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Abstract. As the human population continues to grow, there is a
need for better management of our natural resources in order for our planet
to be able to produce enough to sustain us. One important resource we must
consider is marine fish populations. We use the tool of optimal control to
investigate harvesting strategies for maximizing yield of a fish population
in a heterogeneous, finite domain. We determine whether these solutions
include no-take marine reserves as part of the optimal solution. The fishery
stock is modeled using a nonlinear, parabolic partial differential equation
with logistic growth, movement by diffusion and advection, and with Robin
boundary conditions. The objective for the problem is to find the harvest
rate that maximizes the discounted yield. Optimal harvesting strategies are
found numerically.
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1. Introduction. There is growing concern over natural resource management
and how best to use resources to sustain the world’s growing population. An impor-
tant resource to consider is fisheries, which are a source of food for people across the
globe. However, many marine populations are severely overfished (Hilborn [2012]).
In addition to the overexploitation of fish stock, there are threats of habitat degra-
dation and destruction, pollution, and climate change impacts affecting the world’s
oceans (Neubert [2003], Hilborn [2012]). Researchers must understand what is nec-
essary for assuring a stable supply of fish under environmental stressors of various
kinds, while also considering the impact of human behavior on the environment
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(Joshi et al. [2008]). This is a difficult task given the large variability associated
with fishery ecosystems yet there is continual pressure to find methods for optimally
solving these management problems.

There has been work investigating various ways to help restore fish populations
and protect marine ecosystems, such as time-area closures, limiting the fishing sea-
son, as well as the implementation of catch quotas. Another way to help protect
fish populations from overexploitation is the inclusion of no-take marine reserves.
These reserves are categorized as areas of the ocean completely protected: removal
or destruction of natural resources is prohibited (Hilborn [2012]). They offer pro-
tection for both marine fish populations and their ecosystems. The establishment
of no-take reserves is beginning to receive more attention on the global scale. The
total amount of ocean set as marine protected areas (MPAs) has risen by over 150%
since 2003. However, only 1.17% of the marine area of the world is protected as
MPAs and only a small portion of MPA coverage is designated as fully protected,
no-take areas (Toropova et al. [2010]). This may be because marine reserves are a
controversial fishery management tool. Some believe that no-take marine reserves
actually reduce the yield (Walters and Martell [2004], Clark [2006]).

The spatial structure of a renewable natural resource is important to consider
when determining management strategies. Spatial heterogeneity and dynamics can
affect management outcomes. When spatial dynamics of a resource are ignored,
management strategies generally produce suboptimal results (Herrera and Lenhart
[2010]). There have been many approaches to modeling spatial dynamics. Early
harvesting models involving bioeconomics and optimal yield were done using ordi-
nary differential equations. Clark’s work provided a foundation for using optimal
control theory as a tool in fishery management (Clark [1985, 1990]).

Metapopulation models are a common spatial modeling approach, which divides
the environment into a collection of patches. Tuck and Possingham used coupled
spatially explicit difference equations to model a single-species, two-patch metapop-
ulation. They considered the problem of optimally exploiting the single species local
population that is connected by dispersing larvae to an unharvested second popula-
tion (Tuck and Possingham [2000]). They showed that the closed areas had positive
net benefits in terms of both stock abundance and economic rents. Sanchirico and
Wilen studied a series of differential equation metapopulation models with logistic
growth and density-dependent dispersal between patches coupled with a spatially
explicit harvesting model (Sanchirico and Wilen [1999, 2001]). They investigated
different scenarios, exploring the impacts of a reserve on biomass and effort distri-
bution. Results showed that, under certain conditions, reserves increase both stock
abundance and harvest effort (Sanchirico and Wilen [2001]). Brown and Roughgar-
den formulated an optimal control problem for maximizing the discounted profit,
using a metapopulation ordinary differential equation (ODE) model (continuous in
time, discrete in space) for an age-structured fish stock. Their results demonstrate
that reserves can be part of the optimal solution (Brown and Roughgarden [1997]).
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There have been studies that sought yield maximizing strategies without imposing
no-take reserves in the model. Neubert investigated the steady states of a fish stock
in a spatially explicit harvesting model, ignoring the dependence of the stock on
time (Neubert [2003]). His model is a second-order ODE in space. The benefits of
using a spatially explicit model include a more realistic marine reserve in a fixed
area of space through which fish move, rather than a fixed harvesting rate across the
domain. His objective functional sought to find the fishing effort that maximizes the
yield. His model did not incorporate reserves into the model yet they were shown
to be part of the resulting optimal harvesting strategy (depending on the length
of domain). Neubert also found “chattering” in the optimal control in some cases,
which are infinite sequences of reserves alternating with areas of intense fishing.

Ding and Lenhart [2009] extended Neubert’s work to a multidimensional spatial
domain, considering different types of objective functionals. They sought to find an
optimal fishery harvesting strategy with fish stock modeled by a semilinear elliptic
partial differential equation (PDE) with Dirichlet boundary conditions. One of their
objective functionals was similar to that of Neubert but considered the difference
between the yield and a nonlinear cost. Ding and Lenhart [2009] also included the
minimization of the variation in the control (with H1 controls) to avoid “chatter-
ing.” Both functionals result in a reserve as part of the optimal harvesting strategy.
De Leenheer also investigated a steady-state, parabolic PDE model, rewritten as
a system of two first-order ODEs, to address the problem of where exactly to es-
tablish MPAs (De Leenheer [2014]). His objective involved maximizing fishing yield
as well as fish densities. His results concluded that the location of the MPA was
determined by the length of spatial domain and average fish density.

To include time-varying scenarios, Joshi et al. [2008] built a nonlinear parabolic
PDE model for the growth, movement, and harvesting of a renewable resource.
This work considered yield maximizing solutions, but in a dynamic fishery system,
investigating the spatiotemporal distribution of harvesting effort and the existence
of no-take marine reserves that arose as part of the harvesting strategy. Their
nonsteady state equation also included an advection term. This work was concerned
not only with the existence of reserves, but the time of their establishment and the
evolution of its size over time.

The PDE models of Joshi et al. [2008], Ding and Lenhart [2009], Neubert [2003] for
optimal fish harvesting had Dirichlet boundary conditions, representing a lethal do-
main boundary. This would occur if you had a habitat imbedded into a larger, unin-
habitable region. Although many fisheries are not found in such conditions, the im-
pact of alternative boundary conditions was not addressed. Most fisheries occur on
open ocean where these artificial boundaries do not exist. The implementation of an
alternative type of boundary condition, Robin boundary conditions, deemed more
favorable to the fish stock, could produce an alternative optimal harvesting strategy.

