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a b s t r a c t

Westudy the superconvergence property of the local discontinuousGalerkin (LDG)method
for solving the linearized Korteweg–de Vries (KdV) equation. We prove that, if the
piecewise Pk polynomials with k ≥ 1 are used, the LDG solution converges to a particular
projection of the exact solution with the order k + 3/2, when the upwind flux is used for
the convection term and the alternating flux is used for the dispersive term. Numerical
examples are provided at the end to support the theoretical results.
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1. Introduction

In this paper, we consider the linearized Korteweg–de Vries (KdV) equation given by

ut + αux + βuxxx = 0, (1.1)

where α, β are both constants. We study the superconvergence of the local discontinuous Galerkin (LDG) solutions toward
a particular projection of the exact solution.

The nonlinear KdV equation

ut + αux + γ uux + βuxxx = 0, (1.2)

with constants α, β , and γ , was first introduced by Dutch mathematicians Diederik Korteweg and Gustav de Vries. It was
originally proposed with the purpose of modeling shallow water waves [1], and later has been found to model numerous
other wave-like phenomena in nature, such as ion-acoustic waves and collisionless-plasma waves [2]. The Eq. (1.1) consid-
ered in this paper is a linearized model which is obtained by assuming γ = 0 in (1.2).

The numerical methods discussed here are the discontinuous Galerkin (DG) methods. They belong to a class of finite
element methods using piecewise polynomial spaces for both the numerical solution and the test functions, and were
originally devised to solve hyperbolic conservation laws with only first order spatial derivatives, e.g. [3–7]. They allow
arbitrarily unstructured meshes, and have a compact stencil; moreover, they easily accommodate arbitrary h-p adaptivity.
The DG methods were later generalized to the LDG methods by Cockburn and Shu to solve the convection–diffusion
equation [8], motivated by successful numerical experiments from Bassi and Rebay for the compressible Navier–Stokes
equations [9]. As a result, the LDG methods have been successfully applied to solve various partial differential equations
(PDEs) containing higher-order derivatives. For KdV-type equations, generalized by (1.2), an LDGmethodwas first developed
in [10], in which a sub-optimal error estimate was provided for the linear problem (1.1). In [11], Xu and Shu proved the
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k + 1/2-th order convergence rate for the LDG method applied to the fully nonlinear KdV equation. Later, an optimal L2
error estimate was derived in [12] for the linearized equation. Recently, there has been a different approach in solving
the KdV equations by using the DG method directly without introducing any auxiliary variables, nor rewriting the original
equation into a larger system. Cheng and Shu proposed such DG methods in [13] for PDEs involving high-order derivatives,
and an energy-conserving DGmethod for the KdV equation was developed by Bona et al. in [14]. Another class of numerical
methods based on discontinuous piecewise polynomials, the spectral volume (SV) methods, was recently developed by
Wang et al. [15–17]. Kannan and Wang [18] also proposed the LDG2 method, which is a variant of the LDG method but
reduces its unsymmetrical nature. The generalization of the SV and LDG2methods to the partial differential equations with
high order spatial derivative, including the KdV equation, is studied in [19,20].

The superconvergence property of the DG and LDG methods has been abundantly studied by many researchers in the
literature. Postprocessing techniques, by using a specially designed convolution kernel, have been studied in [21–23] to
obtain superconvergence for the DG methods. In [24,25], Adjerid et al. proved superconvergence of the LDG solutions at
Radau points for solving convection- or diffusion-dominant time-dependent equations. For convection–diffusion equations,
Celiker and Cockburn [26] found superconvergence of order 2k + 1 for the numerical fluxes for a large class of DG methods
applied to the steady-state solution of convection–diffusion equations. Their results were extended by Zhang, Xie and
Zhang [27] to relate the leading term of the discretization error with the Legendre polynomial. Based on Fourier analysis,
Cheng and Shu [13] proved the superconvergence of the DG solutions toward a particular projection of the exact solution
in the case of piecewise linear polynomials on uniform meshes for the linear conservation law. Extensive numerical results
demonstrate that the superconvergence property also holds for very general cases, including nonlinear equations, systems,
and high dimensions. The results were later improved by using a different framework introduced in [28] which does not rely
on Fourier analysis and is more general. They proved the superconvergence results for nonuniform meshes and schemes of
any order for the linear conservation law and convection–diffusion equation. The same technique was later used in [29] to
prove the superconvergence property of the LDG methods for a class of fourth-order problems.

Deriving an error estimate or superconvergence for the LDG methods for the linearized KdV equation (1.1) is more
difficult than doing so for the diffusion equations since there is no control on the derivatives from the initial condition
itself. In a recent paper [12], Xu and Shu provided a new technique to prove the optimal L2 error estimate for this problem.
In this paper, we extend these results in [12] and the approach in [28] to obtain the superconvergence property of the
LDG methods for the linearized KdV equation (1.1). This generalization is not straightforward, and it involves several
difficulties, including the non-trivial design of a special projection of the initial condition to guarantee the superconvergence
property, as well as analysis for different numerical fluxes. This paper is organized as follows: in Section 2, we introduce the
linearized KdV equation, and present the semi-discrete LDG methods; in Section 3, the superconvergence of LDG methods
toward a particular projection of the exact solution is provided; Section 4 contains numerical experiments that support the
superconvergence results; the concluding remarks are provided in Section 5; lastly, an Appendix is attached that details the
more technical proof of one lemma utilized in this paper.

2. Local discontinuous Galerkin discretization

We are interested in the linearized KdV equation with periodic boundary conditions given by

ut + αux + βuxxx = 0 in [a, b] × [0, T ], (2.1)
u(x, 0) = u0(x),
u(a, t) = u(b, t),

where α, β are constants and u0(x) is a smooth 2π-periodic function. The periodic boundary condition is assumed for the
sake of simplicity only and is not essential.

2.1. Notations

We divide the interval I = [a, b] into N subintervals and denote the cells by Ij = [xj− 1
2
, xj+ 1

2
] for j = 1, . . . ,N . The

center of each cell is xj =
1
2 (xj− 1

2
+ xj+ 1

2
), and the mesh size is denoted by hj = xj+ 1

2
− xj− 1

2
, with h = max1≤j≤N hj being

the maximal mesh size. We assume that the mesh is regular, namely, the ratio between the maximal and the minimal mesh
sizes stays bounded during mesh refinement, and we denote λ ≥ maxj∆xj/minj∆xj. The piecewise polynomial space V k

h
is defined as the space of polynomials of degree up to k in each cell Ij, that is,

V k
h = {v : v|Ij ∈ Pk(Ij), j = 1, 2, . . . ,N}. (2.2)

Note that functions in V k
h are allowed to have discontinuities across element interfaces.

The solution of the numerical scheme is denoted by uh, which belongs to the finite element space V k
h . We denote by

(uh)
+

j+ 1
2
and (uh)

−

j+ 1
2
the limit values of uh at xj+ 1

2
from the right cell Ij+1 and from the left cell Ij, respectively. We use the
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usual notations [uh] = u+

h − u−

h and ūh =
1
2 (u

+

h + u−

h ) to represent the jump and the mean of the function uh at the element
interfaces, respectively. For any element K = Ij, we define the inner product as

(w, v)K =


K
wvdx

for the scalar variablesw, v. The L2 norm of v over the element K is denoted by ∥v∥K =
√
(v, v)K .

