar spatial coordinates 
in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with 
spherical momentum coordinates). Results from numerical experiments — including one 
example in spherical symmetry adopting the Schwarzschild metric — demonstrate that 
the method achieves high-order accuracy and that the distribution function satisfies the 
maximum principle.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we design discontinuous Galerkin methods for the solution of the collision-less, conservative Boltzmann 
equation in general curvilinear coordinates
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that preserve, in the sense of local cell averages, the physical bounds on the distribution function f = f (x, p, t). This 
function gives the density of particles with respect to the phase space measure dx dp. In Eq. (1), t ∈ R+ represents time, 
and xi and pi are components of the position vector x ∈ Rdx and momentum vector p ∈ Rdp , respectively. In general, 
dx = dp = 3, but when imposing symmetries for simplified geometries, some dimensions may not need to be considered. 
F i and Gi are coefficients of the position space flux vector F f and the momentum space flux vector G f , respectively, 
while √γ ≥ 0 and 

√
λ ≥ 0 are the determinants of the position space and momentum space metric tensors, respectively. 

(See Appendix A for more details. In particular, Eq. (1) is obtained from the conservative, general relativistic Boltzmann 
equation in the limit of a time-independent spacetime.) Eq. (1) must be supplemented with appropriate boundary and initial 
conditions which, at this point, are left unspecified.

The upper and lower bounds on f follow from the non-conservative advection equation

∂ f

∂t
+

dx∑
i=1

F i ∂ f

∂xi
+

dp∑
i=1

Gi ∂ f

∂ pi
= 0, (2)

which is formally equivalent to (1) due to the divergence-free property of the phase space, or “Liouville,” flow

1√
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∂

∂xi

(√
γ F i ) + 1√

λ

dp∑
i=1

∂

∂ pi

(√
λ Gi ) = 0. (3)

Indeed, it is straightforward to show that (2) preserves the bounds of the initial and boundary data. (Here we assume 
that the distribution function f (x, p, t) satisfies f ∈ [0, 1] ∀t .) We employ the conservative form for two major reasons: 
(1) it is mathematically convenient when discontinuities are present and (2) it leads naturally to numerical methods with 
conservative properties. The drawback is that preserving point-wise bounds on f becomes non-trivial.

Discontinuous Galerkin (DG) methods (see e.g., [13,12,18] and references therein) for phase space discretization are 
attractive for several reasons. First, they achieve high-order accuracy on a compact, local stencil so that data is only 
communicated with nearest neighbors, regardless of the formal order of accuracy. This leads to a high computation to 
communication ratio, and favorable parallel scalability on heterogeneous architectures [21]. Second, they exhibit favorable 
properties when collisions are added to the right-hand side of (1). In particular, they recover the correct asymptotic behav-
ior in the diffusion limit [23,1,17], which is characterized by frequent collisions with a material background and long time 
scales. To leverage these properties, it is important to preserve positivity in the phase space advection step since negative 
distribution functions are physically meaningless. In the case of fermions, f is also bounded above (i.e., f ≤ 1), which in-
troduces Pauli blocking factors in the collision operator. Violation of these bounds can result in numerical difficulties due 
to nonlinearities that can come from material coupling [29]. Simply introducing a cutoff in the algorithm is unacceptable, 
since this results in loss of conservation — a critical check on physical consistency.

In this paper, we extend the approach introduced in [49] in order to preserve upper and lower bounds of scalar con-
servation laws. The approach has three basic ingredients. First, one expresses the update of the (approximate) cell average 
in a forward Euler step as a linear combination of conservative updates. This requires a quadrature representation of the 
current local polynomial approximation that calculates the cell average exactly. Second, a limiter is introduced which mod-
ifies the current polynomial approximation, making point-wise values satisfy the prescribed bound on the quadrature set 
while maintaining the cell average. These two steps ensure that the Euler update of the cell average satisfies the required 
bounds. The third and final step is to apply a Strong Stability-Preserving Runge–Kutta (SSP-RK) method (e.g. [15]) which can 
be expressed as a convex combination of Euler steps and therefore preserves the same bounds as the Euler step.

The method from [49] has been extended and applied in many ways. Positivity-preserving DG and weighted essentially 
non-oscillatory (WENO) methods have been designed for convection–diffusion equations [52,47], the Euler equations with 
source terms [51], the shallow water equations [46], multi-material flows [9], the ideal MHD equations [11], moment models 
for radiation transport [38], and PDEs involving global integral terms including a hierarchical size-structured population 
model [48]. The specific problem of maintaining a positive distribution function in phase space has been considered in 
[10,40,43] for the case of Cartesian coordinates. In [10], the authors consider an Eulerian scheme for the Boltzmann–Poisson 
system with a linear collision operator. In [40,43], semi-Lagrangian schemes are used to approximate the Vlasov–Poisson 
system, which contains no collisions. In the current work we also ignore the effects of the collision operator, and consider 
the conservative phase space advection equation in (1). We enforce both the upper and lower bounds on f for general 
curvilinear coordinates. This introduces some non-trivial differences. In particular,

1. The volume element in each computational phase space cell depends on the coordinates. This means that mass matrices 
can vary from cell to cell. It also complicates the quadrature needed for exact evaluation of the cell average. Finally, 
the balance between cell averages and fluxes that gives the proper bounds requires special treatment. These last two 
properties may lead to a reduced CFL condition.
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2. The divergence-free property (3) relies on a delicate balance between position space and momentum space divergences 
(see e.g., [6]). In the Cartesian case, each of these terms is individually zero, so that the balance between them is not 
important.

This paper is organized as follows: in Section 2 we develop a high-order, bound-preserving DG method for solving the 
conservative phase space advection equation given by (1). Details of the method are worked out for some commonly used 
phase space coordinates (i.e., spherical polar spatial coordinates in spherical symmetry — including a general relativistic 
example adopting the Schwarzschild metric — and cylindrical spatial coordinates in axial symmetry, both with spherical 
momentum coordinates). The limiter proposed in [49], which ensures that point-wise values of f satisfy the maximum 
principle, is briefly summarized in Section 3. Numerical results demonstrating that our high-order DG method satisfies the 
maximum principle for the specific cases considered in Section 2 are presented in Section 4. We also evaluate the efficiency 
of the high-order DG methods for the conservative phase-space advection problem. Summary and conclusions are given 
in Section 5. This work is motivated by our objective to develop robust, high-order methods to simulate neutrino trans-
port in core-collapse supernovae (see e.g., [30,22,20,5] for reviews). Ultimately, this requires solving the general relativistic 
Boltzmann equation for the neutrino radiation field. Thus, for completeness (and to provide the proper context), in Ap-
pendix A we list the conservative, general relativistic Boltzmann equation, as well as the limiting cases solved numerically 
in Section 4. (These latter equations are derived directly from the former equation.)

2. Bound-preserving numerical methods for phase space advection

In this section, we present the bound-preserving (BP) method for the transport equation (1). We first examine the general 
case with curvilinear phase space coordinates and identify necessary conditions for the BP property. We then consider 
specific examples using commonly adopted phase space coordinates and show how to enforce these conditions in each 
case.

2.1. The general case

The derivation and proof of the bound preserving property follows the strategy first described in [49]; see [50] for a 
review and some refinements. We introduce some modifications to the proof that simplify the argument in the current 
setting. More details about this are given in Remark 2.

2.1.1. Preliminaries
We denote the phase-space coordinates and flux coefficients using z = (

x, p
)

and H = (
F , G

)
, respectively, and let τ :=√

γ λ ≥ 0. Then we rewrite (1) in the compact form1

∂t f + 1

τ

dz∑
i=1

∂zi ( τ Hi f ) = 0. (4)

Note that both τ and H depend on z; i.e., τ : Rdz → R and H : Rdz → Rdz , where dz := dx + dp . (Also note that γ depends 
only on the position coordinates x, and λ depends only on the momentum coordinates p . However, F and G may depend 
on x and p.)

We divide the phase space domain D into a disjoint union T of open elements K, so that D = ∪K∈T cl(K), where cl(K)

stands for the closure of the element K. We require that each element is a box in the logical coordinates

K = {z : zi ∈ K i := (zi
L, zi

H)}, (5)

where zi
L and zi

H are, respectively, the coordinates of the lower and higher boundaries of K in the ith dimension. We use 
V K to denote the volume of the phase space cell

V K =
∫
K

dV , where dV = τ

dz∏
i=1

dzi . (6)

The proof of the bound-preserving property (cf. Section 2.1.2) requires some analysis on the surface of the cell. For this 
reason we introduce, for each i, the decomposition z = {z̃i

, zi} along with the associated notations

dṼ i =
∏
j 
=i

dz j and K̃i = ⊗ j 
=i K j. (7)

In particular, dV = τ dṼ i dzi and K = K̃i ⊗ K i . We also define �zi = zi
H − zi

L.

1 It will be necessary later on to split the phase space back up into position space and momentum space parts.
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The approximation space for the DG method, Vk , is

Vk = {v : v|K ∈Qk(K), ∀ K ∈ T }, (8)

where Qk is the space of tensor products of one-dimensional polynomials of maximal degree k. Note that functions in Vk

can be discontinuous across element interfaces.
The semi-discrete DG problem is to find fDG ∈ C1([0, ∞); Vk) (which approximates f in (4)), such that

∂t

∫
K

fDG v dV +
dz∑

i=1

∫
K̃i

(
v τ Ĥ i fDG

∣∣
zi

H
− v τ Ĥ i fDG

∣∣
zi

L

)
dṼ i −

dz∑
i=1

∫
K

Hi fDG
∂v

∂zi
dV = 0, (9)

for all v ∈Vk and K ∈ T . Here Ĥ i fDG is a numerical flux approximating the phase-space flux on the ith surface of the phase-
space element K. The upwind flux is utilized in this paper which, due to the curvilinear coordinates, must take into account 
the fact that Hi depends on the phase space coordinates z. For any z ∈ D and v ∈ Vk , Ĥ i v

∣∣
zi =Hi(v(zi,−, ̃zi

), v(zi,+, ̃zi
); z), 

where for each i, the numerical flux function Hi : R2 ×Rdz →R is given by

Hi(a,b; ζ ) = (0 ∨ Hi|ζ i )a + (0 ∧ Hi|ζ i )b, (10)

and for any a, b ∈ R, a ∨ b ≡ max(a, b) and a ∧ b ≡ min(a, b). Superscripts −/+, e.g., in the arguments of v(zi,−/+, ̃zi
), 

indicate that the function is evaluated to the immediate left/right of zi . As in the Cartesian case, Hi is non-decreasing in 
the first argument and non-increasing in the second.

2.1.2. Proof of Bound-Preserving (BP) property
The space Vk contains the constant functions, and the choice v = 1 in (9) gives

∂t f̄K + 1

V K

dz∑
i=1

∫
K̃i

(
τ Ĥ i fDG
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zi

H
− τ Ĥ i fDG

∣∣
zi

L

)
dṼ i = 0, (11)

where f̄K is the cell average of fDG in K:

f̄K = 1

V K

∫
K

fDG dV = 1

V K

∫
K̃i

∫
K i

fDG τ dzi dṼ i (∀i). (12)

In this paper, we use SSP-RK time integrators, which are convex combinations of forward Euler time steps [15]. Thus, 
without loss of generality, we consider here only a forward Euler time step for f̄K; i.e.,

f̄ n+1
K = f̄ n

K − �t

V K

dz∑
i=1

∫
K̃i

(
τ Ĥ i f n

DG

∣∣
zi

H
− τ Ĥ i f n

DG

∣∣
zi

L

)
dṼ i, (13)

where �t = tn+1 − tn is the time step.
Sufficient conditions to ensure f̄ n+1

K ≥ 0 are given in Lemma 1 below. However, to ensure ḡn+1
K ≡ 1 − f̄ n+1

K is also 
non-negative, additional conditions on the numerical divergence are needed. These are stated in Lemma 2. The positivity-
preserving properties of the DG scheme follow from Lemma 4, while the bound-preserving properties are summarized in 
Theorem 1.

Lemma 1. Let {si}dz
i=1 be a set of positive constants (independent of z and t) satisfying 

∑dz
i=1 si = 1. If for each i ∈ {1, . . . , dz},

�i[ f n
DG](z̃i

) :=
∫
K i

f n
DG τ dzi − �t

si

(
τ Ĥ i f n

DG

∣∣
zi

H
− τ Ĥ i f n

DG

∣∣
zi

L

) ≥ 0 (∀z̃i ∈ K̃i), (14)

then f̄ n+1
K ≥ 0. Moreover, if S̃i ∈ K̃i is a set of quadrature points where the corresponding quadrature integrates �i[ f n

DG] over K̃i (i.e., 
the integral in (15)) exactly, then �i[ f n

DG] need only be non-negative on S̃i .

Proof. It is simple to show from (13) that

f̄ n+1
K = 1

V K

dz∑
i=1

si

∫
K̃i

�i[ f n
DG]dṼ i . (15)

The result follows immediately. �
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Remark 1. The motivation for the constants si is the formula (15). In order to maintain positivity, each of the terms �i [ f n
DG]

will be controlled individually (cf. Lemma 4 below).

Lemma 2. Let gDG = 1 − fDG , and assume that the conditions for �i[gn
DG] ≥ 0 in Lemma 1 hold. Suppose that the divergence-free 

condition in (3) is satisfied, i.e., that

1

V K

dz∑
i=1

∫
K̃i

(
τ Hi

∣∣
zi

H
− τ Hi
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zi

L

)
dṼ i = 0. (16)

Then ḡn+1
K ≥ 0, which implies f̄ n+1

K ≤ 1.

