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Abstract. This paper studies a local discontinuous Galerkin method combined with
fourth order exponential time differencing Runge-Kutta time discretization and a fourth
order conservative method for solving the nonlinear Schrödinger equations. Based on
different choices of numerical fluxes, we propose both energy-conserving and energy-
dissipative local discontinuous Galerkin methods, and have proven the error estimates
for the semi-discrete methods applied to linear Schrödinger equation. The numerical
methods are proven to be highly efficient and stable for long-range soliton computa-
tions. Extensive numerical examples are provided to illustrate the accuracy, efficiency
and reliability of the proposed method.

1 Introduction

The N-coupled nonlinear Schrödinger equation (NLSE) is widely used to model a num-
ber of important physical phenomena, including propagations of solitary waves in op-
tical fibers [2], deep water turbulence [25] and laser beams [31]. In 1967, the 2-coupled
NLSE was first derived in [3] to study two interacting nonlinear packets in a dispersive
and conservative system. The N-coupled NLSE was proposed in [28] to accurately eval-
uate the signal distortion in optical communication fibers, and further studied in many
literatures. In one space dimension, it takes the form of

iunt+iαnunx+εnunxx+(
N

∑
m=1

βnm|um|2)un =0,n=1,2,...,N, (1.1)
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where un represent the amplitude of the pulse envelops, αn indicate the group velocities
for polarization components, εn are the group velocity dispersion parameters, and βmn
are nonlinearity parameters responsible for the Self Phase Modulation [1].

A vast amount of literature can be found on the numerical approximation of the
NLSEs. Many different types of numerical methods, including finite difference, finite
element, finite volume, and spectral methods, have been designed, see for example,
[7, 15, 18, 20, 21, 29, 30, 32, 34, 36] and references therein. The analysis of some finite dif-
ference methods can be found in [7, 20, 34]. Recently, [33] studies a finite difference
scheme for 2-coupled NLSEs, and they have shown the boundedness of the numerical
solution in the discrete L∞ norm. The numerical solutions of the NLSEs by both finite
element Galerkin and finite difference methods are investigated in [15]. It appears that
the Galerkin method produces more acceptable results for a wider range of parameters.
Many finite element methods have been studied for the NLSEs, see [21,29] and the refer-
ences therein.

However, most articles mentioned above do not consider the group velocity for polar-
ization components, except for [20, 36]. In this paper, we consider (1.1) with αn 6=0, since
αn has significant meanings in nonlinear fiber optics. According to [1], even a single-
mode fiber can support two degenerate modes that are polarized in two orthogonal di-
rections. Especially, in high-birefringence fibers, the group velocity mismatch between
the fast and slow components of the input pulse cannot be neglected, which means the
polarization components αn in (1.1) cannot be ignored.

The numerical methods discussed here are the discontinuous Galerkin (DG) meth-
ods. They belong to a class of finite element methods using piecewise polynomial spaces
for both the numerical solution and the test functions. They were originally devised to
solve hyperbolic conservation laws with only first order spatial derivatives, e.g. [11, 13].
They have many attractive advantages, including the allowance of arbitrarily unstruc-
tured meshes, a compact stencil and easy h-p adaptivity. The DG methods were later
generalized to the local discontinuous Galerkin (LDG) methods by Cockburn and Shu
to solve the convection-diffusion equation [12]. As a result, the LDG methods have
been successfully applied to solve various partial differential equations (PDEs) contain-
ing higher-order derivatives. For the single and 2-coupled NLSEs, a Runge-Kutta LDG
method was first developed in [36], in which they provided the stability analysis and a
k+1/2-th error estimate for the linearized problem.

The performance of several fourth order temporal discretizations for the single NLSEs
is compared in [23]. Methods considered there include the exponential time-differencing
fourth-order Runge-Kutta (ETD4RK) method as proposed by Cox and Matthews [14]
with implementation by Kassam and Trefethen [22], integrating factors, time-splitting,
Fornberg and Driscoll’s ‘sliders’, and an ODE solver in MATLAB. The ETD4RK method
shows high efficiency and reliability among these methods for the NLSEs. The fourth or-
der exponential time differencing Runge-Kutta (ETDRK4) time discretization we use in
this paper is based on the ETD4RK method with a modification by Khaliq et al. in [24]. In
[16], the ETDRK4 scheme has been applied to a single higher order nonlinear Schrödinger
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(HONLS) equation. According to their numerical tests, the ETDRK4 is approximately
four times faster than the fourth order split step Fourier method in simulating solutions
of the HONLS equation. In [4,17], Krylov subspace methods and Chebyshev approxima-
tions of the matrix exponential operator are introduced. The ETDRK4 method uses the
same idea with these methods.

In this paper, we propose to apply LDG methods to solve the N-coupled NLSE (1.1).
Based on different choice of numerical fluxes, we present both energy conserving and
energy dissipative LDG methods. Experience reveals that energy conserving numerical
methods, which conserve the discrete approximation of energy, are able to maintain the
phase and shape of the waves accurately, especially for long time simulation [6,9,35]. We
also provide an optimal error estimate for the proposed LDG-D method, and suboptimal
error estimate for the LDG-C method applied to linear Schrödinger equation. Coupled
with the efficient ETDRK4 time discretization, the proposed methods are very efficient
and good for long-time computations as observed from our numerical experiments. A
fourth order conservative time-stepping method [6] is also proposed. The efficiency of
ETDRK4 and the conservative method is compared in the numerical experiments.

This paper is organized as follows. In Section 2, we start by providing a description
of the LDG method for the NLSE, and showing its energy conservation and stability. Er-
ror estimate for the linear Schrödinger equation is then proven. In Section 3, we give
an introduction to the ETDRK4 method for temporal discretization. The stability regions
of the method are illustrated. In Section 4, A fourth order conservative time stepping
method [6] is proposed. In Section 5, extensive numerical results of NLSEs are given
showing convergence rates and efficiency of the methods. Several second order time
stepping methods are also applied for an efficiency comparison. Finally, we give conclu-
sion and future work in Section 6.

2 The local discontinuous Galerkin method

2.1 Notations

The computational domain I=[a,b] is divided into N subintervals. We denote the cells by
Ij =[xj−1/2,xj+1/2] for j=1,··· ,N. The center of the cell is xj =(xj−1/2+xj+1/2)/2 and the
mesh size is hj=xj+1/2−xj−1/2. We assume that the mesh is regular, namely, the ratio be-
tween the maximal and the minimal mesh sizes stays bounded during mesh refinement.
The complex piecewise polynomial space Vk

h is defined as the space of polynomials of
degree at most k in each cell Ij, that is

Vk
h ={v : v∈Pk(Ij) for x∈ Ij, j=1,··· ,N}.

Note that functions in Vk
h are allowed to have discontinuities across element interfaces,

and are complex valued functions since the NLSE admits complex solutions.
We denote the numerical solution by uh, which belongs to the finite element space

Vk
h . (uh)

+
j+1/2 and (uh)

−
j+1/2 are the limit values of uh at xj+1/2 from the right cell Ij+1
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and from the left cell Ij, respectively. We use the usual notations [uh] = u+
h −u−h and

{uh}=(u+
h +u−h )/2 to represent the jump and the average of the function uh at the element

interfaces. For any complex function w, its conjugate is denoted by w∗. The inner product
of two functions w and r, and the L2 norm of w over the interval Ij are given by

(w,r)Ij =
∫

Ij

wr∗dx, ‖w‖2
Ij
=
∫

Ij

ww∗dx=
∫

Ij

|w|2dx,

respectively.