2.2. The LDG method

In this subsection, we define the semi-discrete LDGmethod for the linearized KdV equation (2.1) by discretizing the space
with the LDG method and leaving the time dependence continuous.

We write the KdV equation into a first-order system by substituting ux with variable v and uxx with variablew:

ut + αux + βwx = 0, w = vx, v = ux. (2.3)

The LDG method for (2.3) is then formulated as follows: find uh, vh,wh ∈ V k
h such that

((uh)t , φ)Ij − (αuh, φx)Ij + (αũhφ
−)j+ 1

2
− (αũhφ

+)j− 1
2

− (βwh, φx)Ij + (βŵhφ
−)j+ 1

2
− (βŵhφ

+)j− 1
2

= 0, (2.4)

(wh, ϕ)Ij + (vh, ϕx)Ij − (v̂hϕ
−)j+ 1

2
+ (v̂hϕ

+)j− 1
2

= 0, (2.5)

(vh, ψ)Ij + (uh, ψx)Ij − (ûhψ
−)j+ 1

2
+ (ûhψ

+)j− 1
2

= 0 (2.6)

for all test functions φ, ϕ,ψ ∈ V k
h . The tilde and hatted terms, ũh, ŵh, v̂h, and ûh in (2.4)–(2.6) are the cell boundary terms

obtained from integration by parts, and are referred to as the numerical fluxes. These numerical fluxes are single-valued
functions defined on the cell boundaries and should be designed according to guiding principles for different PDEs to ensure
numerical stability. Based on the upwinding idea, ũh should be picked as u−

h if α > 0 or u+

h if α < 0, and v̂h should be picked
as v+

h if β > 0 or v−

h if β < 0. Also, ûh and ŵh should be chosen alternatively from the left and the right. Without loss of
generality, we assume both α, β > 0. Therefore, we can use the simple fluxes:

ũh = u−

h , ŵh = w+

h , v̂h = v+

h , ûh = u−

h , (2.7)

or

ũh = u−

h , ŵh = w−

h , v̂h = v+

h , ûh = u+

h . (2.8)

The scheme presented here is a special case of the LDG methods in [10] when applied to the simple linearized KdV
equation (2.1).

2.3. Projections

Next, we introduce the projections to be used throughout this paper. The standard L2 projection of a function ω(x)with
k + 1 continuous derivatives into the space V k

h is denoted by Ph, i.e.,

(Phω, φ)Ij = (ω, φ)Ij ∀φ ∈ Pk(Ij).

In addition, we define P−

h ω to be a projection of ω into V k
h such that

(P−

h ω, φ)Ij = (ω, φ)Ij ∀φ ∈ Pk−1(Ij) and (P−

h ω)
−(xj+ 1

2
) = ω−(xj+ 1

2
).

Similarly, the projection P+

h ω is defined as the projection of ω into V k
h such that

(P+

h ω, φ)Ij = (ω, φ)Ij ∀φ ∈ Pk−1(Ij) and (P+

h ω)
+(xj− 1

2
) = ω+(xj− 1

2
).

For these projections, it can be shown (see [30]) that

∥ωe
∥L2 + h∥ωe

∥L∞ + h
1
2 ∥ωe

∥Γh ≤ Chk+1, (2.9)

where ωe
= ω − Phω or ωe

= ω − P±

h ω, and Γh denotes the set of boundary points of all cells. The constant C depends on
the function ω, but is independent of the mesh size h.

Assume the exact solution is ω and the numerical solution is ωh (ω can be u, v orw). Let us denote the errors by

eω = ω − ωh = ηω + ζω, ηω = ω − P±

h ω, ζω = P±

h ω − ωh, (2.10)

which, from left to right, respectively, represent the error between the exact solution and the numerical solution, the
projection error, and the error between the numerical solution and the particular projection of the exact solution. Here,
the projection P±

h can be P−

h or P+

h depending on the choice of numerical flux and will be specified later for each variable u,
v, andw.
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2.4. Initial condition

To obtain the superconvergence property of the proposed LDG method, the projections of the initial conditions for the
numerical scheme need to be carefully chosen. We need to define the initial conditions according to which set of numerical
fluxes is being used in the LDG method.

If the numerical fluxes (2.7) are used in the LDGmethod, we define the projection P1
h as follows: for any function u, choose

P1
hu ∈ V k

h such that, if vh,wh ∈ V k
h are the solutions to (with given P1

hu)

(wh, ϕ)Ij + (vh, ϕx)Ij − (v+

h ϕ
−)j+ 1

2
+ (v+

h ϕ
+)j− 1

2
= 0, (2.11)

(vh, ψ)Ij + (P1
hu, ψx)Ij − ((P1

hu)
−ψ−)j+ 1

2
+ ((P1

hu)
−ψ+)j− 1

2
= 0 (2.12)

for any ψ, ϕ ∈ V k
h , then we require

((P−

h u − P1
hu)− (P+

h v − vh − P+

h w + wh), φ)Ij = 0, ∀φ ∈ Pk−1(Ij), (2.13)

(P−

h u − P1
hu)

−(xj+ 1
2
) = (P+

h v − vh − P+

h w + wh)
+(xj+ 1

2
). (2.14)

If the numerical fluxes (2.8) are used in the LDGmethod, we introduce a new variable z = u+α−1βw, which will also be
used later in the proof of superconvergence in Section 3. The projection P2

h is defined as follows: for any function u, choose
P2
hu ∈ V k

h such that, if vh, zh ∈ V k
h are the solutions to (with given P2

hu)

(αβ−1(zh − P2
hu), ϕ)Ij + (vh, ϕx)Ij − (v+

h ϕ
−)j+ 1

2
+ (v+

h ϕ
+)j− 1

2
= 0, (2.15)

(vh, ψ)Ij + (P2
hu, ψx)Ij − ((P2

hu)
+ψ−)j+ 1

2
+ ((P2

hu)
+ψ+)j− 1

2
= 0 (2.16)

for any ψ, ϕ ∈ V k
h , then we require

P−

h z − zh = P+

h u − P2
hu + α−1β(P+

h v − vh − P+

h u + P2
hu). (2.17)

Lemma 2.1. The projections P1
hu and P2

hu both exist and are unique. Moreover, there holds the error estimate

∥P−

h u − P1
hu∥I + ∥P+

h v − vh∥I + ∥P+

h w − wh∥I ≤ C(α, β, λ, ∥u∥k+3)hk+3/2, (2.18)

∥(u − P1
hu)t∥I ≤ C(α, β, λ, ∥u∥k+3, ∥ut∥k+1)hk+1 (2.19)

for the projection P1
hu and vh,wh defined in (2.11) and (2.12), and

∥P+

h u − P2
hu∥I + ∥P+

h v − vh∥I + ∥P−

h z − zh∥I ≤ C(α, β, λ, ∥u∥k+3)hk+3/2, (2.20)

∥(u − P2
hu)t∥I ≤ C(α, β, λ, ∥u∥k+3, ∥ut∥k+1)hk+1 (2.21)

for the projection P2
hu and vh, zh defined in (2.15) and (2.16).