Proof. A direct calculation shows that for any z ∈ D and v ∈ Vk ,

̂Hi(1 − v)
∣∣

zi = Hi
∣∣

zi − Ĥ i v
∣∣

zi . (17)

Thus, with v = f n
DG, we find
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K = (1 − f̄ n

K) + �t
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H
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L

)
dṼ i

= ḡn
K − �t

V K

dz∑
i=1

∫
K̃i

(
τ Ĥ i gDG

∣∣
zi

H
− τ Ĥ i gDG

∣∣
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L

)
dṼ i + �t

V K

dz∑
i=1

∫
K̃i

(
τ Hi

∣∣
zi

H
− τ Hi
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zi

L

)
dṼ i . (18)

If the divergence-free condition in (16) holds, then the final term vanishes, leaving

ḡn+1
K = ḡn

K − �t

V K

dz∑
i=1

∫
K̃i

(
τ Ĥ i gn

DG

∣∣
zi

H
− τ Ĥ i gn

DG

∣∣
zi

L

)
dṼ i = 1

V K

dz∑
i=1

si

∫
K̃i

�i[gn
DG]dṼ i .

Since the conditions under Lemma 1 hold, i.e., �i[gn
DG] ≥ 0, it follows that ḡn+1

K ≥ 0. �
We now proceed to find conditions for which (14) holds. To simplify notation, we temporarily drop the index i, setting 

z = zi , K = K i , � = �i , etc. Let Q̂ denote the N-point Gauss–Lobatto quadrature rule on the interval K = (zL, zH), with points

Ŝ = {
zL = ẑ1, ẑ2, · · · , ẑN−1, ẑN = zH

}
, (19)

and weights ŵq ∈ (0, 1], normalized so that 
∑

q ŵq = 1. (The hat is used to specifically denote the Gauss–Lobatto rule.) This 
quadrature integrates polynomials in z ∈ R with degree up to 2N − 3 exactly. Thus if fDGτ is such a polynomial,2 then the 
integral of fDG is exact; i.e.,∫

K

f n
DG τ dz = Q̂ [ f n

DG] ≡ �z
N∑

q=1

ŵq f̂ n
DG,q τ̂q (20)

where f̂ n
DG,q := f n

DG(ẑq) and τ̂q := τ (ẑq).
Using the quadrature rule (20) and the numerical flux function H in (10), we find

�[ f n
DG]

�z
=

N−1∑
q=2

ŵq f̂ n
DG,q τ̂q + τ̂1 ŵ1 	1( f̂ n,−

DG,1, f̂ n,+
DG,1) + τ̂N ŵ N 	N( f̂ n,−

DG,N , f̂ n,+
DG,N), (21)

where

	1(a,b) = b + T1 H(a,b; ẑ1) and 	N(a,b) = a − T N H(a,b; ẑN), (22)

with

T1 = �t

ŵ1 s �z
and T N = �t

ŵ N s �z
. (23)

2 In situations where τ is not a polynomial, one may use a polynomial approximation for τ .
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Lemma 3. The functions 	1 and 	N satisfy 	1(0, 0) = 	N (0, 0) = 0. In addition, the derivatives are

∂	1

∂a
= T1 (0 ∨ H(ẑ1)),

∂	N

∂a
= 1 − T N (0 ∨ H(ẑN)),

∂	1

∂b
= 1 + T1 (0 ∧ H(ẑ1)),

∂	N

∂b
= −T N (0 ∧ H(ẑN)).

Proof. The proof is a direct calculation using the definitions of 	1 and 	N in (22) and Hi in (10). �
Remark 2. In [50], the authors add and subtract an additional term of the form H( f̂ n,+

DG,1, f̂
n,−
DG,N ; ζ ) to (21) that is, because 

of the Cartesian coordinate system, actually independent of ζ . This results in a function 
 which is analogous to 	 but has 
three arguments instead of two. One can then prove properties about 
 that are similar to those found in Lemma 3 and 
are well-known from previous studies of monotonicity and total variation diminishing (TVD) properties of three-point finite 
difference and finite volume schemes. However, when H depends on ζ , the details of such a proof are messier. The current 
proof, which is based on 	, is limited in that it requires H(0, 0; ζ ) = 0 (which ensures 	1(0, 0) = 	N (0, 0) = 0), while the 

-based proof has no such requirement. However, this limitation can be easily circumvented by adding and subtracting an 
appropriate constant.

The following lemma establishes sufficient conditions for f̄ n+1
K ≥ 0 due to (15).

Lemma 4. Suppose that

1. The quadrature rule Q̂ integrates f n
DG τ exactly.

2. For all ẑq ∈ Ŝ and all z̃ ∈ K̃, f n
DG(ẑq, ̃z) ≥ 0.

3. The time step �t is chosen such that

1 − T1 |0 ∧ H(ẑ1, z̃)| ≥ 0 and 1 − T N (0 ∨ H(ẑN , z̃)) ≥ 0 (24)

for all z̃ ∈ K̃.

Then �[ f n
DG](z̃) ≥ 0.

Proof. To show that �[ f n
DG](z̃) ≥ 0, it is sufficient to show that each of the three terms in Eq. (21) are non-negative. The 

first term is non-negative by assumption 2, and the fact that the quadrature weights are positive and τ̂q ≥ 0. To handle 
the second and third term in (21), containing 	1 and 	N , respectively, we note that ∂	1/∂a and ∂	N/∂b are always 
non-negative while ∂	1/∂b and ∂	N/∂a are non-negative under the CFL constraint in (24). Therefore

0 = 	1(0,0) ≤ 	1( f̂ n,−
DG,1, f̂ n,+

DG,1) and 0 = 	N(0,0) ≤ 	N( f̂ n,−
DG,N , f̂ n,+

DG,N).

Hence �[ f n
DG] ≥ 0. �

Remark 3. The condition in (24) must be satisfied for each phase space dimension — that is for all i ∈ {1, . . . , dz} (cf. 
Lemma 1). In particular, it requires

�t ≤ min
[ 1

|0 ∧ Hi(ẑi
1, z̃i

)| ,
1

(0 ∨ Hi(ẑi
Ni , z̃i

))

]
ŵ Ni si �zi . (25)

for all i ∈ {1, . . . , dz}. If S̃i ∈ K̃i are the quadrature points of the quadrature used to integrate �i[ f n
DG] over K̃, then (25) must 

hold for all z̃i ∈ S̃i .

We now return to (15) and introduce a quadrature rule for evaluating f̄ n+1
K . For each i ∈ {1, . . . , dz}, let Q̃i: C0(K̃i) → R

be a quadrature rule with positive weights and points S̃i ⊂ cl(K̃i). Let Ŝi = S̃i ⊗ Ŝ i and define Q̂i: C0(K) →R by Q̂i = Q̃i ◦ Q̂ i , 
where Q̂ i: C0(K i) → R is the Gauss–Lobatto quadrature rule with points Ŝ i . With the quadrature rule, we combine the 
previous results to establish the following theorem.

Theorem 1. Suppose that

1. For all i ∈ {1, . . . , dz}, the Gauss–Lobatto quadrature rule Q̂ i is chosen such that (20) holds.
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2. For all i ∈ {1, . . . , dz}, the quadrature rule Q̃i integrates �i[ fDG] over K̃i exactly, and preserves a discrete version of the divergence-
free condition (16); i.e.,

1

V K

dz∑
i=1

Q̃i(τ Hi
∣∣

zi
H

− τ Hi
∣∣

zi
L

) = 0. (26)

3. For all i ∈ {1, . . . , dz} and all z ∈ Ŝi , 0 ≤ f n
DG(z) ≤ 1.

4. The time step �t satisfies (25) for all i ∈ {1, . . . , dz} and all z̃i ∈ S̃i .

Then 0 ≤ f̄ n+1
K ≤ 1.

Proof. For each i ∈ {1, . . . , dz}, the fact that f n
DG ≥ 0 on Ŝi implies, via Lemma 4, that �i[ fDG] ≥ 0 on S̃i . Repeating the same 

argument with gn
DG ≥ 0 shows that �i[gn

DG] ≥ 0 as well; this fact will be used later in ensuring the upper bound on f̄ n+1
K . 

Returning to the lower bound, we compute f̄ n+1
K using (15)

f̄ n+1
K = 1

V K

dz∑
i=1

si Q̃i(�i[ fDG]) ≥ 0. (27)

Here we have replaced the integral over K̃i in (13) by the quadrature rule Q̃i , which by assumption 2 is exact. This ensures 
the lower bound on f̄ n+1

K . To ensure the upper bound, we invoke Lemma 2, using (26) and the fact that �i[gn
DG] ≥ 0 to 

conclude that ḡn+1
K = 1 − f̄ n+1

K ≥ 0. This concludes the proof. �
Remark 4. It is important to note that the quadratures {Q̃i}dz

i=1 must be used in the implementation of the method. The 
Gauss–Lobatto quadrature {Q̂ i}dz

i=1 need not be. Rather, the latter is used to obtain the CFL condition in assumption 4 of 
Theorem 1. In practice, a different quadrature Q i (typically Gauss–Legendre) is used to evaluate integrals over K i .

Remark 5. The first condition in assumption 2 of Theorem 1 is actually stronger than necessary. Indeed, each Q̃i needs only 
to integrate f n

DG over K̃i exactly; the surface integrals of the flux terms can be approximate, provided (26) still holds. In 
such cases, the numerical method yields a quadrature approximation of f̄ n+1

K that is still provably bound-preserving. We 
maintain here the condition in assumption 2 for simplicity and note that it is, in fact, satisfied for the examples we consider 
in Section 4.

In the following subsections, we explore specific examples in more detail and examine the implication of (24) on the 
time step in each case. In each of the examples, we specify the quadratures, i.e., Q̃i , needed to integrate �i[ f n

DG] and satisfy 
the divergence-free condition in (26). The bound-enforcing limiter in [49], which we discuss briefly in Section 3, is used to 
ensure assumption 3 in Theorem 1.

2.2. Spherical symmetry, flat spacetime (1D x + 1D p)

For a flat, spherically symmetric spacetime, adopting spherical polar phase space coordinates, the phase-space is D =
{(r, μ) ∈R2 : r ≥ 0, μ ∈ [−1, 1]} and the collision-less Boltzmann equation (cf. (A.17)),

∂ f

∂t
+ 1

r2

∂

∂r

(
r2 μ f

)
+ ∂

∂μ

((
1 − μ2) 1

r
f
)

= 0, (28)

takes the form of (4) with z1 = r, z2 = μ, τ = r2, H1 = μ ≡ H (r) , and H2 = (1 − μ2)/r ≡ H (μ) . Here the position coordinate 
r is the radial distance from the origin and the momentum coordinate μ is the cosine of the angle between the particle 
direction of flight and the radial direction. (See Appendix A for further details.)

For this case, the phase-space element is3

K = {(r,μ) ∈R2 : r ∈ K (r) := (rL, rH), μ ∈ K (μ) := (μL,μH)}, (29)

and, for any v ∈ Vk the upwind numerical fluxes are given by

Ĥ (r)v(r,μ) = 1

2

(
μ + |μ|) v(r−,μ) + 1

2

(
μ − |μ|) v(r+,μ),

Ĥ (μ)v(r,μ) = 1

r
(1 − μ2) v(r,μ−).

3 To clarify the presentation, we modify slightly the general notation of the previous section, replacing indices i with the appropriate coordinate names. 
For example, K 1 = K (r) and K 2 = K (μ) . Similar modifications are made in the following sections.
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Then, for any (r, μ) ∈ D and any v ∈ Vk , the DG method is as follows: Find fDG ∈ Vk such that∫
K

∂t fDG v r2drdμ −
∫
K

H (r) fDG ∂r v r2drdμ −
∫
K

H (μ) fDG ∂μv r2drdμ

+ r2
H

∫
K (μ)

Ĥ (r) fDG(rH,μ) v(r−
H ,μ)dμ − r2

L

∫
K (μ)

Ĥ (r) fDG(rL,μ) v(r+
L ,μ)dμ

+
∫

K (r)

Ĥ (μ) fDG(r,μH) v(r,μ−
H ) r2dr −

∫
K (r)

Ĥ (μ) fDG(r,μL) v(r,μ+
L ) r2dr = 0, (30)

for all v ∈Vk and all K ∈ D . In particular, the update for the cell-average is

f̄ n+1
K = f̄ n

K − �t

V K

{
r2

H

∫
K (μ)

Ĥ (r) f n
DG(rH,μ)dμ − r2

L

∫
K (μ)

Ĥ (r) f n
DG(rL,μ)dμ

+
∫

K (r)

Ĥ (μ) f n
DG(r,μH) r2dr −

∫
K (r)

Ĥ (μ) f n
DG(r,μL) r2dr

}
, (31)

where V K = ∫
K r2dr dμ.

To satisfy the first two conditions in Theorem 1, we define the quadratures

Q̂(r) = Q̃(r) ◦ Q̂ (r) and Q̂(μ) = Q̃(μ) ◦ Q̂ (μ) (32)

where Q̃(r) = Q (μ) and Q̃(μ) = Q (r) , and Q (r) and Q (μ) are L(r)- and L(μ)-point Gauss–Legendre quadratures on K (r) and 
K (μ) , respectively. We denote the Gaussian weights with {wα}L

α=1. Similarly, Q̂ (r) and Q̂ (μ) are N(r)- and N(μ)-point Gauss–

Lobatto quadratures on K (r) and K (μ) , respectively. The sets of quadrature points associated with Q̂(r) and Q̂(μ) are denoted

Ŝ(r) = S̃(r) ⊗ Ŝ(r) and Ŝ(μ) = S̃(μ) ⊗ Ŝ(μ), (33)

respectively, where S̃(r) = S(μ) and S̃(μ) = S(r) , and

S(r) = {rα : α = 1, · · · , L(r)} and S(μ) = {μα : α = 1, · · · , L(μ)} (34)

are the Gaussian quadrature points on K (r) and K (μ) , respectively. Similarly,

Ŝ(r) = {r̂α : α = 1, · · · , N(r)} and Ŝ(μ) = {μ̂α : α = 1, · · · , N(μ)} (35)

are the Gauss–Lobatto quadrature points. The Gauss–Lobatto weights, {ŵα}N
α=1, are normalized such that 

∑
α ŵα = 1. We 

note that the Gauss–Lobatto quadrature is only introduced to derive the CFL conditions needed to ensure the BP properties 
of the scheme. In the numerical scheme for fDG, we use the Gauss–Legendre quadrature Q = Q (r) ◦ Q (μ) to compute the 
volume integrals in (30). Gaussian quadratures Q (r) and Q (μ) are also used to evaluate the flux integrals.