Optimal control of parabolic PDEs with Robin boundary conditions has been suc-
cessfully used for other applications. Previous work on these boundary conditions
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was done by Lenhart and Wilson [1993] in investigating optimal control of a heat
transfer equation with a convective boundary condition. There has also been work
done with these boundary conditions in biological applications. Lenhart and collab-
orators [1999] considered a case with a boundary hostile to two interacting species,
using Robin boundary conditions. For a detailed discussion about specific popula-
tions and the biological interpretation of such boundary conditions, see the paper
by Fagan et al. [1999].

Modeling these dynamic systems can help predict the impact of fishing regula-
tions. We formulate a model on a heterogenous, spatiotemporal domain with more
realistic boundary conditions to represent the habitat and the fish movement and
to gain important insights on optimal harvesting strategies. These models provide
guidance to make decisions to improve marine resources without compromising the
economic yield.

In the next section, we formulate the problem in an appropriate weak solution
space and describe the spatiotemporal model for the fish stock and assumptions. We
then prove existence and uniqueness of our state solution using an iteration scheme
and a priori estimates. The proof for the existence of an optimal control is given.
Next, we derive the optimality system consisting of the state system coupled with
the adjoint system and an optimal control characterization. We prove the unique-
ness of the optimality system, guaranteeing the uniqueness of the optimal control
solution. Finally, we illustrate some examples by approximating our solutions using
numerical methods, and give some conclusions.

2. Problem formulation. The focus of the project is on optimal harvest-
ing strategies of a fish population in a heterogeneous, finite domain. We develop
resource management strategies, specifically yield-maximizing solutions, and deter-
mine whether these solutions include no-take marine reserves as part of the optimal
control.

The fishery stock is modeled using a nonlinear, parabolic partial differential equa-
tion with both diffusion and advection on a multidimensional, smooth, bounded
domain Q = Ω × (0, T ) with Robin boundary conditions:

ut =
n∑

i,j=1

(aij (x, t)uxi )xj +
n∑
i=1

bi(x, t)uxi + f(u) − h(x, t)u Ω × (0, T ),(1)

∂u

∂ν
(x, t) + qu(x, t) = 0 ∂Ω × (0, T ),(2)

and initial condition:

u(x, 0) = u0(x) x ∈ Ω,(3)
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where u(x, t) is the fish stock density. The conormal derivative is given by ∂u
∂ν =

∇xu · ν with ν = (ν1 , ...νn ) and νi =
∑n

j=1 aij (x, t)ηj , with ηj being the outward
normal unit vector. The nonlinear growth term is given by f(u) and h(x, t) is
the harvest rate. The diffusion and advection coefficients are heterogenous func-
tions and given by aij (x, t) and bi(x, t), respectively. Also, the initial population
u0(x) ∈ L∞(Ω) is nonnegative. For this application, our spatial domain Ω is a
smooth, bounded open set in R

n , n = 1, 2, or 3, although the theorems are true
for multidimensional domains for any integer n ≥ 1. The Robin boundary condi-
tion constant, q, is nonnegative.

Movement of the fish stock is modeled using diffusion and advection. Diffusion
forces the stock to not congregate to one centralized area, while advection accounts
for currents and drifts in the domain. Robin boundary conditions, where the flux
at the boundary is proportional to the stock density at the boundary, are more
favorable to the fish stock than Dirichlet boundary conditions, which represent a
lethal domain surrounding our spatial domain. We investigate population dynamics
with logistic growth. The goal for our problem will be to find the harvest rate,
h(x, t), that maximizes the discounted yield. Let P be the price constant, which we
will set to P = 1, and think of the value of J(h) as money. Let μ be the discount
factor. The objective functional is

J(h) =
∫ T

0

∫
Ω
Pe−μthu dxdt,(4)

which is maximized over the set of admissible controls:

H = {h ∈ L∞(Q) : 0 ≤ h(x, t) ≤ hmax}.

Given h ∈ H, we denote by u = u(h), the corresponding state solution, with the
state u satisfying (1)–(3). We make the following assumptions:

(i) Uniform ellipticity on the diffusion coefficient:
There exists θ > 0 such that

θ
n∑
i=1

ξ2
i ≤

n∑
i,j=1

aij (x, t)ξiξj for all (x, t) ∈ Q, ξ ∈ Rn .

(ii) Symmetry in the diffusion coefficients:

aij = aji for i, j = 1, . . . , n.
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(iii) Bounded coefficients:

aij , bi ∈ C1(Q̄) for all i, j = 1, . . . , n.

(iv) The growth term can be written as f(u) = ug(u) where g ∈ C1(R) for all
u ≥ 0.

(v) There exists r > 0 such that r ≥ g(u) for all u ≥ 0.
(vi) There exists C1 > 0 such that for all 0 ≤ u ≤M , g(u) ≥ −C1 .
(vii) There exists C2 > 0 such that for all 0 ≤ u ≤M , f ′(u) ≥ −C2 .
(viii) The Robin boundary condition constant, q, is nonnegative.
(ix) The discount factor, μ, is a nonnegative constant.
(x) The initial condition u0 ∈ L∞ and 0 ≤ u0 ≤ K on Ω.

Remark 1. Two examples of f(u) functions that satisfy the above assumptions
are

f(u) = ru
(
1 − u

K

)
,

where r ≥ 0 is the growth rate and K ≥ 0 is the carrying capacity of the population,
and

f(u) = ru(1 − u)(u− a),

with 0 < a < 1.

3. Existence of an optimal control. The underlying solution space for our
state system is given by V ∩ L∞(Q) where V = L2((0, T );H1(Ω)) and the dual
space for the time derivative of the solution is given by V ∗ = L2((0, T );H1(Ω)∗).
Since u ∈ V and ut ∈ V ∗, due to the results of Evans [2010],

u ∈ C([0, T ];L2(Ω)),

and the initial condition makes sense in L2(Ω).

We first show a priori estimates that are needed for existence and positivity of
the state solution.