The proof of this lemma is provided in the Appendix.Wewould like to remark that the operators P1
h and P2

h are introduced
only for the purpose of technical proof of superconvergence. In actual numerical computation, included in Section 4, we have
found that superconvergence can still be observed if the usual L2 projection of u is used as the initial condition. In that case,
the superconvergence result does not hold at t = 0 and for very small t , but – for a later time – the numerical scheme seems
to help recover the superconvergence performance.

2.5. Preliminary

In a recent paper by Xu and Shu [12], the optimal error estimate of the LDG method has been studied for the third- and
fifth-order wave equations. Following the same technique, we have the following error estimate for the KdV equation (see
the proof of Theorem 2.5 in [12]):

Lemma 2.2. Let u, v, and w be the exact solutions of the linearized KdV equation (2.3). Also, let uh, vh, and wh be the numerical
solutions of the semi-discrete LDG method (2.4)–(2.6) with the numerical fluxes defined in (2.7) and the initial condition
uh(·, 0) = P1

hu0(x), or the numerical fluxes defined in (2.8) and the initial condition uh(·, 0) = P2
hu0(x). Then there holds the

following error estimate:

∥eu∥I + ∥ev∥I + ∥ew∥I + ∥(eu)t∥I ≤ Chk+1, (2.22)

where C = C(t, λ, ∥u∥L∞((0,t);Hk+3(I)), ∥ut∥L∞((0,t);Hk+2(I))) is a constant independent of h.
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At the end of this section, the following two functionals related to the L2 norm of a function f (x) on Ij, as defined in [28]
to obtain the superconvergence property of the method, are needed:

B−

j (f ) =


Ij
f (x)

x − xj−1/2

hj

d
dx


f (x)

x − xj
hj


dx,

B+

j (f ) =


Ij
f (x)

x − xj+1/2

hj

d
dx


f (x)

x − xj
hj


dx.

The properties of these functionals in the following lemma are essential to the proof of superconvergence.

Lemma 2.3. For any function f (x) ∈ C1 on Ij, we have

B−

j (f ) =
1
4hj


Ij
f 2(x)dx +

f 2(xj+1/2)

4
, (2.23)

B+

j (f ) = −
1
4hj


Ij
f 2(x)dx −

f 2(xj−1/2)

4
. (2.24)

The proof of this lemma can be found in [28] and is therefore omitted.

3. Superconvergence

The superconvergence property of the LDG method is studied in this section. We will prove superconvergence of order
k+ 3/2 toward a particular projection of the exact solution. Since the proofs of the superconvergence property for different
numerical fluxes are slightly different, we start by presenting the following theorem for when the numerical fluxes (2.7) are
used:

Proposition 3.1. Let u, v, and w be the exact solutions of the linearized KdV equation (2.3) when α, β > 0. Also, let uh, vh,
andwh be the numerical solutions of the semi-discrete LDG method (2.4)–(2.6)with the numerical fluxes defined in (2.7) and the
initial condition uh(·, 0) = P1

hu0(x). The particular projections of the exact solutions are defined as P−

h u, P+

h v, and P+

h w, and the
corresponding errors (2.10) are given by

ζu = P−

h u − uh, ζv = P+

h v − vh, ζw = P+

h w − wh (3.1)

to be consistent with the choice of numerical fluxes. For regular triangulations of I = [a, b], if the finite element space V k
h with

k ≥ 1 is used, then there holds the following error estimate:

∥ζu(·, t)∥I ≤ Chk+ 3
2 , (3.2)

where C = C(t, α, β, λ, ∥u∥L∞((0,t);Hk+3(I)), ∥ut∥L∞((0,t);Hk+2(I)), ∥utt∥L∞((0,t);Hk+1(I))).

Proof. Without loss of generality, we will only show the proof for the case α = 1. Since the proof is long, we divide the
process into three parts.

Part 1. By subtracting the LDG method (2.4)–(2.6) with the fluxes (2.7) from the weak formulation satisfied by the exact
solutions u, v, andw, we can derive the error equations

((eu)t , φ)Ij − (eu, φx)Ij + (e−

u φ
−)j+ 1

2
− (e−

u φ
+)j− 1

2
− (βew, φx)Ij + (βe+

wφ
−)j+ 1

2
− (βe+

wφ
+)j− 1

2
= 0, (3.3)

(ew, ϕ)Ij + (ev, ϕx)Ij − (e+

v ϕ
−)j+ 1

2
+ (e+

v ϕ
+)j− 1

2
= 0, (3.4)

(ev, ψ)Ij + (eu, ψx)Ij − (e−

u ψ
−)j+ 1

2
+ (e−

u ψ
+)j− 1

2
= 0 (3.5)

for all test functions φ, ϕ,ψ ∈ V k
h . Using the properties of the projections P±

h , the error equations are equivalent to

((eu)t , φ)Ij − (ζu, φx)Ij + (ζ−

u φ
−)j+ 1

2
− (ζ−

u φ
+)j− 1

2
− (βζw, φx)Ij + (βζ+

w φ
−)j+ 1

2
− (βζ+

w φ
+)j− 1

2
= 0, (3.6)

(ew, ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= 0, (3.7)

(ev, ψ)Ij + (ζu, ψx)Ij − (ζ−

u ψ
−)j+ 1

2
+ (ζ−

u ψ
+)j− 1

2
= 0. (3.8)
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Choosing the test functions φ = ζu, ϕ = βζv , andψ = −βζw , and summing up the above three equations over all cells, one
obtains

((eu)t , ζu)I +
1
2


j

[ζu]
2
j+ 1

2
+


j

β

−(ζw, (ζu)x)Ij + (ζ+

w ζ
−

u )j+ 1
2

− (ζ+

w ζ
+

u )j− 1
2


= 0, (3.9)

(ew, βζv)I +
1
2


j

β[ζv]
2
j+ 1

2
= 0, (3.10)

(ev,−βζw)I +


j

β

−(ζu, (ζw)x)Ij + (ζ−

u ζ
−

w )j+ 1
2

− (ζ−

u ζ
+

w )j− 1
2


= 0. (3.11)

By summing up these three equations and using the periodic boundary conditions, we have

((eu)t , ζu)I + β(ηw, ζv)I − β(ηv, ζw)I +
1
2


j

[ζu]
2
j+ 1

2
+

1
2


j

β[ζv]
2
j+ 1

2
= 0. (3.12)

Therefore,

1
2

d
dt

∥ζu∥
2
I = ((ζu)t , ζu)I ≤ |((ηu)t , ζu)I | + β |(ηw, ζv)I | + β |(ηv, ζw)I | . (3.13)

Part 2. Now, we return to the error equation (3.7). Rewrite it as

(ew, ϕ)Ij − ((ζv)x, ϕ)Ij − ([ζu]ϕ
−)j+ 1

2
= 0 (3.14)

by performing integration by parts on the term (ζv, ϕx)Ij . Define ζv = sj +bj(x)(x−xj)/hj on the cell Ij, where sj is a constant
and bj(x) ∈ Pk−1. By choosing the test function ϕ in (3.14) to be bj(x)(x − xj+ 1

2
)/hj on Ij, the last term ϕ−

j+ 1
2
will be reduced

to 0. Using the definition of B+

j (f ), one has
Ij
ewbj(x)(x − xj+ 1

2
)/hjdx − B+

j (bj(x)) = 0.