2.2 The LDG method

In this subsection, we define the semi-discrete LDG method for the NLSE

iut+εuxx+i(g(|u|2)u)x+ f (|u|2)u=0, (2.1)

with periodic boundary conditions and an initial condition

u(x,0)=u0(x). (2.2)

Here f (u) and g(u) are arbitrary smooth nonlinear real functions. The periodic boundary
condition is assumed for the sake of simplicity only and is not essential. The same method
can be easily generalized for non-periodic boundary conditions. Also, we remark that the
extension of the proposed LDG method to the N-coupled NLSE (1.1) is straightforward,
as these equations are coupled through the last term (∑N

m=1 βnm|um|2)un only and that
term does not include derivatives.

First, we introduce an auxiliary variable q= ux, and write the wave equation into a
first order system

iut+εqx+i(g(|u|2)u)x+ f (|u|2)u=0,
q−ux =0.

(2.3)

The LDG method for (2.3) is then formulated as follows: find uh, qh∈Vk
h , such that

i((uh)t,v)Ij−(εqh,vx)Ij +ε(q̂h(v∗)−)j+ 1
2
−ε(q̂h(v∗)+)j− 1

2
−i(g(|uh|2)uh,vx)Ij

+i(ĝuh(v∗)−)j+ 1
2
−i(ĝuh(v∗)+)j− 1

2
+( f (|uh|2)uh,v)Ij =0, (2.4)

(qh,w)Ij +(uh,wx)Ij−(ûh(w∗)−)j+ 1
2
+(ûh(w∗)+)j− 1

2
=0. (2.5)

for all test functions v, w∈Vk
h . The hatted terms, q̂h, ĝuh and ûh, in (2.4)-(2.5) are the cell

boundary terms obtained from integration by parts, and they are the so-called numerical
fluxes. These numerical fluxes are single-valued functions defined on the cell boundaries
and should be designed according to guiding principles for different PDEs to ensure
numerical stability. For the pair of q̂h and ûh, we could use the simple alternating fluxes:

q̂h =q−h , ûh =u+
h , (2.6)
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in which we have omitted the half-integer indices j+1/2, as all quantities in (2.6) are
computed at the same points (i.e., the cell interface). We remark that the choice of the
fluxes (2.6) is not unique. We can, for example, alternatively choose the numerical fluxes
to be

q̂h =q+h , ûh =u−h . (2.7)

For the other flux term ĝuh, we could follow the approach in [36] and define

ĝuh = ĝ(|u−h |
2,|u+

h |
2)ũh, (2.8)

where

ũh = θuup
h +(1−θ){uh}, 0< θ≤1, uup

h =

{
u−h if ĝ≥0,
u+

h if ĝ<0,

and ĝ(a,b) is monotone flux, for example, the Lax-Friedrichs flux,

ĝ(a,b)=
1
2
(g(a)+g(b)−γ(b−a)), γ=max

l
|g′(l)|.

The resulting scheme is denoted by LDG-D scheme. We could also define the flux ĝuh as

ĝuh =

∫ |u+
h |

2

|u−h |2
g(s)ds

[|uh|2]
{uh}=

[G(|uh|2)]
[|uh|2]

{uh}, (2.9)

where

G(w)=
∫ w

g(s)ds. (2.10)

The resulting scheme is called LDG-C scheme, where the ‘C’ and ‘D’ stand for con-
servative and dissipative, respectively, representing the energy-conserving and energy-
dissipative property of the underlying schemes. For the N-coupled NLSE (1.1), the func-
tion g(|u|2) is chosen to be constant αn, and the LDG-C scheme becomes a special case of
LDG-D with θ=0.

For simplicity, we introduce the notation

Tj(r,s;r̂)=−
∫

Ij

rsxdx+(r̂s−)j+ 1
2
−(r̂s+)j− 1

2
, (2.11)

and the LDG methods (2.4)-(2.5) become

i((uh)t,v)Ij +εTj(qh,v∗;q̂h)+iTj
(

g(|uh|2)uh,v∗; ĝuh
)
+( f (|uh|2)uh,v)Ij =0, (2.12)

(qh,w)Ij =Tj(uh,w∗;ûh). (2.13)

One can easily observe that

∑
j

(
Tj(a,b;a−)+Tj(b,a;b+)

)
=0, (2.14)

which will be utilized in our proof below.
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2.3 Projections

We use P to denote the L2 projection of a function ω(x) with k+1 continuous derivatives
into space Vk

h , that is:
(Pω,φ)Ω =(ω,φ)Ω,

for any φ∈Pk on K.
In addition, a one-dimensional projection P− for a real-valued function ω, which

projects ω into the one-dimensional piecewise polynomial space of degree k while taking
the values of ω at the cell interface, is defined as follows

(P−ω,φ)Ij =(ω,φ)Ij , ∀φ∈Pk−1(Ij) and (P−ω)−(xj+ 1
2
)=ω−(xj+ 1

2
). (2.15)

Similarly, the one-dimensional projection P+ω is defined as the projection of ω such that

(P+ω,φ)Ij =(ω,φ)Ij , ∀φ∈Pk−1(Ij) and (P+ω)+(xj− 1
2
)=ω+(xj− 1

2
).

For these projections, it is easy to show (see [10]):

‖ωe‖+h‖ωe‖∞+h
1
2 ‖ωe‖Γh≤Chk+1, (2.16)

where ωe=ω−Pω or ωe=ω−P±ω, and Γh denotes the set of boundary points of all cells.
The constant C depends on the function ω, but is independent of the mesh size h.

Let us now denote the errors for the function ω by

eω =ω−ωh, ηω =ω−P±ω, ζω =P±ω−ωh, (2.17)

which, from left to right, respectively represent the errors between the exact solution
and the numerical solution, the projection errors, and the errors between the numerical
solution and the particular projection of the exact solution. Note that the signs of the
projection P± in (2.17) are consistent with the choice of the numerical fluxes in (2.6), and
will be specified in the proposition below.

2.4 Energy conservation and stability

The L2 stability of the LDG-D method, i.e. d
dt

∫
|uh|2dx≤0, has been proved in [36]. In this

subsection, we will show that the LDG-C method conserves the energy exactly, which
will also give us its L2 stability.

Proposition 2.1. The solution to the semi-discrete LDG-C method (2.4)-(2.5) with the
choice of numerical fluxes (2.6)-(2.9) conserves the energy

Eh(t)=‖uh‖2
I =

∫
I
|uh|2dx (2.18)

exactly for all time.
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Proof. We first choose the test function v = uh in (2.4) and w = εqh in (2.5). The sum of
these two equations gives

i((uh)t,uh)Ij +εTj(qh,u∗h;q−h )+iTj
(

g(|uh|2)uh,u∗h; ĝuh
)

+( f (|uh|2)uh,uh)Ij +ε(qh,qh)Ij−εTj(uh,q∗h;u+
h )=0. (2.19)

We take the complex conjugate for every term in Eq. (2.19)

−i((u∗h)t,u∗h)Ij +εTj(q∗h,uh;(q∗h)
−)−iTj

(
g(|uh|2)u∗h,uh; ĝu∗h

)
+( f (|uh|2)u∗h,u∗h)Ij +ε(q∗h,q∗h)Ij−εTj(u∗h,qh;(u∗h)

+)=0. (2.20)

By subtracting Eqs. (2.19) and (2.20), summing up over all cells and using the periodic
boundary conditions and (2.14), we have

i
d
dt
‖uh‖2

I +i∑
j

(
Tj
(

g(|uh|2)uh,u∗h; ĝuh
)
+Tj

(
g(|uh|2)u∗h,uh; ĝu∗h

))
=0.

