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ANALYSIS OF MIXED INTERIOR PENALTY DISCONTINUOUS
GALERKIN METHODS FOR THE CAHN–HILLIARD EQUATION

AND THE HELE–SHAW FLOW∗

XIAOBING FENG† , YUKUN LI‡ , AND YULONG XING§

Abstract. This paper proposes and analyzes two fully discrete mixed interior penalty discontin-
uous Galerkin (DG) methods for the fourth order nonlinear Cahn–Hilliard equation. Both methods
use the backward Euler method for time discretization and interior penalty DG methods for spatial
discretization. They differ from each other on how the nonlinear term is treated; one of them is
based on fully implicit time-stepping and the other uses energy-splitting time-stepping. The primary
goal of the paper is to prove the convergence of the numerical interfaces of the DG methods to the
interface of the Hele–Shaw flow. This is achieved by establishing error estimates that depend on
ε−1 only in some low polynomial orders, instead of exponential orders. Similar to [X. Feng and A.
Prohl, Numer. Math., 74 (2004), pp. 47–84], the crux is to prove a discrete spectrum estimate in
the discontinuous Galerkin finite element space. However, the validity of such a result is not obvious
because the DG space is not a subspace of the (energy) space H1(Ω) and it is larger than the finite
element space. This difficulty is overcome by a delicate perturbation argument which relies on the
discrete spectrum estimate in the finite element space proved by Feng and Prohl. Numerical experi-
ment results are also presented to gauge the theoretical results and the performance of the proposed
fully discrete mixed DG methods.

Key words. Cahn–Hilliard equation, Hele–Shaw problem, phase transition, discontinuous
Galerkin method, discrete spectral estimate, convergence of numerical interface
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1. Introduction. This paper concerns mixed interior penalty discontinuous
Galerkin (MIP-DG) approximations of the following Cahn–Hilliard problem:

ut −∆w = 0 in ΩT := Ω× (0, T ),(1.1)

−ε∆u+
1

ε
f(u) = w in ΩT ,(1.2)

∂u

∂n
=
∂w

∂n
= 0 on ∂ΩT := ∂Ω× (0, T ),(1.3)

u = u0 in Ω× {t = 0}.(1.4)

Here Ω ⊆ Rd (d = 2, 3) is a bounded domain, and f(u) = F ′(u), F (u) is a nonconvex
potential density function which takes its global minimum zero at u = ±1. In this
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826 XIAOBING FENG, YUKUN LI, AND YULONG XING

paper, we only consider the following quartic potential density function:

(1.5) F (u) =
1

4
(u2 − 1)2.

After eliminating the intermediate variable w (called the chemical potential), the
above system reduces into a fourth order nonlinear PDE for u, which is known as the
Cahn–Hilliard equation in the literature. This equation was introduced by John W.
Cahn and John E. Hilliard in [5] to describe the process of phase separation, by which
the two components of a binary fluid spontaneously separate and form domains pure
in each component. Here u and 1 − u denote respectively the concentrations of the
two fluids, with u = ±1 indicating domains of the two components. We note that
(1.1)–(1.2) differ from the original Cahn–Hilliard equation in the scaling of the time,
and t here corresponds to t/ε in the original formulation; ε, which is positively small,
is called the interaction length.

Besides its important role in materials phase transition, the Cahn–Hilliard equa-
tion has been extensively studied due to its close relation with the Hele–Shaw prob-
lem. It was first formally proved by Pego [19] that the chemical potential w :=
−ε∆u + 1

ε f(u) along with the zero-level set of u tends to (as ε → 0) a limit which
satisfies a free boundary problem known as the Hele–Shaw problem. A rigorous jus-
tification was given by Stoth [22] for the radially symmetric case and by Alikakos,
Bates, and Chen [2] for the general case. In addition, Chen [7] established the con-
vergence of the weak solution of the Cahn–Hilliard problem to a weak (or varifold)
solution of the Hele–Shaw problem. Moreover, the Cahn–Hilliard equation (together
with the Allen–Cahn equation) has become a fundamental equation as well as a build-
ing block in the phase field methodology (or the diffuse interface methodology) for
moving interface and free boundary problems arising from various applications such as
fluid dynamics, materials science, image processing, and biology (cf. [20, 12] and the
references therein). The diffuse interface approach provides a convenient mathemat-
ical formalism for numerically approximating the moving interface problems because
explicitly tracking the interface is not needed in the diffuse interface formulation.
The main advantage of the diffuse interface method is its ability to handle with ease
singularities of the interfaces. Like many singular perturbation problems, the main
computational issue is to resolve the (small) scale introduced by the parameter ε in
the equation. Computationally, the problem could become intractable, especially in
three-dimensional cases if uniform meshes are used. This difficulty is often overcome
by exploiting the predictable (at least for small ε) PDE solution profile and by using
adaptive mesh techniques (cf. [17] and the references therein), so fine meshes are only
used in the diffuse interface region.

Numerical approximations of the Cahn–Hilliard equation have been extensively
carried out in the past 30 years (cf. [9, 11, 15] and the references therein). On the
other hand, the majority of these works were done for a fixed parameter ε. The
error bounds, which are obtained using the standard Gronwall inequality technique,
show an exponential dependence on 1/ε. Such an estimate is clearly not useful for
small ε, in particular, in addressing the issue whether the computed numerical inter-
faces converge to the original sharp interface of the Hele–Shaw problem. Better and
practical error bounds should only depend on 1/ε in some (low) polynomial orders
because they can be used to provide an answer to the above convergence question,
which in fact is the best result (in terms of ε) one can expect. The first such poly-
nomial order in 1/ε a priori estimate was obtained in [16] for mixed finite element
approximations of the Cahn–Hilliard problem (1.1)–(1.5). In addition, polynomial
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DG METHODS FOR CAHN–HILLIARD EQUATION 827

order in 1/ε a posteriori error estimates were obtained in [17] for the same mixed finite
element methods. One of the key ideas employed in all these works is to use a non-
standard error estimate technique which is based on establishing a discrete spectrum
estimate (using its continuous counterpart) for the linearized Cahn–Hilliard operator.
An immediate corollary of the polynomial order in 1/ε a priori and a posteriori error
estimates is the convergence of the numerical interfaces of the underlying mixed finite
element approximations to the Hele–Shaw flow before the onset of singularities of the
Hele–Shaw flow as ε and mesh sizes h and k all tend to zero.

The objective of this paper is twofold. First, we develop some MIP-DG methods
to establish polynomial order in 1/ε a priori error bounds, as well as to prove con-
vergence of numerical interfaces for the MIP-DG methods. This goal is motivated by
the advantages of DG methods in regard to designing adaptive mesh methods and
algorithms, which is an indispensable strategy with the diffuse interface methodology.
Second, we use the Cahn–Hilliard equation as another prototypical model problem [13]
to develop new analysis techniques for analyzing convergence of numerical interfaces
to the underlying sharp interface for DG (and nonconforming elements) discretiza-
tions of phase field models. To the best of our knowledge, no such convergence result
and technique is available in the literature for fourth order PDEs. The main obstacle
for improving the finite element techniques of [16] is that the DG (and nonconforming
finite element) spaces are not subspaces of H1(Ω). As a result, whether the needed
discrete spectrum estimate holds becomes a key question to answer.

This paper consists of four additional sections. In section 2, we first introduce
function and space notation as well as general assumptions on initial datum u0; we
then cite one important technical lemma which gives a spectral estimate for the lin-
earized Cahn–Hilliard operator. In section 3, we propose two fully discrete MIP-DG
schemes for problem (1.1)–(1.5); they differ only in their treatment of the nonlinear
term. We then establish a discrete spectrum estimate in the DG space, which mimics
the spectral estimates for the differential operator and its finite element counterpart.
The main result of this section is to derive optimal error bounds which depend on 1/ε
only in low polynomial orders for both fully discrete MIP-DG methods. In section 4,
using the refined error estimates of section 3, we prove the convergence of the numeri-
cal interfaces of the fully discrete MIP-DG methods to the interface of the Hele–Shaw
flow before the onset of the singularities as ε, h, and k all tend to zero. Finally, in
section 5 we provide some numerical experiments to gauge the performance of the
proposed fully discrete MIP-DG methods.