Theorem 1. Suppose u ∈ V ∩ L∞(Q) with ut ∈ V ∗ and ||u||L∞(Q) ≤ B, is a weak
solution of (1)–(3) corresponding to control h ∈ H, and u ≥ 0 a.e. in Q. Then there
exists positive constants, K1 , K2 , and K3 , such that

||u(h)||V ≤ K1 ,(5)
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||(u(h))t ||V ∗ ≤ K2 ,(6)

∫
∂Ω×(0,T )

u2 dsdt ≤ K3 ,(7)

with these bounds K1 ,K2 ,K3 holding for all such state solutions.

Proof. Using u as the test function in the weak formulation on Qs = Ω × (0, s):

∫
(0,s)

〈ut, u〉 dt+
∫
Qs

n∑
i,j=1

aij (x, t)uxi uxj dxdt+
∫
∂Ω×(0,s)

qu2 dsdt(8)

=
∫
Qs

(f(u) − hu)u dxdt+
∫
Qs

n∑
i=1

bi(x, t)uxi u dxdt.

Using hu2 ≥ 0 and uniform ellipticity on the diffusion coefficients, we have the
following:

∫
(0,s)

〈ut, u〉 dt+ θ

∫
Qs

n∑
i=1

(uxi )
2 dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+
∫
Qs

n∑
i=1

bi(x, t)uxi u dxdt.

This equation, combined with the fact that

1
2

∫
Qs

d

dt
u2 dxdt =

1
2

∫
Ω×{s}

u2(x, s) dx− 1
2

∫
Ω×{0}

u2(x, 0) dx

gives

1
2

∫
Ω×{s}

u2(x, s) dx+ θ

∫
Qs

n∑
i=1

(uxi )
2 dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+
∫
Qs

n∑
i=1

bi(x, t)uxi u dxdt+
1
2

∫
Ω
u2

0(x) dx.
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Using Cauchy’s Inequality on the bi terms, multiplying by 2, and collecting uxi
terms on the LHS, the structure assumptions (2) and (2) on f(u) give

∫
Ω×{s}

u2(x, s) dx+ 2θ
∫
Qs

n∑
i=1

(uxi )
2 dxdt+ 2

∫
∂Ω×(0,T )

qu2 dsdt(9)

≤ 2(r + Cθ,b)
∫
Qs

u2 dxdt+
∫

Ω
u2

0(x) dx.

Using q ≥ 0 and Gronwall’s Inequality, we have

∫
Ω×{s}

u2(x, s) dx ≤ 2(r + Cθ,b)
∫
Qs

u2 dxdt+
∫

Ω
u2

0(x) dx,

so that ∫
Ω×{s}

u2(x, s) dx ≤ ||u0 ||2L2 (Ω)(1 +G1e
G1 ss),

where G1 = 2(r + Cθ,b). Taking the maximum over time, we obtain the following:

max
0≤t≤T

||u(·, t)||2L2 (Ω) ≤ ||u0 ||2L2 (Ω)(1 +G1e
G1T T ).(10)

Using Ĝ = ||u0 ||2L2 (Ω)(1 +G1e
G1T T ) in (9), we have

θ

∫
Q

n∑
i=1

(uxi )
2 dxdt+ 2

∫
∂Ω×(0,T )

qu2 dsdt ≤ 2T (r + Cθ,b)Ĝ+
∫

Ω
u2

0(x) dx.(11)

Combining (10) and (11) gives the estimate of ||u(h)||V and estimate (7). For the
time-derivative estimate, we start with the PDE

ut = f(u) − hu+
n∑

i,j=1

(aij (x, t)uxi )xj +
n∑
i=1

bi(x, t)uxi .

By the previous estimate, the right-hand side of the PDE is bounded in
L2((0, T );H1(Ω)∗). Given our assumptions on f(u), every term on the right-hand
side is in L2 or is the derivative of an L2 function, thus we have the right-hand side
of the PDE bounded in the dual space, which implies (6). �

To carefully formulate our problem, we first must prove the existence of a state
solution.
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Theorem 2. Given a control h ∈ H, there exists a unique, weak solution, to (1)–
(3) satisfying

0 ≤ u(x, t) ≤ B(12)

and this bound, B, holds for all state solutions.

Proof. We will summarize the use of an iterative method and maximum principle
arguments. First, we define U as a solution of the problem:

Ut −
n∑

i,j=1

(aij (x, t)Uxi )xj −
n∑
i=1

bi(x, t)Uxi = rU Ω × (0, T ),(13)

∂U

∂ν
(x, t) + qU(x, t) = 0 ∂Ω × (0, T ),(14)

U(x, 0) = u0(x) x ∈ Ω.(15)

Then this supersolution U is nonnegative and L∞ bounded by construction. Then
building the iteration scheme (Lieberman [1996], Evans [2010]), starting with u1 =
U , there exists a weak solution ui for i = 2, 3, ... such that

uit −
n∑

i,j=1

(aij (x, t)uixi )xj −
n∑
i=1

bi(x, t)uixi +Rui = G(ui−1)

with the boundary and initial conditions (2) and (3), where R > hmax + C1 + C2 ,
C1 , C2 are the bounds from assumptions on f and G(ui−1) = Rui−1 + f(ui−1) −
hui−1 .

We can show by induction, 0 ≤ ui ≤ U . We then can show that the state sequence
has a monotone property, i.e., ui+1 ≤ ui , by an additional induction argument.
Fianlly, using the a priori bounds from Theorem 1 on ui and the monotone property,
we have weak convergence on the sequences (not just on subsequences). There also
exists u∗ ∈ V such that:

un ⇀ u∗ weakly in V = L2((0, T );H1(Ω)),(16)

un ⇀ u∗ weakly in L2((0, T ), L2(∂Ω)),(17)

unt ⇀ u∗t weakly in V ∗ = L2((0, T );H1(Ω)∗).(18)
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Since u /∈ H1(Q) and uxi and ut have different regularity, by a result (Corollary
4) in Simon [1987]:

un → u∗ strongly in L2(Q).(19)

We need this strong convergence in the terms with f(ui). By passing the limit in
the weak formulation of the PDE, we conclude that u is a weak solution of (1)–(3).
We then show that the state solution is unique using similar methods as in the
proof of Theorem 1. �

We denote the state solution corresponding to h as u(h). Having existence, unique-
ness, and estimates for our state solution, we will now prove the existence of an
optimal control for our problem.

Theorem 3. There exists an optimal control, h∗ ∈ H, satisfying

J(h∗) = sup
h∈H

J(h).

Proof. Note, from estimates (5) and (6), suph∈H J(h) is finite. We can choose a
maximizing sequence, {hn} in H such that

lim
n→∞J(hn ) = sup

h∈H
J(h).