Following the definition (2.9) of the flux ĝuh, we have

∑
j
Tj
(

g(|uh|2)uh,u∗h; ĝuh
)
+∑

j
Tj

(
g(|uh|2)u∗h,uh; ĝu∗h

)
=∑

j

[
−
∫

Ij

g(|uh|2)uh(u∗h)xdx+(ĝuh(u∗h)
−)j+ 1

2
−(ĝuh(u∗h)

+)j− 1
2

−
∫

Ij

g(|uh|2)u∗h(uh)xdx+(ĝu∗h(uh)
−)j+ 1

2
−(ĝu∗h(uh)

+)j− 1
2

]
=−∑

j

∫
Ij

g(|uh|2)(|uh|2)xdx−∑
j

[G(|uh|2)]
[|uh|2]

({uh}[u∗h]+{u∗h}[uh])

∣∣∣∣
j+ 1

2

=∑
j
[G(|uh|2)]j+ 1

2
−∑

j
[G(|uh|2)]j+ 1

2
=0,

where G is the antiderivative of g, as defined in (2.10). Therefore, we have

d
dt
‖uh‖2

I =0.

and the quantity Eh is invariant in time.

Remark 2.1. The above energy conservation property is proven for the single NLSE. The
same results hold for the N-coupled NLSE (1.1), which can be proven by similar tech-
niques as that in the proof of Proposition 2.1, and hence the detailed proof is neglected
here.
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2.5 Error estimate

In this subsection, we carry out the error estimates for the linear Schrödinger equation,
which takes the form of

iut+εuxx+i(au)x =0. (2.21)

Without loss of generality, we assume ε = a = 1 to simplify our presentation. In [36],
an error estimate of order k+1/2 has been shown for the LDG-D method with θ = 1 in
(2.8). Optimal error estimate for the equation without first order derivative term, i.e.
iut+uxx = 0, has recently been proven in [37] by Xu and Shu. Below, we will show that
optimal error estimate can also be achieved for the LDG-D method with θ=1 applied to
the equation (2.21) with a linear convection term. As we will show below, this extension
is non-trivial and the presence of the first order derivative term adds many complexities
to the proof. At the end of this subsection, we will show a suboptimal error estimate for
the LDG-C method (i.e. θ=0 in (2.8)).

Let us first repeat the LDG-D method (2.12)-(2.13) here:

i((uh)t,v)Ij +Tj(qh,v∗;q̂h)+iTj(uh,v∗;ũh)=0, (2.22)

(qh,w)Ij =Tj(uh,w∗;ûh), (2.23)

with the numerical fluxes q̂h, ûh defined in (2.6) or (2.7) and the upwind flux ũh = u−h .
Note that if a<0 in (2.21), the upwind flux ũh will become u+

h .
Since the proofs of the error estimate for different numerical fluxes are different, we

start by presenting the following theorem when the numerical fluxes (2.7) are used:

Proposition 2.2. Let u, and q be the exact solutions of the linear Schrodinger equation
(2.21), and let uh, and qh be the numerical solutions of the semi-discrete LDG method
(2.22)-(2.23) with the numerical fluxes defined in (2.7) and the initial condition uh(·,0)=
P−u0(x). The particular projections of the exact solutions are defined as P−u, and P+q in
(2.17), and the corresponding errors are given by

ζu =P−u−uh, ζq =P+q−qh, (2.24)

to be consistent with the choice of numerical fluxes. There holds the following error
estimate:

max
t
‖eu‖I+max

t
‖eq‖I+max

t
‖(eu)t‖I≤Chk+1, (2.25)

where C=C(t,‖u‖L∞((0,t);Hk+1(I)),‖u‖L∞((0,t);Hk+2(I))).

Proof. By the property of the projection (2.16), we can obtain the error estimates for the
numerical initial conditions

‖eu(x,0)‖I≤Chk+1, ‖eq(x,0)‖I≤Chk+1, ‖(eu)t(x,0)‖I≤Chk+1, (2.26)

following the similar approach as in [8].
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By subtracting the LDG method (2.22)-(2.23) with the fluxes (2.7) from the weak for-
mulation satisfied by the exact solutions u, and q, we can derive the error equations

i((eu)t,v)Ij +Tj(eq,v∗;e+q )+iTj(eu,v∗;e−u )=0, (2.27)

(eq,w)Ij =Tj(eu,w∗;e−u ), (2.28)

for all test functions v,w∈Vk
h . By the definition of these projections P±, we have

i((eu)t,v)Ij +Tj(ζq,v∗;ζ+q )+iTj(ζu,v∗;ζ−u )=0, (2.29)

(eq,w)Ij =Tj(ζu,w∗;ζ−u ). (2.30)

Taking the test functions v= ζu and w= ζq, and the sum of these two equations gives

i((eu)t,ζu)Ij +(eq,ζq)Ij +Tj(ζq,ζ∗u;ζ+q )+iTj(ζu,ζ∗u;ζ−u )=Tj(ζu,ζ∗q ;ζ−u ). (2.31)

We take the complex conjugate for every term in Eq. (2.31):

−i((e∗u)t,ζ∗u)Ij +(e∗q ,ζ∗q )Ij +Tj(ζ
∗
q ,ζu;(ζ∗q )

+)−iTj(ζ
∗
u,ζu;(ζ∗u)

−)=Tj(ζ
∗
u,ζq;(ζ∗u)

−). (2.32)

By subtracting Eqs. (2.31) and (2.32), summing up over all cells and using the periodic
boundary conditions and (2.14), we have

i((eu)t,ζu)I+i(ζu,(eu)t)I+(eq,ζq)I−(ζq,eq)I

+i∑
j

(
Tj(ζu,ζ∗u;ζ−u )+Tj(ζ

∗
u,ζu;(ζ∗u)

−)
)

=i((eu)t,ζu)I+i(ζu,(eu)t)I+(eq,ζq)I−(ζq,eq)I+i∑
j
|[ζu]|2j+ 1

2
=0. (2.33)

By the decomposition of the error (2.17), and the properties of the projection error (2.16),
we have

d
dt
‖ζu‖2

I ≤−((ηu)t,ζu)I−(ζu,(ηu)t)I+i(ηq,ζq)I−i(ζq,ηq)I

≤Ch2k+2+
1
3
(‖ζq‖2

I +‖ζu‖2
I ). (2.34)

which leads to

‖ζu‖2
I ≤Ch2k+2+

∫ t

0

1
3
(‖ζq‖2

I +‖ζu‖2
I )ds. (2.35)

Next, we combine the error equations (2.29) and (2.30) to obtain

i((eu)t,v)Ij +Tj(ζq,v∗;ζ+q )+i(eq,v)Ij =0. (2.36)
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We consider the time derivative of Eq. (2.30), and take the test functions v=−(ζu)t in Eq.
(2.36), w= ζq in Eq. (2.30). The sum of these two error equations gives

i((eu)t+eq,−(ζu)t)Ij +((eq)t,ζq)Ij +Tj(ζq,−(ζu)
∗
t ;ζ+q )=Tj((ζu)t,ζ∗q ;(ζu)

−
t ). (2.37)

By adding Eq. (2.37) and its complex conjugate, summing up over all cells and using the
periodic boundary conditions and (2.14), we have

−i((eu)t+eq,(ζu)t)I+i((ζu)t,(eu)t+eq)I+((eq)t,ζq)I+(ζq,(eq)t)I =0. (2.38)