This paper is a condensed version of [14], which contains more details that cannot
be included here due to the page limitation.

2. Preliminaries. In this section, we shall collect some known results about
problem (1.1)–(1.5) from [6, 15, 16], which will be used in sections 3 and 4. Some
general assumptions on the initial condition, as well as some energy estimates based on
these assumptions, will be cited. Standard function and space notations are adopted
in this paper [1, 4]. We use (·, ·) and ‖ · ‖L2 to denote the standard inner product
and norm on L2(Ω). Throughout this paper, C denotes a generic positive constant
independent of ε, space and time step sizes h and k, which may have different values
at different occasions.

We begin with the well-known fact [2] that the Cahn–Hilliard equation (1.1)–(1.5)
can be interpreted as the H−1-gradient flow for the Cahn–Hilliard energy functional

(2.1) Jε(v) :=

∫
Ω

( ε
2
|∇v|2 +

1

ε
F (v)

)
dx.
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828 XIAOBING FENG, YUKUN LI, AND YULONG XING

The following general assumptions on the initial datum u0 were made in [15] and
were used to derive a priori estimates for the solution of problem (1.1)–(1.5). Suppose
that there exists nonnegative constants σi for i = 1, 2, 3, 4 such that

m0 :=
1

|Ω|

∫
Ω

u0(x)dx ∈ [−1, 1],(2.2)

Jε(u0) ≤ Cε−2σ1 ,(2.3) ∥∥− ε∆u0 + ε−1f(u0)
∥∥
H`(Ω)

≤ Cε−σ2+` , ` = 0, 1, 2.(2.4)

Under the above assumptions, some solution estimates were proved, and we refer to
[15, 16] for the details.

Next, we quote a lemma which concerns with a lower bound estimate for the
principal eigenvalue of the linearized Cahn–Hilliard operator. A proof of this lemma
can be found in [6].

Lemma 2.1. Suppose that (2.2)–(2.4) hold. Given a smooth initial curve/surface
Γ0, let u0 be a smooth function satisfying Γ0 = {x ∈ Ω;u0(x) = 0} and some profile
described in [6]. Let u be the solution to problem (1.1)–(1.5). Define LCH as

(2.5) LCH := ∆

(
ε∆− 1

ε
f ′(u)I

)
.

Then there exists 0 < ε0 << 1 and a positive constant C0 such that the principle
eigenvalue of the linearized Cahn–Hilliard operator LCH satisfies

(2.6) λCH := inf
06=ψ∈H1(Ω)

∆w=ψ

ε‖∇ψ‖2L2 + 1
ε (f ′(u)ψ,ψ)

‖∇w‖2L2

≥ −C0

for t ∈ [0, T ] and ε ∈ (0, ε0).

We remark that a discrete generalization of (2.6) on C0 finite element spaces was
proved in [15, 16]. One of main task of this paper is to prove a discrete generalization
of (2.6) on the DG space. The restriction on the initial function u0 is needed to ensure
that the solution u(t) satisfies a certain profile for t > 0 which is required in the proof

of [6]. One such an example is u0 = tanh(d0(x)
ε ), where d0(x) stands for the signed

distance function to the initial interface Γ0. Clearly, u0 is smooth when Γ0 is smooth.

3. Fully discrete MIP-DG approximations. In this section we present and
analyze two fully discrete MIP-DG methods for the Cahn–Hilliard problem (1.1)–(1.5).
The primary goal of this section is to derive error estimates for the DG solutions that
depend on ε−1 only in low polynomial orders, instead of exponential orders. As in the
finite element case (cf. [16]), the crux is to establish a discrete spectrum estimate for
the linearized Cahn–Hilliard operator on the DG space.

3.1. Formulations of the MIP-DG method. Let Th = {K}K∈Ω be a quasi-
uniform triangulation of Ω parameterized by h > 0. For any triangle/tetrahedron
K ∈ Th, we define hK to be the diameter of K, and h := maxK∈Th hK . The standard
broken Sobolev space is defined as

(3.1) Hs(Th) :=
{
v ∈ L2(Ω); ∀K ∈ Th, v|K ∈ Hs(K)

}
.

For any K ∈ Th, Pr(K) denotes the set of all polynomials of degree at most r(≥ 1)
on the element K, and the DG finite element space Vh is defined as

(3.2) Vh :=
{
v ∈ L2(Ω); ∀K ∈ Th, v|K ∈ Pr(K)

}
.
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Let L2
0 denote the set of functions in L2(Ω) with zero mean, and let V̊h := Vh∩L2

0.
We also define EIh to be the set of all interior edges/faces of Th, EBh to be the set of
all boundary edges/faces of Th on Γ = ∂Ω, and Eh := EIh ∪ EBh . Let e be an interior
edge shared by two elements K1 and K2. For a scalar function v, define

{v} =
1

2
(v|K + v|K′), [v] = v|K − v|K′ , on e ∈ EIh,

where K is K1 or K2, whichever has the bigger global labeling, and K ′ is the other.
Let 0 ≤ t0 < t1 < · · · < tM = T be a partition of the interval [0, T ] with time

step k = tn+1 − tn. Our fully discrete MIP-DG methods are defined as follows: for
any 1 ≤ m ≤M , (Um,Wm) ∈ Vh × Vh are given by

(dtU
m, η) + ah(Wm, η) = 0 ∀ η ∈ Vh,(3.3)

εah(Um, v) +
1

ε
(fm, v)− (Wm, v) = 0 ∀ v ∈ Vh,(3.4)

where

ah(u, v) =
∑
K∈Th

∫
K

∇u · ∇v dx−
∑
e∈EIh

∫
e

{∇u · ne}[v] ds(3.5)

−
∑
e∈EIh

∫
e

{∇v · ne}[u] ds+
∑
e∈EIh

∫
e

σ0
e

he
[u][v] ds,

σ0
e > 0 is the penalty parameter, and

fm = (Um)3 − Um−1 or fm = (Um)3 − Um,

which lead to the energy-splitting scheme and fully implicit scheme, respectively.
dt is the (backward) difference operator defined by dtU

m := (Um − Um−1)/k and

U0 := P̂hu0 (or Q̂hu0) is the starting value, with the finite element H1 (or L2)

projection P̂h (or Q̂h) to be defined below. We refer to [13] for the details on why
the continuous projection is needed for the initial condition. We remark that only the
fully implicit case was considered in [15, 16] for the mixed finite element method.

To analyze the stability of (3.3)–(3.4), we need some preparations. First, we
introduce three projection operators that will be needed to derive the error estimates
in section 3.4. Ph : Hs(Th)→ Vh denotes the elliptic projection operator defined by

(3.6) ah(u− Phu, vh) + (u− Phu, vh) = 0 ∀ vh ∈ Vh,

which has the following approximation properties (see [8]):

‖v − Phv‖L2(Th) + h‖∇(v − Phv)‖L2(Th) ≤ Chmin{r+1,s}‖u‖Hs(Th),(3.7)

1

| lnh|r
‖v − Phv‖L∞(Th) + h‖∇(u− Phu)‖L∞(Th) ≤ Chmin{r+1,s}‖u‖W s,∞(Th).(3.8)

Here r := min{1, r} −min{1, r − 1}.
Let P̂h : Hs(Th) → Sh := Vh ∩ C0(Ω) denote the standard continuous finite

element elliptic projection, which is the counterpart of projection Ph. It has the
following well-known property [15, 16]:

(3.9) ‖u− P̂hu‖L∞ ≤ Ch2− d2 ‖u‖H2 .
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830 XIAOBING FENG, YUKUN LI, AND YULONG XING

Next, for any DG function Ψh ∈ Vh, we define its continuous finite element
projection ΨFE

h ∈ Sh by

(3.10) ãh(ΨFE
h , vh) = ãh(Ψh, vh) ∀ vh ∈ Sh,

where ãh(u, v) = ah(u, v) + α(u, v), and α is a parameter that will be specified later
in section 3.3.