By the a priori estimates (5)–(7), there also exists functions h∗ ∈ H and u∗ ∈
V

⋂
L∞(Q) such that, on a subsequence:

hn ⇀ h∗ weakly in L2(Q),(20)

un ⇀ u∗ weakly in V = L2((0, T );H1(Ω)),(21)

un ⇀ u∗ weakly in L2((0, T ), L2(∂Ω)),(22)

unt ⇀ u∗t weakly in V ∗ = L2((0, T );H1(Ω)∗).(23)

Again by a result in Simon [1987], we have:

un → u∗ strongly in L2(Q).(24)

We now need to show that u∗ = u(h∗). We will use the fact that we have L∞

bounds on the controls and corresponding states. We have the PDE (1) for the
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subsequence, un :

unt = f(un ) − hn (x, t)un +
n∑

i,j=1

(aij (x, t)unxi )xj +
n∑
i=1

bi(x, t)unxi .(25)

We will show that each term in the PDE for un and hn converges to the corre-
sponding term with u∗ and h∗.

(i) By assumption that the diffusion and advection coefficients are bounded, the
weak convergence from (21) gives the convergence of those terms.

(ii) By (24), we know un converges on a subsequence pointwise a.e. Since f is
continuous, we have f(un ) → f(u∗) pointwise. Thus,

∫
Q

(f(un ) − f(u∗))φ dxdt→ 0.

(iii) Using the weak convergence, (22), with qφ ∈ L2(∂Ω × (0, T )), leads to

∣∣∣∣
∫
∂Ω×(0,T )

q(un − u∗)φ dsdt
∣∣∣∣ → 0.

(iv) By assumptions, we know the hn sequence and u∗ are bounded in L∞ and

∣∣∣∣
∫
Q

(hnunφ− h∗u∗φ) dxdt
∣∣∣∣ =

∣∣∣∣
∫
Q

(hnunφ+ hnu∗φ− hnu∗φ− h∗u∗φ dxdt
∣∣∣∣(26)

≤
∣∣∣∣
∫
Q

(hn (un − u∗)φ dxdt
∣∣∣∣ +

∣∣∣∣
∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣

≤
∫
Q

|hn ||un − u∗||φ| dxdt+
∣∣∣∣
∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣ .

For the first term in (26), the convergence (24) and Cauchy’s Inequality give

∫
Q

|hn ||un − u∗||φ| dxdt ≤ C

(∫
Q

|un − u∗|2 dxdt
)1/2 (∫

Q

φ2 dxdt

)1/2

→ 0.

For the second term, since u∗ is bounded in L∞ by results above, the product
u∗φ ∈ L2(Q). The weak convergence of {hn} gives

∣∣∣∣
∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣ → 0.
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Using the above results, we conclude that

u∗ = u(h∗).

By our choice of maximizing sequence, we have

sup
h
J(h) = lim

n→∞J(hn ) = lim
n→∞

∫ T

0

∫
Ω
e−μthnun dxdt = J(h∗),

and hence h∗ is an optimal control. �

4. Derivation of the optimality system. Next, we derive the optimality
system which consists of the state system coupled with the adjoint system and an
optimal control characterization. We will need to differentiate the map h→ J(h) to
obtain our control characterization. Since u is involved in J(h), we first differentiate
the map h→ u.

Theorem 4. Let h∗ be an optimal control with corresponding state, u∗, and hε =
h∗ + εl be another control, where ε > 0 and l ∈ L∞(Q) is a variation function. The
mapping h→ u(h) ∈ V is weakly differentiable in the directional derivative sense:
∃ ψ ∈ V and ψt ∈ V ∗ such that

lim
ε→0+

u(h∗ + εl) − u(h∗)
ε

= ψ(x, t)

weakly in V for any h ∈ H. Then the sensitivity function ψ corresponding to the
control satisfies:

ψt = f ′(u∗)ψ − h∗ψ +
n∑

i,j=1

(aij (x, t)ψxi )xj +
n∑
i=1

bi(x, t)ψxi − lu∗ Ω × (0, T ),(27)

∂ψ

∂ν
+ qψ = 0 ∂Ω × (0, T ),(28)

ψ(x, 0) = 0 Ω × {t = 0}.(29)

Proof. Let uε = u(hε) where hε = h∗ + εl and u∗ = u(h∗) where h∗ is an optimal
control, with the corresponding PDEs

uεt = f(uε) − (h∗ + εl)uε +
n∑

i,j=1

(aij (x, t)uεxi )xj +
n∑
i=1

bi(x, t)uεxi ,(30)
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u∗t = f(u∗) − h∗u∗ +
n∑

i,j=1

(aij (x, t)u∗xi )xj +
n∑
i=1

bi(x, t)u∗xi .(31)

Subtracting (31) from (30) and dividing by ε, we get

uεt − u∗t
ε

=
f(uε) − f(u∗)

ε
− h∗

(
uε − u∗

ε

)
+

n∑
i,j=1

(
aij (x, t)

(
uεxi − u∗xi

ε

))
xj

+
n∑
i=1

bi(x, t)
(
uεxi − u∗xi

ε

)
− εluε

ε
.

By the techniques of Theorem 1 applied to the difference quotient in Theorem
4, we have boundedness of the difference quotients, the existence of ψ, and the
corresponding convergence of difference quotients. For the nonlinear term, we see
that, as ε→ 0,

f(uε) − f(u∗)
ε

=
f(uε) − f(u∗)

uε − u∗
uε − u∗

ε
→ f ′(u∗)ψ

using the result that uε → u∗ in L2(Q). Thus, with the convergence of each of the
above difference quotients, the sensitivity ψ satisfies (27)–(29) in the weak sense.�

Next, we use our adjoint function to characterize our optimal control. We rewrite
the sensitivity PDE (27) as

Lψ = −lu∗,

where L is the operator:

Lψ = ψt − f ′(u∗)ψ −
n∑

i,j=1

(aij (x, t)ψxi )xj −
n∑
i=1

bi(x, t)ψxi + h∗ψ.

The adjoint operator L∗ is related to the operator L by the following L2 operator
duality:

< λ,Lψ > = < L∗λ, ψ >

with

< v,w >=
∫

Ω
vw dxdt.
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To use Lψ to get an expression for L∗λ, the adjoint operator, formally we write

∫ T

0

∫
Ω
e−μth∗ψ dxdt =

∫ T

0

∫
Ω
e−μtL∗λψ dxdt =

∫ T

0

∫
Ω
e−μtλLψ dxdt.