By the decomposition of the error (2.17), and the properties of the projection error (2.16),
we have

d
dt
‖ζq‖2

I ≤ i((ηu)t+eq,(ζu)t)I−i((ζu)t,(ηu)t+eq)I−((ηq)t,ζq)I−(ζq,(ηq)t)I

≤Ch2k+2+
4
3
(‖ζq‖2

I +‖(ζu)t‖2
I ). (2.39)

which leads to

‖ζq‖2
I ≤Ch2k+2+

4
3

∫ t

0
(‖ζq‖2

I +‖(ζu)t‖2
I )ds. (2.40)

At the end, we consider the time derivative on both Eqs. (2.29)-(2.30), and take the
test functions v=(ζu)t and w=(ζq)t. The sum of these two equations gives

i((eu)tt,(ζu)t)Ij +((eq)t,(ζq)t)Ij +Tj((ζq)t,(ζ∗u)t;(ζ+q )t)

+iTj((ζu)t,(ζ∗u)t;(ζ−u )t)=Tj((ζu)t,(ζ∗q )t;(ζ−u )t). (2.41)

By subtracting Eq. (2.41) and it complex conjugate, summing up over all cells and using
the periodic boundary conditions and (2.14), we have

i((eu)tt,(ζu)t)I+i((ζu)t,(eu)tt)I+((eq)t,(ζq)t)I−((ζq)t,(eq)t)I

+i∑
j

(
Tj((ζu)t,(ζ∗u)t;(ζ−u )t)+Tj((ζ

∗
u)t,(ζu)t;(ζ∗u)

−
t )
)

= i((eu)tt,(ζu)t)I+i((ζu)t,(eu)tt)I+((eq)t,(ζq)t)I−((ζq)t,(eq)t)I

+i∑
j
|[(ζu)t]|2j+ 1

2

=0. (2.42)

Hence, we have

d
dt
‖(ζu)t‖2

I ≤−((ηu)tt,(ζu)t)I−((ζu)t,(ηu)tt)I+i((ηq)t,(ζq)t)I−i((ζq)t,(ηq)t)I . (2.43)
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We now integrate the equation (2.43) with respect to time between 0 and t. Applying
integration by parts over t on each term, and the first term becomes∫ t

0
−((ηu)tt,(ζu)t)Idt=

∫ t

0
((ηu)ttt,ζu)Idt+ ((ηu)tt,ζu)I |t0 . (2.44)

Combining (2.43), (2.44), and the properties of the projection error (2.16), we have

‖(ζu)t‖2
I ≤Ch2k+2+

1
2
(‖ζq‖2

I +‖ζu‖2
I )+

1
3

∫ t

0
(‖ζq‖2

I +‖ζu‖2
I )ds. (2.45)

We now combine the three error inequalities (2.35), (2.40), and (2.45),

‖ζu‖2
I +‖ζq‖2

I +‖(ζu)t‖2
I

≤Ch2k+2+
1
2
(‖ζq‖2

I +‖ζu‖2
I )+2

∫ t

0
(‖ζq‖2

I +‖ζu‖2
I +‖(ζu)t‖2

I )ds. (2.46)

Applying the Gronwalls inequality, we obtain the optimal error estimate

max
t
‖ζu‖2

I +max
t
‖ζq‖2

I +max
t
‖(ζu)t‖2

I ≤Ch2k+2. (2.47)

We now consider the case when the other choice of numerical fluxes (2.6) is used in
the LDG method. A new variable z, defined as iu+q, is introduced and used in the proof.
Similarly, we have the numerical quantity zh = iuh+qh.

Proposition 2.3. Let u, and q be the exact solutions of the linear Schrodinger equation
(2.21), and let uh, and qh be the numerical solutions of the semi-discrete LDG method
(2.22)-(2.23) with the numerical fluxes defined in (2.6) and the initial condition uh(·,0)=
P+u0(x). The particular projections of the exact solutions are defined as P+u, and P−z in
(2.17), and the corresponding errors are given by

ζu =P+u−uh, ζz =P+z−zh (2.48)

to be consistent with the choice of numerical fluxes. There holds the following error
estimate:

max
t
‖eu(·,t)‖I+max

t
‖ez(·,t)‖I≤Chk+1, (2.49)

where C=C(t,‖u‖L∞((0,t);Hk+1(I))).

Proof. By the property of the projection (2.16), we obtain the error estimates for the nu-
merical initial conditions

‖eu(x,0)‖I≤Chk+1, ‖ez(x,0)‖I≤Chk+1, (2.50)
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following the similar approach as in [8].
By subtracting the LDG method (2.22)-(2.23) with the fluxes (2.7) from the weak for-

mulation satisfied by the exact solutions u, and z, and using the properties of the projec-
tions P±h , we can derive the error equations

i((eu)t,v)Ij +Tj(ζz,v∗;ζ−z )=0, (2.51)

(ez−ieu,w)Ij =Tj(ζu,w∗;ζ+u ), (2.52)

for all test functions v,w∈Vk
h . Taking the test functions v= ζu and w= ζz, and the sum of

these two equations gives

i((eu)t,ζu)Ij +(ez−ieu,ζz)Ij +Tj(ζz,ζ∗u;ζ−z )=Tj(ζu,ζ∗z ;ζ+u ). (2.53)

By subtracting Eq.(2.53) and its complex conjugate, summing up over all cells and using
the periodic boundary conditions and (2.14), we have

i((eu)t,ζu)I+i(ζu,(eu)t)I+(ez−ieu,ζz)I−(ζz,ez−ieu)I =0. (2.54)

By the decomposition of the error (2.17), and the properties of the projection error (2.16),
we have

d
dt
‖ζu‖2

I ≤−((ηu)t,ζu)I−(ζu,(ηu)t)I+i(ηz,ζq)I−i(ζq,ηz)I−i(ieu,ζq)I+i(ζq,ieu)I

≤Ch2k+2+
3
2
(‖ζz‖2

I +‖ζu‖2
I ), (2.55)

which leads to

‖ζu‖2
I ≤Ch2k+2+

∫ t

0

3
2
(‖ζq‖2

I +‖ζu‖2
I )ds. (2.56)

Next, we consider the time derivative of Eq. (2.52), and take the test functions v =
−(ζu)t+ζz in Eq. (2.51) and w= ζz in Eq. (2.52). The sum of these two error equations
gives

i((eu)t,−(ζu)t+ζz)Ij +((ez−ieu)t,ζz)Ij +Tj(ζz,−(ζu)
∗
t +ζ∗z ;ζ−z )

=Tj((ζu)t,ζ∗z ;(ζu)
+
t ). (2.57)

By adding Eq. (2.57) and its complex conjugate, summing up over all cells and using the
periodic boundary conditions and (2.14), we have

i((eu)t,−(ζu)t+ζz)I−i(−(ζu)t+ζz,(eu)t)I+((ez−ieu)t,ζz)I

+(ζz,(ez−ieu)t)I+∑
j

(
Tj(ζz,ζ∗z ;ζ−z )+Tj(ζ

∗
z ,ζz;(ζ−z )

∗)
)

=i((eu)t,−(ζu)t+ζz)I−i(−(ζu)t+ζz,(eu)t)I+((ez−ieu)t,ζz)I

+(ζz,(ez−ieu)t)I+∑
j
|[ζz]|2j+ 1

2
=0. (2.58)
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By the decomposition of the error (2.17), and the properties of the projection error (2.16),
we have

d
dt
‖ζz‖2

I ≤ i((ηu)t,(ζu)t)I−i((ζu)t,(ηu)t)I−((ηz)t,ζz)I−(ζz,(ηz)t)I . (2.59)

We now integrate the equation (2.59) with respect to time between 0 and t. Applying
integration by parts over t on the first two terms, and the first term becomes∫ t