By Lemma 2.3, this is equivalent to
Ij
ewbj(x)

x − xj+ 1
2

hj
dx +

1
4hj


Ij
b2j (x)dx +

b2j (xj−1/2)

4
= 0,

and hence,
Ij
b2j (x)dx ≤ 4



Ij
ewbj(x)(x − xj+ 1

2
)dx

 . (3.15)

We define piecewise polynomials b(x) and φ1(x) such that b(x) = bj(x) and φ1(x) = x − xj+ 1
2
on Ij. Clearly, ∥φ1∥L∞ =

maxj hj = h, and Eq. (3.15) leads to

∥b∥2
I ≤ 4∥ew∥I∥b∥I∥φ1∥L∞ = 4h∥ew∥I∥b∥I .

Therefore, by Lemma 2.2, we have

∥b∥I ≤ 4h∥ew∥I ≤ Chk+2.

Secondly, rewrite the error equation (3.8) as

(ev, ψ)Ij − ((ζu)x, ψ)Ij − ([ζu]ψ
+)j− 1

2
= 0

by performing integration by parts on the term (ζu, ψx)Ij . Define ζu = tj +aj(x)(x−xj)/hj on the cell Ij, where tj is a constant
and aj(x) ∈ Pk−1. Also, define piecewise polynomials a(x) and φ2(x) such that a(x) = aj(x) and φ2(x) = x − xj− 1

2
on Ij.

Similar to the previous analysis, we conclude that

∥a∥I ≤ 4h∥ev∥I ≤ Chk+2.

Lastly, combine (3.6) and (3.8), which – after using integration by parts on the term (βζw, φx)Ij – yields

((eu)t + ev, φ)Ij + (β(ζw)x, φ)Ij + (β[ζw]φ−)j+ 1
2

= 0.
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Define ζw = rj + dj(x)(x − xj)/hj on the cell Ij, where rj is a constant and dj(x) ∈ Pk−1. Also, define a piecewise polynomial
d(x) such that d(x) = dj(x) on Ij. Similar to the previous analysis, we ultimately conclude that

∥d∥I ≤ 4hβ−1
∥(eu)t + ev∥I ≤ Chk+2.

Part 3. In this last part of the proof,wewill use the previous results to bound the right-hand side of Eq. (3.13). By the definition
of projections, (ηu)t , ηw , and ηv are all orthogonal to piecewise constant functions, hence

((ηu)t , ζu)I = ((ηu)t , tj + aj(x)(x − xj)/hj)I = ((ηu)t , aj(x)(x − xj)/hj)I ,

(ηw, ζv)I = (ηw, bj(x)(x − xj)/hj)I ,

(ηv, ζw)I = (ηv, dj(x)(x − xj)/hj)I .

Define yet another piecewise polynomial φ3(x) such that φ3(x) = (x − xj)/hj on Ij, so ∥φ3∥L∞ =
1
2 . Therefore, Eq. (3.13)

leads to
1
2

d
dt

∥ζu∥
2
I = ((ζu)t , ζu)I ≤ ∥(ηu)t∥I∥φ3∥L∞∥a∥I + β∥ηw∥I∥φ3∥L∞∥b∥I + β∥ηv∥I∥φ3∥L∞∥d∥I

≤ C1hk+1 1
2
C2hk+2

= Ch2k+3.

Integrating with respect to t and combining this inequality with the initial condition (2.18), we have

∥ζu(t)∥ ≤ Chk+ 3
2 ,

where the constant C depends on the constants shown below (3.2). �

We now consider the case when the other choice of numerical fluxes (2.8) is used in the LDG method. The new variable
z, defined as u + α−1βw, is introduced and used in the proof. Similarly, we have zh = uh + α−1βwh.

Proposition 3.2. Let u, v, and w be the exact solutions of the linearized KdV equation (2.3) when α, β > 0. Also, let uh, vh, and
wh be the numerical solutions of the semi-discrete LDG method (2.4)–(2.6), with the numerical fluxes defined in (2.8) and the
initial condition uh(·, 0) = P2

hu0(x). The particular projections of the exact solutions are defined as P+

h u, P+

h v, and P−

h z, and the
corresponding errors (2.10) are given by

ζu = P+

h u − uh, ζv = P+

h v − vh, ζz = P−

h z − zh (3.16)

to be consistent with the choice of numerical fluxes. For regular triangulations of I = [a, b], if the finite element space V k
h with

k ≥ 1 is used, then there holds the following error estimate:

∥ζu(·, t)∥I ≤ Chk+ 3
2 , (3.17)

where C = C(t, α, β, λ, ∥u∥L∞((0,t);Hk+3(I)), ∥ut∥L∞((0,t);Hk+2(I)), ∥utt∥L∞((0,t);Hk+1(I))).

Proof. Without loss of generality, we will only show the proof for the case α = 1. Most of the proof is similar to that of
Proposition 3.1. Here we briefly mention the proof by highlighting the differences. To be consistent, we again divide the
process into three parts.
Part 1. By subtracting the LDG method (2.4)–(2.6) with the fluxes (2.8) from the weak formulation satisfied by the exact
solutions u, v, and z, and using the properties of the projections P±

h , we have the error equations

((eu)t , φ)Ij − (ζz, φx)Ij + (ζ−

z φ
−)j+ 1

2
− (ζ−

z φ
+)j− 1

2
= 0, (3.18)

(β−1(ez − eu), ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= 0, (3.19)

(ev, ψ)Ij + (ζu, ψx)Ij − (ζ+

u ψ
−)j+ 1

2
+ (ζ+

u ψ
+)j− 1

2
= 0 (3.20)

for all test functions φ, ϕ,ψ ∈ V k
h . Choosing the test functions φ = ζu, ϕ = βζv , and ψ = −(ζz − ζu), summing up the

previous three equations over all cells, and using the periodic boundary conditions, we have

((eu)t , ζu)I + (ηz − ηu, ζv)I − (ηv, ζz − ζu)I +
1
2


j

[ζu]
2
j+ 1

2
+

1
2


j

β[ζv]
2
j+ 1

2
= 0.

Therefore,

1
2

d
dt

∥ζu∥
2
I ≤ |((ηu)t , ζu)I | + |(ηz, ζv)I | + |(ηv, ζz)I | + |(ηu, ζv)I | + |(ηv, ζu)I | . (3.21)
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Part 2. We define ζu = tj + aj(x)(x − xj)/hj, ζv = sj + bj(x)(x − xj)/hj, and ζz = pj + qj(x)(x − xj)/hj on the cell Ij, where
tj, sj, pj are constant and aj(x), bj(x), qj(x) ∈ Pk−1. We also define a piecewise polynomial a(x) such that a(x) = aj(x) on Ij.
Similarly, piecewise polynomials b(x) and q(x) are defined.