We introduce the transversality condition for the adjoint function:

λ(x, T ) = 0 on Ω × {t = T}.(32)

The adjoint operator L∗ and the adjoint PDE, with initial and boundary conditions,
are

L∗λ = −λt − f ′(u∗)λ+ h∗λ−
n∑

i,j=1

(
aij (x, t)λxj

)
xi

+
n∑
i=1

(bi(x, t)λ)xi

L∗λ+ μλ = h∗ Ω × (0, T ),(33)

∂λ

∂ν
+ qλ−

n∑
i=1

bi(x, t)ηiλ = 0 ∂Ω × (0, T ),(34)

λ = 0 Ω × {t = T}.(35)

Using the sensitivity, ψ, as the test function, we have the weak form of the adjoint.

Definition 1. The function λ ∈ V with λt ∈ V ∗ is a weak solution to our problem
(33)–(35) if:

∫
Q

−λtφ dxdt +
∫
Q

μλφ dxdt−
∫
Q

(f ′(u∗) − h∗)λφ dxdt

+
∫
Q

n∑
i,j=1

aij (x, t)λxj φxi dxdt

−
∫
Q

n∑
i=1

bi(x, t)λφxi dxdt+
∫
∂Ω×(0,T )

qλφ dsdt =
∫
Q

h∗φ dxdt(36)

for all φ ∈ V and with λ(x, T ) = 0 for x ∈ Ω.

Since the adjoint PDE problem is linear in λ, by Evans [2010], an adjoint solution
exists.

Theorem 5. Given an optimal control h∗ and the corresponding state solu-
tion, u∗, there exists weak solution λ ∈ V satisfying the adjoint system (33)–(35).
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Furthermore, we have the optimality conditions:

h∗(x, t) =

⎧⎨
⎩
hmax : λ(x, t) < 1,
hsingular : λ(x, t) = 1,
0 : λ(x, t) > 1,

(37)

where hsingular can be found from the u∗ PDE.

Proof. We will find the control characterization by differentiating the map, h→
J(h), and using the sensitivity and the adjoint functions. If h∗ is optimal, then the
difference quotient will be nonpositive since J(h∗) would be the maximum value.
So, using the sensitivities, we have

0 ≥ lim
ε→0+

J(h∗ + εl) − J(h∗)
ε

= lim
ε→0+

∫
Q

e−μt
1
ε

[(h∗ + εl)uε − h∗u∗] dxdt

= lim
ε→0+

∫
Q

e−μt
[
h∗

(
uε − u∗

ε

)
+ luε

]
dxdt =

∫
Q

e−μt [h∗ψ + lu∗] dxdt.

Using the weak formulations for the adjoint and the sensitivity functions, we
obtain

0 ≥
∫
Q

e−μt
[

(−λt + μλ− f ′(u∗)λ+ h∗λ)ψ +
n∑

i,j=1

aij (x, t)λxj ψxi

−
n∑
i=1

bi(x, t)λψxi + lu∗
]
dxdt+

∫
∂Ω×(0,T )

e−μtqλψ dsdt

=
∫
Q

e−μt
[
λ (ψt − f ′(u∗)ψ + h∗ψ) +

n∑
i,j=1

aij (x, t)λxj ψxi

−
n∑
i=1

bi(x, t)λψxi + lu∗
]
dxdt+

∫
∂Ω×(0,T )

e−μtqλψ dsdt

=
∫
Q

e−μt [lu∗(1 − λ)] dxdt.

Our problem is linear in the control, h, and the switching function is u∗(1 − λ).
Since u∗ ≥ 0 in Q, we investigate the sign of (1 − λ). There are three cases:
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(i) On the set {(x, t)|h∗(x, t) = hmax}, any variation, with support on this set,
satisfies l ≤ 0. Then

0 ≥
∫
Q

e−μt l(u∗(1 − λ)) dxdt

implies λ ≤ 1 on this set.
(ii) On the set {(x, t)|h∗(x, t) = 0}, any variation, with support on this set, satisfies

l ≥ 0. Then

0 ≥
∫
Q

e−μt l(u∗(1 − λ)) dxdt

implies λ ≥ 1 on this set.
(iii) On the set {(x, t)|0 < h∗(x, t) < hmax}, any variation function, l, with support

on this set, can have arbitrary sign. The inequality (37) implies (1 − λ) = 0
on this set. When λ = 1 on a set of positive measure, then λt = 0 and λxi = 0
for i = 1, . . . , n. Thus our adjoint PDE becomes

−f ′(u∗) + h∗ + μ+
n∑
i=1

(bi(x, t))xi = h∗.

Using a similar approach as Joshi et al. [2008], we solve for u∗:

u∗(x, t) = (f ′)−1(μ+
n∑
i=1

(bi(x, t))xi ).

We then can solve the state PDE for h∗ to find the singular case, hsingular . We
need (μ+

∑n
i=1(bi(x, t))xi ) to be in the range of (f ′). If not, then the singular

case would not occur. If this set has measure 0, then we do not need to consider
this case.
Thus, these three conditions give us our optimality conditions (37). �

Remark 2. When
∑n

i=1(bi(x, t))xi = C, where C is a constant, then we have the
expression for hsingular at λ = 1:

0 = f(u) − hu = u(g(u) − h),

which can be solved for h∗singular :

h∗singular = g((f ′)−1(μ+ C)).



52 M.R. KELLY JR., Y. XING, AND S. LENHART

5. Numerical simulations. Numerical simulations are run to determine ap-
proximate solutions to the optimality system (1)–(3), (33)–(35), and (37). For
our illustrative examples, we consider the model for fish stock density on a one-
dimensional spatial domain of length L, with Robin boundary conditions

ut = (a(x, t)ux)x + b(x, t)ux + f(u) − h(x, t)u,(38)

∂u

∂ν
(x, t) + qu(x, t) = 0,(39)

where the diffusion and advection coefficients, a(x, t) and b(x, t), respectively, are
positive and can be heterogeneous functions in space and time. We assume the
logistic growth function, f(u) = u(1 − u), where u is the stock density in proportion
to the carrying capacity K.