0
((ηu)t,(ζu)t)Idt=

∫ t

0
((ηu)tt,ζu)Idt+ ((ηu)tt,ζu)I |t0 . (2.60)

Combining (2.59), (2.60), and the properties of the projection error (2.16), we have

‖ζz‖2
I ≤Ch2k+2+

1
2
(‖ζu‖2

I )+
1
2

∫ t

0
(‖ζz‖2

I +‖ζu‖2
I )ds. (2.61)

We now combine the two error inequalities (2.56), and (2.61),

‖ζu‖2
I +‖ζz‖2

I ≤Ch2k+2+
1
2
(‖ζu‖2

I )+2
∫ t

0
(‖ζz‖2

I +‖ζu‖2
I )ds. (2.62)

Applying the Gronwalls inequality, we obtain the error estimate

max
t
‖ζu‖2

I +max
t
‖ζz‖2

I ≤Ch2k+2. (2.63)

Next, we would like to provide an error estimate for the LDG-C method. If ε= 0 in
the linear Schrödinger equation (2.1), the equation becomes the simple linear transport
equation ut+(au)x = 0, and it is well-known that we can only prove suboptimal error
estimate for the DG method with a central flux (i.e., the LDG-C method with ε=0). We
would expect the same result here, and provide a suboptimal error estimate for the LDG-
C method below.

Let us repeat the LDG-C method (2.12)-(2.13) here:

i((uh)t,v)Ij +Tj(qh,v∗;q̂h)+iTj(uh,v∗;ũh)=0, (2.64)

(qh,w)Ij =Tj(uh,w∗;ûh), (2.65)

with the numerical fluxes q̂h, ûh defined in (2.6) or (2.7) and the central flux ũh={uh}. For
both choices of the numerical fluxes q̂h, ûh, we have the following theorem:

Proposition 2.4. Let u, and q be the exact solutions of the linear Schrodinger equation
(2.21), and let uh, and qh be the numerical solutions of the semi-discrete LDG-D method
(2.64)-(2.65). The particular projections of the exact solutions are defined as P±u to be
consistent with the choice of numerical flux ûh, and Pq. There holds the following error
estimate:

‖eu‖I≤Chk, (2.66)

where C=C(t,‖u‖L∞((0,t);Hk+1(I))).
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Proof. Without loss of generality, we assume the numerical flux (2.6) is used.
By subtracting the LDG method (2.64)-(2.65) from the weak formulation satisfied by

the exact solutions u, and q, and the definition of the projections P+u, we can derive the
error equations

i((eu)t,v)Ij +Tj(eq,v∗;e−q )+iTj(eu,v∗;{eu})=0, (2.67)

(eq,w)Ij =Tj(ζu,w∗;ζ+u ), (2.68)

for all test functions v,w∈Vk
h . Taking the test functions v= ζu and w= ζq, and the sum of

these two equations gives

i((eu)t,ζu)Ij +(eq,ζq)Ij +Tj(eq,ζ∗u;e−q )+iTj(eu,ζ∗u;{eu})=Tj(ζu,ζ∗q ;ζ+u ). (2.69)

By subtracting Eqs. (2.69) and its complex conjugate, summing up over all cells, using
the periodic boundary conditions, the definition of the projection Pq and (2.14), we have

i((eu)t,ζu)I+i(ζu,(eu)t)I+(eq,ζq)I−(ζq,eq)I+i∑
j

(
Tj(eu,ζ∗u;{eu})+Tj(e∗u,ζu;{e∗u})

)
+∑

j

(
Tj(eq,ζ∗u;e−q )−Tj(e∗q ,ζu;(e−q )

∗)−Tj(ζu,ζ∗q ;ζ+u )+Tj(ζ
∗
u,ζq;(ζ+u )

∗)
)

=i((eu)t,ζu)I+i(ζu,(eu)t)I−∑
j

(
i{ηu}[ζ∗u]+i{η∗u}[ζu]+η−q [ζ∗u]−(η−q )∗[ζu]

)
j+ 1

2

=i((eu)t,ζu)I+i(ζu,(eu)t)I−∑
j

(
i
2

η−u [ζ∗u]+
i
2
(η−u )∗[ζu]+η−q [ζ∗u]−(η−q )∗[ζu]

)
j+ 1

2

=0.

(2.70)

By the decomposition of the error (2.17), and the properties of the projection error (2.16),
we have

d
dt
‖ζu‖2

I ≤−((ηu)t,ζu)I−(ζu,(ηu)t)I+∑
j

(
1
2

η−u [ζ∗u]+
1
2
(η−u )∗[ζu]−iη−q [ζ∗u]+i(η−q )∗[ζu]

)
j+ 1

2

≤Ch2k+2+
1
2
‖ζu‖2

I +C1∑
j

h−1
(
|η−u /2|j+ 1

2
+|η−q |j+ 1

2

)2
+

1
2C2

∑
j

h|[ζu]|2j+ 1
2

≤Ch2k+2+Ch2k+‖ζu‖2
I . (2.71)

which leads to

‖ζu‖2
I ≤Ch2k. (2.72)

Combined with the projection error (2.16), we can derive the suboptimal error estimate
(2.66).
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Remark 2.2. In this subsection, we only consider the LDG-C method with θ = 0 in the
flux (2.8), and the LDG-D method with θ = 1. For the more general case when 0< θ <
1, it is straightforward to apply the proof of Proposition 2.4 and obtain a suboptimal
error estimate. In order to provide an optimal error estimate (which we expect), a global
projection is needed to eliminate the boundary term coming from this flux. In a recent
paper by Meng et. al. [27], such projection is constructed and optimal error estimate is
provided for the simple linear equation ut+ux=0. For our problem, the error estimate is
much more complicated due to the second order derivative term, and we will leave this
for future investigation.

3 Fourth order exponential time differencing Runge-Kutta method

For a single NLSE like equation (2.1), the energy of the numerical solution E(u) is de-
noted by

∫ ∞
−∞ |u|

2dx, which can be conveniently evaluated via the spectral norm ‖u‖2.
In Subsection 2.1, we prove that the proposed semi-discrete LDG-C method conserves
the energy exactly. In [30], five different time discretizations are applied to the single
NLSE. They have done extensively numerical investigation and three of them (one ex-
plicit RK2 scheme and two splitting methods) have been found to perform poorly and
have nonlinear blow-up in finite time. A detailed study of the nonlinear blow-up was
carried out in [30], and it can be linked back to the energy increasing of the underlying
time discretization. In this paper, we will utilize the efficient ETDRK4 method as our time
discretization, and can numerically observe that its energy does not increase in time.