It is straightforward to show that the discretization for the cell-average in (31) satisfies the divergence-free condition in 
(16) exactly; i.e.,

1

V K

{
r2

H

∫
K (μ)

H (r)(rH,μ)dμ − r2
L

∫
K (μ)

H (r)(rL,μ)dμ +
∫

K (r)

H (μ)(r,μH) r2dr −
∫

K (r)

H (μ)(r,μL) r2dr
}

= 0, (36)

provided L(r) , L(μ) ≥ 1.
To ensure the numerical solutions to (28) satisfy the maximum principle, we need to prove the conditions in Theorem 1, 

which we state in the following corollary

Corollary 1. Let the update for the cell average be given by (31). Consider the quadratures in (32) with N(r) ≥ (k + 5)/2, L(r), N(μ) ≥
(k + 3)/2, and L(μ) ≥ (k + 1)/2. Let the polynomial f n

DG ∈Vk satisfy 0 ≤ f n
DG ≤ 1 in the set of quadrature points

S = Ŝ(r) ∪ Ŝ(μ). (37)

Let the time step �t satisfy the CFL condition

�t ≤ ŵ N(r) s1 �r/|μα| and �t ≤ ŵ N(μ) s2 rα �μ/(1 − μ2
H). (38)

It follows that 0 ≤ f̄ n+1 ≤ 1.
K
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Proof. With the quadratures in (32), evaluation of the current cell-average gives

V K f̄ n
K

�r �μ
= s1

∑
α,β∈Ŝ(r)

ŵα wβ fDG(r̂α,μβ) r̂2
α + s2

∑
α,β∈Ŝ(μ)

wα ŵβ fDG(rα, μ̂β) r2
α, (39)

which is exact, and non-negative since 0 ≤ f n
DG ≤ 1 in S . The quadratures also evaluate the integrals in (36) exactly, so that 

the divergence-free condition holds. To compute the bound-preserving CFL conditions, we consider the r and μ dimensions 
independently. In the r dimension we have |0 ∧ H (r)(rL, μα)| = |0 ∧ μα | and (0 ∨ H (r)(rH, μα)) = (0 ∨ μα), so that

∂	
(r)
1

∂b
= 1 − �t

ŵ1 s1 �r
|0 ∧ μα |, (40)

∂	
(r)
N(r)

∂a
= 1 − �t

ŵ N(r) s1 �r
(0 ∨ μα), (41)

which are non-negative provided the first condition in (38) holds. Next, we consider the μ dimension. Since H (μ) = (1 −
μ2)/r ≥ 0, we have |0 ∧ H (μ)(rα, μL)| = 0 and (0 ∨ H (μ)(rα, μH)) = (1 − μ2

H)/rα , so that ∂	
(μ)

1 /∂b = 1 and

∂	
(μ)

N(μ)

∂a
= 1 − �t

ŵ N(μ) s2 �μ

(1 − μ2
H)

rα
, (42)

which are non-negative if the second condition in (38) holds. Therefore, the CFL condition in (25) becomes (38). It follows 
that 0 ≤ f̄ n+1

K ≤ 1. �
2.3. Spherical symmetry, curved spacetime (1D x + 2D p)

In this section, we consider the spherically symmetric problem in curved spacetime. Adopting spherical polar phase space 
coordinates, the phase space is D = {(r, μ, E) ∈R3 : r ≥ 0 , μ ∈ [−1, 1] , E ≥ 0} and the collision-less Boltzmann equation (cf. 
(A.12)),

1

α

∂ f

∂t
+ 1

α ψ6 r2

∂

∂r

(
α ψ4 r2 μ f

)
− 1

E2

∂

∂ E

(
E3 1

ψ2 α

∂α

∂r
μ f

)

+ ∂

∂μ

((
1 − μ2)ψ−2

{ 1

r
+ 1

ψ2

∂ψ2

∂r
− 1

α

∂α

∂r

}
f
)

= 0, (43)

can be written in the form of (4) with z1 = r, z2 = μ, z3 = E , τ = ψ6 r2 E2, H1 = α
ψ2 μ ≡ H (r) , H2 = α

ψ2 r

(
1 − μ2

)
� ≡ H (μ) , 

and H3 = −E 1
ψ2

∂α
∂r μ ≡ H (E) , where we have defined

� = 1 + r ∂r lnψ2 − r ∂r lnα. (44)

As in the previous section, the position coordinate r is the radial coordinate distance from the origin and the momentum 
coordinate μ is the cosine of the angle between the particle propagation direction and the radial direction. In addition, E is 
the particle energy, while α(r) ≥ 0 is the lapse function and ψ(r) ≥ 0 is the conformal factor. (See Appendix A for further 
details.) Eq. (43) reduces to (28) in the case of a flat spacetime (α = ψ = 1).

The phase space element is now

K = {(r,μ, E) ∈R3 : r ∈ K (r), μ ∈ K (μ), E ∈ K (E) := (EL, EH)}, (45)

and, for any v ∈ Vk the upwind numerical fluxes are given by

Ĥ (r)v(r,μ, E) = α

ψ2

{ 1

2

(
μ + |μ|) v(r−,μ, E) + 1

2

(
μ − |μ|) v(r+,μ, E)

}
,

Ĥ (μ)v(r,μ, E) = α

ψ2 r
(1 − μ2)

{ 1

2

(
� + |�|) v(r,μ−, E) + 1

2

(
� − |�|) v(r,μ+, E)

}
,

Ĥ (E)v(r,μ, E) = − E

ψ2

{ 1

2

(
∂rαμ − |∂rαμ|) v(r,μ, E−) + 1

2

(
∂rαμ + |∂rαμ|) v(r,μ, E+)

}
.

(Note the sign difference on the energy flux term.) Then, for any (r, μ, E) ∈ D and any v ∈ Vk , the DG method is as follows: 
Find fDG ∈ Vk such that
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∫
K

∂t fDG v dV −
∫
K

Hr fDG ∂r v dV −
∫
K

H (μ) fDG ∂μv dV −
∫
K

H (E) fDG ∂E v dV

+
∫

K̃(r)

Ĥ (r) fDG(rH,μ, E) v(r−
H ,μ, E) τ (rH, E)dṼ (r) −

∫
K̃(r)

Ĥ (r) fDG(rL,μ, E) v(r+
L ,μ, E) τ (rL, E)dṼ (r)

+
∫

K̃(μ)

Ĥ (μ) fDG(r,μH, E) v(r,μ−
H , E) τ (r, E)dṼ (μ) −

∫
K̃(μ)

Ĥ (μ) fDG(r,μL, E) v(r,μ+
L , E) τ (r, E)dṼ (μ)

+
∫

K̃(E)

Ĥ (E) fDG(r,μ, EH) v(r,μ, E−
H ) τ (r, EH)dṼ (E) −

∫
K̃(E)

Ĥ (E) fDG(r,μ, EL) v(r,μ, E+
L ) τ (r, EL)dṼ (E) = 0, (46)

for all v ∈Vk and all K ∈ T . In (46), we have defined phase-space volume and “area” elements

dV = τ dr dμdE, dṼ (r) = dμdE, dṼ (μ) = dr dE, dṼ (E) = dr dμ, (47)

and subelements

K̃(r) = K (μ) ⊗ K (E), K̃(μ) = K (r) ⊗ K (E), K̃(E) = K (r) ⊗ K (μ). (48)

The update for the cell-average in (13) becomes

f̄ n+1
K = f̄ n

K − �t

V K

{
ψ6(rH) r2

H

∫
K̃(r)

Ĥ (r) f n
DG(rH,μ, E) E2 dṼ (r) − ψ6(rL) r2

L

∫
K̃(r)

Ĥ (r) f n
DG(rL,μ, E) E2 dṼ (r)

+
∫

K̃(μ)

Ĥ (μ) f n
DG(r,μH, E)ψ6(r) r2 E2 dṼ (μ) −

∫
K̃(μ)

Ĥ (μ) f n
DG(r,μL, E)ψ6(r) r2 E2 dṼ (μ)

+ E2
H

∫
K̃(E)

Ĥ (E) f n
DG(r,μ, EH)ψ6(r) r2 dṼ (E) − E2

L

∫
K̃(E)

Ĥ (E) f n
DG(r,μ, EL)ψ6(r) r2 dṼ (E)

}
, (49)

where V K = ∫
K ψ6 r2dr dμ E2dE .

To satisfy the first two conditions in Theorem 1, we define the quadratures

Q̂(r) = Q̃(r) ◦ Q̂ (r), Q̂(μ) = Q̃(μ) ◦ Q̂ (μ), and Q̂(E) = Q̃(E) ◦ Q̂ (E), (50)

where Q̃(r) = Q (μ) ◦ Q (E) , Q̃(μ) = Q (r) ◦ Q (E) , and Q̃(E) = Q (r) ◦ Q (μ) , and, in addition to the quadratures defined in 
Section 2.2, Q (E) is an L(E)-point Gauss–Legendre quadrature on K (E) . Similarly, Q̂ (E) is an N(E)-point Gauss–Lobatto 
quadrature on K (E) . The quadrature points associated with Q̂(r) , Q̂(μ) , and Q̂(E) are

Ŝ(r) = S̃(r) ⊗ Ŝ(r), Ŝ(μ) = S̃(μ) ⊗ Ŝ(μ), and Ŝ(E) = S̃(E) ⊗ Ŝ(E). (51)

We let S(r) and S(μ) be the Gaussian sets defined in (34), and Ŝ(r) and Ŝ(μ) the Gauss–Lobatto sets defined in (35). In a 
similar manner, we let

S(E) = {Eα : α = 1, . . . , L(E)} and Ŝ(E) = {Êα : α = 1, . . . , N(E)} (52)

be Gaussian and Gauss–Lobatto quadrature points on K (E) with associated weights {wα}L(E)

α=1 and {ŵα}N(E)

α=1, respectively, 
normalized so that 

∑
α wα = ∑

α ŵα = 1. Then we let

S̃(r) = S(μ) ⊗ S(E), S̃(μ) = S(r) ⊗ S(E), and S̃(E) = S(r) ⊗ S(μ). (53)

Again, the Gauss–Lobatto quadrature is only introduced to derive the CFL conditions needed to ensure the BP properties. 
For implementation, we use the Gauss–Legendre quadrature Q = Q (r) ◦ Q (μ) ◦ Q (E) to compute the volume integrals in (46). 
Gaussian quadratures Q̃(r) , Q̃(μ) , and Q̃(E) are also used to evaluate the flux integrals.

For this problem, the divergence-free condition in (16) becomes

1

V K

{
ψ6(rH) r2

H

∫
K̃(r)

H (r)(rH,μ, E) E2 dṼ (r) − ψ6(rL) r2
L

∫
K̃(r)

H (r)(rL,μ, E) E2 dṼ (r)

+
∫

K̃(μ)

H (μ)(r,μH, E)ψ6(r) r2 E2 dṼ (μ) −
∫

K̃(μ)

H (μ)(r,μL, E)ψ6(r) r2 E2 dṼ (μ)

+ E2
H

∫
(E)

H (E)(r,μ, EH)ψ6(r) r2 dṼ (E) − E2
L

∫
(E)

H (E)(r,μ, EL)ψ6(r) r2 dṼ (E)
}

= 0. (54)
K̃ K̃
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In Eq. (46), we approximate the derivatives ∂rα and ∂rψ
4 in K (r) with polynomials and compute α and ψ4 from

α(r) = α(rL) +
r∫

rL

∂rα(r′)dr′ and ψ4(r) = ψ4(rL) +
r∫

rL

∂rψ
4(r′)dr′, (55)

where the Gaussian quadrature rule is used to evaluate the integrals exactly. With this choice, it is straightforward to show 
that the discretization satisfies the divergence-free condition (54), provided L(μ) ≥ 1, L(E) ≥ 2, while L(r) depends on the 
degree of the polynomials approximating ∂rα and ∂rψ

4.
To ensure the numerical solutions to (43) satisfy the maximum principle, we need to prove the conditions in Theorem 1, 

which we state in the following corollary

Corollary 2. Let the update for the cell average be given by (49). Consider the quadratures in (50) with N(r) ≥ (k + kψ + 5)/2, 
L(r) ≥ (k + kψ + 3)/2, N(μ) ≥ (k + 3)/2, L(μ) ≥ (k + 1)/2, N(E) ≥ (k + 5)/2, and L(E) ≥ (k + 3)/2, where kψ is the degree of the 
polynomial used to approximate ψ6(r). (We also let the degree of the polynomials approximating ∂rα and ∂rψ

4 be equal to kψ .) Let 
the polynomial f n

DG ∈ Vk satisfy 0 ≤ f n
DG ≤ 1 in the quadrature set

S = Ŝ(r) ∪ Ŝ(μ) ∪ Ŝ(E). (56)

Let the time step �t satisfy

�t ≤ min
(
ψ2(rL)/α(rL),ψ

2(rH)/α(rH)
)

ŵ N(r) s1 �r/|μα |, (57)

�t ≤ ŵ N(μ) s2 rα �μψ2(rα)/α(rα)

|�(rα)| max
(
(1 − μ2

L), (1 − μ2
H)

) , (58)

�t ≤ ŵ N(E) s3 �E ψ2(rα)

|∂rα(rα)μβ | EH
. (59)

It follows that 0 ≤ f n+1
K ≤ 1.