The corresponding adjoint equation and optimal control characterization are

− λt − (1 − 2u∗)λ+ h∗λ− (a(x, t)λx)x + (b(x, t)λ)x + μλ = h∗,(40)

∂λ

∂ν
+ qλ− b(x, t)ηλ = 0,(41)

and

h∗(x, t) =

⎧⎨
⎩
hmax : λ(x, t) < 1,
hsingular : λ(x, t) = 1,
0 : λ(x, t) > 1,

(42)

where h∗ is the optimal harvest, u∗ is the corresponding optimal state.

The forward–backward iterative technique (Lenhart and Workman [2007]) was
used to solve the optimality system, which consists of (38)–(39), (40)–(41), and
(42). See Hackbusch [1978] for convergence of method. To solve the PDEs, we use
an explicit finite difference method with appropriate upwinding schemes for first-
order spatial derivatives and a second-order central difference approximation is used
for the diffusion terms. A forward Euler method is used for the time derivative.
Convergence of the system is checked using relative errors of the optimality system.
For numerical simulations, the mesh size was chosen to be dx = 0.04 and dt =
dx2

2.5 such that, along with the diffusion and advection coefficients, the Courant–
Friedrichs–Lewy (CFL) condition for the stability of the system is satisfied.

We chose an initial condition for our fish stock that satisfied both Robin and
Dirichlet boundary conditions. The function was chosen so that the stock of fish
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TABLE 1. Parameter description, values, and units.

Parameters Value Description Units

L 4 Habitat length kilometers (km)
T 4 Final time years (yrs)
μ 0.2 Discount term 1/yr
q 1 Boundary coefficient 1/km
a(x, t) 1 Diffusion coefficient km2/yr
b(x, t) varied Advection coefficient km/yr

would have a bell-shaped curve where most of the stock is concentrated on the
middle of the domain:

u(x, 0) =
1
24
x2(x− L)2 .(43)

Parameter values for simulations are listed in Table 1. We consider a spatial
domain in terms of kilometers and time in terms of years. Our time scale was
chosen such that the population would reach the steady state approximately halfway
through the simulation. We set our diffusion coefficient and varied the value of the
advection coefficient. The values for our advection coefficient will be chosen in the
interval [0, 1]. In our numerical simulations, the singular control case never occurred.
There was also no evidence of nonuniqueness in the optimal control.

An illustration of the stock density at the initial time with the initial condition,
(43), is given in Figure 1, which we will use to compare results with Dirichlet
and Robin boundary conditions. When comparing scenarios with Robin boundary
conditions, we will use the steady states for the model, with varying levels of ex-
ploited initial stock densities. Those steady states were found using different levels
of constant harvest on the system. They are visually represented in Figure 1.

5.1. Comparison of boundary conditions. Given the initial condition,
(43), we simulated the model without harvest and without advection to investi-
gate the dynamics of the fish stock. Robin boundary conditions allow for the flux
across the boundary to be proportional to the stock at the boundary. Dirichlet
boundary conditions are lethal to the fish stock at the boundary while Neumann
boundary conditions represent a no-flux boundary where the stock cannot leave the
boundary. The three cases are shown in the Figure 2.

We compare results with Robin boundary conditions with previous work with
Dirichlet boundary conditions (Joshi et al. [2008]), using the initial condition, (43).
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FIGURE 1. Steady states (SS) for varying levels of constant harvest. The initial condition
(IC) for stock density used in Dirichlet and Robin boundary condition comparisons is shown
in blue.

State (u) 

Domain (x)

T
im

e 
(t

)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1

0.2

0.3

0.4

0.5

0.6

(a) Dirichlet

State (u) 

Domain (x) 

T
im

e 
(t

) 

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Robin

State (u) 

Domain (x) 
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

T
im

e 
(t

) 

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Neumann

FIGURE 2. Comparison of fish stock dynamics with three different boundary conditions.
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TABLE 2. Objective functional values for Dirichlet and Robin boundary condition cases
without advection.

Boundary condition J(h∗) J(hm ax )

Dirichlet 1.3624 1.3551
Robin 1.9770 1.9143

With Robin boundary conditions, fish stock diffusing to the boundary has less threat
of dying as in the Dirichlet boundary case with its lethal boundary. We first compare
results without advection (b(x, t) = 0). We see in Figure 3a that a reserve exists in
the Dirichlet boundary case but is smaller due to the higher chance of the stock
reaching the boundary, dying, and no longer being of any value to the stockholder.
Due to the conditions of the habitat at the Dirichlet boundary, the projected yield
value of the stock is higher, thus the stock is harvested at maximum strength in a
larger amount of the habitat than in the Robin boundary case.

In the Robin boundary condition case, Figure 3b, more of the habitat is kept as a
reserve, and for longer time, than in the Dirichlet boundary case since there is less
threat of losing stock at the boundary. There are also more fish present in the habitat
longer in time as seen in the states in Figure 3. When comparing the objective
functional values for both cases, shown in Table 2, notice that, even with the larger
reserve, the value of the objective functional in the Robin boundary condition case
is higher. We also note that the objective functional values for the optimal strategy
are higher than cases where the domain is harvested at the maximum level for the
entire time.

Ocean environments are subject to varying currents throughout space and time. In
numerical simulations with constant advection, Joshi et al. [2008] concluded that
the location of reserves shifted in the opposite direction of advection of the fish
stock. Advection acts by pulling the stock in a certain direction and represents cur-
rents in the environment. We investigate constant advection throughout space and
time, as well as several heterogeneous advection terms. First, we illustrate a con-
stant advection coefficient, b(x) = 0.5. We then compare results with heterogeneous
advection function coefficients varying in space, using two advection function coef-
ficients, b(x) = sin(πx4 ) and b(x) = e−0.5x . Each represent high advection in certain
regions of spatial domain. Finally, we investigate one scenario where the advection
function varies in space and time; the spatial domain tries to account for regions of
high and low currents that shift over time, with b(x, t) = 1

2 (sin(πx+ t) + 1).

With a constant advection, seen in Figure 4, the location of the reserve shifts
in the opposite direction of where advection pulls the stock in both cases. This is
because the location farthest from where the stock is moving has the least value to
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FIGURE 3. Comparison of stock dynamics and optimal harvesting strategies for Dirichlet
and Robin boundary conditions without advection, b(x, t) = 0.
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FIGURE 4. Comparison of stock dynamics and optimal harvesting strategies for Dirichlet
and Robin boundary conditions with constant advection, b(x, t) = 0.5.
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TABLE 3. Objective functional values for Dirichlet and Robin boundary condition cases with
varying advection coefficients.