3.1 The ETDRK4 method

The ETDRK4 method was constructed to solve the equation of the form

ut =Lu+F (u,t), (3.1)

where L is a linear operator andF is nonlinear. After being discretized in space, equation
(3.1) can be written as a system of ODEs of the form

ut+Au=F(u,t). (3.2)

Considering the LDG method applied to N-coupled NLSE (1.1), the semi-discrete method
can be rewritten as

M
dU
dt

+SU=F(U)

⇒ dU
dt

+M−1SU=M−1F(U),
(3.3)

which is in the form of (3.2). Here M is the mass matrix, S is the stiffness matrix approxi-
mating the linear term iαnunx+εnunxx, F approximates the nonlinear term (∑N

m=1 βmn|un|2)un,
and U is a vector containing the coefficients of the solution un on the polynomial basis.
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We integrate equation (3.2) over a single time step from t= tn to tn+1= tn+∆t and get

u(tn+1)= e−τAu(tn)+e−τA
∫ τ

0
etAF(u(tn+t),tn+t)dt. (3.4)

To be consistent with the notations in Subsection 2.1, we denote the numerical approxi-
mation of u(tn) by un

h and denote F(un
h ,tn) by Fn

h . The time step ∆t is set as τ.
Different exponential time differencing (ETD) time discretization is obtained based

on the formulation (3.4). For example, the first order ETD takes the form of

un+1
h = e−τAun

h+A−1(I−e−τA)Fn
h . (3.5)

Several different ETD approximations are listed in [38], here we consider the fourth-order
ETD scheme introduced in [14,22]. In [24], the scheme was modified so that the resulting
ETDRK4 scheme does not require computation of higher powers of the matrix inverse.
As explained in [24], the term e−z is approximated by the fourth-order (2, 2)-Padé scheme
and the ETDRK4 comes as

un+1
h =R2,2(τA)un

h+P1(τA)F(un
h ,tn)

+P2(τA)
(

F(an,tn+τ/2)+F(bn,tn+τ/2)
)
+P3(τA)F(cn,tn+τ),

(3.6)

where

R2,2(τA) = (12I−6τA+τ2A2)(12I+6τA+τ2A2)−1,
P1(τA) = τ(2I−τA)(12I+6τA+τ2A2)−1,
P2(τA) = 4τ(12I+6τA+τ2A2)−1,
P3(τA) = τ(2I+τA)(12I+6τA+τ2A2)−1,

an = R2,2(τA/2)un
h+P(τA)F(un

h ,tn),
bn = R2,2(τA/2)un

h+P(τA)F(an,tn+τ/2),

cn = R2,2(τA/2)an+P(τA)
(

2F(bn,tn+τ/2)−F(un
h ,tn)

)
,

P(τA) = 24τ(48I+12τA+τ2A2)−1.

We notice that in this scheme, the matrix inverses we need are (12I+6τA+τ2A2)−1 and
(48I+12τA+τ2A2)−1. So we can compute and store them during the initialization pro-
cess to save computational time. To avoid computational inaccuracies due to high condi-
tion numbers and roundoff error in computing the power of the matrices, a partial frac-
tion decomposition is used for scheme (3.6), as explained in [24]. The partial fractions in
the decomposition involve complex shifts of the operator A. These complex shifts come
in conjugate pairs and correspond to complex poles of the rational function under con-
sideration, which are the roots of the real denominators. Therefore, the ETDRK4 scheme
is modified to the following four steps, where R(z) denotes the real part of z:
1. an is updated by

an =un+2R(α),
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where α is the solution of

(τA− c̃1 I)α= w̃1un
h+τΩ̃1F(un

h , tn).

2. bn is updated by
bn =un+2R(β),

where β is the solution of

(τA− c̃1 I)β= w̃1un
h+τΩ̃1F(an, tn+τ/2).

3. cn is updated by
cn = an

h+2R(γ),

where γ is the solution of

(τA− c̃1 I)γ= w̃1an+τΩ̃1(2F(bn, tn+τ/2)−F(un
h , tn)).

4. un+1
h is updated by

un+1
h =un

h+2R(φ),

where φ is the solution of

(τA−c1 I)φ=w1un+τw11F(un
h , tn)+τw21(F(an, tn+τ/2)+F(bn, tn+τ/2))+τw31F(cn, tn+τ).

Here, w and c are the coefficients used for the weights and poles:
c1=−3.0+i1.73205080756887729352,
w1=−6.0−i10.3923048454132637611,
w11=−0.5−i1.44337567297406441127,
w21=−i1.15470053837925152901,
w31=0.5+i0.28867513459481288225,
c̃1=−6.0+i3.4641016151377545870548,
w̃1=−12.0−i20.78460969082652752232935,
Ω̃1=−i3.46410161513775458705.

3.2 Stability regions

The stability of the ETDRK4 can be analyzed by plotting its stability regions (see also [14]
and [18]). Consider the nonlinear ODE

ut = cu+F(u), (3.7)

where F(u) is the nonlinear part, we suppose there exists a fixed point u0 such that cu0+
F(u0)=0. If u is the perturbation of u0 and λ=F′(u0), then after linearizing, we have

ut = cu+λu. (3.8)
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The fixed point u0 is stable if Re(c+λ)< 0. Denote x = λτ and y = cτ, where τ is the
time step and apply the ETDRK4 method to (3.8), then we can compute the amplification
factor:

un+1

un
= r(x, y)= c0+c1x+c2x2+c3x3+c4x4, (3.9)

where

c0 =
1327104−331776y−55296y2+20736y3+3456y4−2160y5+372y6−30y7+y8

(48−12y+y2)3(12−6y+y2)

c1 =
1327104−331776y−55296y2+20736y3−3456y4+432y5−36y6

(48−12y+y2)3(12−6y+y2)

c2 =
663552−165888y−27648y2+8064y3−288y4−48y5

(48−12y+y2)3(12−6y+y2)

c3 =
221184−55296y−9216y2−1152y3

(48−12y+y2)3(12−6y+y2)

c4 =
55296−27648y

(48−12y+y2)3(12−6y+y2)
.

We notice that when y=0, the amplification factor (3.9) becomes

r(x,0)=1+x+
1
2

x2+
1
6

x3+
1
24

x4,

which is the amplification factor for the explicit fourth-order Runge-Kutta (RK4) method.
The stability regions are shown in Fig. 1, where we plot the real and imaginary part of x
with fixed y as real values 0, −5, −10, −20.

4 Energy conserving time-stepping method

In section 2, we have proposed both energy conserving (LDG-C) and energy dissipative
(LDG-D) methods for the Schrödinger equation. In order to extend the energy conserva-
tion property of the the semi-discrete LDG-C method to the fully discrete method, it is
natural to employ time stepping methods which also conserve discrete energy. A family
of temporal integrators having arbitrarily high order in time and which does preserve
the conservation laws up to round-off error is the implicit Runge-Kutta collocation type
methods associated with the diagonal elements of the Padé table for ez. In this section,
we consider the first two members of this family of energy conserving schemes.

For the NLSE taking the form of

iut+εuxx+i(au)x+ f (|u|2)u=0, (4.1)
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Figure 1: Stability regions of the ETDRK4 with y fixed to some negative values.

the fully discrete second-order in time LDG-C approximations are constructed using the
midpoint rule in the following manner:

i

(
un+1

h −un
h

τ
,v

)
Ij

+εTj

(
qn+1

h +qn
h

2
,v∗;

q̂n+1
h + q̂n

h
2

)
+iTj

(
a

un+1
h +un

h
2

,v∗;
aûn+1

h +aûn
h

2

)

+

(
˜f (|uh|2)

un+1
h +un

h
2

,v

)
Ij

=0, (4.2)

(qn
h ,w)Ij =Tj(un

h ,w∗;ûn
h), (4.3)

(qn+1
h ,w)Ij =Tj(un+1

h ,w∗;ûn+1
h ). (4.4)

for all test functions v, w∈Vk
h , where

˜f (|uh|2)=
F(|un+1|2)−F(|un|2)
|un+1|2−|un|2 ,

with F(a)=
∫ a f (s)ds.

By taking v=(un+1
h +un

h)/2, w=(qn+1
h +qn

h)/2 in (4.2)-(4.4) and some simple algebra,
we can derive that ‖un+1

h ‖2
I = ‖un

h‖2
I , which is the discrete energy conservation property.

Even more, for the case when a=0, the NLSE equation conserves the term ‖q‖2
I +F(|u|2),
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in addition to the energy ‖u‖2. We can also prove that the above energy conserving
method in (4.2)-(4.4) conserve the term ‖qn‖2

I +F(|un
h |2) in the discrete level as well.