Following similar analysis to that in Part 2 of Proposition 3.1, we conclude that

∥a∥I ≤ 4h∥ev∥I ≤ Chk+2,

∥b∥I ≤ 4β−1h∥ez − eu∥I ≤ Chk+2,

∥q∥I ≤ 4h∥(eu)t∥I ≤ Chk+2.

Part 3. In this last part of the proof, we will use the previous results to bound the right-hand side of Eq. (3.21). Therefore,

1
2

d
dt

∥ζu∥
2
I ≤ ∥(ηu)t∥I∥φ3∥L∞∥a∥I + ∥ηz∥I∥φ3∥L∞∥b∥I

+ ∥ηv∥I∥φ3∥L∞∥q∥I + ∥ηu∥I∥φ3∥L∞∥b∥I + ∥ηv∥I∥φ3∥L∞∥a∥I

≤ C1hk+1 1
2
C2hk+2

= Ch2k+3.

Integrating with respect to t and combining this inequality with the initial condition (2.19), we have

∥ζu(t)∥ ≤ Chk+ 3
2 ,

where the constant C depends on the constants shown below (3.17). �

Propositions 3.1 and 3.2 can be generalized to the cases when α, β ≤ 0. The case of α < 0 or β < 0 is similar and
is therefore omitted. If β = 0, the linearized KdV equation (2.1) becomes the simple first-order wave equation, which has
been carefully studied in [28] for the superconvergence property. For the caseα = 0, the equation reduces to the third-order
wave equation

ut + βuxxx = 0, (3.22)

and we have the following result:

Proposition 3.3. Let u, v = ux, and w = uxx be the exact solutions of the third-order wave equation (3.22) when β > 0. Also,
let uh, vh, andwh be the numerical solutions of the semi-discrete LDG method (2.4)–(2.6)when α = 0, with the numerical fluxes
defined in (2.7) and the initial condition uh(·, 0) = P1

hu0(x). The particular projections of the exact solutions are defined as P−

h u,
P+

h v, and P+

h w, and the corresponding errors (2.10) are given by

ζu = P−

h u − uh, ζv = P+

h v − vh, ζw = P+

h w − wh

to be consistent with the choice of numerical fluxes. For regular triangulations of I = [a, b], if the finite element space V k
h with

k ≥ 1 is used, then there holds the following error estimate:

∥ζu(·, t)∥I ≤ Chk+ 3
2 , (3.23)

where C = C(t, β, λ, ∥u∥L∞((0,t);Hk+3(I)), ∥ut∥L∞((0,t);Hk+2(I)), ∥utt∥L∞((0,t);Hk+1(I))).

The proof of this theorem is similar to those for the previous two propositions and is therefore omitted. The situation
with the other choice of numerical fluxes (2.8), as well as the case when β < 0, is similar to that with the fluxes (2.7).

4. Numerical experiments

In this section, we provide some numerical examples to demonstrate the superconvergence property of the proposed
LDG scheme. Since the explicit high-order TVD Runge–Kutta methods are known to suffer from small time-step restrictions
due to the stiffness of the LDG spatial discretization for the equations containing high-order derivatives, we use the second-
order implicit Crank–Nicholson time discretization in the following numerical examples. As our interest is in the effect of
the spatial discretization, we determine the time-step by the relation ∆t = Ch2, so that the temporal error is of order h4.
Since the spatial error is of order hk+1, where k = 1, 2, 3 is tested in this paper, this choice of ∆t guarantees that the error
will be dominated by the spatial discretization.

We consider the linearized KdV equation

ut + ux + uxxx = 0, x ∈ [0, π ],

with the initial condition

u(x, 0) = sin(2x),
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Table 4.1
Numerical errors and orders of LDG method for the linearized KdV equation with uniform meshes and space P1 .

N eu ev ew
L2 error Order L2 error Order L2 error Order

10 2.9074E−02 5.7647E−02 1.1535E−01
20 5.2101E−03 2.4803 1.0386E−02 2.4725 2.0795E−02 2.4717
40 1.1273E−03 2.2084 2.2526E−03 2.2049 4.5075E−03 2.2058
80 2.6964E−04 2.0637 5.3917E−04 2.0627 1.0785E−03 2.0632

ζu ζv ζw

10 2.2682E−02 4.7869E−02 9.5650E−02
20 3.0391E−03 2.9620 6.0962E−03 2.9731 1.2207E−02 2.9699
40 3.8209E−04 2.9916 7.6341E−04 2.9973 1.5306E−03 2.9956
80 4.7841E−05 2.9975 9.5398E−05 3.0004 1.9138E−04 2.9995

Table 4.2
Numerical errors and orders of LDG method for the linearized KdV equation with uniform meshes and space P2 .

N eu ev ew
L2 error Order L2 error Order L2 error Order

10 8.5104E−04 1.7164E−03 3.4359E−03
20 1.0670E−04 2.9955 2.1387E−04 3.0045 4.2785E−04 3.0055
40 1.3363E−05 2.9973 2.6740E−05 2.9996 5.3484E−05 2.9999
80 1.6712E−06 2.9992 3.3430E−06 2.9998 6.6861E−06 2.9998

ζu ζv ζw

10 1.1511E−04 2.3320E−04 4.0525E−04
20 5.1307E−06 4.4877 1.0311E−05 4.4992 1.4684E−05 4.7864
40 2.7790E−07 4.2064 5.5658E−07 4.2115 6.4564E−07 4.5073
80 1.6525E−08 4.0718 3.3065E−08 4.0732 3.4009E−08 4.2467

Table 4.3
Numerical errors and orders of LDG method for the linearized KdV equation with uniform meshes and space P3 .

N eu ev ew
L2 error Order L2 error Order L2 error Order

5 5.1900E−04 1.0565E−03 2.1109E−03
10 3.2830E−05 3.9826 6.5944E−05 4.0019 1.3188E−04 4.0005
20 2.0623E−06 3.9926 4.1290E−06 3.9973 8.2581E−05 3.9972
40 1.2907E−07 3.9979 2.5821E−07 3.9991 5.1641E−06 3.9992

ζu ζv ζw

5 9.7665E−05 1.9239E−04 3.2249E−04
10 2.1235E−06 5.5232 4.2348E−06 5.5056 5.9058E−05 5.7709
20 5.7184E−08 5.2147 1.1435E−07 5.2107 1.3145E−07 5.4894
40 1.7540E−09 5.0268 3.5077E−09 5.0268 3.9109E−08 5.0709

and a periodic boundary condition u(0, t) = u(π, t) for all t ≥ 0. This problem has the exact solution

u(x, t) = sin(2x + 6t).