Boundary b(x) = 0.5 b(x) = sin( π x4 ) b(x) = e−0 .5x b(x, t) = 1
2 (sin(πx+ t) + 1)

Dirichlet 1.3148 1.2587 1.4756 1.3468
Robin 1.9337 1.9855 2.1501 2.0034

harvest. Stock in this area has less of a chance of being lost at the boundary. In
the Dirichlet boundary case, Figure 4a, since stock is being strongly pulled toward
a lethal boundary, the reserve is shifted in the opposite direction and the reserve is
smaller than in the cases without advection. This is due to advection raising the risk
of stock dying on one side of the boundary. In the Robin boundary case, Figure 4b,
since the boundary is not necessarily lethal, it is not as valuable to harvest at
maximum strength in as large of an area as the Dirichlet boundary case. A larger
reserve exists and opens sooner because there is a smaller chance that stock in that
area of the habitat will be lost.

Results on how advection function coefficients, varying in space, affect the harvest
strategy are found in Figures 5 and 6. Table 3 compares the objective functional
values for the Dirichlet and Robin boundary condition cases. Despite larger reserves
forming, the objective functional values for the Robin boundary condition cases are
always higher than the Dirichlet boundary cases.

In the cases where the advection coefficient is heterogeneous across the spatial
domain, we see similar results as in the constant advection cases. The reserve is
still shifted in the direction opposite from where the stock is being pulled, however,
the shape and length of the reserves vary, especially seen in Figure 5. In this case,
there is a strong advection term in the center of the habitat, where the fish stock is
initially concentrated. The reserve begins much earlier and is shifted further than
other cases. Since advection is strong in the center of the domain, there is a larger
risk of stock being pulled to the boundary and lost so it becomes more profitable
to harvest. Again, we see the reserve opening earlier and persisting longer in the
Robin boundary case because the stock is less valuable to harvest since there is less
chance of being pulled to the boundary and lost.

In Figure 6, the result is more similar to the constant advection case from Figure 4.
In this case, the advection is strongest on one side of the habitat. The reserve in
the Robin boundary case is wider, opens earlier, and shifted more than in Dirichlet
boundary case. This is due to areas where advection is highest being the most
valuable to harvest because of the chance for stock to be lost at the boundary. The
stock in other parts of the domain, where the current is less strong, is less valuable
to harvest, which is a reason why the reserve forms here and is larger. Another
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FIGURE 5. Comparison of stock dynamics and optimal harvesting strategies for Dirichlet
and Robin boundary conditions with advection, b(x) = sin( π x4 ).
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FIGURE 6. Comparison of stock dynamics and optimal harvesting strategies for Dirichlet
and Robin boundary conditions with advection, b(x) = e−0 . 5 x .
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thing to note is that the reserve does not hit either edge of the habitat in any of
the cases. Although the advection is strongly pulling the stock to one side of the
habitat, there is still diffusion distributing the stock across the domain and there is
still stock moving to both ends of the habitat. Thus, it is advantageous to harvest
in all areas closest to the boundary.

Figure 7 illustrates when the advection coefficient changes in both space and time.
Notice, for both cases, the similar shift in the direction the reserve forms that is
dependent on the direction the current moves. Again, as previously seen, a larger
reserve is formed in the Robin boundary condition case than in Dirichlet boundary
case. When comparing the harvesting strategies with the advection function, b(x, t),
it is interesting to note where the reserve forms. The reserve in both cases forms
next to an area of the domain with the highest advection values, always on the side
opposite of where stock is being pulled.

5.2. Comparison of varying scenarios with Robin boundary conditions.
As we saw in the previous subsection, there is a definite difference when the domain

incorporates Dirichlet or Robin boundary conditions. Although reserves were always
part of the optimal harvesting strategy, the size, shape, and timing are affected
by both the boundary conditions and varying advection function coefficients. In
this section, we will investigate more closely the domain with Robin boundary
conditions and how different scenarios affect the optimal harvesting strategies. We
begin with optimal harvesting results for constant advection coefficients, b(x), with
varying constant values on the interval [0, 1], found in Figure 8. We then compare
the optimal harvesting results with advection coefficients that are heterogenous in
space or time, bounded on the interval [0, 1]. In these scenarios, we use the steady
state of unexploited fish stock without harvest as our initial condition (see Figure 1).
The results are shown in Figure 9.

As the constant advection coefficient increases, we see an increase in the shift of
the reserve in the opposite direction of the pull. In the cases with a heterogenous
advection coefficient, Figure 9, there is more variation in the shape of the reserve.
The location of strong currents in a domain affects harvest strategies. Stronger
currents through the center of a domain affect a larger portion of the stock than if
only concentrated on one side of the domain or constant throughout, thus altering
where and when reserves develop and their size. Again, as the advection function
varies in time (Figure 9 d), a reserve forms to the right of highest advection areas
and the reserve follows the movement of advection, forming on a diagonal. An
understanding of ocean currents within a fishery, as well as their variation in time,
appears necessary in determining where reserves should be implemented.

5.3. Optimal harvesting strategy results for an initially unexploited
and exploited stock. In previous results, simulations were run using the steady
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FIGURE 7. Comparison of stock dynamics and optimal harvesting strategies for Dirichlet
and Robin boundary conditions with advection, b(x, t) = 1

2 (sin(πx + t) + 1).
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(d) b = 0.75

FIGURE 8. Comparison of optimal harvesting strategies for Robin boundary conditions with
varying constant advection coefficients.
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(c) b(x) = sin π x
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(d) b(x , t) = (sin (π x+ t)+ 1)
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FIGURE 9. Comparison of optimal harvesting strategies for Robin boundary conditions with
varying advection function coefficients.

state of an unexploited fish stock. Due to current fishing practices, many stocks
are either exploited or overexploited. In this subsection, we investigate optimal
harvesting strategies with different levels of fish stock at the initial time, when the
stock is initially unexploited, exploited, or overexploited. Figure 1 shows the steady
states considered, with varying harvest values. Figure 10 shows varying results with
different levels of stock at the initial time.