Proof. With the quadratures in (50), evaluation of the current cell-average f̄ n
K is exact, and non-negative since 0 ≤ f n

DG ≤ 1
in S . The divergence-free condition holds since the quadratures in (50) evaluate the integrals in (54) exactly. To compute the 
bound-preserving CFL conditions, we consider the three dimensions (r, μ, and E) independently. Defining α̂ = α/ψ2 > 0, 
we have in the radial dimension |0 ∧ H (r)(rL, μα, Eβ)| = α̂(rL) |0 ∧ μα |, and (0 ∨ H (r)(rH, μα, Eβ)) = α̂(rH) (0 ∨ μα), so that

∂	
(r)
1

∂b
= 1 − �t

ŵ1 s1 �r
α̂(rL) |0 ∧ μα |, (60)

∂	
(r)
N(r)

∂a
= 1 − �t

ŵ N(r) s1 �r
α̂(rH) (0 ∨ μα), (61)

which are non-negative if (57) holds. Therefore, the CFL condition in (25) becomes (57). In the μ dimension, |0 ∧
H (μ)(rα, μL, Eβ)| = (1 − μ2

L) ̂α(rα)/rα |0 ∧ �(rα)| and (0 ∨ H (μ)(rα, μH, Eβ)) = (1 − μ2
L ) ̂α(rα)/rα (0 ∨ �(rα)), which give

∂	
(μ)

1

∂b
= 1 − �t

ŵ1 s2 �μ

(1 − μ2
L) α̂(rα)

rα
|0 ∧ �(rα)|, (62)

∂	
(μ)

N(μ)

∂a
= 1 − �t

ŵ N(μ) s2 �μ

(1 − μ2
H) α̂(rα)

rα
(0 ∨ �(rα)), (63)

which are non-negative if (58) holds, so that the CFL condition in (25) becomes (58). Finally, in the E dimension we have 
|0 ∧ H (E)(rα, μβ, EL)| = EL |0 ∧ −∂rα(rα) μβ |/ψ2(rα) and (0 ∨ H (E)(rα, μβ, EH)) = EH (0 ∨ −∂rα(rα) μβ)/ψ2(rα), so that

∂	
(E)
1

∂b
= 1 − �t

ŵ1 s3 �E

EL

ψ2(rα)
|0 ∧ −∂rα(rα)μβ |, (64)

∂	
(E)

N(E)

∂a
= 1 − �t

ŵ N(E) s3 �E

EH

ψ2(rα)
(0 ∨ −∂rα(rα)μβ), (65)

which are non-negative if (59) holds, so that the CFL condition in (25) becomes (59). It follows that 0 ≤ f̄ n+1
K ≤ 1. �
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2.4. Axial symmetry, flat spacetime (2D x + 2D p)

For a flat, axially symmetric spacetime, adopting cylindrical spatial coordinates and spherical momentum coordinates, 
the phase space is D = {(R, z, μ, 	) ∈ R4 : R ≥ 0, z ∈ R, μ ∈ [−1, 1], 	 ∈ [0, π ]} and the collision-less Boltzmann equation 
(cf. (A.18)),

∂ f

∂t
+ 1

R

∂

∂ R

(
R

√
1 − μ2 cos	 f

)
+ ∂

∂z

(
μ f

)
− 1

R

∂

∂	

(√
1 − μ2 sin	 f

)
= 0, (66)

can be rewritten in the form of (4) with z1 = R , z2 = z, z3 = μ, z4 = 	, τ = R , H1 = √
1 − μ2 cos	 ≡ H (R) , H2 = μ ≡ H (z) , 

H3 = 0, and H4 = −√
1 − μ2 sin 	/R ≡ H (	) . Here the position coordinates R and z are the distance from the z-axis and 

the distance along the z-axis, respectively. The momentum coordinate μ is the cosine of the angle between the particle 
direction of flight and the z direction, and 	 is the angle between the projected particle direction of flight and the R
direction. (See Appendix A for further details.)

The phase space element is now

K = {(R, z,μ,	) ∈R4 : R ∈ K (R) := (RL, RH), z ∈ K (z) := (zL, zH),

μ ∈ K (μ) := (μL,μH),	 ∈ K (	) := (	L,	H)}, (67)

and, for all v ∈ Vk the upwind numerical fluxes are given by

Ĥ (R)v(R, z,μ,	) =
√

1 − μ2
{ 1

2

(
cos	 + | cos	|) v(R−, z,μ,	) + 1

2

(
cos	 − | cos	|) v(R+, z,μ,	)

}
,

Ĥ (z)v(R, z,μ,	) = 1

2

(
μ + |μ|) v(R, z−,μ,	) + 1

2

(
μ − |μ|) v(R, z+,μ,	),

Ĥ (	)v(R, z,μ,	) = −
√

1 − μ2 sin	 v(R, z,μ,	+)/R.

(Note that in axial symmetry sin 	 ≥ 0, since 	 ∈ [0, π ], while 
√

1 − μ2 ≥ 0, since μ ∈ [−1, 1].) Then, for any 
(R, z, μ, 	) ∈ D and any v ∈ Vk , the DG method is as follows: Find fDG ∈ Vk such that∫

K

∂t fDG v dV −
∫
K

H (R) fDG ∂R v dV −
∫
K

H (z) fDG ∂z v dV −
∫
K

H (	) fDG ∂	v dV

+ RH

∫
K̃(R)

Ĥ (R) fDG(RH, z,μ,	) v(R−
H , z,μ,	)dṼ (R) − RL

∫
K̃(R)

Ĥ (R) fDG(RL, z,μ,	) v(R+
L , z,μ,	)dṼ (R)

+
∫

K̃(z)

Ĥ (z) fDG(R, zH,μ,	) v(R, z−
H ,μ,	) R dṼ (z) −

∫
K̃(z)

Ĥ (z) fDG(R, zL,μ,	) v(R, z−
L ,μ,	) R dṼ (z)

+
∫

K̃(	)

̂H (	) fDG(R, z,μ,	H) v(R, z,μ,	−
H ) R dṼ (	)

−
∫

K̃(	)

̂H (	) fDG(R, z,μ,	L) v(R, z,μ,	+
L ) R dṼ (	) = 0, (68)

for all v ∈Vk and all K ∈ T . In (68), we have defined phase-space volume element

dV = R dR dz dμd	, (69)

“area” elements

dṼ (R) = dz dμd	, dṼ (z) = dR dμd	, dṼ (	) = dR dz dμ, (70)

and subelements

K̃(R) = K (z) ⊗ K (μ) ⊗ K (	), K̃(z) = K (R) ⊗ K (μ) ⊗ K (	), K̃(	) = K (R) ⊗ K (z) ⊗ K (μ). (71)

In particular, in axial symmetry, the update for the cell-averaged distribution function in (13) becomes
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f̄ n+1
K = f̄ n

K − �t

V K

{
RH

∫
K̃(R)

Ĥ (R) f n
DG(RH, z,μ,	)dṼ (R) − RL

∫
K̃(R)

Ĥ (R) f n
DG(RL, z,μ,	)dṼ (R)

+
∫

K̃(z)

Ĥ (z) f n
DG(R, zH,μ,	) R dṼ (z) −

∫
K̃(z)

Ĥ (z) f n
DG(R, zL,μ,	) R dṼ (z)

+
∫

K̃(	)

̂H (	) f n
DG(R, z,μ,	H) R dṼ (	) −

∫
K̃(	)

̂H (	) f n
DG(R, z,μ,	L) R dṼ (	)

}
, (72)

where V K = ∫
K R dR dz dμ d	.

To satisfy the first two conditions in Theorem 1, we define the quadratures

Q̂(R) = Q̃(R) ◦ Q̂ (R), Q̂(z) = Q̃(z) ◦ Q̂ (z), and Q̂(	) = Q̃(	) ◦ Q̂ (	), (73)

where Q̃(R) = Q (z) ◦ Q (μ) ◦ Q (	) , Q̃(z) = Q (R) ◦ Q (μ) ◦ Q (	) , and Q̃(	) = Q (R) ◦ Q (z) ◦ Q (μ) . Analogous to the previous sections, 
Q (R) , Q (z) , Q (μ) , and Q (	) are L(R)-, L(z)-, L(μ)-, and L(	)-point Gauss–Legendre quadratures on K (R) , K (z) , K (μ) , and K (	) , 
respectively. Similarly, Q̂ (R) , Q̂ (z) , and Q̂ (	) denote N(R)-, N(z)-, and N(	)-point Gauss–Lobatto quadratures. The quadrature 
points associated with (73) are

Ŝ(R) = S̃(R) ⊗ Ŝ(R), Ŝ(z) = S̃(z) ⊗ Ŝ(z), and Ŝ(	) = S̃(	) ⊗ Ŝ(	), (74)

where the Gauss–Lobatto quadrature points are

Ŝ(R) = {R̂α : α = 1, . . . , N(R)}, (75)

Ŝ(z) = {ẑα : α = 1, . . . , N(z)}, (76)

Ŝ(	) = {	̂α : α = 1, . . . , N(	)}, (77)

with weights {ŵα}N(R)

α=1, {ŵα}N(z)

α=1, and {ŵα}N(	)

α=1 , normalized so that 
∑

α ŵα = 1. Moreover,

S̃(R) = S(z) ⊗ S(μ) ⊗ S(	), S̃(z) = S(R) ⊗ S(μ) ⊗ S(	), S̃(	) = S(R) ⊗ S(z) ⊗ S(μ), (78)

where the Gaussian quadrature points are

S(R) = {Rα : α = 1, . . . , L(R)}, S(z) = {zα : α = 1, . . . , L(z)},
S(μ) = {μα : α = 1, . . . , L(μ)}, S(	) = {	α : α = 1, . . . , L	},

with associated weights {wα}N(R)

α=1, {wα}N(z)

α=1, {wα}N(μ)

α=1, and {wα}N(	)

α=1 ; all normalized so that 
∑

α wα = 1.
For the axially symmetric problem, the divergence-free condition in (16) becomes

1

V K

{
RH

∫
K̃(R)

H (R)(RH, z,μ,	)dṼ (R) − RL

∫
K̃(R)

H (R)(RL, z,μ,	)dṼ (R)

+
∫

K̃(z)

H (z)(R, zH,μ,	) R dṼ (z) −
∫

K̃(z)

H (z)(R, zL,μ,	) R dṼ (z)

+
∫

K̃(	)

H (	)(R, z,μ,	H) R dṼ (	) −
∫

K̃(	)

H (	)(R, z,μ,	L) R dṼ (	)
}

= �R �z

V K

∫
K (μ)

√
1 − μ2 dμ

{ ∫
K (	)

cos	d	 − (
sin	H − sin	L

)}
= 0. (79)

On the right-hand side of (79), the integral over the cosine emanates from the flux in the R dimension, and is not exact if 
the Gauss–Legendre quadrature is used, and the terms inside the curly brackets cancel only to the accuracy of the quadrature 
rule. However, in the DG scheme we evaluate the integrals over K̃(R) in (68), containing the cosine, by performing an 
integration by parts, which leads to exact cancellation. (The integral of 

√
1 − μ2 over K (μ) is also not exact with the 

Gauss–Legendre quadrature. However, this term appears in the exact same way for the R and 	 dimension fluxes, and 
cancel when the integration by parts discussed above is used.) Thus, the discretization satisfies the divergence-free condition 
(79), provided only L(R) ≥ 1.

To ensure the numerical solutions to (66) satisfy the maximum principle, we need to prove the conditions in Theorem 1, 
which we state in the following corollary
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Corollary 3. Let the update for the cell average be given by (72). Consider the quadratures in (73) with N(R) ≥ (k + 4)/2, N(z), N(	) ≥
(k + 3)/2, and L(R) ≥ (k + 2)/2, L(z), L(μ), L(	) ≥ (k + 1)/2. Let the polynomial f n

DG ∈ Vk satisfy 0 ≤ f n
DG ≤ 1 in the quadrature set

S = Ŝ(R) ∪ Ŝ(z) ∪ Ŝ(	). (80)

Let the time step �t satisfy the CFL condition

�t

�R
≤ ŵ N(R) s1√

1 − μ2
β | cos	γ |

,
�t

�z
≤ ŵ N(z) s2

|μβ | ,
�t

Rα �	
≤ ŵ N(	) s3√

1 − μ2
γ sin	L

. (81)

It follows that 0 ≤ f̄ n+1
K ≤ 1.

Proof. With the quadratures in (73), evaluation of the current cell-average f̄ n
K is exact, and non-negative since 0 ≤ f n

DG ≤ 1
in S . The divergence-free condition in (79) holds exactly, since integration by parts is used for the integral with the cosine. 
To compute the bound-preserving CFL conditions, we consider the R , z, and 	 dimensions independently. In the R dimen-

sion we have |0 ∧ H (R)(RL, zα, μβ, 	γ )| =
√

1 − (μ2
β) |0 ∧ cos	γ | and (0 ∨ H (R)(RH, zα, μβ, 	γ )) =

√
1 − (μ2

β) (0 ∨ cos	γ )

so that

∂	1

∂b
= 1 − �t

ŵ1 s1 �R

√
1 − μ2

β |0 ∧ cos	γ |, (82)

∂	N(R)

∂a
= 1 − �t

ŵ N(R) s1 �R

√
1 − μ2

β (0 ∨ cos	γ ), (83)

which are non-negative provided the first condition in (81) holds. In the z dimension we have |0 ∧ H (z)(Rα, zL, μβ, 	γ )| =
|0 ∧ μβ | and (0 ∨ H (z)(Rα, zH, μβ, 	γ )) = (0 ∨ μβ) so that

∂	1

∂b
= 1 − �t

ŵ1 s2 �z
|0 ∧ μβ | and

∂	N(z)

∂a
= 1 − �t

ŵ N(z) s2 �z
(0 ∨ μβ), (84)

which are non-negative provided the second condition in (81) holds. Finally, in the 	 dimension we have |0 ∧
H (	)(Rα, zβ, μγ , 	L)| =

√
1 − μ2

γ sin 	L/Rα and (0 ∨ H (	)(Rα, zβ, μγ , 	H)) = 0, which give

∂	
(	)
1

∂b
= 1 − �t

ŵ N(	) s3 �	

√
1 − μ2

γ

Rα
sin	L (85)

and ∂	
(	)

N(	) /∂a = 1, which are non-negative provided the third condition in (81) holds. It follows that 0 ≤ f̄ n+1
K ≤ 1. �

3. Bound-enforcing limiter for the DG scheme

Bound-preserving DG methods for the conservative phase space advection problem were developed in Section 2. The 
numerical method is designed to preserve the physical bounds of the cell averaged distribution function (i.e., 0 ≤ f̄K ≤ 1), 
provided sufficiently accurate quadratures {Q̂i}dz

i=1 are specified, specific CFL conditions are satisfied, and that the polynomial 
approximating the distribution function inside a phase space element K at time tn is bounded in a set of quadrature points 
(denoted S; cf. assumption 3 in Theorem 1). In the DG method, we use the limiter proposed by Zhang and Shu [49] to 
enforce bounds on the distribution function. Then the DG scheme ensures that the cell averaged distribution, obtained by 
solving the conservative phase space advection problem, satisfies the following maximum principle: if for some initial time 
t = tn we have 0 ≤ f n

DG ≤ 1 in a finite set of quadrature points S ∈ K, then 0 ≤ f̄ n+1
K ≤ 1 for all K ∈ T .