We implemented the LDG method (2.4)–(2.6) with the numerical fluxes (2.7) and took the time-step∆t = 0.1h2. We have
tried both the special projection P1

hu and the standard L2 projection as the initial condition, obtaining similar convergence
rates for each. To save space, we only report the results when the standard L2 projection is used as the initial condition. The
numerical fluxes (2.8) have also been implemented, again yielding similar results.

In the first numerical example, we consider the case of uniform meshes, in which the domain is uniformly divided into
N cells. Table 4.1 lists the numerical errors and the orders of convergence for P1 spaces. The L2-norm of the errors eu, ζu,
ev , ζv , ew and ζw at final time T = 1 are presented. Also, the third-order convergence rate for ζu, ζv and ζw can clearly be
observed. This indicates that the k + 3/2 superconvergence rate, proved in Section 3, is not optimal, and we will work on
how to derive the optimal superconvergence later. Note that the same phenomenon has been observed in [28,29]. For the
case of k = 2, 3, the results in Tables 4.2 and 4.3 list the numerical errors and the order of convergence for P2 and P3 spaces,
respectively, which demonstrate the superconvergence property of ζu, ζv and ζw .

Next are reported simulations made when the mesh is far from uniform. Indeed, the mesh is taken to be of size
2h, h, . . . , 2h, h. We use the same setup as was previously described, and then repeat the numerical experiment for P1,
P2, and P3 spaces. Similar results are observed: the order of convergence is k + 2 for Pk spaces. To save space, we show
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Table 4.4
Numerical errors and orders of LDG method for the linearized KdV equation with non-uniform meshes of type 2h, h, . . . , 2h, h and space P2 .

N eu ev ew
L2 error Order L2 error Order L2 error Order

10 2.4934E−03 5.0790E−03 1.0172E−02
20 3.1114E−04 3.0025 6.2531E−04 3.0219 1.2512E−03 3.0231
40 3.9033E−05 2.9947 7.8162E−05 3.0000 1.5634E−04 3.0005
80 4.8848E−06 2.9983 9.7727E−06 2.9996 1.9546E−05 2.9997

N ζu ζv ζw

10 6.0115E−04 1.2293E−03 2.2343E−03
20 2.4887E−05 4.5942 5.0270E−05 4.6120 7.7807E−05 4.8437
40 1.2642E−06 4.2990 2.5363E−06 4.3088 3.1474E−06 4.6276
80 7.3762E−08 4.0992 1.4765E−07 4.1024 1.5929E−07 4.3044

only the results for P2 spaces, as Table 4.4 lists the numerical errors and the orders of convergence, where the fourth-order
convergence rate for ζu, ζv , and ζw can clearly be observed.

5. Concluding remarks

In this paper, we studied the superconvergence property of the LDG method for solving the linearized KdV equation.
When polynomials of degree k are used, we have proved that the error between a particular projection of the exact solution
and the numerical solution achieves superconvergence of order k + 3/2. Numerical examples have also been provided to
verify these results. Futurework includes superconvergence analysis of the LDGmethod for thenonlinear KdVequation. Also,
because we observed superconvergence of order k + 2 in the numerical examples, future work will include investigating
how to improve our proofs to derive this better convergence rate.
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Appendix A. The proof of Lemma 2.1

In this Appendix, we provide the proof for Lemma 2.1, which includes the error estimate of the initial condition. Without
loss of generality, we will only show the proof for the case α = 1. For ease of presentation, we separate the process into six
parts.
Part 1. We will first prove the existence and uniqueness of P1

hu. Assume vh, wh ∈ V k
h are computed in (2.11) and (2.12). As

in (2.10), we denote the error by

u − P1
hu = u − P−

h u + P−

h u − P1
hu = ηu + ζu,

v − vh = v − P+

h v + P+

h v − vh = ηv + ζv,

w − wh = w − P+

h w + P+

h w − wh = ηw + ζw.

By subtracting the LDG method (2.5)–(2.6) with the fluxes (2.7) from the weak formulation satisfied by the exact solutions
v andw, and using the properties of the projections P±

h , we can obtain the error equations (3.7) and (3.8), which are copied
here:

(ηw + ζw, ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= 0, (A.1)

(ηv + ζv, ψ)Ij + (ζu, ψx)Ij − (ζ−

u ψ
−)j+ 1

2
+ (ζ−

u ψ
+)j− 1

2
= 0, (A.2)

for any ϕ,ψ ∈ V k
h . Coupled with the initial conditions (2.13) and (2.14), they become

(ζw, ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= −(ηw, ϕ)Ij , (A.3)

(ζv, ψ)Ij + (ζv − ζw, ψx)Ij − ((ζ+

v − ζ+

w )ψ
−)j+ 1

2
+ ((ζ+

v − ζ+

w )ψ
+)j− 1

2
= −(ηv, ψ)Ij (A.4)

for any ϕ,ψ ∈ V k
h . Note that Eqs. (A.3) and (A.4) are a linear system, hence the existence of (ζv, ζw) follows by their

uniqueness, so we now seek to prove the solutions are unique. Suppose there are two solutions (ζ 1
v , ζ

1
w) and (ζ

2
v , ζ

2
w) to
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Eqs. (A.3)–(A.4). Define gv = ζ 1
v − ζ 2

v and gw = ζ 1
w − ζ 2

w , and we have

(gw, ϕ)Ij + (gv, ϕx)Ij − (g+

v ϕ
−)j+ 1

2
+ (g+

v ϕ
+)j− 1

2
= 0, (A.5)

(gv, ψ)Ij + (gv − gw, ψx)Ij − ((g+

v − g+

w )ψ
−)j+ 1

2
+ ((g+

v − g+

w )ψ
+)j− 1

2
= 0 (A.6)

for any ϕ,ψ ∈ V k
h . On one hand, let ϕ = gv and ψ = gv − gw , so summing over all cells Ij, we obtain

(gv, gv)I +
1
2


j

[gv]2j+ 1
2

+
1
2


j

[gv − gw]
2
j+ 1

2
= 0,

which leads to gv = 0. On the other hand, let ϕ = gv + gw and ψ = −gw , so summing over all cells Ij, we obtain

(gw, gw)I +
1
2


j

[gv]2j+ 1
2

+
1
2


j

[gw]
2
j+ 1

2
= 0,

which leads to gw = 0. Thus, we have proved the uniqueness, and hence the existence, of ζv and ζw . This implies the
uniqueness and existence of ζu through the initial conditions (2.13)–(2.14), and therefore P1

hu = P−

h u − ζu.

Part 2. Next, we prove the error estimate of the initial projection P1
hu. We define ζv = sj + bj(x)(x − xj)/hj, ζw = rj +

dj(x)(x − xj)/hj on the cell Ij, where sj, rj are constant and bj(x), dj(x) ∈ Pk−1. We define a piecewise polynomial b(x) such
that b(x) = bj(x) on Ij and define d(x) similarly. From Eqs. (A.3) and (A.4), following similar analysis to that used in Part 2 of
the proof of Proposition 3.1, we conclude that

∥b∥I ≤ 4h∥ηw + ζw∥I ≤ Chk+2
+ Ch∥ζw∥I ,

∥d∥I ≤ 4h(∥ηw + ζw∥I + ∥ηv + ζv∥I) ≤ Chk+2
+ Ch∥ζw∥I + Ch∥ζv∥I .