With an initially overexploited fish stock, there is a need for a reserve starting at
t = 0 to rebuild the stock. Once the stock recovers, the reserve decreases in size,
eventually closing, and maximum harvest persists for the remaining time. This
makes sense in cases when trying to maximize yield. It is important for stock to
grow before depleting the stock again. The practicality of its implementation is
debatable since, depending on the level of overexploitation, large portions of the
habitat would be closed to fishing. The effect on the fishing industry would be
drastic in the short term.
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(c)
where h=0.5.
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FIGURE 10. Comparison of optimal harvesting strategies for Robin boundary conditions
for various exploited initial stock densities. The initial conditions for (a) were set as the
equilibrium of a previously unexploited stock. The initial conditions for each panel from left
to right, (b)–(d) were chosen to simulate an increasingly overexploited stock.

TABLE 4. Comparison of objective functional values for the optimal harvest strategy and an
approximation to that harvesting strategy with varying advection coefficients.

Advection J(h∗) J(happrox )

b(x, t) = 0 2.8522 2.8504
b(x, t) = 0.75 2.7414 2.7399
b(x) = sin( π x4 ) 2.8400 2.8387

5.4. Approximations of optimal harvesting strategy results. In the im-
plementation of a harvesting strategy, there is debate on the feasibility of adjusting
the effort through space and time. In this section, we compare the optimal har-
vesting strategy results from the previous sections with an approximation of the
harvesting strategy that is either constant in space or in both space and time.
We compare the objective functional values for both to determine how close the
approximation is to the optimal result.

In the previous section, we found the optimal harvesting strategies for Robin
boundary conditions given certain scenarios. We investigate the scenario without
advection and then two with advection coefficients. The results for the case with-
out advection are found in Figure 11 and Table 4. We investigate the constant
advection coefficient of b(x) = 0.75 and the heterogeneous advection coefficient,
b(x) = sin(πx4 ). The results are shown in Figures 12 and 13, and Table 4, respec-
tively. In Figures 11–13, in the approximation, the reserve was chosen to be rect-
angular and to be close to optimal reserve location.
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FIGURE 11. Comparison of optimal harvesting strategy for Robin boundary conditions and
an approximation of that harvesting strategy, without advection.
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FIGURE 12. Comparison of optimal harvesting strategy for Robin boundary conditions and
an approximation of that harvesting strategy, with constant advection, b(x, t) = 0.75.
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FIGURE 13. Comparison of optimal harvesting strategy for Robin boundary conditions and
an approximation of that harvesting strategy, with advection function coefficient, b(x) =
sin( π x4 ).

In each of the cases, harvest approximations can be found that are close to the
optimal harvest strategies found through the simulations. The approximations were
found by choosing finite space and time intervals in locations and sizes that best
estimate the optimal harvesting strategy. In all the cases, as seen by the objective
functional values in Table 4, the approximations are obviously less than the optimal
but there is evidence to believe that if you approximated the harvest, the result-
ing objective functional would be very close. The largest difference between the
approximate and actual optimal objective functional values is less than 0.5%. The
approximations may be more realistic in regards to actual implementation of re-
serves because it is easier to form reserves that are constant in space and open/close
in time.

Another option to consider is when the harvest does not vary in time. In Fig-
ures 14 and 15, with Table 5, we compare the results with the optimal harvest-
ing strategy in the dynamic harvest case with no advection, using a narrower re-
serve as approximation. We also include the objective functional values for the
case with maximum harvest on the entire domain in Table 5 for comparison.
When the domain is harvested at the maximum for the entire time, we see sub-
optimal results as expected, with an objective functional value lower than in the
optimal harvest case (approximately 1% lower). When considering a harvest not
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FIGURE 14. Comparison of optimal harvesting strategy for Robin boundary conditions and
an approximation of that harvesting strategy, not varying in time, without advection.

TABLE 5. Comparison of objective functional values for the optimal harvest strategy, an
approximation to that harvesting strategy, and maximum harvest on entire domain, without

variation over time and without advection.

J(h∗) J(happrox ) J(hm ax )

2.8522 2.7259 2.8310

varying in time, the objective functional value is still lower than in the optimal
case, seen in Table 5. In this approximate case, there are higher stock levels at
the final time, seen in Figure 15. However, when trying to maximize yield only,
it is not as close to optimal as other approximations (approximately 5% lower).
This points to evidence that time managed reserves are important when consid-
ering reserves. More work needs to be done in this area, such as investigating
harvest dependent only on space or time and determining the optimal harvesting
strategies associated with them, rather than just using these approximations of the
optimal.
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FIGURE 15. Comparison of the corresponding state solution for the optimal harvesting
strategy and the approximation to that harvesting strategy, not varying in time, without
advection.

6. Conclusions. Our work highlights the importance of appropriate boundary
conditions, corresponding to specific fishing scenarios, in finding harvest manage-
ment strategies. A more realistic boundary condition produces different harvesting
results than previous results with Dirichlet boundary conditions. Although there
may be scenarios when lethal, Dirichlet boundaries should be used, when consider-
ing open ocean fisheries, the implementation of a nonlethal boundary, using Robin
boundary conditions, produced results with larger yield values as well as reserve
sizes.

We further investigated how the interplay between Robin boundary conditions
and advection within the domain affected harvesting strategies. Similar to previous
work of Joshi et al. [2008], a reserve opens and is shifted in the opposite direc-
tion from that toward which the stock is being pulled. However, the reserves are
larger than in previous work. When we investigated advection functions that varied
in space or time, there was even more disparity among the size and shape of re-
serves. When the advection shifted in time, a reserve forms that followed a similar
directional pattern as the advection. We also compared harvesting strategies for sce-
narios when the stock size is initially unexploited, exploited, and overexploited. We
saw that when the stock is initially overexploited, reserves are opened immediately
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and cover most of the domain. Once the stock has time to recover, the reserve closes
and the domain is harvested at maximum levels the rest of the time.

When considering the implementation of these reserves, we decided to approx-
imate the optimal harvest strategies using reserves that, once open, do not vary
in space. We saw that approximate reserves produced suboptimal objective values
but the values were relatively close (less than 0.5% difference). In the case where
we compared the optimal harvest strategy with an approximate harvest strategy
with reserves not varying in time, there was a significant difference in objective
values and the stock levels at the final time (objective values approximately 5%
less). Using spatial boundaries that are constant in time (reserve is rectangular in
space and time) and restricting the length of time to impose a reserve are realistic
and can achieve near optimal results.

We saw that currents varying through space and time affected harvesting strate-
gies. There is evidence that a better understanding of ocean currents within a
habitat and how they vary through time is important when determining the loca-
tion and time of a reserve, as well as its size. With the added complexity to the
domain, we believe harvesting strategies will also be affected.
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