A mesh-dependent H−1 norm will also be needed. To this end, we introduce
the inverse discrete Laplace operator ∆−1

h : V̊h → V̊h as follows: given ζ ∈ V̊h, let

∆−1
h ζ ∈ V̊h such that

(3.11) ah(−∆−1
h ζ, wh) = (ζ, wh) ∀wh ∈ Vh.

We note that ∆−1
h is well defined provided that σ0

e > σ0
∗ for some positive number

σ0
∗ and for all e ∈ Eh because this condition ensures the coercivity of the DG bilinear

form ah(·, ·).
Let ξ, ζ ∈ V̊h; we then define the “–1” inner product by

(3.12) (ζ, ξ)−1,h := ah(−∆−1
h ζ,−∆−1

h ξ) = (ζ,−∆−1
h ξ) = (−∆−1

h ζ, ξ),

and the induced mesh-dependent H−1 norm is given by

(3.13) ‖ζ‖−1,h :=
√

(ζ, ζ)−1,h = sup
06=ξ∈V̊h

(ζ, ξ)

|||ξ|||a
,

where |||ξ|||a :=
√
ah(ξ, ξ). The following properties can be easily verified (cf. [3]):

|(ζ, ξ)| ≤ ‖ζ‖−1,h|||ξ|||a ∀ ξ ∈ Vh, ζ ∈ V̊h,(3.14)

‖ζ‖−1,h ≤ C‖ζ‖L2 ∀ ζ ∈ V̊h,(3.15)

‖ζ‖L2 ≤ Ch−1‖ζ‖−1,h ∀ ζ ∈ V̊h.(3.16)

3.2. Discrete energy law and well-posedness. In this subsection we first
establish a discrete energy law, which mimics the differential energy law, for both
fully discrete MIP-DG methods defined in (3.3)–(3.4). Based on this discrete energy
law, we then prove the existence and uniqueness of solutions to the MIP-DG methods
by recasting the schemes as convex minimization problems at each time step.

Theorem 3.1. Let (Um,Wm) ∈ Vh×Vh be a solution to scheme (3.3)–(3.4). The
following energy law holds for any h, k > 0:

Eh(U `) + k
∑̀
m=1

‖dtUm‖2−1,h + k2
∑̀
m=1

{
ε

2
|||dtUm|||2a +

1

4ε
‖dt(Um)2‖2L2(3.17)

+
1

2ε
‖UmdtUm‖2L2 ±

1

2ε
‖dtUm‖2L2

}
= Eh(U0)

for all 1 ≤ ` ≤M, where

(3.18) Eh(U) :=
1

4ε
‖U2 − 1‖2L2 +

ε

2
|||U |||2a.D
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Note that the sign “±” in (3.17) takes “+” when fm = (Um)3−Um−1 and “−” when
fm = (Um)3 − Um.

An immediate consequence of the above discrete energy law is the following sta-
bility and well-posedness results.

Corollary 3.2. Let σ0
∗ > 0 be a sufficiently large constant. Suppose that σ0

e >
σ0
∗ for all e ∈ Eh. Then scheme (3.3)–(3.4) is stable for all h, k > 0 when fm =

(Um)3 − Um−1 and is stable for h > 0 and k = O(ε3) when fm = (Um)3 − Um.

Theorem 3.3. Suppose that σ0
e > σ0

∗ for all e ∈ Eh. Then scheme (3.3)–(3.4)
has a unique solution (Um,Wm) at each time step for for all h, k > 0 in the case
fm = (Um)3 − Um−1 and for h > 0 and k = O(ε3) in the case fm = (Um)3 − Um.

We omit the proofs of the above theorems and corollary to save space and refer
the reader to [14] for the details.

3.3. Discrete spectrum estimate on the DG space. In this subsection, we
shall establish a discrete spectrum estimate for the linearized Cahn–Hilliard operator
on the DG space, which plays a vital role in our error estimates.

Proposition 3.4. Suppose the assumptions of Lemma 2.1 hold. Let u be the
solution of (1.1)–(1.5) and Phu denote its DG elliptic projection. Assume

ess sup
t∈[0,∞)

‖u‖W s,∞ ≤ Cε−γ(3.19)

for a (small) constant γ; then there exists 0 < ε2 << 1 and an ε-independent and
h-independent constant c0 > 0 such that for any ε ∈ (0, ε2), there holds

(3.20) λDGCH = inf
06=Φh∈L2

0(Ω)
⋂
Vh

εah(Φh,Φh) + 1−ε3
ε (f ′(Phu)Φh,Φh)

‖∇∆−1Φh‖2L2

≥ −c0,

provided that h satisfies the constraints

h2− d2 ≤ (C1C2)−1εmax{σ1+ 11
2 ,σ3+4},(3.21)

h1+r| ln h|r̄ ≤ (C1C3)−1εγ+3,(3.22)

where Cj for j = 1, 2, 3 are defined by

C1 := max
|ξ|≤2C0

|f ′′(ξ)|,(3.23)

‖u− P̂hu‖L∞((0,T );L∞) ≤ C2h
2− d2 εmin{−σ1− 5

2 ,−σ3−1},(3.24)

‖u− Phu‖L∞((0,T );L∞) ≤ C3h
1+r| ln h|r̄ε−γ .(3.25)

Proof. By Proposition 2 in [15], under the mesh constraint (3.21), we have

(3.26) ‖f ′(P̂hu)− f ′(u)‖L∞((0,T );L∞) ≤ ε3.

Similarly, under condition (3.22), by (3.8), (3.19), and Lemma 2.2 in [16], we can
show that for any ε > 0, there holds

(3.27) ‖f ′(Phu)− f ′(u)‖L∞((0,T );L∞) ≤ ε3.

It follows from (3.26) and (3.27) that

(3.28) ‖f ′(Phu)− f ′(P̂hu)‖L∞((0,T );L∞) ≤ 2ε3 and f ′(Phu) ≥ f ′(P̂hu)− 2ε3.
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832 XIAOBING FENG, YUKUN LI, AND YULONG XING

Therefore,

εah(Φh,Φh) +
1− ε3

ε

(
f ′(Phu)Φh,Φh

)
(3.29)

≥ ε 1− ε3

1− ε3

2

ah(Φh,Φh) +
1− ε3

ε

∫
Ω

f ′(P̂hu)
(

(Φh)2 − (ΦFEh )2
)
dx

+
1− ε3

ε

∫
Ω

f ′(P̂hu)(ΦFEh )2dx− 2ε2(1− ε3)‖Φh‖2L2 +
ε4

2− ε3
ah(Φh,Φh).

Next, we derive a lower bound for each of the first two terms on the right-hand
side of (3.29). Notice that the first term can be rewritten as

ah(Φh,Φh) = ah(Φh − ΦFEh ,Φh − ΦFEh ) + ‖∇ΦFEh ‖2L2 + 2α‖ΦFEh − Φh‖2L2(3.30)

+ 2α
(
ΦFEh − Φh,Φh

)
.

To bound ‖Φh−ΦFEh ‖L2 from above, we consider the following auxiliary problem:

ãh(φ, χ) =
(
Φh − ΦFEh , χ

)
∀χ ∈ H1(Ω).

For σ0
e > σ0

∗ for all e ∈ Eh, the above problem has a unique solution φ ∈ H1+θ(Ω) for
0 < θ ≤ 1 such that

(3.31) ‖φ‖H1+θ(Ω) ≤ C‖Φh − ΦFEh ‖L2 for θ ∈ (0, 1].

By the definition of ΦFE

h , we immediately get the following Galerkin orthogonality:

ãh
(
Φh − ΦFEh , χh

)
= 0 ∀χh ∈ Sh.

It follows from the duality argument (cf. [21, Theorem 2.14]) that

‖Φh − ΦFEh ‖2L2 ≤ Ch2θah(Φh − ΦFEh ,Φh − ΦFEh ) + Ch2θα‖Φh − ΦFEh ‖2L2 .(3.32)

For all h satisfying Ch2θα < 1, we get

(3.33) ‖Φh − ΦFEh ‖2L2 ≤
Ch2θ

1− Ch2θα
ah(Φh − ΦFEh ,Φh − ΦFEh ).