In addition to the quadratures and CFL conditions (cf. Section 2), we must ensure that the polynomial approximating the 
distribution function inside a phase space element satisfies f n

DG ∈ [0, 1] in S . To this end, we use the limiter suggested by 
[49] (see also [50] for a review) and replace the polynomial f n

DG(z) with the “limited” polynomial

f̃ n
DG(z) = ϑ f n

DG(z) + (1 − ϑ ) f̄ n
K, (86)

where the limiter ϑ is given by

ϑ = min
{∣∣∣ M − f̄ n

K

M S − f̄ n
K

∣∣∣, ∣∣∣ m − f̄ n
K

mS − f̄ n
K

∣∣∣,1
}
, (87)

with m = 0 and M = 1, and

M S = max
z∈S

f n
DG(z), mS = min

z∈S
f n
DG(z), (88)

and S represents the finite set of quadrature points in K; cf. (37), (56), and (73).
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It has been shown [49,50] that the “linear scaling limiter” in (86)–(87) maintains uniform high order of accuracy. Also, 
note that the limiting procedure is conservative since it preserves the cell averaged distribution function; i.e.,

1

V K

∫
K

f̃ n
DG dV = f̄ n

K. (89)

4. Numerical examples

In this section we present numerical results that are obtained with the bound-preserving DG method for each of the 
cases discussed in detail in Sections 2.2–2.4. In addition to the bound-preserving properties, we also demonstrate high 
order of accuracy for smooth problems, as well as other aspects of solving the phase space advection problem in curvilinear 
coordinates with the DG method (e.g., errors near the origin in spherical and axial symmetry, and ray effects in axial 
symmetry).

For first-, second-, and third-order spatial discretization we employ tensor product polynomial bases (cf. Section 2.1), 
constructed by forming the tensor product of one-dimensional piecewise polynomials of degree up to k = 0, 1, and 2, 
respectively, which we refer to as DG(0), DG(1), and DG(2), respectively. We use Legendre polynomials in each dimension.

For the explicit time stepping we use the forward Euler method (FE), or the strong stability preserving Runge–Kutta 
(SSP-RK) methods (e.g., [15]) for second (RK2) or third (RK3) order temporal accuracy. Thus, schemes with overall first, 
second and third order formal accuracy will be referred to as DG(0) + FE, DG(1) + RK2, and DG(2) + RK3, respectively.

4.1. 1D x + 1D p

The numerical tests in this section involve the spherically symmetric phase space in flat spacetime, using spherical polar 
position and momentum coordinates. That is, we solve Eq. (28) for f n

DG(r, μ) at discrete time levels tn .

4.1.1. Test with smooth analytic solution
First we consider a smooth test problem involving both the position and angle coordinates. An analytical solution to 

Eq. (28) is given by

f (r,μ, t) = exp
(

r μ − t
)
. (90)

This test is of purely academic interest with little practical value, but it is very useful for evaluating the accuracy of the DG 
method. It is similar to the one considered in [28] for a steady-state problem with a non-zero right-hand side.

The computational domain D = {(r, μ) ∈ R2 : r ∈ [1, 3], μ ∈ [−1, 1]} is divided into Nr × Nμ elements, using Nr radial 
zones and Nμ angular zones. We use the analytical solution to specify incoming radiation on the boundary ∂ D and simulate 
the evolution from t = 0 to t = 1, using the bound-preserving CFL conditions given in Eq. (38), with s1 = s2 = 1/2 to set the 
time step. To evaluate the accuracy and the convergence rates of the different DG schemes, we compute the L1-error norm

E1 = 1

V D

∑
K∈T

∫
K

| f n
DG(r,μ) − f (r,μ, tn)|dV , (91)

at tn = 1 for various grid resolutions; each using Nr = Nμ . (The integral in (91) is computed with 3-point Gaussian quadra-
tures in the r and μ dimensions, and V D = 52/3.) L1 and L∞ errors, and associated convergence rates, for DG(0) + FE, 
DG(1) + RK2, and DG(2) + RK3 schemes are listed in Table 1. These results confirm the expected order of accuracy for the 
different schemes.

We have also computed some results where the computational domain extends to r = 0. For practical purposes we set 
r ≥ 1 in the convergence study above to avoid small time steps; cf. Eq. (38). However, for many applications the origin must 
be included in the computational domain, even though this may introduce significant numerical errors. In particular, [28]
discuss inaccuracies near r = 0 in the numerical solution to the transport equation in spherical symmetry, which appear 
in the form of a “flux-dip.” 4 To investigate inaccuracies near r = 0, we solve (28) using the models with Nr = Nμ = 16 in 
Table 1, but with the computational domain given by D = {(r, μ) ∈R2 : r ∈ [0, 2], μ ∈ [−1, 1]}.

In Fig. 1 we plot the “zeroth” angular moment of the distribution function; i.e.,

ρ(r, tn) = 1

2

1∫
−1

f n
DG(μ, r)dμ, (92)

versus radius at tn = 0.5. The results were obtained with DG(0) + FE (dotted red line), DG(1) + RK2 (dashed blue line), 
and DG(2) + RK3 (solid black line) using a 16 × 16 mesh. (The analytical solution is plotted with the dotted black line.)

4 In the context of finite volume methods for hydrodynamics, see [36,3] for discussions on numerical errors associated with including the origin in 
spherical polar coordinates.
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Table 1
L1, L∞ error norms and convergence rates for the smooth 1D x + 1D p test.

Nr DG(0) + FE

L1 error Rate L∞ error Rate

8 1.68 × 10−1 – 1.71 –
16 8.37 × 10−2 1.01 1.12 0.60
32 4.18 × 10−2 1.00 6.57 × 10−1 0.77
64 2.09 × 10−2 1.00 3.57 × 10−1 0.88

128 1.05 × 10−2 1.00 1.86 × 10−1 0.94
256 5.24 × 10−3 1.00 9.52 × 10−2 0.97
512 2.62 × 10−3 1.00 4.81 × 10−2 0.98

1024 1.31 × 10−3 1.00 2.42 × 10−2 0.99
2048 6.55 × 10−4 1.00 1.21 × 10−2 1.00

Nr DG(1) + RK2

L1 error Rate L∞ error Rate

8 1.54 × 10−2 – 1.30 × 10−1 –
16 3.98 × 10−3 1.95 4.47 × 10−2 1.54
32 1.02 × 10−3 1.96 1.53 × 10−2 1.54
64 2.62 × 10−4 1.97 4.73 × 10−3 1.70

128 6.68 × 10−5 1.97 1.35 × 10−3 1.81
256 1.69 × 10−5 1.98 3.66 × 10−4 1.88
512 4.26 × 10−6 1.99 9.69 × 10−5 1.92

1024 1.07 × 10−6 1.99 2.52 × 10−5 1.94
2048 2.68 × 10−7 2.00 6.47 × 10−6 1.96

Nr DG(2) + RK3

L1 error Rate L∞ error Rate

8 4.49 × 10−4 – 4.02 × 10−3 –
16 6.84 × 10−5 2.72 8.63 × 10−4 2.22
32 9.83 × 10−6 2.80 1.41 × 10−4 2.61
64 1.34 × 10−6 2.88 2.01 × 10−5 2.81

128 1.81 × 10−7 2.88 2.87 × 10−6 2.81
256 2.85 × 10−8 2.67 5.88 × 10−7 2.29
512 3.91 × 10−9 2.87 1.59 × 10−7 1.88

1024 5.01 × 10−10 2.96 2.80 × 10−8 2.51
2048 6.41 × 10−11 2.97 4.94 × 10−9 2.50

Fig. 1. Plot of the zeroth angular moment of the distribution function in (92) versus radius at t = 0.5 in a test where the computational domain extends 
down to r = 0. Results obtained with a 16 × 16 mesh are plotted for DG(0) + FE (dotted red), DG(1) + RK2 (dashed blue), DG(2) + RK3 (solid black). The 
analytical solution is also plotted (dotted black line). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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Fig. 2. Geometry of the radiating sphere test.

Fig. 3. Color plot of the distribution function fDG(r, μ) at t = 3.0, obtained with the second-order scheme DG(1) + RK2 using Nr × Nμ = 128 × 128 cells. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The results obtained with DG(0) + FE appear to be offset by a constant factor from the analytical solution for r � 0.4. 
However, we observe a “dip” in the numerical result inside r � 0.4, and the error is largest in the innermost cell. The 
results obtained with DG(1) + RK2 and DG(2) + RK3 are indistinguishable on the scale chosen for the plot, and follow the 
analytical solution well. Moreover, they do not show any sign of increased error near the origin. These results are consistent 
with those reported in [28].

4.1.2. Radiating sphere test
Next we include a test with discontinuous solutions. We consider a radiating sphere with radius R0 = 1 centered at 

r = 0 (see Fig. 2). (A version of this test was also considered in [39]; cf. their TEST 3.) The sphere radiates steadily and 
isotropically at the surface — which coincides with our inner boundary — into a near vacuum ( f � 1). For r > R0, once a 
steady state has been established in D , the distribution function becomes more and more “forward-peaked” with increasing 
radius; i.e., its support is contained within the cone with opening angle 
m which satisfies

cos
m(r) = μm(r) =
√

1 − (
R0/r

)2
. (93)

As r → ∞, the distribution function approaches a delta function in angle cosine, centered on μ = 1. We solve this prob-
lem on the computational domain D = {(r, μ) ∈ R2 : r ∈ [1, 3], μ ∈ [−1, 1]}, and we initialize the test with an isotropic 
background by setting the distribution function to fDG = f0 = 10−6 everywhere inside the domain. We also keep fDG = f0
for the incoming radiation at the outer radial boundary, while at the inner radial boundary r = R0, we set fDG = 1 for the 
incoming radiation. For t > 0, a radiation front propagates through the domain. After a steady state is reached, the boundary 
defined by μm separates regions where fDG = 1 and fDG = f0 (dashed line in Fig. 3).

In Fig. 3 we plot the distribution function versus r and μ at t = 3. The numerical results were obtained with the 
second-order scheme DG(1) + RK2 using 128 × 128 cells. The DG method maintains the sharp boundary between the two 
regions, and fDG ∈ [0, 1] over the entire computational domain. In the figure, we also plot μm versus r (cf. Eq. (93); dashed 
line), which shows that the numerical result agrees well with the geometric considerations in Fig. 2.
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Fig. 4. Numerical results from the radiating sphere test (cf. Fig. 2) comparing the different schemes: DG(0) + FE (dotted red), DG(1) + RK2 (dashed blue), 
and DG(2) + RK3 (solid black). In the left panel we plot the distribution function versus radius for constant μ = 1, at t = 1; i.e., fDG(r, μ = 1, t = 1). In the 
right panel we plot the distribution function versus μ for constant radius r = 2, at t = 3; i.e., fDG(r = 2, μ, t = 3). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparing numerical results obtained when running with (solid black) and without (dashed green) the bound-enforcing limiter. We plot the distri-
bution function versus radius for μ = 1 and t = 1, obtained with the DG(1) + RK2 scheme (left panel) and the DG(2) + RK3 scheme (right panel). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We compare numerical results obtained with the first, second, and third order schemes in Fig. 4. In the left panel we 
plot the distribution function versus radius for μ = 1 at time t = 1, when the radiation front is located at r ≈ 2. In the right 
panel we plot the distribution function versus μ for constant radius r = 2 at time t = 3, when a steady state configuration 
has been established in D . The first-order scheme is clearly very diffusive and unable to maintain the sharp edge. Both the 
second-order scheme and the third-order scheme capture the edge with only a few grid cells, with DG(2) + RK3 maintaining 
the sharpest edge.

We compare numerical results obtained when running with and without the bound-enforcing limiter (cf. Section 3) in 
Fig. 5. (We use the CFL conditions in (38) for all the runs.) Without the limiter, the numerical results exhibit fDG < 0 ahead 
of the radiation front, and fDG > 1 behind the radiation front. These violations become less severe with the higher-order 
scheme (right panel). With the limiter on, fDG ∈ [0, 1] for all times.