On one hand, let ϕ = ζv and ψ = ζv − ζw in Eqs. (A.3)–(A.4) and sum over all cells Ij, which yields

(ζv, ζv)I +
1
2


j

[ζv]
2
j+ 1

2
+

1
2


j

[ζv − ζw]
2
j+ 1

2
= −(ηw, ζv)I − (ηv, ζv − ζw)I .

Following similar analysis to that used in Part 3 of the proof of Proposition 3.1, we have

∥ζv∥
2
I = (ζv, ζv)I ≤ |(ηw, ζv)I | + |(ηv, ζv)I | + |(ηv, ζw)I |

≤ ∥ηw∥I∥φ3∥L∞∥b∥I + ∥ηv∥I∥φ3∥L∞∥b∥I + ∥ηv∥I∥φ3∥L∞∥d∥I

≤ C1hk+1 C2hk+2
+ C3h∥ζw∥I + C4h∥ζv∥I


. (A.7)

On the other hand, let ϕ = ζv + ζw and ψ = −ζw in Eqs. (A.3)–(A.4) and sum over all cells Ij, which yields

(ζw, ζw)I +
1
2


j

[ζv]
2
j+ 1

2
+

1
2


j

[ζw]
2
j+ 1

2
= −(ηw, ζv + ζw)I + (ηv, ζw)I .

Similarly, we have

∥ζw∥
2
I = (ζw, ζw)I ≤ |(ηw, ζv)I | + |(ηw, ζw)I | + |(ηv, ζw)I |

≤ ∥ηw∥I∥φ3∥L∞∥b∥I + ∥ηw∥I∥φ3∥L∞∥d∥I + ∥ηv∥I∥φ3∥L∞∥d∥I

≤ C1hk+1 C2hk+2
+ C3h∥ζw∥I + C4h∥ζv∥I


. (A.8)

Combining (A.7) and (A.8), one obtains

∥ζv∥
2
I + ∥ζw∥

2
I ≤ C1hk+1


C2hk+2

+ C3h∥ζw∥I + C4h∥ζv∥I

,

which leads to

∥ζw∥
2
I + ∥ζv∥

2
I ≤ Ch2k+3. (A.9)

The error estimate of ∥ζu∥I is obtained by the conditions (2.13) and (2.14). Suppose that

ζv − ζw =

k
n=0

ajnPn


2(x − xj)

hj


, ζu =

k
n=0

bjnPn


2(x − xj)

hj


,

on Ij, where Pn(·) denotes the nth-order Legendre polynomial. The relation (2.13) leads to

ajn = bjn for n = 0, 1, . . . , k − 1, (A.10)
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due to the orthogonality of the Legendre polynomial. Note that (2.14) implies
k

n=0

bjn =

k
n=0

(−1)naj+1
n ,

and therefore,

bjk =

k
n=0

(−1)naj+1
n −

k−1
n=0

bjn =

k
n=0

(−1)naj+1
n −

k−1
n=0

ajn. (A.11)

Since,

hj(b
j
k)

2
= hj


k

n=0

(−1)naj+1
n −

k−1
n=0

ajn

2

≤ 2hj

 k
n=0

(−1)naj+1
n

2

+


k−1
n=0

ajn

2


≤ 2(k + 1)hj


k

n=0

(aj+1
n )2 +

k
n=0

(ajn)
2



≤ 2(k + 1)(2k + 1)


k

n=0

(aj+1
n )2

hj

2n + 1
+

k
n=0

(ajn)
2 hj

2n + 1



≤ 2(k + 1)(2k + 1)

1
λ

∥ζw∥
2
Ij+1

+ ∥ζw∥
2
Ij


,

where λ is the maximum ratio of two different mesh sizes. Thus, we have

∥ζu∥
2
I =

N
j=1

∥ζu∥
2
Ij =

N
j=1


k

n=0

(bjn)
2 hj

2n + 1



≤

N
j=1


k−1
n=0

(ajn)
2 hj

2n + 1
+ (bjk)

2 hj

2k + 1



≤

N
j=1


∥ζw∥

2
Ij + 2(k + 1)


1
λ

∥ζw∥
2
Ij+1

+ ∥ζu∥
2
Ij


≤


1 + 2(k + 1)+ 2

k + 1
λ


∥ζw∥

2
I ,

yielding
∥ζu∥I ≤ C(λ, ∥u∥k+3)hk+3/2.

Part 3. Finally, we consider the error term ∥(eu)t(·, 0)∥I . Coupledwith the initial conditions (2.13)–(2.14), the error equation
(3.6) becomes

((eu)t , φ)Ij − (1 − β)(ζu, φx)Ij + (1 − β)(ζ−

u φ
−)j+ 1

2
− (1 − β)(ζ−

u φ
+)j− 1

2

−β(ζv, φx)Ij + β(ζ+

v φ
−)j+ 1

2
− β(ζ+

v φ
+)j− 1

2
= 0.

It follows from (A.1) and (A.2) that, at time t = 0,
((eu)t , φ)Ij + (1 − β)(ηv + ζv, φ)Ij + β(ηw + ζw, φ)Ij = 0

for any φ ∈ V k
h . Taking φ = (ζu)t(·, 0) and summing the above equality over all cells Ij, we obtain, at time t = 0,

∥(ζu)t(·, 0)∥I ≤ ∥(ηu)t(·, 0)∥I + |1 − β|∥ηv + ζv∥I + β∥ηw + ζw∥I ≤ Chk+1, (A.12)
where the constant C depends on α, β , λ, ∥u∥k+3 and ∥ut∥k+1.
Part 4. Now, we prove the existence and uniqueness of the projection P2

hu. Assume vh, zh ∈ V k
h are computed in (2.15) and

(2.16). As in (2.10), we denote the error by
u − P2

hu = u − P+

h u + P+

h u − P1
hu = ηu + ζu,

v − vh = v − P+

h v + P+

h v − vh = ηv + ζv,

z − zh = z − P−

h z + P−

h z − zh = ηz + ζz,
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and the initial condition (2.17) becomes

ζz − ζu = β(ζv − ζu). (A.13)

By subtracting the LDG method (2.5)–(2.6) with the fluxes (2.8) from the weak formulation satisfied by the exact solutions
v andw = β−1(z − u), and using the properties of the projections P±

h , we can obtain the error equations

β−1(ηz + ζz − ηu − ζu, ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= 0, (A.14)

(ηv + ζv, ψ)Ij + (ζu, ψx)Ij − (ζ+

u ψ
−)j+ 1

2
+ (ζ+

u ψ
+)j− 1

2
= 0 (A.15)

for any ϕ,ψ ∈ V k
h . Coupled with the initial condition (A.13), they become

(ζv − ζu, ϕ)Ij + (ζv, ϕx)Ij − (ζ+

v ϕ
−)j+ 1

2
+ (ζ+

v ϕ
+)j− 1

2
= −β−1(ηz − ηu, ϕ)Ij , (A.16)