Now the last term on the right-hand side of (3.30) can be bounded as follows:

2α
(
ΦFEh − Φh,Φh

)
≥ −1

2
ah(Φh − ΦFEh ,Φh − ΦFEh )− 2Cα2h2θ

1− Ch2θα
‖Φh‖2L2 .(3.34)

The second term on the right-hand side of (3.29) can be bounded by∫
Ω

f ′(P̂hu)
(
(Φh)2 − (ΦFEh )2

)
dx ≥ −C

∫
Ω

∣∣(Φh)2 − (ΦFEh )2
∣∣ dx(3.35)

≥ −C‖Φh − ΦFEh ‖2L2 −
ε3(1− ε3)

1− ε3

2

‖Φh‖2L2 − C
1− ε3

2

ε3(1− ε3)
‖Φh − ΦFEh ‖2L2 .

Here we have used the facts [16, Lemma 2.2] that

(3.36) ‖u‖L∞((0,T );L∞) ≤ C, |f ′(P̂hu)| ≤ |f ′(u)|+ ε3 ≤ C.
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Substituting (3.33) into (3.35) yields

1− ε3

ε

∫
Ω

f ′(P̂hu)
(
(Φh)2 − (ΦFEh )2

)
dx(3.37)

≥ −γ3
ε(1− ε3)

1− ε3

2

ah(Φh − ΦFEh ,Φh − ΦFEh )− ε2(1− ε3)

1− ε3

2

‖Φh‖2L2 ,

where h is chosen small enough such that γ3 < 1/4.
The term ‖Φh‖2L2 can be bounded by

‖Φh‖2L2 = ah(∆−1
h Φh,Φh) ≤ ρ

2
ah(∆−1

h Φh,∆
−1
h Φh) +

1

2ρ
ah(Φh,Φh)(3.38)

for any constant ρ > 0. Adding the fifth term on the right-hand side of (3.29), the last
term on the right-hand side of (3.34), and that of (3.37), we get for all h satisfying
2Cα2h2θ/(1− Ch2θα) ≤ ε

−
(
ε(1− ε3)

1− ε3

2

2Cα2h2θ

1− Ch2θα
+

3ε2(1− ε3)

1− ε3

2

)
‖Φh‖2L2 ≥ −

4ε2(1− ε3)

1− ε3

2

‖Φh‖2L2(3.39)

≥ − ε4

2(2− ε3)
ah(Φh,Φh)− Cah(∆−1

h Φh,∆
−1
h Φh).

Combining (3.30), (3.34), (3.37), and (3.39) with (3.29), we have

εah(Φh,Φh) +
1− ε3

ε

∫
Ω

f ′(Phu)(Φh)2 dx(3.40)

≥ ε(1− ε3)

4− 2ε3
ah(Φh − ΦFEh ,Φh − ΦFEh ) +

2αε(1− ε3)

1− ε3

2

‖ΦFEh − Φh‖2L2

+
ε(1− ε3)

1− ε3

2

‖∇ΦFEh ‖2L2 − Cah(∆−1
h Φh,∆

−1
h Φh)

+
1− ε3

ε

∫
Ω

f ′(P̂hu)(ΦFEh )2 dx+
ε4

2(2− ε3)
ah(Φh,Φh).

Applying the finite element spectrum estimate of [14, Lemma 3.4], we get

ε

1− ε3

2

‖∇ΦFEh ‖2L2 +
1

ε

∫
Ω

f ′(P̂hu)(ΦFEh )2 dx ≥ −1 + C0

1− ε3

2

‖∇∆−1ΦFEh ‖2L2 ,

which together with (3.40) implies that

εah(Φh,Φh) +
1− ε3

ε

∫
Ω

f ′(Phu)(Φh)2 dx(3.41)

≥ −Cah(∆−1
h Φh,∆

−1
h Φh)− C‖∇∆−1ΦFEh ‖2L2 +

2αε(1− ε3)

1− ε3

2

‖ΦFEh − Φh‖2L2 .

By the stability of ∆−1, we have

‖∇∆−1(Φh − ΦFEh )‖2L2 ≤ Ĉ‖Φh − ΦFEh ‖2L2 ,D
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834 XIAOBING FENG, YUKUN LI, AND YULONG XING

which together with the triangle inequality yields

‖∇∆−1ΦFEh ‖2L2 ≤ 2‖∇∆−1Φh‖2L2 + 2Ĉ‖Φh − ΦFEh ‖2L2 .

Similarly, since ∆−1
h Φh is the elliptic projection of ∆−1Φh, there holds

ah(∆−1
h Φh,∆

−1
h Φh) ≤ C‖∇∆−1Φh‖2L2 .

Therefore, choosing α = O(Ĉε−1), (3.41) can be further reduced into

εah(Φh,Φh) +
1− ε3

ε

∫
Ω

f ′(Phu)(Φh)2 dx ≥ −c0‖∇∆−1Φh‖2L2

for some c0 > 0. This proves (3.20), and the proof is complete.

Remark 3.1. The assumption (3.19) on the solution u is needed to get the (stan-
dard) estimate (3.25) for the projection operator Ph. It was also used in [16] to derive
the finite element spectrum estimate. The power γ in (3.19) depends on the Sobolev
space index s and σj for j = 1, 2, 3, 4 from (2.2)–(2.4). For the linear finite element,
the optimal s = 2. In this case, it is easy to check that γ ≤ σ4 by using the Sobolev
embedding H4 ↪→W 2,∞.

3.4. Error analysis. In this subsection, we shall derive some optimal error
estimates for the proposed MIP-DG schemes (3.3)–(3.4), in which the constants in
the error bounds depend on ε−1 only in low polynomial orders, instead of exponential
orders. The key to obtaining such refined error bounds is to use the discrete spectrum
estimate (3.20). In addition, a nonlinear Gronwall inequality from [13, Lemma 2.3]
will be critically used in the proof. To ease the presentation, we set r = 1 in this
subsection and section 4, and generalization to r > 1 can be proven similarly.

The main results of this subsection are stated in the following theorem.

Theorem 3.5. Let {(Um,Wm)}Mm=0 be the solution of scheme (3.3)–(3.4) with
r = 1. Suppose that the general assumptions hold and σ0

e > σ0
∗ for all e ∈ Eh, and

define

ρ1(ε, d) := ε1−
2

6−d max{2σ1+5,2σ3+2}−max{2σ1+ 13
2 ,2σ3+ 7

2 ,2σ2+4} + ε−2σ5(3.42)

+ ε−max{2σ1+7,2σ3+4},

ρ3(ε) := ε−max{2σ1+ 13
2 ,2σ3+ 7

2 ,2σ2+4,2σ4}−4,(3.43)

rε(h, k) := k2ρ1(ε; d) + h6ρ3(ε).(3.44)

Then, under the mesh and starting value conditions

h2− d2 ≤ (C1C2)−1εmax{σ1+ 11
2 ,σ3+4},(3.45)

h1+r| ln h|r̄ ≤ (C1C3)−1εγ+3,(3.46)

k ≤ ε3 when fm = (Um)3 − Um,(3.47)

h2θ ≤ C ε(1− ε
3)

8− 4ε3
and k ≤ Cε

4(6+d)
4−d +(4d−2)σ1 ,(3.48)

(U0, 1) = (u0, 1) and ‖u0 − U0‖H−1 ≤ Ch3‖u0‖H2 ,(3.49)D
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there hold the error estimates

max
0≤m≤M

‖u(tm)− Um‖−1,h +
( M∑
m=1

k2‖dt(u(tm)− Um)‖2−1,h

) 1
2 ≤ Crε(h, k)

1
2 ,(3.50)

(
k

M∑
m=1

‖u(tm)− Um‖2L2

) 1
2 ≤ C

(
h2ε−max{σ1+ 5

2 ,σ3+1} + ε−2rε(h, k)
1
2

)
,(3.51)

(
k

M∑
m=1

|||u(tm)− Um|||2a
) 1

2 ≤ C
(
hε−max{σ1+ 5

2 ,σ3+1} + ε−2rε(h, k)
1
2

)
.(3.52)

Moreover, if the starting value U0 satisfies

(3.53) ‖u0 − U0‖L2 ≤ Ch2‖u0‖H2 ,

then there hold

max
0≤m≤M

‖u(tm)− Um‖L2 +
(
k

M∑
m=1

k‖dt(u(tm)− Um)‖2L2

) 1
2

(3.54)