E. Endeve et al. / Journal of Computational Physics 287 (2015) 151–183 169
Fig. 6. Plot of the lapse function (solid lines) and the conformal factor (dashed lines) for the Schwarzschild metric (cf. Eq. (A.13)) for various spacetime 
masses: M = 0.0 (green), M = 0.2 (red), M = 4 − 2

√
3 (blue), and M = 2/3 (black). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)

4.2. 1D x + 2D p

In this section we present results obtained by solving the general relativistic phase space advection problem in spherical 
symmetry as modeled by Eq. (43). We adopt the Schwarzschild metric (i.e., Eq. (A.11), with α and ψ given in (A.13)), and 
compute results for various spacetime masses M . For reference, in Fig. 6, we plot the lapse function α (solid lines) and the 
conformal factor ψ (dashed lines) for r ∈ [1, 3] and M = 0.0, 0.2, 4 − 2

√
3, and 2/3. The Schwarzschild radius rS = M/2 is 

well inside the inner boundary for all models. For M = 0.0, we have α = ψ = 1, and Eq. (43) reduces to the flat spacetime 
case in (28). For M > 0, we have ∂r lnα = (M/r2) (1 − (M/2r)2)−1, ∂r ln ψ2 = −(M/r2) (1 + M/2r)−1, so that

� = 1 − M

ψ r

(
1 + 1

ψ α

)
. (94)

4.2.1. Radiating sphere test in Schwarzschild geometry
The test we consider is an extension of the radiating sphere test in Section 4.1.2. However, at the inner radial boundary 

(r = 1) we also specify an energy spectrum (Gaussian or Fermi–Dirac) for the isotropic radiation entering the computational 
domain D = {(r, μ, E) ∈ R3 : r ∈ [1, 3], μ ∈ [−1, 1], E ∈ [0, 1]}. Since ∂r lnα > 0, the energy spectrum of radiation propa-
gating out of the gravitational well (μ > 0) will be redshifted (cf. the energy derivative term in Eq. (43)). We also expect 
gravitational corrections to the angular aberration (cf. the angle derivative term in Eq.(43)). In particular, for M = 4 − 2

√
3

we have � = 0 at r = 1. For larger M , � < 0 near r = 1 for μ > 0, and we expect some of the radiation entering the 
computational domain at the inner radial boundary to be “bent inward” and exit the computational domain through the 
inner radial boundary (cf. the model with M = 2/3).

First we consider a Gaussian spectrum for the radiation entering D; i.e.,

fDG(r = 1,μ, E) = exp
{−100

(
0.5 − E

)2}
for μ ≥ 0.

Initially, the distribution function is set to zero everywhere in the computational domain. We use the appropriate bound-
preserving CFL conditions in (57)–(59) with s1 = s2 = s3 = 1/3, and the phase space resolution is Nr × Nμ × NE =
128 × 128 × 64. We run the simulations until a steady state in D is reached (t ≈ 3 for M = 0.0 and t ≈ 20 for M = 2/3). 
The numerical results are plotted in Figs. 7–9.

In the left panel in Fig. 7, we plot energy spectra at the outer radial boundary (for the angle μ = 1) for the model 
with M = 2/3. Results for the various schemes are plotted; i.e., DG(0) + FE (solid red line), DG(1) + RK2 (solid blue 
line), and DG(2) + RK3 (solid black line). For reference, the spectrum at the inner radial boundary is also plotted (dashed 
line) — illustrating the gravitational redshift as the radiation propagates out of the gravitational well. As expected, the 
first-order scheme is more diffusive than the second and third order schemes, while the second and third order schemes 
are indistinguishable on this plot. At the outer radial boundary, we find that the peak of the spectrum has shifted from 
E = 0.5 to about E = 0.3. (Since α E = const., 0.5 × α(r = 1)/α(r = 3) = 0.3125 is expected for M = 2/3.) We also note 
that the widths of the spectra have decreased slightly at r = 3. In the right panel of Fig. 7, we plot energy spectra for 
various masses M , obtained with the second-order scheme (DG(1) + RK2). The spectra become increasingly “redshifted” 
(i.e., shifted to lower energies) as the mass increases. The spectral width also decreases with increasing mass M . At r = 3, 
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Fig. 7. Redshifted energy spectra at r = 3 for various general relativistic computations. Left panel: DG(0) + FE (solid red line), DG(1) + RK2 (solid blue 
line), and DG(2) + RK3 (solid black line) for mass M = 2/3. (The “emitted” spectrum at r = 1 is also included; dashed black line.) Right panel: results 
obtained with the second order scheme (DG(1) + RK2) for various masses; M = 0.0 (green), M = 0.2 (red), M = 4 − 2

√
3 (blue), and M = 2/3 (black). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the width of the spectrum for the model with M = 2/3 is almost halved when compared with the M = 0.0 model. The 
effective resolution of the various energy spectra decreases as a result of the decreased spectral width. Moreover, the lower 
effective resolution results in a slight decrease in the spectral peak with increasing M . For the model with M = 2/3, we have 
found that the third-order scheme performs slightly better (i.e., maintains a higher peak) than the second-order scheme.

Fig. 8 provides a different perspective on the computed models, with color plots of the distribution function versus 
radius r and angle μ for a constant energy E . Results are shown after a steady state is reached (similar to Fig. 3). The 
results from the M = 0.0 model for E = 0.5, which correspond to the model in Fig. 3, are shown in the upper left panel. 
In particular, the distribution is uniform in radius and angle in two regions, separated by the dashed line predicted by the 
geometric considerations in Fig. 2. The effects of gravitational redshift and aberration are visible in the model with M = 0.2, 
which is shown in the upper right panel (also for E = 0.5). Aberration results in a slightly less forward-peaked distribution 
function at r = 3, while the redshift causes a reduction in the amplitude of the distribution near the outer boundary for this 
particular energy bin. The two lower panels show results from the M = 2/3 model, for energies E = 0.5 (left) and E = 0.3
(right), which exhibits more extreme gravitational effects. First, as is also seen in Fig. 7, the gravitational redshift causes 
the peak of the distribution to shift from E = 0.5 at r = 1 to about E = 0.3 at r = 3. Second, at the outer boundary, the 
distribution function is significantly less forward-peaked than it is in the other models. Third, some of the radiation that 
enters the computational domain at r = 1 (μ ≥ 0), exits the computational domain through the inner radial boundary; i.e., 
fDG(r = 1, μ < 0, E = 0.5) > 0.

In Fig. 9 we demonstrate the effect of using the bound-enforcing limiter and the appropriate CLF condition for the model 
with M = 2/3. We plot the number density

N (r, tn) =
1∫

0

1∫
−1

f n
DG(r,μ, E)dμ E2 dE (95)

and energy density

E(r, tn) =
1∫

0

1∫
−1

f n
DG(r,μ, E)dμ E3 dE (96)

versus radius (red and black curves, respectively) at time t = 1, computed using the DG(1) + RK2 scheme, with the limiter 
(solid lines) and without it (dashed lines). The inset illustrates the effect of the limiter, which prevents N and E from 
becoming negative. Without the limiter both N and E take on negative values in some places.

Finally, we have computed some additional models where we specify a Fermi–Dirac spectrum for the incoming radiation 
at the inner radial boundary; i.e.,

fDG(r = 1,μ, E) = [
exp

{
100

(
E − 0.5

) } + 1
]−1

for μ ≥ 0.

“Fermi-blocking” plays an important role during the collapse phase of core-collapse supernovae (e.g., [24]), where the neu-
trino phase space occupation increases with increasing core density due to electron capture on nuclei. This process fills 
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Fig. 8. Color plots of the distribution function versus radius r and angle μ for a constant energy E , computed with the DG(1) + RK2 scheme for various 
spacetime masses M . Selected energy bins are shown: M = 0.0, E = 0.5 (upper left); M = 0.2, E = 0.5 (upper right); M = 2/3, E = 0.5 (lower left); and 
M = 2/3, E = 0.3 (lower right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

up the low-energy portion of the spectrum and prohibits down-scattering of higher energy neutrinos. It is important to 
maintain fDG ≤ 1 during the advection part of the algorithm. In Fig. 10 we plot energy spectra at the outer radial boundary 
for μ = 1, for the model with M = 2/3. Results for various schemes are plotted; i.e., DG(0) + FE (solid red line), DG(1) +
RK2 (solid blue line), and DG(2) + RK3 (solid black line). The spectrum at the inner boundary is also plotted (dashed line). 
As with the results displayed in Fig. 7, the energy spectra are significantly redshifted at the outer radial boundary. The 
first-order scheme is very diffusive when compared to the second and third order schemes, while the results obtained with 
the second and third order schemes are similar, and differ only in the high-energy tail. All schemes maintain positivity of 
fDG and 1 − fDG.

To further demonstrate the effectiveness of our bound-preserving DG scheme, in Fig. 11 we compare the spectrum at 
r = 3 from one model computed with the bound-enforcing limiter on (solid lines) with the spectrum from one model 
computed without the limiter (dashed lines). Both models were computed with the DG(1) + RK2 scheme with M = 2/3. As 
can be seen, without the limiter, the distribution function overshoots unity (left panel) and becomes negative (right panel). 
For the bound-preserving scheme, we have 0 ≤ fDG ≤ 1 at all times.

4.3. 2D x + 2D p

The tests in this section involve the axially symmetric phase space for flat spacetimes. That is, we employ cylindrical 
spatial coordinates and spherical momentum coordinates, and solve Eq. (66) for f n

DG(R, z, μ, 	) at discrete time levels tn .

4.3.1. Test with smooth analytical solution
First we consider a test problem with smooth solutions. An analytical solution to Eq. (66) is given by

f (R, z,μ,	, t) = exp
(√

1 − μ2 cos	 R + μ z − t
)
. (97)
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Fig. 9. Number density (red lines) and energy density (black lines) at time t = 1 for the general relativistic model with M = 2/3, computed with the DG(1) 
+ RK2 scheme. The model was computed with and without the bound-enforcing limiter (solid and dashed lines, respectively). The inset is a zoomed-in 
view to highlight the effect of the limiter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 10. Energy spectra at r = 3 for computations with M = 2/3 and a Fermi–Dirac spectrum specified at the inner radial boundary: DG(0) + FE (solid red 
line), DG(1) + RK2 (solid blue line), and DG(2) + RK3 (solid black line). The spectrum at r = 1 is also plotted (dashed black line). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

This function is not sufficiently smooth at μ = ±1 to demonstrate high-order accuracy. Thus, we reduce angular extent in 
the μ-direction, and take the computational domain to be given by D = {(R, z, μ, 	) ∈ R4 : R ∈ [1, 2], z ∈ [−0.5, 0.5], μ ∈
[−0.5, 0.5], 	 ∈ [0, π ]}. We evolve from t = 0 to t = 0.1, and use the analytical solution to set the boundary conditions for 
the incoming radiation. We use the bound-preserving CFL conditions given in Eq. (81) with s1 = s2 = s3 = 1/3. We note 
again that this test is of purely academic interest and is included to measure the accuracy and convergence rate of the DG 
schemes in the axially symmetric case.

To evaluate the accuracy and the convergence rates, we evaluate the L1-error norm

E1 = 1

V D

∑
K∈T

∫
K

| f n
DG(R, z,μ,	) − f (R, z,μ,	, tn)|dV (98)

at t = 0.1 for various grid resolutions. (The integral in (98) is computed with 3-point Gaussian quadratures in all dimensions, 
and V D = 8π .) Each resolution satisfies NR = Nz = Nμ = 1 N	 (i.e., approximately “square” phase space cells). Results 
3
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Fig. 11. Comparison of spectra at r = 3 near the “Fermi surface” obtained with the DG(1) + RK2 scheme with M = 2/3, computed with (solid) and without 
(dashed) the bound-enforcing limiter.

Table 2
L1, L∞ error norms and convergence rates for the smooth 2D x + 2D p test.

N DG(0) + FE

L1 error Rate L∞ error Rate

43 × 12 1.23 × 10−1 − 1.20 −
83 × 24 6.16 × 10−2 0.99 6.48 × 10−1 0.89
163 × 48 3.09 × 10−2 1.00 3.49 × 10−1 0.89
323 × 96 1.55 × 10−2 1.00 1.84 × 10−1 0.93

N DG(1) + RK2

L1 error Rate L∞ error Rate

43 × 12 7.09 × 10−3 − 8.32 × 10−2 −
83 × 24 1.92 × 10−3 1.88 2.55 × 10−2 1.71
163 × 48 5.00 × 10−4 1.94 6.97 × 10−3 1.87
323 × 96 1.28 × 10−4 1.97 1.82 × 10−3 1.94

N DG(2) + RK3

L1 error Rate L∞ error Rate

43 × 12 1.50 × 10−4 − 1.45 × 10−3 −
83 × 24 2.72 × 10−5 2.46 2.94 × 10−4 2.30
163 × 48 3.82 × 10−6 2.83 4.17 × 10−5 2.82
323 × 96 4.67 × 10−7 3.03 4.63 × 10−6 3.17

obtained with the DG(0) + FE, DG(1) + RK2, and DG(2) + RK3 schemes are listed in Table 2. The numerical results confirm 
the expected order of accuracy for the different schemes (first, second and third order, respectively). For this test, for a 
given phase space resolution, the additional cost (i.e., increased memory footprint) of the higher-order DG schemes is offset 
by higher accuracy. For example, with a resolution of 163 × 48, the L1-error norm obtained with the second-order scheme 
(24 degrees of freedom per cell) is 5 × 10−4, while the L1 error norm obtained with the third-order scheme (34 degrees of 
freedom per cell) is reduced by more than two orders of magnitude, to ∼3.8 × 10−6. Moreover, the L1 error norm obtained 
with DG(2) + RK3 using 43 × 12 cells is of the same order of magnitude as the L1 error norm obtained with DG(1) + RK2 
using 163 × 48 cells, but with a factor of 50 reduction in total memory cost to store the distribution function.

As in the spherically symmetric case, we have computed results for models extending to the symmetry axis, R = 0. The 
results are similar to those displayed in Fig. 1. For the first-order scheme, we observe the “dip” in the numerical result near 
R = 0, with the largest error in the cell with RL = 0. The results obtained with DG(1) + RK2 and DG(2) + RK3 do not show 
such signs of increased error near the z-axis.

4.3.2. Two-beam test
As a second test we consider two beams with Gaussian shape entering the computational domain at the inner boundary 

(R = R0 = 1); i.e., we set
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fDG
(

R0, z,μ,	
) = exp

{
− (

z1 − z
)2

/L2
z − (

μ1 − μ
)2

/L2
μ − 	2/L2

	

}
+ exp

{
− (

z2 − z
)2

/L2
z − (

μ2 − μ
)2

/L2
μ − 	2/L2

	

}
, (99)

with z1 = −49/64, z2 = 39/64, μ1 = 9/16, μ2 = −11/16, and Lz = Lμ = L	 = 0.1. Initially, the distribution function is set to 
10−6 in the computational domain, which is given by D = {(R, z, μ, 	) ∈ R4 : R ∈ [1, 3], z ∈ [−1, 1], μ ∈ [−1, 1], 	 ∈ [0, π ]}. 
We evolve until t = 2.6, when a steady state is reached. We use the positivity-preserving CFL conditions in Eq. (81) with 
s1 = s2 = s3 = 1/3. (To save computational time, we run with a single energy group with E ∈ [0, 1].) This test is also relevant 
to core-collapse supernova simulations as “beams” of neutrino radiation may emanate from localized hotspots on the surface 
of the proto-neutron star [4].