A fourth order energy conserving time-stepping method based on the midpoint rule
is provided in [6] to solve nonlinear system (3.2). Let un+1∈Vk

h be defined as

un+1=un+
√

3(un,2−un,1), (4.5)

with un,1 and un,2 given as solutions of the coupled system of equations,

un,1−un+τ(a11 f n,1+a12 f n,2)=0,
un,2−un+τ(a21 f n,1+a22 f n,2)=0,

where f n,i=Aun,i−F(un,i,t), i=1,2 and a11=a22=1/4, a12=1/4−
√

3/6, a21=1/4+
√

3/6.

5 Numerical results

In this section we present numerical results of our ETDRK4 LDG methods for the one-
dimensional single and N-coupled NLSEs. We implemented the fourth order finite ele-
ment LDG method (i.e. k = 3), coupled with the fourth order ETDRK4 time discretiza-
tion. Both the energy conserving LDG-C and energy dissipative LDG-D methods will be
tested. In the implementation, we decompose the complex function u(x,t) into the real
and imaginary parts, and involve them in time.

5.1 Single NLSE

We consider the single NLSE

iut+uxx+iα(|u|2u)x+β|u|2u+γ|u|4u=0, (5.1)

which admits an exact solution

u(x,t)=Aexp(i(cx−ωt)), (5.2)

where ω= c2+α|A|2c−β|A|2−γ|A|4. In this numerical test, we set α=0.5,β=γ=1,A=
c=1, with periodic boundary condition in [0,2π].

The surface plots of the real and imaginary parts of the results by the ETDRK4 using
LDG-C are shown in Fig. 2. We utilize different temporal steps τ and compare the results
with the exact solution at t = 1 to have Fig. 3 which indicates the convergence rate of
ETDRK4. The slopes of the regression line for errors of both real and imaginary parts are
close to 4 which corresponds to the fourth order method in time. It can be seen from Fig.
4 and Fig. 5 that both LDG-C and LDG-D methods demonstrate a fourth order accuracy
in space.
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Figure 2: Surface plots of the results by the ETDRK4 solving single NLSE (5.1) using LDG-C in space (N=128,
τ=0.1 and T=[0, 20]).
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Figure 3: Convergence rate of results by the ETDRK4 solving single NLSE (5.1) using LDG-C in space (N=128).
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Figure 4: Convergence rate of results by LDG-C solving single NLSE (5.1) using ETDRK4 in time (τ=0.01).

Fig. 6 contains the time history of the energy of results by the ETDRK4 and the Fourth-
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Figure 5: Convergence rate of results by LDG-D solving single NLSE (5.1) using ETDRK4 in time (τ=0.01).
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Figure 6: Comparison of energy changes of results by the ETDRK4 (τ=0.1) and the Fourth-order conservative
method (4.5) (τ=0.1) solving single NLSE (5.1) using LDG-C in space (N=128).

order conservative method (4.5) with the same spatial discretization. We notice that the
result by the ETDRK4 has energy that decreases slightly as time increases and the result
by the Fourth-order conservative method (4.5) conserves the energy exactly but it re-
quires an iterative nonlinear solver such as the Newton’s method [19]. We will compare
the efficiency of these two temporal methods in the following discussion.

To observe the behavior on energy conservation of LDG-C and LDG-D methods, we
use the Fourth-order conservative method (4.5) in time and record the change of energy
in Fig. 7. It can be noticed that the LDG-C method conserves energy exactly while the
LDG-D method is dissipative. In the LDG-D method, θ is chosen to be 1.

Table 1 indicates the CPU time and L2 errors of Crank-Nicolson method [19], Second-
order conservative method [6] and the ETD-CN method [26] on (5.1). These are second-
order methods in time. The first two methods conserve the energy exactly but they
require an iterative nonlinear solver such as the Newton’s method [19]. The ETD-CN
method achieves a higher efficiency considering the CPU time and accuracy with a little
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Figure 7: Comparison of energy changes of results by LDG-C in space (N=128) and LDG-D in space (N=128)
solving single NLSE (5.1) using Fourth-order conservative method (4.5) in time (τ=0.1).

Table 1: A comparison of efficiencies of Crank-Nicolson method [19], the Second-order conservative method [6]
and the ETD-CN method [26] using LDG-C (N=128) on (5.1) (the time step is chosen to be τ=0.01).

Crank-Nicolson Second-order conservative ETD-CN
T CPUtime L2 error energy CPUtime L2 error energy CPUtime L2 error energy
5 5.57e+2 0.00157 2.506628 6.12e+2 0.00125 2.506628 2.5206 6.1342e-5 2.506628
10 9.36e+2 0.00315 2.506628 1.02e+3 0.00251 2.506628 4.2736 1.2268e-4 2.506731
20 1.78e+3 0.00630 2.506628 1.93e+3 0.00503 2.506628 7.4643 2.4536e-4 2.506937
30 2.61e+3 0.00946 2.506628 2.91e+3 0.00754 2.506628 10.6532 4.9072e-4 2.507143

sacrifice in energy conservation. The Newton’s method used with the proposed schemes
in the numerical tests has a tolerance of error of 1e−8 and a max number of iteration of
20.

Table 2: A comparison of efficiencies of the ETDRK4, RK4 and Fourth-order conservative methods using
LDG-C (N=128) on (5.1). (By choosing the following two time steps, the solutions of the three methods are
comparable. We are trying to achieve errors of the similar orders.)

ETDRK4 (τ=0.1) RK4 (τ=0.0001) Fourth-order conservative (τ=0.1)
T CPU time L2 error CPU time L2 error CPU time L2 error
5 3.0436 9.3566e-007 20.1372 2.5194e-006 6.88e+003 3.5463e-006
10 4.6826 5.6233e-006 33.1450 4.3198e-005 1.21e+004 7.0926e-006
20 7.7688 3.6756e-005 47.9093 9.0924e-005 2.19e+004 1.4185e-005
30 10.9177 9.6743e-005 60.2801 3.0351e-004 3.26e+004 2.1278e-005

Table 2 presents the advantage in efficiency of the ETDRK4. We can observe that
the ETDRK4 achieves more accurate results than RK4 and the Fourth-order conservative
method (4.5) with less CPU time. The CPU times are based on computations via Matlab
7.9.0 platforms based on an Intel Core i5-2410M 2.30GHz workstation.
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5.2 2-coupled NLSE

Consider the following 2-coupled NLSE [36]

iu1t+iαu1x+u1xx+
(
|u1|2+β|u2|2

)
u1=0,

iu2t−iαu2x+u2xx+
(

β|u1|2+|u2|2
)

u2=0,
(5.3)

with following initial conditions

u1(x,0)=

√
2a

1+β
sech(

√
2a(x−x0))exp(i(c−α)(x−x0)),

u2(x,0)=

√
2a

1+β
sech(

√
2a(x−x0))exp(i(c+α)(x−x0)),

(5.4)

as well as periodic boundary conditions in [−25, 25], where a=1, c=1, α=0.5, β= 2
3 and

x0=0. Exact solutions to (5.3) with initial and boundary conditions (5.4) are given in [36]:

u1(x,t)=

√
2a

1+β
sech

(√
2a(x−ct)

)
exp

(
i((c−α)x−( c2−α2

2
−a)t)

)
,

u2(x,t)=

√
2a

1+β
sech

(√
2a(x−ct)

)
exp

(
i((c+α)x−( c2−α2

2
−a)t)

)
.