+
(k
ε

M∑
m=1

‖w(tm)−Wm‖2L2

) 1
2 ≤ C

(
h2ρ3(ε)

1
2 + ε−

7
2 rε(h, k)

1
2

)
,

max
0≤m≤M

‖u(tm)− Um‖L∞ ≤ C
(
h2| lnh|ε−γ + h−

d
2 ε−

7
2 rε(h, k)

1
2

)
.(3.55)

Furthermore, suppose that the starting value W 0 satisfies

(3.56) ‖Phw0 −W 0‖L2 ≤ Chβ

for some β > 1, and there exists a constant γ′ such that

ess sup
t∈[0,∞)

‖w‖W 2,∞ ≤ Cε−γ
′
;(3.57)

then we have

max
0≤m≤M

‖w(tm)−Wm‖L2 ≤ C
(
h2ρ3(ε) + hβ + k−

1
2 ε−3rε(h, k)

1
2

)
,(3.58)

max
0≤m≤M

‖w(tm)−Wm‖L∞ ≤ C
(
h−

d
2

(
k−

1
2 ε−3rε(h, k)

1
2 + hβ

)
+ h2| lnh|ε−γ

′)
.(3.59)

Proof. In the following, we give a proof only for the convex splitting scheme
corresponding to fm = (um)3−um−1 in (3.13) because the proof for the fully implicit
scheme with fm = (um)3 − um is almost the same. We divide it into four steps.

Step 1. It is obvious that (1.1)–(1.4) imply that(
ut(tm), ηh

)
+ ah(w(tm), ηh) = 0 ∀ηh ∈ Vh,(3.60)

εah(u(tm), vh) +
1

ε

(
f(u(tm)), vh

)
=
(
w(tm), vh

)
∀vh ∈ Vh.(3.61)

Define error functions Em := u(tm)−Um and Gm := w(tm)−Wm. Subtracting (3.3)
from (3.60) and (3.4) from (3.61) yields the following error equations:(

dtE
m, ηh

)
+ ah(Gm, ηh) =

(
R(utt,m), ηh

)
∀ηh ∈ Vh,(3.62)

εah(Em, vh) +
1

ε

(
f(u(tm))− f(Um), vh

)
=
(
Gm, vh

)
∀vh ∈ Vh,(3.63)
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where R(utt;m) := 1
k

∫ tm
tm−1

(s− tm−1)utt(s) ds. It follows from solution estimates that

k

M∑
m=1

‖R(utt;m)‖2H−1 ≤
1

k

M∑
m=1

(∫ tm

tm−1

(s− tm−1)2 ds

)(∫ tm

tm−1

‖utt(s)‖2H−1 ds

)
≤ Ck2ρ1(ε, d).

Introduce the error decompositions Em = Θm + Φm and Gm = Λm + Ψm, where

Θm := u(tm)− Phu(tm), Φm := Phu(tm)− Um,
Λm := w(tm)− Phw(tm), Ψm := Phw(tm)−Wm.

Using the definition of the operator Ph in (3.6), (3.62)–(3.63) can be rewritten as(
dtΦ

m, ηh
)

+ ah(Ψm, ηh) = −
(
dtΘ

m, ηh
)

+
(
R(utt,m), ηh

)
∀ηh ∈ Vh,(3.64)

εah(Φm, vh) +
1

ε

(
f(u(tm))− fm, vh

)
=
(
Ψm, vh

)
+
(
Λm, vh

)
∀vh ∈ Vh.(3.65)

Setting ηh = −∆−1
h Φm in (3.64) and vh = Φm in (3.65), adding the resulting

equations, and summing over m from 1 to `, we get

ah(∆−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.66)

+ 2k
∑̀
m=1

εah(Φm,Φm) + 2k
∑̀
m=1

1

ε

(
f(u(tm))− fm,Φm

)
= 2k

∑̀
m=1

((
R(utt,m),−∆−1

h Φm
)
−
(
dtΘ

m,−∆−1
h Φm

)
+
(
Λm,Φm

))
+ ah(∆−1

h Φ0,∆−1
h Φ0).

Step 2. For σ0
e > σe∗ for all e ∈ Eh, the first long term on the right-hand side of

(3.66) can be bounded as follows:

2k
∑̀
m=1

((
R(utt,m),−∆−1

h Φm
)

+
(
dtΘ

m,−∆−1
h Φm

)
+
(
Λm,Φm

))
(3.67)

≤ k
∑̀
m=1

(
ah(∆−1

h Φm,∆−1
h Φm) +

ε4

1− ε3
ah(Φm,Φm)

)
+ C

(
k2ρ1(ε, d) + h6ρ3(ε)

)
,

where we have used the solution estimates and the facts [10]

‖u− Phu‖H−1 ≤ Ch3‖u‖H2 , ‖w − Phw‖H−1 ≤ Ch3‖w‖H2 .

We now bound the last term on the left-hand side of (3.66). By the definition of
fm, we have

f(u(tm))− fm = f(u(tm))− f
(
Phu(tm)

)
+ f

(
Phu(tm)

)
− fm

≥ −C|Θm|+ f ′
(
Phu(tm)

)
Φm − 3Phu(tm) (Φm)2 + (Φm)3 − kdtUm.
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By the discrete energy law (3.17), (3.13), and (3.38), we obtain for any 1 ≤ ` ≤M

2k
∑̀
m=1

1

ε

(
f(u(tm))− fm,Φm

)
(3.68)

≥ 2k
∑̀
m=1

1

ε

(
f ′
(
Phu(tm)

)
, (Φm)2

)
+

2k

ε

∑̀
m=1

‖Φm‖4L4 −
Ck

ε

∑̀
m=1

‖Φm‖3L3

− k ε4

1− ε3
∑̀
m=1

ah(Φm,Φm)− C
(
h6ε−6‖u‖2L2((0,T );Hs(Ω)) + k2ε−6Eh(U0)

)
.

Substituting (3.67) and (3.68) into (3.66) we get

ah(∆−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.69)

+
2k(1− 5ε3)

1− ε3
∑̀
m=1

(
εah(Φm,Φm) +

1− ε3

ε

(
f ′(Phu(tm))Φm,Φm

))
+

6ε4

1− ε3
k
∑̀
m=1

ah(Φm,Φm) +
2k

ε

∑̀
m=1

‖Φm‖4L4

≤ Ck
∑̀
m=1

ah(∆−1
h Φm,∆−1

h Φm) +
Ck

ε

∑̀
m=1

‖Φm‖3L3

− Ckε2
∑̀
m=1

(
f ′(Phu(tm))Φm,Φm

)
+ C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ C

(
h6ε−6‖u‖2L2((0,T );Hs(Ω) + k2ε−6Eh(U0)

)
.

Step 3. To control the second term on the right-hand side of (3.69), we appeal to
the following Gagliardo–Nirenberg inequality [1]:

‖v‖3L3(K) ≤ C
(
‖∇v‖

d
2

L2(K)

∥∥v∥∥ 6−d
2

L2(K)
+ ‖v‖3L2(K)

)
∀K ∈ Th.

Thus we get

Ck

ε

∑̀
m=1

‖Φm‖3L3 ≤ ε4k
∑̀
m=1

‖∇Φm‖2L2(Th) +
Ck

ε

∑̀
m=1

‖Φm‖3L2(3.70)

+ Cε−
4(1+d)
4−d k

∑̀
m=1

∥∥Φm
∥∥ 2(6−d)

4−d
L2

≤ k
∑̀
m=1

( ε4

1− ε3
ah(Φm,Φm) +

C

ε
‖Φm‖3L2 + Cε−

4(1+d)
4−d

∥∥Φm
∥∥ 2(6−d)

4−d
L2

)
.