(ζv, ψ)Ij + (ζu, ψx)Ij − (ζ+

u ψ
−)j+ 1

2
+ (ζ+

u ψ
+)j− 1

2
= −(ηv, ψ)Ij (A.17)

for any ϕ,ψ ∈ V k
h . Note that Eqs. (A.16) and (A.17) are a linear system, hence the existence of (ζu, ζv) follows by their

uniqueness, so we now seek to prove the solutions are unique. Suppose there are two solutions (ζ 1
u , ζ

1
v ) and (ζ

2
u , ζ

2
v ) to

Eqs. (A.16)–(A.17). Define gu = ζ 1
u − ζ 2

u and gv = ζ 1
v − ζ 2

v , so we have

(gv − gu, ϕ)Ij + (gv, ϕx)Ij − (g+

v ϕ
−)j+ 1

2
+ (g+

v ϕ
+)j− 1

2
= 0, (A.18)

(gv, ψ)Ij + (gu, ψx)Ij − (g+

u ψ
−)j+ 1

2
+ (g+

u ψ
+)j− 1

2
= 0 (A.19)

for any ϕ,ψ ∈ V k
h . On one hand, let ϕ = gv and ψ = gu, so summing over all cells Ij, we obtain

(gv, gv)I +
1
2


j

[gv]2j+ 1
2

+
1
2


j

[gu]2j+ 1
2

= 0,

which leads to gv = 0. On the other hand, let ϕ = gv − gu and ψ = 2gu − gv , so summing over all cells Ij, we obtain

(gu, gu)I +
1
2


j

[gu]2j+ 1
2

+
1
2


j

[gu − gv]2j+ 1
2

= 0,

which leads to gu = 0. Thus, we have proved the uniqueness, and hence the existence of ζu and ζv . Therefore, P2
hu = P+

h u−ζu
exists and is unique.
Part 5. Next, we prove the error estimate of the initial projection P2

hu. We define ζu = tj + aj(x)(x − xj)/hj and ζv =

sj + bj(x)(x− xj)/hj on the cell Ij, where tjsj are constant and aj(x), bj(x) ∈ Pk−1. We define a piecewise polynomial a(x) such
that a(x) = aj(x) on Ij and define b(x) similarly. From Eqs. (A.16) and (A.17), following similar analysis to that used in Part
2 of Proposition 3.1, we conclude that

∥a∥I ≤ 4h∥ηv + ζv∥I ≤ Chk+2
+ Ch∥ζv∥I ,

∥b∥I ≤ 4h(∥ζv − ζu + β−1(ηz − ηu)∥I) ≤ Chk+2
+ Ch∥ζv∥I + Ch∥ζu∥I .

On one hand, let ϕ = ζv and ψ = ζu in Eqs. Eqs. (A.16)–(A.17) and sum over all cells Ij, which yields

(ζv, ζv)I +
1
2


j

[ζv]
2
j+ 1

2
+

1
2


j

[ζu]
2
j+ 1

2
= −β−1(ηz − ηu, ζv)I − (ηv, ζu)I .

On the other hand, let ϕ = ζv − ζu and ψ = 2ζu − ζv in Eqs. (A.16)–(A.17) and sum over all cells Ij, which yields

(ζu, ζu)I +
1
2


j

[ζu]
2
j+ 1

2
+

1
2


j

[ζu − ζv]
2
j+ 1

2
= −β−1(ηz − ηu, ζv − ζu)I − (ηv, 2ζu − ζv)I .

Combining the above two equations, and following similar analysis to that used in Part 3 of the proof of Proposition 3.1, we
have

∥ζv∥
2
I + ∥ζu∥

2
I +

1
2


j

[ζv]
2
j+ 1

2
+


j

[ζu]
2
j+ 1

2
+

1
2


j

[ζu − ζv]
2
j+ 1

2

≤ C (|(ηz, ζv)I | + |(ηu, ζv)I | + |(ηv, ζv)I | + |(ηz, ζu)I | + |(ηu, ζu)I | + |(ηv, ζu)I |)

≤ C ((∥ηz∥I + ∥ηu∥I + ∥ηv∥I)∥φ3∥L∞∥b∥I + (∥ηz∥I + ∥ηu∥I + ∥ηv∥I)∥φ3∥L∞∥a∥I)

≤ C1hk+1 C2hk+2
+ C3h∥ζu∥I + C4h∥ζv∥I


,
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which leads to

∥ζv∥
2
I + ∥ζu∥

2
I +

1
2


j

[ζv]
2
j+ 1

2
+


j

[ζu]
2
j+ 1

2
≤ Ch2k+3. (A.20)

By the initial condition (A.13), we derive the error estimate of ∥ζz∥I :

∥ζz∥
2
I ≤ Ch2k+3. (A.21)

Part 6. Finally, we consider the error term ∥(eu)t(·, 0)∥I . Coupled with the initial condition (A.13), the error equation (3.18)
becomes

((eu)t , φ)Ij − (1 − β)(ζu, φx)Ij + (1 − β)(ζ−

u φ
−)j+ 1

2
− (1 − β)(ζ−

u φ
+)j− 1

2

−β(ζv, φx)Ij + β(ζ−

v φ
−)j+ 1

2
− β(ζ−

v φ
+)j− 1

2
= 0.

Summing the above equality over all Ij and applying (A.14) and (A.15), we have, at time t = 0,

((eu)t , φ)I + (1 − β)(ηv + ζv, φ)I + (ηz + ζz − ηu − ζu, φ)I

+(1 − β)


j

[ζu]j+ 1
2
[φ]j+ 1

2
+ β


j

[ζv]j+ 1
2
[φ]j+ 1

2
= 0

for any φ ∈ V k
h . Taking φ = (ζu)t(·, 0), one obtains, at time t = 0,

∥(ζu)t∥
2
I = −((ηu)t , (ζu)t)I − (1 − β)(ηv + ζv, (ζu)t)I − (ηz + ζz − ηu − ζu, (ζu)t)I

− (1 − β)


j

[ζu]j+ 1
2
[(ζu)t ]j+ 1

2
− β


j

[ζv]j+ 1
2
[(ζu)t ]j+ 1

2

≤ C∥(ηu)t∥
2
I + C∥ηv + ζv∥

2
I + C∥ηz + ζz∥

2
I + C∥ηu + ζu∥

2
I +

1
4
∥(ζu)t∥

2
I

+ C


j

h−1
[ζu]

2
j+ 1

2
+ C


j

h−1
[ζv]

2
j+ 1

2
+ C1


j

h[(ζu)t ]2j+ 1
2

≤ Ch2k+2
+

1
4
∥(ζu)t∥

2
I + C1


j

h[(ζu)t ]2j+ 1
2

≤ Ch2k+2
+

1
2
∥(ζu)t∥

2
I ,

where the last inequality is due to the trace inequality. Therefore, we conclude that

∥(ζu)t(·, 0)∥I ≤ Chk+1, (A.22)

where the constant C depends on α, β , λ, ∥u∥k+3, and ∥ut∥k+1.
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