First we compare results obtained with the various schemes, using various resolutions (denoted by NR × Nz × Nμ × N	). 
In Fig. 12 we display the angular moment of the distribution function,

E(R, z, tn) = 〈E〉
2π

π∫
0

1∫
−1

f n
DG(R, z,μ,	)dμd	, (100)

versus radius R and distance along the symmetry axis z, at t = 2.6. In (100), 〈E〉 = 3/4. In the two upper panels we plot 
results obtained with DG(0) + FE using 642 × 24 × 36 cells (upper left) and 2562 × 96 × 144 cells (upper right). In the two 
middle panels we display results obtained with DG(1) + RK2 (642 × 24 × 36; middle left) and DG(2) + RK3 (642 × 24 × 36; 
middle right). In the two lower panels we plot results where we have increased the spatial resolution by a factor of two in 
each dimension for DG(1) + RK2 (1282 × 24 × 36; lower left) and DG(2) + RK3 (642 × 24 × 36; lower right).

In Fig. 13, to complement the images in Fig. 12, we plot horizontal cuts (for z = 0.185) through the images displayed in 
Fig. 12. In the left panel we plot the angular moment versus distance from the symmetry axis for DG(0) + FE (642 ×24 ×36; 
green), DG(0) + FE (2562 × 96 × 144; red), DG(1) + RK2 (642 × 24 × 36; blue), and DG(2) + RK3 (642 × 24 × 36; black).

All models maintain positivity of the cell averaged distribution function during the evolution. For the higher-order 
schemes, the bound-preserving limiter is required to prevent negative distributions in certain cells, especially near the 
beam-fronts when they propagate through the computational domain. (Maintaining fDG ≤ 1 is not considered an issue in 
this test.) The four upper panels in Fig. 12 and the left panel in Fig. 13 demonstrate the effect of using a high-order method. 
At low resolution, the first-order scheme (green line in Fig. 13) is clearly too diffusive for this problem. The Gaussian peak 
to the left is reduced by almost a factor of two, when compared to the results obtained with the higher order schemes 
using the same phase space resolution. The Gaussian peak to the right is virtually smeared out. The results obtained with 
the second and third order schemes (blue and black lines, respectively) appear similar for this problem. Even, when the 
phase space resolution is increased by a factor of four in each dimension (red line in Fig. 13), the results obtained with the 
first-order method appear smeared out when compared to the results obtained with the second- and third-order schemes, 
which use factors of 16 and ∼3 fewer total degrees of freedom, respectively.

We observe “ray effects” (e.g., [25]) in the results obtained with the high-order DG schemes. The ray effects appear as 
oscillations in the numerical solution; cf. the black line around the Gaussian peak to the right in the left panel in Fig. 13. 
In the right panel in Fig. 13 we plot a zoomed-in view of this second Gaussian. We plot the results obtained with DG(1) 
+ RK2 (642 × 24 × 36; dashed blue) and DG(2) + RK3 (642 × 24 × 36; dashed black). We also plot results obtained by 
increasing the spatial resolution by a factor of two in each position space dimension, while keeping the momentum space 
angular resolution fixed; i.e., DG(1) + RK2 (1282 × 24 × 36; solid blue) and DG(2) + RK3 (1282 × 24 × 36; solid black). 
From Fig. 13, and the middle and bottom rows in Fig. 12, we see that increasing the spatial resolution does not reduce the 
appearance of the ray effects.

We have computed additional models to examine the appearance of ray effects in the DG scheme. In Figs. 14 and 15
we plot results obtained with the second-order scheme, DG(1) + RK2, using various momentum space angular resolution, 
while we keep the position space resolution fixed to 128 × 128. In Fig. 14 we display the spatial distribution of the angular 
moment of the distribution function for the different resolutions: 1282 × 16 × 24 (upper left), 1282 × 24 × 36 (upper right), 
1282 × 32 × 48 (lower left), and 1282 × 48 × 72 (lower right). In Fig. 15, we plot horizontal cuts (z = 0.185), angular 
moment versus distance R , through the same models: 1282 × 16 × 24 (green), 1282 × 24 × 36 (red), 1282 × 32 × 48 (blue), 
and 1282 × 48 × 72 (black). The appearance of ray effects diminish with increasing momentum space angular resolution. 
Strong ray effects are present in the low-resolution model (�μ/Lμ = 1.25). However, they are barely noticeable to the eye 
in the 1282 × 32 × 48-model (�μ/Lμ = 0.625; cf. lower left panel in Fig. 14), while they are not present at all in the 
1282 × 48 × 72-model (�μ/Lμ ≈ 0.42).

5. Summary and conclusions

We have developed high-order, bound-preserving methods for solving the conservative phase space advection problem 
for radiation transport. We have presented discontinuous Galerkin (DG) methods for solving the conservative, general rela-
tivistic collision-less Boltzmann equation in up to six dimensions assuming time-independent spacetimes. Specific examples 
are given for problems with reduced dimensionality from imposed symmetries; namely, spherical symmetry in flat and 
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Fig. 12. Results from running the “two-beam” test using various schemes and resolutions (see text for details). The images show the angular moment of 
the distribution function in (100) at t = 2.6. (The pixelation is due to the visualization, which assigns a constant value to each cell.) (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Horizontal cuts (z = 0.185) through the images displayed in Fig. 12 (see text for details). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 14. Results from running the “two-beam” test with DG(1) + RK2 using various momentum space angular resolutions. The images show the angular 
moment of the distribution function at t = 2.6. (See text for details.) (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
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Fig. 15. Horizontal cuts (z = 0.185) through the images displayed in Fig. 14. The results were obtained with the DG(1) + RK2 scheme with fixed position 
space resolution and various momentum space angular resolutions: 1282 × 16 × 24 (green), 1282 × 24 × 36 (red), 1282 × 32 × 48 (blue), and 1282 × 48 × 72
(black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

curved spacetime (Sections 2.2 and 2.3, respectively) and axial symmetry in flat spacetime (Section 2.4). With the eventual 
goal of simulating neutrino transport in dense nuclear matter, which obey Fermi–Dirac statistics, we have taken special care 
to ensure that the high-order DG method preserves the maximum principle for the phase space distribution function; i.e., 
f ∈ [0, 1]. The combination of suitable CFL conditions and the use of the conservative, high-order bound-preserving limiter 
in [49] are sufficient to ensure positivity of the distribution function (i.e., f ≥ 0). For the conservative formulation we em-
ploy, the additional requirement that the phase space discretization preserves the divergence-free character of the Liouville 
flow is necessary to ensure that the distribution function satisfies the physical bounds during the evolution (i.e., 0 ≤ f ≤ 1). 
High-order accuracy, bound-preserving properties, as well as other properties of the DG scheme are demonstrated with 
numerical examples in Section 4.

In our opinion, the DG method is an attractive option for simulating supernova neutrino transport. However, several 
challenges — which we defer to future studies — remain to be solved before it can be deployed with confidence in large-
scale multiphysics simulations with all the relevant physics included. In particular, the bound-preserving DG scheme must 
be extended to include necessary neutrino–matter interactions. Here, the use of implicit–explicit methods may be used in 
order to bypass timescales imposed by short radiation mean-free paths in neutrino opaque regions (i.e., in the proto-neutron 
star). Our bound-preserving scheme must be extended to the case with time-dependent spacetimes (we assumed ∂t

√
γ = 0

in Section 2). Moreover, velocity-dependent effects (i.e., Doppler shift and aberration) must be correctly accounted for when 
the radiation is interacting with a moving stellar fluid (e.g., [34]). On the one hand, the neutrino–matter interactions are 
most easily handled in a frame that is comoving with the fluid. On the other hand, the Liouville equation is mathematically 
simpler in the so-called laboratory-frame formulation (see discussions in e.g., [32,6]). Mihalas and Klein [33] formulated the 
“mixed-frame” approach, valid to O(v/c), which combines the advantages of these two formulations, but this approach is, 
as far as we know, not extendable to relativistic flows; however see the approach proposed in [37]. Finally, we note that the 
numerical methods must be developed to conserve neutrino four-momentum in limits where such conservation laws can 
be stated (e.g., flat or asymptotically flat spacetimes). Our numerical phase space advection scheme conserves particles by 
construction, but is in general not guaranteed to conserve energy and momentum. The possibility of extending the approach 
in [26] to higher dimensions and high-order accuracy should be investigated.

We note that high-order DG methods are computationally expensive in terms of memory usage for high-dimensional 
problems. In this paper, the numerical solutions are constructed from the so-called tensor product basis, Qk

(d)
; the 

d-dimensional polynomial space formed from tensor products of one-dimensional polynomials of degree ≤ k. The total 
number of degrees of freedom per phase space cell is then ‖Qk

(d)
‖ = kd . To save computational resources, one may use the 

total degree polynomial basis, denoted Pk
(d)

, by constructing the numerical solution from multi-dimensional polynomials of 
total degree ≤ k. The number of degrees of freedom per phase space cell is then ‖Pk

(d)
‖ = (k! + d!)/(k! d!), which is signif-

icantly smaller than ‖Qk
(d)

‖ for high-dimensional problems (i.e., d = 6) when high-order accuracy is desired (i.e., k > 2). In 
order to further reduce the overall memory footprint, the filtered spherical harmonics approach to momentum space angu-
lar discretization [29,41] may be an attractive option for core-collapse supernova neutrino transport simulations. However, 
proper inclusion of all the relevant physics discussed above remains a forefront research topic in computational physics.

Appendix A. Conservative Boltzmann equations

Our long-term goal is to develop robust and efficient numerical methods for solving the general relativistic Boltzmann 
equation for neutrino transport, coupled with corresponding fluid and gravitational field equations, to study the explosion 
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mechanism of massive stars. This is a formidable task, which is far beyond the scope of this paper. In this study we ignore 
radiation–matter interactions on the right-hand side of the Boltzmann equation, and focus on numerical methods for the 
left-hand side; i.e., the phase space advection problem. To this end, we consider the fully general relativistic case, but assume 
a time-independent spacetime. For reference and completeness, we include general and special relativistic Boltzmann equa-
tions in this appendix. We adopt a ‘geometrized’ unit system in which the vacuum speed of light, the gravitational constant, 
and the Planck constant are unity. Where appropriate, we adopt the usual Einstein summation convention where repeated 
Greek indices run from 0 to 3, and repeated Latin indices run from 1 to 3. We use the metric signature (−, +, +, +).

A.1. General relativistic Boltzmann equation

It is necessary to employ a general relativistic description in order to study non-equilibrium transport processes in sys-
tems involving dynamical spacetimes (e.g., neutrino transport simulations aimed at understanding the explosion mechanism 
of massive stars). General relativistic formulations of kinetic theory (including the Boltzmann transport equation) have been 
presented in various forms and discussed in detail by several authors (see e.g., [27,14,19,45,42,31,8,7,6,44]). Thus, the pre-
sentation given here is intentionally brief.

Conservative general relativistic formulation. For numerical solution we employ the conservative form of the Boltzmann equa-
tion. The conservative form has desirable mathematical properties when the solution can develop discontinuities. It is also 
better suited for tracking conserved quantities (e.g., particle number and energy). The conservative, general relativistic Boltz-
mann equation can be written as (see [7,6] for details)

1√−g

∂

∂xμ

(√−g
pμ

E
f
)

+ 1√
λ

∂

∂ p ı̃

(√
λ P ı̃

ı̄ pν pρ
(∇ρeı̄

ν

) 1

E
f
)

= 1

E
C [ f ] . (A.1)

Cardall et al. [6] derived the conservative form of the Boltzmann equation from the corresponding non-conservative form 
by showing that the “Liouville flow” is divergence-free; i.e.,
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+ 1√
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) 1

E

)
= 0. (A.2)

In Eq. (A.1), {xμ} are spacetime position components in a global coordinate basis. The geometry of spacetime is encoded 
in the metric tensor gμν , whose determinant is denoted g . The components of the particle four-momentum are {pμ}. The 
collision term on the right-hand side, C [ f ], describes energy and momentum exchange due to point-like collisions (e.g., 
radiation–matter interactions). In Eq. (A.1), the particle distribution function is a function of spacetime position coordinates 
in the global coordinate basis, while momentum coordinates are defined with respect to a local orthonormal basis.5 (We 
take only the spatial four-momentum components as independent variables due to the mass shell constraint pμ pμ = 0.) The 
coordinate transformation eμ

μ̄ = ∂xμ/∂xμ̄ (and its inverse eμ̄
μ) locally transforms between four-vectors associated with the 

coordinate basis (unadorned indices) and four-vectors associated with an orthonormal (tetrad) basis (indices adorned with 
a bar); e.g., pμ = eμ

μ̄ pμ̄ . Equivalently, eμ
μ̄ locally transforms the spacetime metric into the Minkowskian; i.e.,

eμ
μ̄ eν

ν̄ gμν = diag
[ − 1,1,1,1

]
. (A.3)

In Eq. (A.1), we allow for the use of curvilinear three-momentum coordinates (indices adorned with a tilde), defined with 
respect to the local orthonormal basis. The Jacobian matrix P ı̃

ı̄ = ∂ p ı̃ /∂ p ı̄ is due to a change to curvilinear from “Cartesian” 
three-momentum coordinates. As an example used in this paper, the Cartesian momentum components can be expressed in 
terms of spherical momentum coordinates {p ı̃} = {E, 
, 	} (the energy E and two angles 
 and 	) as

{ p1̄, p2̄, p3̄ } = E {cos
, sin 
 cos	, sin
 sin 	}, (A.4)

from which the transformation P ı̄
ı̃
= ∂ p ı̄ /∂ p ı̃ and its inverse P ı̃

ı̄ can be computed directly (see for example Eqs. (24) and 
(25) in [6]). The momentum space three-metric λı̃j̃ (with inverse λı̃j̃ and determinant λ) provides the proper distance 
between points in three-dimensional momentum space; i.e., ds2

p = λı̃j̃ dp ı̃ dpj̃ .
We have written the distribution function in terms of spacetime position components in a global coordinate basis and 

three-momentum components in a local orthonormal basis; i.e., f = f
(

xμ, p ı̃
)
. The use of distinct position and momen-

tum coordinates for radiation transport was discussed in detail in [7,6]. The use of an orthonormal basis for the radiation 
four-momentum eliminates (locally) the effects of the curved spacetime geometry (i.e., the gravitational field), which is ad-
vantageous when describing local physics (i.e., radiation matter interactions). However, in curved spacetime it is not possible 
to globally eliminate the gravitational field by any coordinate transformation.