The third item on the right-hand side of (3.69) can be bounded by

−C(f ′(Phu(tm))Φm,Φm) ≤ ε2

1− ε3
ah(Φm,Φm) +

C

ε2
ah(∆−1

h Φm,∆−1
h Φm).(3.71)

Again, here we have used (3.38).
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Finally, for the third term on the left-hand side of (3.69), we utilize the discrete
spectrum estimate (3.20) to bound it from below as follows:

εah(Φm,Φm) +
1− ε3

ε

(
f ′(Phu(tm))Φm,Φm

)
≥ −c0‖∇∆−1Φm‖2L2 .(3.72)

By the stability of ∆−1 and (3.38), we also have

c0‖∇∆−1Φm‖2L2 ≤ C‖Φm‖2L2 ≤
ε4

1− ε3
ah(Φm,Φm) + Cah(∆−1

h Φm,∆−1
h Φm).(3.73)

Step 4. Substituting (3.70), (3.71), (3.72), (3.73) into (3.69), we get

ah(∆−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.74)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
2k

ε

∑̀
m=1

‖Φm‖4L4

≤ Ck
∑̀
m=1

ah(∆−1
h Φm,∆−1

h Φm) +
Ck

ε

∑̀
m=1

‖Φm‖3L2

+ Cε−
4(1+d)
4−d k

∑̀
m=1

∥∥Φm
∥∥ 2(6−d)

4−d
L2 + C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ C

(
h6ε−6‖u‖2L2((0,T );Hs(Ω) + k2ε−6Eh(U0)

)
.

By the discrete energy law (3.17), general assumption (2.3), H1 stability of elliptic
projection, L∞ stability (or L∞ error estimate and triangle inequality)
of elliptic projection, we have ‖U `‖L2 ≤ Cε−σ1 for 0 ≤ ` ≤ M . Since the projec-
tion of u is bounded, then we get ‖Φ`‖L2 ≤ Cε−σ1 for 0 ≤ ` ≤ M . Because the

exponent for
∥∥Φm

∥∥
L2 is 2(6−d)

4−d , which is bigger than 3 for d = 2, 3, therefore∥∥Φm
∥∥4

L2 ≤ Cε−σ1
∥∥Φm

∥∥3

L2 ,
∥∥Φm

∥∥6

L2 ≤ Cε−3σ1
∥∥Φm

∥∥3

L2 .

By the Schwarz and Young’s inequalities, we have∥∥Φm
∥∥3

L2 = ah(−∆−1
h Φm,Φm)

3
2 ≤ ah(∆−1

h Φm,∆−1
h Φm)

3
4 ah(Φm,Φm)

3
4(3.75)

≤ ε
4(1+d)
4−d +(2d−3)σ1

ε4

1− ε3
ah(Φm,Φm)

+ Cε−4ε−
4(1+d)
4−d −(2d−3)σ1ah(∆−1

h Φm,∆−1
h Φm)3.

Therefore, (3.74) becomes

ah(∆−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.76)

+
ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
2k

ε

∑̀
m=1

‖Φm‖4L4D
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≤ Ck
∑̀
m=1

ah(∆−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ Ckε−

4(6+d)
4−d −(4d−6)σ1

∑̀
m=1

ah(∆−1
h Φm,∆−1

h Φm)3.

By (2.3) and (3.17), we get

‖U `‖−1,h ≤ k
∑̀
m=1

‖dtUm‖−1,h + ‖U0‖−1,h ≤ Cε−σ1 .(3.77)

Using the boundedness of the projection, we obtain ‖Φ`‖2−1,h ≤ Cε−2σ1 . Also, (3.76)
can be written in the following equivalent form:

ah(∆−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.78)

+
ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
2k

ε

∑̀
m=1

‖Φm‖4L4 ≤M1 +M2,

where

M1 := Ck

`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
(3.79)

+ Ckε−
4(6+d)
4−d −(4d−6)σ1

`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm)3,

M2 := Ckah(∆−1
h Φ`,∆−1

h Φ`) + Ckε−
4(6+d)
4−d −(4d−6)σ1ah(∆−1

h Φ`,∆−1
h Φ`)3.(3.80)

It is easy to check that

M2 ≤
1

2
‖Φ`‖2−1,h provided that k ≤ Cε

4(6+d)
4−d +(4d−6)σ1 .(3.81)

Under this restriction, we have

ah(∆−1
h Φ`,∆−1

h Φ`) + 2
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.82)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
4k

ε

∑̀
m=1

‖Φm‖4L4

≤ Ck
`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ Ckε−

4(6+d)
4−d −(4d−6)σ1

`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm)3.
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Define the slack variable d` ≥ 0 such that

ah(∆−1
h Φ`,∆−1

h Φ`) + 2
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.83)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
4k

ε

∑̀
m=1

‖Φm‖4L4 + d`

= Ck

`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ Ckε−

4(6+d)
4−d −(4d−6)σ1

`−1∑
m=1

ah(∆−1
h Φm,∆−1

h Φm)3.

We also define {S`}`≥1 by

S` = d` + 2
∑̀
m=1

ah(∆−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1)(3.84)

+ ah(∆−1
h Φ`,∆−1

h Φ`) +
2ε4k

1− ε3
∑̀
m=1

ah(Φm,Φm) +
4k

ε

∑̀
m=1

‖Φm‖4L4 ,

and (3.83) implies that S1 = C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
. Then

(3.85) S`+1 − S` ≤ CkS` + Ckε−
4(6+d)
4−d −(4d−6)σ1S3

` ∀` ≥ 1.

Applying Lemma 2.3 of [13] to {S`}`≥1 defined above, we obtain for all ` ≥ 1

(3.86) S` ≤ a−1
`

{
S−2

1 − 2Cε−
4(6+d)
4−d −(4d−6)σ1k

`−1∑
s=1

a−2
s+1

}− 1
2

provided that

(3.87) S−2
1 − 2Cε−

4(6+d)
4−d −(4d−6)σ1k

`−1∑
s=1

a−2
s+1 > 0.

We note that as (1 ≤ s ≤ `) are all bounded as k → 0, and therefore (3.87) holds
under the mesh constraint stated in the theorem. It follows from (3.49) that

(3.88) S` ≤ 2a−1
` S1 ≤ C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
.

Then (3.50) follows from the triangle inequality on Em = Θm + Φm. Equation
(3.52) can be obtained by (3.84) and (3.88), and (3.51) is a consequence of the Poincaré
inequality.

Now setting ηh = Φm in (3.64) and vh = −Ψm/ε in (3.65) and adding the resulting
equations yields

1

2
dt‖Φm‖2L2 +

k

2
‖dtΦm‖2L2 +

1

ε
‖Ψm‖2L2 =

1

ε2
(
f(u(tm))− f(Um),Ψm

)
(3.89)

+
(
R(utt;m),Φm

)
−
(
dtΘ

m,Φm
)
− 1

ε

(
Λm,Ψm

)
.
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The last three terms on the right-hand side of (3.89) can be bounded in the same way
as in (3.67), and the first term can be controlled as

1

ε2
(
f(u(tm))− f(Um),Ψm

)
=

1

ε2
(
f ′(ξ)Em,Ψm

)
≤ 1

2ε
‖Ψm‖2L2 +

C

ε3
‖Em‖2L2 ,(3.90)

where we have used the fact that

max
0≤m≤M

‖Um‖L∞ ≤ C,(3.91)

and the details can be found in [14]. Multiplying both sides of (3.89) by k and
summing over m from 1 to M yield the desired estimate (3.54). Estimate (3.55)

follows from an application of the inverse inequality ‖Φm‖L∞ ≤ h−
d
2 ‖Φm‖L2 and the

following L∞ estimate:

(3.92) ‖u− Phu‖L∞ ≤ Ch2| lnh|‖u‖W s,∞ ∀u ∈ H2(Ω).

Finally, it is well known that the following estimate holds:

(3.93) max
0≤m≤M

‖Λm‖L2 +

(
k

M∑
m=0

k‖dtΛm‖2L2

) 1
2

≤ Ch2ρ2(ε)

with ρ2(ε) = ε−max{σ1+5,σ3+ 7
2 ,σ2+ 5

2 ,σ4+1}. Using the identity

(3.94)
(
dtΦ

m,Φm
)

=
1

2
dt‖Φm‖2L2 +

k

2
‖dtΦm‖2L2 ,

we get

1

2
‖ΨM‖2L2 + k

M∑
m=1

k

2
‖dtΨm‖2L2 = k

M∑
m=1

(
dtΨ

m,Ψm
)

+
1

2
‖Ψ0‖2L2(3.95)

≤ k
M∑
m=1

(
k

4
‖dtΨm‖2L2 +

1

k
‖Ψm‖2L2

)
+

1

2
‖Ψ0‖2L2 .

The first term on the right-hand side of (3.95) can be absorbed by the second term
on the left-hand side of (3.95). The second tern on the right-hand side of (3.95) has
been obtained in (3.54). Estimate (3.58) for Wm then follows from (3.93) and (3.95).
Equation (3.59) follows from an application of the triangle inequality, the inverse
inequality, and (3.92). This completes the proof.

4. Convergence of numerical interfaces. In this section, we prove that the
numerical interface defined as the zero-level set of the finite element interpolation of
the solution Um converges to the moving interface of the Hele–Shaw problem under
the assumption that the Hele–Shaw problem has a unique global (in time) classical
solution. To this end, we first cite the following PDE convergence result proved in [2].

Theorem 4.1. Let Ω be a given smooth domain and Γ00 be a smooth closed hy-
persurface in Ω. Suppose that the Hele–Shaw problem starting from Γ00 has a unique
smooth solution

(
w,Γ :=

⋃
0≤t≤T (Γt × {t})

)
in the time interval [0, T ] such that

Γt ⊆ Ω for all t ∈ [0, T ]. Then there exists a family of smooth functions {uε0}0<ε≤1

which are uniformly bounded in ε ∈ (0, 1] and (x, t) ∈ ΩT such that if uε solves the
Cahn–Hilliard problem (1.1)–(1.5), then
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(i) lim
ε→0

uε(x, t) =

{
1 if (x, t) ∈ O
−1 if (x, t) ∈ I

uniformly on compact subsets, where

I and O stand for the “inside” and “outside” of Γ;
(ii) lim

ε→0

(
ε−1f(uε)− ε∆uε

)
(x, t) = −w(x, t) uniformly on ΩT .

We note that since Um is multivalued on the edges of the mesh Th, its zero-level
set is not well defined. To avoid this technicality, we use a continuous finite element
interpolation of Um to define the numerical interface. Let Ûm ∈ Sh denote the finite
element approximation of Um which is defined using the averaged degrees of freedom
of Um as the degrees of freedom for determining Ûm (cf. [18]).

By the construction, Ûm is expected to be very close to Um; hence, Ûm should
also be very close to u(tm). This is indeed the case as stated in the following theorem,

which says that Theorem 3.5 also holds for Ûm.

Theorem 4.2. Let Um denote the solution of scheme (3.1)–(3.14) and Ûm denote
its finite element approximation as defined above. Then under the assumptions of
Theorem 3.5 the error estimates for Um given in Theorem 3.5 are still valid for Ûm;
in particular, there holds

max
0≤m≤M

‖u(tm)− Ûm‖L∞(Th) ≤ C
(
h2| lnh|ε−γ + h−

d
2 ε−

7
2 r(h, k; ε, d, σi)

1
2

)
.(4.1)

We omit the proof to save space and refer the reader to [13] to see a proof of the
same nature for the related Allen–Cahn problem.

We are now ready to state the first main theorem of this section.

Theorem 4.3. Let {Γt}t≥0 denote the zero-level set of the Hele–Shaw problem
and

(
Uε,h,k(x, t),Wε,h,k(x, t)

)
denote the piecewise linear interpolation in time of the

finite element interpolation {(Ûm, Ŵm)} of the DG solution {(Um,Wm)}, namely,

Uε,h,k(x, t) :=
t− tm−1

k
Ûm(x) +

tm − t
k

Ûm−1(x),(4.2)

Wε,h,k(x, t) :=
t− tm−1

k
Wm(x) +

tm − t
k

Wm−1(x),(4.3)

for tm−1 ≤ t ≤ tm and 1 ≤ m ≤ M . Then, under the mesh and starting value
constraints of Theorem 3.5 and k = O(h2−γ) with γ > 0, we have the following:

(i) Uε,h,k(x, t)
ε↘0−→ 1 uniformly on compact subset of O.

(ii) Uε,h,k(x, t)
ε↘0−→ −1 uniformly on compact subset of I.

(iii) Moreover, in the case that dimension d = 2, when k = O(h3), suppose
that W 0 satisfies ‖wε0 − W 0‖L2 ≤ Chβ for some β > 3

2 ; then we have

Wε,h,k(x, t)
ε↘0−→ −w(x, t) uniformly on ΩT .

Proof. For any compact set A ⊂ O and for any (x, t) ∈ A, we have

|Uε,h,k − 1| ≤ |Uε,h,k − uε(x, t)|+ |uε(x, t)− 1|(4.4)

≤ |Uε,h,k − uε(x, t)|L∞(ΩT ) + |uε(x, t)− 1|.

Equation (3.55) of Theorem 3.5 infers that there exists a constant 0 < α < 4−d
2 such

that

(4.5) |Uε,h,k − uε(x, t)|L∞(ΩT ) ≤ Chα.
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The first term on the right-hand side of (4.4) tends to 0 when ε ↘ 0 (note that
h, k ↘ 0, too). The second term converges uniformly to 0 on the compact set A,
which is ensured by (i) of Theorem 4.1. Hence, assertion (i) holds.

To show (ii), we only need to replace O by I and 1 by −1 in the above proof. To
prove (iii), under the assumption k = O(h3), (3.59) in Theorem 3.5 implies that there
exists a positive constant 0 < ζ < 4−d

2 such that

(4.6) ‖Wε,h,k − wε‖L∞(ΩT ) ≤ Chζ .

Then by the triangle inequality we obtain for any (x, t) ∈ ΩT ,

|Wε,h,k(x, t)− (−w)| ≤ |Wε,h,k(x, t)− wε(x, t)|+ |wε(x, t)− (−w)|,(4.7)

≤ ‖Wε,h,k(x, t)− wε(x, t)‖L∞(ΩT ) + |wε(x, t)− (−w)|.

The first term on the right-hand side of (4.7) tends to 0 when ε ↘ 0 (note that
h, k ↘ 0, too). The second term converges uniformly to 0 in ΩT , which is ensured by
(ii) of Theorem 4.1. Thus assertion (iii) is proved. The proof is complete.

The second main theorem of this section, which is given below, addresses the
convergence of numerical interfaces.

Theorem 4.4. Let Γε,h,kt := {x ∈ Ω; Uε,h,k(x, t) = 0} be the zero-level set of
Uε,h,k(x, t); then under the assumptions of Theorem 4.3, we have

sup
x∈Γε,h,kt

dist(x,Γt)
ε↘0−→ 0 uniformly on [0, T ].

Proof. For any η ∈ (0, 1), define the tabular neighborhood Nη of width 2η of Γt

(4.8) Nη := {(x, t) ∈ ΩT ; dist(x,Γt) < η}.

Let A and B denote the complements of the neighborhoodNη inO and I, respectively:

A = O \ Nη and B = I \ Nη.

Note that A is a compact subset outside Γt and B is a compact subset inside Γt; then
there exists ε3 > 0, which only depends on η, such that for any ε ∈ (0, ε3)

|Uε,h,k(x, t)− 1| ≤ η ∀(x, t) ∈ A,(4.9)

|Uε,h,k(x, t) + 1| ≤ η ∀(x, t) ∈ B.(4.10)

Now for any t ∈ [0, T ] and x ∈ Γε,h,kt , from Uε,h,k(x, t) = 0 we have

|Uε,h,k(x, t)− 1| = 1 ∀(x, t) ∈ A,(4.11)

|Uε,h,k(x, t) + 1| = 1 ∀(x, t) ∈ B.(4.12)

Equations (4.9) and (4.11) imply that (x, t) is not in A, and (4.10) and (4.12) imply
that (x, t) is not in B; then (x, t) must lie in the tubular neighborhood Nη. Therefore,
for any ε ∈ (0, ε3),

(4.13) sup
x∈Γε,h,kt

dist(x,Γt) ≤ η uniformly on [0, T ].