Conservative 3 + 1 formulation. For numerical simulations involving dynamical spacetimes, the so-called 3 + 1 splitting of 
spacetime (e.g., [35,16,2]) is commonly employed. In the 3 + 1 approach, the four-dimensional spacetime is foliated into a 

5 In the general theory of relativity, the existence of a local orthonormal basis at every spacetime point is assumed.



E. Endeve et al. / Journal of Computational Physics 287 (2015) 151–183 179
“stack” of three-dimensional spatial hypersurfaces �t labeled with time coordinate t . The 3 +1 form of the invariant interval 
between neighboring points in four-dimensional spacetime is given by

ds2 = −α2 dt2 + γi j
(
dxi + β idt

)(
dx j + β jdt

)
, (A.5)

where α dt is the proper time between spatial hypersurfaces �t and �t+dt , γi j is the spatial three-metric, and ds2
x =

γi j
(
dxi + β idt

)(
dx j + β jdt

)
gives the proper distance within a spatial hypersurface (e.g., [2]). The lapse function α and 

the (spatial) shift vector β i are freely specifiable functions associated with the freedom to arbitrarily specify time and space 
coordinates. A straightforward calculation of the determinant of the spacetime metric gives 

√−g = α
√

γ , where γ is the 
determinant of the spatial metric.

The normal vector to a spacelike hypersurface can be written in terms of coordinate basis metric components as

nμ = α−1(1,−β i), (A.6)

where the normalization condition nμnμ = −1 implies nμ = (−α, 0, 0, 0
)
. For the derivation of the 3 + 1 form of the 

Boltzmann equation, we use the “Eulerian” decomposition of the four-momentum,

pμ = E
(

nμ + lμ
)
, (A.7)

where E = −nμ pμ is the particle energy seen by an ‘Eulerian observer’ with timelike four-velocity nμ , and lμ is a spacelike 
coordinate basis unit four-vector orthogonal to nμ (i.e., lμlμ = 1 and nμlμ = 0). Then, the conservative general relativistic 
3 + 1 Boltzmann equation can be written as

1

α
√

γ

[ ∂

∂t

(√
γ f

)
+ ∂

∂xi

(√
γ

[
α li − β i ] f

)]
+ 1√

λ

∂

∂ p ı̃

(√
λRı̃ f

)
= 1

E
C [ f ] , (A.8)

where

Rı̃ = P ı̃
ı̄ pν pρ

(∇ρeı̄
ν

) 1

E

= −E λı̃j̃ ∂ E

∂ pj̃
li

{ 1

α

∂α

∂xi
− l j Ki j

}
− E2 λı̃j̃ ∂li

∂ pj̃

{ dli

dτ
+ 1

α

∂α

∂xi
− l j

α

∂β j

∂xi
− 1

2
l j lk

∂γ jk

∂xi

}
. (A.9)

describes momentum space advection (e.g., redshift and angular aberration) due to gravitational (i.e., curved spacetime) and 
other geometric effects (arising from the use of curvilinear coordinates). In Eq. (A.9), Kij is the extrinsic curvature tensor 
[2], and we have defined the derivative

d

dτ
= ∂

∂τ
+ l j ∂

∂x j
= 1

α

{ ∂

∂t
+ (

α l j − β j ) ∂

∂x j

}
. (A.10)

The spacetime divergence part of Eq. (A.8) arises easily from Eq. (A.1) with the Eulerian decomposition of pμ and the 
specification of nμ , while the momentum space divergence is more complicated. We include details of the derivation of 
Eq. (A.9) in A.3.

Note that our use of the Eulerian decomposition of the four-momentum as given in Eq. (A.7) differs slightly from the 
formalism used in [6], where Eulerian decompositions of the “tetrad” transformation (e.g., Lμ

μ̂
in their notation) was em-

ployed. Also note that we have expressed the radiation four-momentum in terms of an orthonormal “lab-frame” basis, while 
an orthonormal “comoving” basis was used in [6]. This distinction is very important to consider when the radiation interacts 
with a moving fluid (e.g., [34,32]). However, for a static fluid, the two formulations coincide. We defer the case where the 
radiation interacts with a moving fluid to a future study.

Spherically symmetric spacetime. As a simplification used for numerical implementation in this study, we adopt spherical 
polar spatial coordinates {xi} = {r, θ, φ} and spherical polar momentum coordinates {p ı̃} = {E, 
, 	}, and specialize Eq. (A.8)
to a spherically symmetric spacetime with a metric of the following form

ds2 = −α2 dt2 + γi j dxi dx j, (A.11)

(i.e., β i = 0) with γi j = ψ4 diag[1, r2, r2 sin2 θ], √γ = ψ6 r2 sin θ , and where ψ is the “conformal factor.” Furthermore we 
assume that the metric components are independent of the time coordinate, and we write α = α(r) and ψ = ψ(r). Then, 
all the components of the extrinsic curvature tensor vanish (i.e., Kij = 0).

With the diagonal metric tensor in Eq. (A.11), we can easily write the transformation between the coordinate basis 
and the orthonormal tetrad basis as eμ

μ̄ = diag[ α−1, ei
ı̄ ], where ei

ı̄ = ψ−2 diag[1, r−1, (r sin θ)−1]. We then obtain the 
conservative Boltzmann equation valid for spherically symmetric spacetimes under the assumptions stated above

1

α

∂ f

∂t
+ 1

α ψ6 r2

∂

∂r

(
α ψ4 r2 μ f

)
− 1

E2

∂

∂ E

(
E3 1

ψ2 α

∂α

∂r
μ f

)

+ ∂ ((
1 − μ2)ψ−2

{ 1 + 1
2

∂ψ2

− 1 ∂α }
f
)

= 1
C [ f ] , (A.12)
∂μ r ψ ∂r α ∂r E
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where the angle cosine is defined as μ = cos
. In particular, Eq. (A.12) is sufficiently general to accommodate the 
Schwarzschild metric (an exact solution of Einstein’s field equations), where

α = 1 − M
2 r

1 + M
2 r

and ψ = 1 + M

2 r
, (A.13)

and M is the spacetime mass observed by a distant static observer [2]. We adopt the Schwarzschild metric and solve 
Eq. (A.12) numerically in Section 4.2.

A.2. Boltzmann equation in flat spacetimes

In this section, we present conservative Boltzmann equations which are considered in the numerical simulations where 
we use a flat spacetime metric. The equations presented here follow directly from simplification of the general relativistic 
equations in the previous section.

Conservative formulation for general phase space coordinates. For a flat spacetime, but allowing for general curvilinear phase 
space (spatial and momentum) coordinates, we write the spacetime metric as (i.e., obtained by setting α = 1 and β i = 0 in 
Eq. (A.5))

gμν =
( −1 0

0 γi j

)
, (A.14)

where the spatial metric γi j provides the proper distance between points in three-dimensional position space; i.e., ds2
x =

γi j dxi dx j . In this case, Eq. (A.8) can be written as

∂ f

∂t
+ 1√

γ

∂

∂xi

(√
γ li f

)
+ 1√

λ

∂

∂ p ı̃

(√
λRı̃ f

)
= 1

E
C [ f ] , (A.15)

where “geometric” terms describing momentum space advection due to the use of curvilinear coordinates (cf. Eq. (A.9)) are 
given by

Rı̃ = −E2 λı̃j̃ ∂li

∂ pj̃

{
l j ∂li

∂x j
− 1

2
l j lk

∂γ jk

∂xi

}
. (A.16)

Note that Rı̃ = 0 when Cartesian coordinates are used; i.e., γi j = diag[1, 1, 1].
Below, we adopt spherical polar momentum coordinates (E, 
, 	) and consider two specializations of Eq. (A.15).

Spherical symmetry (spherical polar spatial coordinates). By adopting spherical polar spatial coordinates {xi} = {r, θ, φ}, the 
spatial metric tensor is given by γi j = diag

[
1, r2, r2 sin2 θ

]
. Then, by imposing spherical symmetry (∂θ , ∂φ = 0), Eq. (A.15)

becomes

∂ f

∂t
+ 1

r2

∂

∂r

(
r2 μ f

)
+ ∂

∂μ

((
1 − μ2) 1

r
f
)

= 1

E
C [ f ] . (A.17)

We solve Eq. (A.17) numerically in Section 4.1.

Axial symmetry (cylindrical spatial coordinates). In cylindrical spatial coordinates {xi} = {R, z, φ} the metric tensor is given by 
γi j = diag

[
1, 1, R2

]
. By imposing axial symmetry (∂φ = 0), Eq. (A.15) becomes

∂ f

∂t
+ 1

R

∂

∂ R

(
R

√
1 − μ2 cos	 f

)
+ ∂

∂z

(
μ f

)
− 1

R

∂

∂	

(√
1 − μ2 sin	 f

)
= 1

E
C [ f ] . (A.18)

We solve Eq. (A.18) numerically in Section 4.3.

A.3. General relativistic 3 + 1 momentum space flux

Here we provide details on the derivation of the momentum space flux appearing in the conservative 3 + 1 general 
relativistic Boltzmann equation given in Appendix A.1 (Eq. (A.8)). Some useful relations we use are (cf. [6])

nμ ∇μnν = 1

α

∂α

∂xν
, (A.19)

γ μ
i γ

ν
j ∇μnν = −Kij, (A.20)

zμ
∂nμ

ν
= − zi ∂β i

ν
(for zμ spacelike). (A.21)
∂x α ∂x



E. Endeve et al. / Journal of Computational Physics 287 (2015) 151–183 181
We elaborate on the term appearing in the momentum space divergence in Eq. (A.1); i.e.,

P ı̃
ı̄ pν pρ ∇ρeı̄

ν . (A.22)

We have

P ı̃
ı̄ = ∂ p ı̃

∂ p ı̄
= λı̃j̃ ∂ p ı̄

∂ pj̃
. (A.23)

Then, by employing the Eulerian decomposition of the four-momentum in (A.7), and noting that eı̄
ν p ı̄ = E lν , we write 

Eq. (A.22) as

−λı̃j̃
∂
(

E lν
)

∂ pj̃
pρ ∇ρ pν = −λı̃j̃ ∂ E

∂ pj̃
lν pρ ∇ρ pν − Eλı̃j̃ ∂lν

∂ pj̃
pρ ∇ρ pν, (A.24)

where we have expanded with the product rule to get two expressions; one parallel and one perpendicular to lν (cf. [6]), 
since

lν
∂lν

∂ pj̃
= eı̄

ν eν
j̄ lı̄

∂lj̄

∂ pj̃
= lı̄

∂lı̄

∂ pj̃
= 0. (A.25)

We can write the term lν pρ ∇ρ pν appearing on the right-hand side of Eq. (A.24) as

E2 lν
{

nρ ∇ρnν + lρ ∇ρnν

}
+ E pρ lν ∇ρ lν = E2 li

{ 1

α

∂α

∂xi
− l j Ki j

}
, (A.26)

where we have used the fact that lν ∇ρ lν = 0 and Eqs. (A.19) and (A.20).
For the second term on the right-hand side of Eq. (A.24) we write

∂lν

∂ pj̃
pρ ∇ρ pν = E2 ∂lν

∂ pj̃

{
nρ ∇ρnν + lρ ∇ρnν + nρ ∇ρ lν + lρ ∇ρ lν

}
. (A.27)

We use Eq. (A.19) to rewrite the first term on the right-hand side of Eq. (A.27); i.e.,

∂lν

∂ pj̃
nρ ∇ρnν = ∂li

∂ pj̃

1

α

∂α

∂xi
. (A.28)

Similarly, since both ∂lν/∂ pj̃ and lν are spacelike, we use Eq. (A.20) to rewrite the second term on the right-hand side of 
Eq. (A.27); i.e.,

∂lν

∂ pj̃
lρ ∇ρnν = ∂li

∂ pj̃
l j Ki j . (A.29)

For the third term we have

∂lν

∂ pj̃
nρ ∇ρ lν = ∂lν

∂ pj̃
nρ

{ ∂lν
∂xρ

− �
μ
νρ lμ

}

= ∂lν

∂ pj̃

{
nρ ∂lν

∂xρ
+ lρ

∂nρ

∂xν
− lρ ∇νnρ

}

= ∂li

∂ pj̃

{ ∂li

∂τ
− l j

α

∂β j

∂xi
+ l j Ki j

}
, (A.30)

where we have used Eq. (A.21), and defined the “proper time derivative” along constant coordinate lines

∂

∂τ
= 1

α

∂

∂t
− β i

α

∂

∂xi
. (A.31)

Finally, for the fourth term on the right-hand side of Eq. (A.27) we have

∂lν

∂ pj̃
lρ ∇ρ lν = ∂lν

∂ pj̃
lρ

{ ∂lν
∂xρ

− �
μ
νρ lμ

}
(A.32)

= ∂li

∂ pj̃

{
l j ∂li

∂x j
− 1

2
l j lk

∂γ jk

∂xi

}
. (A.33)

Combining all the terms we obtain the momentum space flux appearing in Eq. (A.8).
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