The proof is complete.
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5. Numerical experiments. In this section, we present two two-dimensional
numerical tests to gauge the performance of the proposed fully discrete MIP-DG
methods using the linear element (i.e., r = 1). The square domain Ω = [−1, 1]2 is used

in both tests and the initial condition is chosen to have the form u0 = tanh
(d0(x)√

2ε

)
,

where d0(x) denotes the signed distance from x to the initial interface Γ0.
Our first test uses a smooth initial condition to satisfy the requirement for u0;

consequently, the theoretical results established in this paper apply to this test prob-
lem. On the other hand, a nonsmooth initial condition is used in the second test, and
hence the theoretical results of this paper may not apply. But we still use our MIP-
DG methods to compute the error order, the energy decay, and the evolution of the
numerical interfaces. Our numerical results suggest that the proposed DG schemes
work well, even though a convergence result is missing for them.

Test 1. Consider the Cahn–Hilliard problem (1.1)–(1.5) with the following initial
condition:

(5.1) u0(x) = tanh
(d0(x)√

2ε

)
,

where tanh(t) = (et − e−t)/(et + e−t), and d0(x) represents the signed distance func-

tion to the ellipse
x2
1

0.36 +
x2
2

0.04 = 1. Hence, u0 has the desired form as stated in
Proposition 3.4.

Table 5.1
Spatial errors and convergence rates of Test 1 with ε = 0.1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.53325 0.84260

h = 0.2
√

2 0.21280 1.3253 0.64843 0.3779

h = 0.1
√

2 0.07164 1.5707 0.43273 0.5835

h = 0.05
√

2 0.01779 2.0097 0.21411 1.0151

h = 0.025
√

2 0.00454 1.9703 0.10890 0.9753

t
0 0.02 0.04 0.06 0.08 0.1

En
er

gy

1.5

2

2.5

3

3.5

4

Fig. 5.1. Decay of the numerical energy Eh(U`) of Test 1.

Table 5.1 shows the spatial L2 and H1 norm errors and convergence rates, which
are consistent with what are proved for the linear element in the convergence theorem.
ε = 0.1 is used to generate the table.
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Fig. 5.2. Test 1: Snapshots of the zero-level set of uε,h,k at time t = 0, 0.005, 0.015, 0.03 and
ε = 0.125, 0.025, 0.005, 0.001.

Table 5.2
Spatial errors and convergence rates of Test 2 with ε = 0.1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.26713 0.35714

h = 0.2
√

2 0.07161 1.8993 0.18411 0.9559

h = 0.1
√

2 0.01833 1.9660 0.09620 0.9365

h = 0.05
√

2 0.00476 1.9452 0.04928 0.9650

h = 0.025
√

2 0.00121 1.9760 0.02497 0.9808

Figure 5.1 plots the change of the discrete energy Eh(U `) in time, which should
decrease according to (3.17). This graph clearly confirms this decay property. Fig-
ure 5.2 displays four snapshots at four fixed time points of the numerical interface
with four different ε. They clearly indicate that at each time point the numerical
interface converges to the sharp interface Γt of the Hele–Shaw flow as ε tends to zero.
It also shows that the numerical interface evolves faster in time for larger ε and con-
firms the mass conservation property of the Cahn–Hilliard problem as the total mass
m =

∫
Ω
u dx equals a constant value 3.064 when ε = 0.125.

Test 2. Consider the Cahn–Hilliard problem (1.1)–(1.5) with the following initial
condition:

u0(x) = tanh
( 1√

2ε

(
min

{√
(x1 + 0.3)2 + x2

2 − 0.3,
√

(x1 − 0.3)2 + x2
2 − 0.25

}))
.

We note that u0 can be written in the form given in (5.1) with d0(x) being the signed
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Fig. 5.3. Decay of the numerical energy Eh(U`) of Test 2.
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Fig. 5.4. Test 2: Snapshots of the zero-level set of uε,h,k at time t = 0, 0.001, 0.04, 0.09 and
ε = 0.125, 0.025, 0.005, 0.001.

distance function to the initial curve. We note that u0 does not have the desired form
as stated in Proposition 3.4.

Table 5.2 shows the spatial L2 and H1 norm errors and convergence rates, which
are consistent with what are proved for the linear element in the convergence theorem.
ε = 0.1 is used to generate the table. Figure 5.3 plots the change of the discrete energy
Eh(U `) in time, which should decrease according to (3.17). This graph clearly confirms
this decay property. Figure 5.4 displays four snapshots at four fixed time points of
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the numerical interface with four different ε. They clearly indicate that at each time
point the numerical interface converges to the sharp interface Γt of the Hele–Shaw
flow as ε tends to zero. It again shows that the numerical interface evolves faster in
time for larger ε and confirms the mass conservation property of the Cahn–Hilliard
problem as the total mass m =

∫
Ω
u dx equals a constant value 3.032 when ε = 0.125.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 2003.
[2] N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn-Hilliard equation to

the Hele-Shaw model, Arch. Ration. Mech. Anal., 128 (1994), pp. 165–205.
[3] A. C. Aristotelous, O. A. Karakashian, and S. M. Wise, A mixed discontinuous Galerkin,

convex splitting scheme for a modified Cahn-Hilliard equation, Discrete Contin. Dyn. Syst.
Ser. B, 18 (2013), pp. 2211–2238 .

[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, New York, 2008.

[5] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I, Interfacial free energy,
J. Chem. Phys., 28 (1958), pp. 258–267.

[6] X. Chen, Spectrum for the Allen-Cahn and Cahn-Hilliard and phase-field equations for generic
interfaces, Comm. Partial Differential Equations, 19 (1994), pp. 1371–1395.

[7] X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential
Geom., 44 (1996), pp. 262–311.

[8] Z. Chen and H. Chen, Pointwise error estimates of discontinuous Galerkin methods with
penalty for second-order elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 1146–
1166.

[9] Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition,
SIAM J. Numer. Anal., 28 (1991), pp. 1310–1322.

[10] T. Dupont, Some L2 error estimates for parabolic Galerkin methods, in The Mathematical
Foundations of the Finite Element Method with Applications to Partial Differential Equa-
tions, Academic Press, New York, 1972, pp. 491–504.

[11] C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-
dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26 (1989), pp. 884–903.

[12] X. Feng, Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard dif-
fuse interface model for two phase fluid flows, SIAM J. Numer. Anal., 44 (2006), pp. 1049–
1072.

[13] X. Feng and Y. Li, Analysis of symmetric interior penalty discontinuous Galerkin methods
for the Allen-Cahn equation and the mean curvature flow, IMA J. Numer. Anal., 35 (2015),
pp. 1622–1651.

[14] X. Feng, Y. Li, and Y. Xing, Analysis of mixed interior penalty discontinuous Galerkin
methods for the Cahn-Hilliard equation and the Hele-Shaw flow, arXiv:1502.03421, 2015.

[15] X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard
equation, Numer. Math., 74 (2004), pp. 47–84.

[16] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation
for the Hele-Shaw problem, Interfaces Free Bound., 7 (2005), pp. 1–28.

[17] X. Feng and H. Wu, A posteriori error estimates and an adaptive finite element algorithm for
the Cahn-Hiliard equation and the Hele-Shaw flow, J. Comput. Math., 26 (2008), pp. 767–
796.

[18] O. Karakashian and F. Pascal, Adaptive discontinuous Galerkin approximations of second
order elliptic problems, in Proceedings of European Congress on Computational Methods
in Applied Sciences and Engineering, 2004.

[19] R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London
Ser. A, 422 (1989), pp. 261–278.

[20] G. B. McFadden, Phase field models of solidification, Contemp. Math., 295 (2002), pp. 107–
145.

[21] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations:
Theory and Implementation Frontiers in Appl. Math., SIAM, Philadelphia, 2008.

[22] B. Stoth, Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spher-
ical symmetry, J. Differential Equations, 125 (1996), pp. 154–183.

D
ow

nl
oa

de
d 

03
/2

9/
16

 to
 1

69
.2

35
.2

28
.2

03
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Preliminaries
	Fully discrete MIP-DG approximations
	Formulations of the MIP-DG method
	Discrete energy law and well-posedness
	Discrete spectrum estimate on the DG space
	Error analysis

	Convergence of numerical interfaces
	Numerical experiments
	References