(5.5)

Figure 8: Surface plots of results by the ETDRK4 solving 2-coupled NLSE (5.3) with initial condition (5.4) and
periodic boundary condition using LDG-C in space (N=128 and τ=0.1).

To observe the convergence rate of ETDRK4 in Fig. 9 we set N = 512 to make sure
that the LDG-C is accurate enough in space and then we change τ and compute the cor-
responding L2 error of u1 and u2. The slopes of the regression lines indicate the ETDRK4
is fourth order solving the 2-coupled NLSE. In a similar way we fix τ=0.1 and record the
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Figure 9: Convergence rates of the ETDRK4 solving 2-coupled NLSE (5.3) with initial and boundary conditions
provided using LDG-C in space (N=512). Results of u1 on the left and results of u2 on the right.
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Figure 10: Convergence rates of the LDG-C solving 2-coupled NLSE (5.3) with initial and boundary conditions
provided using ETDRK4 in time (τ=0.1). Results of u1 on the left and results of u2 on the right.
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Figure 11: Energy of results by the ETDRK4 solving 2-coupled NLSE (5.3) with initial and boundary conditions
provided using LDG-C in space (N=128 and τ=0.1).
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L2 error by changing dx. The slopes of the regression lines in Fig. 10 correspond to the
fact that LDG-C is a fourth order method in space.

The Energy of the numerical solution u can be conveniently evaluated via the spectral
norm ‖u‖2. We notice from Fig. 11 that the energy of u1 and u2 decreases almost linearly,
and very slowly, as time goes from 0 to 100. This result indicates the ETDRK4 will not
have a blow-up solution even after a long-time period of calculation, which is better than
some explicit temporal discretization.

Interaction of two solitons Next, we consider the following 2-coupled NLSE [20]

iu1t+iδu1x+
1
2

u1xx+
(
|u1|2+e|u2|2

)
u1=0,

iu2t−iδu2x+
1
2

u2xx+
(
e|u1|2+|u2|2

)
u2=0,

(5.6)

with the initial conditions

u1(x,0)=
2

∑
j=1

√
2aj

1+e
sech(

√
2ajxj)exp i((vj−δ)xj),

u2(x,0)=
2

∑
j=1

√
2aj

1+e
sech(

√
2ajxj)exp i((vj+δ)xj),

(5.7)

where δ=0.2,e=2/3,x1=x,x2=x−25,xL=−20,xR=80,v1=1,v2=0.1,a1=1,a2=0.5 and
periodic boundary conditions in [xL,xR].

Figure 12: Surface plots of results by the ETDRK4 solving 2-coupled NLSE (5.6) with initial condition (5.7)
and periodic boundary condition using LDG-C in space (N=128 and τ=0.1).

The surface plots of |u1| and |u2| are identical for interaction of two solitons, thus
we only represent |u1| here. We notice from Fig. 12 that the two solitons travel to the
right at velocities 1 and 0.1. They interact at about t = 30 and do not affect each other.
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The energy of solutions in Table 3 indicates the ETDRK4 using LDG-C conserves the
energy well for this problem. Comparing with Newton’s method using finite difference
provided by [20], the ETDRK4 using LDG-C has smaller errors in energy for the long
time simulation. We compare with Newton’s method since it is supposed to behave well
in energy conservation for a long time simulation.

Table 3: A comparison of energy by ETDRK4 using LDG-C and Newton’s method using finite difference on
(5.6) and (5.7) (dx=0.2, τ=0.1).

T ETDRK4 Newton’s method [20]
0 1.702074 1.702074

10 1.702074 1.702074
20 1.702074 1.702074
30 1.702074 1.702073
40 1.702069 1.702064
50 1.702021 1.701613

Interaction of three solitons For 2-coupled NLSE (5.6), we use the initial conditions

u1(x,0)=
3

∑
j=1

√
2aj

1+e
sech(

√
2ajxj)exp i((vj−δ)xj),

u2(x,0)=
3

∑
j=1

√
2aj

1+e
sech(

√
2ajxj)exp i((vj+δ)xj),

(5.8)

where δ=0.5,e=2/3,a1=1.2,a2=0.72,a3=0.36,v1=1,v2=0.1,v3=−1,x1=x,x2=x−25,x3=
x−50,xL =−20,xR =80 and periodic boundary conditions in [xL,xR].

The surface plots of |u1| and |u2| are identical for interaction of three solitons, thus we
only represent |u1| here. We notice from Fig. 13 that the three solitons travel at velocities
1, 0.1 and -1 along x direction. They interact between t=20 and t=30 and do not affect
each other. The energy of solutions in Table 4 indicates the ETDRK4 using LDG-C con-
serves the energy well for this problem. Comparing with Newton’s method using finite
difference provided by [20], the ETDRK4 using LDG-C achieves energy with errors of the
same orders.
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Figure 13: Surface plots of results by the ETDRK4 solving 2-coupled NLSE (5.6) with initial condition (5.8)
and periodic boundary condition using LDG-C in space (N=128 and τ=0.1).

Table 4: A comparison of energy by ETDRK4 using LDG-C and Newton’s method using finite difference on
(5.6) and (5.8) (dx=0.2, τ=0.1).

T ETDRK4 Newton’s method [20]
0 2.077803 2.077803
10 2.077803 2.077803
20 2.077802 2.077803
30 2.077801 2.077802
40 2.077801 2.077802
50 2.077802 2.077803

5.3 4-coupled NLSE

In the last subsection, we consider the following 4-coupled NLSE, see as well in [1],

iu1t+i
1
v1

u1x+
β1

2
u1xx+γ1

(
|u1|2+2|u2|2+B|u3|2+B|u4|2

)
u1=0,

iu2t+i
1
v2

u2x+
β2

2
u2xx+γ2

(
2|u1|2+|u2|2+B|u3|2+B|u4|2

)
u2=0,

iu3t+i
1
v3

u3x+
β1

2
u3xx+γ1

(
B|u1|2+B|u2|2+|u3|2+2|u4|2

)
u3=0,

iu4t+i
1
v4

u4x+
β2

2
u4xx+γ2

(
B|u1|2+B|u2|2+2|u3|2+|u4|2

)
u4=0,

(5.9)
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with the initial conditions

u1(x,0)=

√
2a

1+B
sech(

√
2a(x−x0))exp(i(c−α)(x−x0)),

u2(x,0)=

√
2a

1+B
sech(

√
2a(x−x0))exp(i(c+α)(x−x0)),

u3(x,0)=

√
2a

1+B
sech(

√
2a(x−x0))exp(i(c−α)(x−x0)),

u4(x,0)=

√
2a

1+B
sech(

√
2a(x−x0))exp(i(c+α)(x−x0)),

(5.10)

as well as periodic boundary conditions in [−10, 40], where v1=v2=v3=v4=1, β1=β2=
2, γ1=γ2=2, a=1, c=1, α=0.5, B= 2

3 and x0=0.

Figure 14: Solutions of the 4-coupled NLSE (5.9) with initial conditions (5.10) obtained via the ETDRK4
LDG-C method (h=0.1, τ=0.1 and t=[0,30].)

As explained in [1], the four-coupled NLSE equations can be used in modeling soli-
tons in the high-birefringence fibers. The parameter B equals 2/3 for linearly birefringent
fibers, and β1, β2 are the corresponding propagation constant.
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Figure 15: Time history of the energy of the 4-coupled NLSE (5.9) with initial conditions (5.10) obtained via
the ETDRK4 LDG-C method (h=0.1, τ=0.1 and t=[0,30].)

We run the simulation for the coupled NLSE with the fourth order ETDRK4 LDG-C
method. The numerical results are shown in Fig. 14. We observe that the numerical
results of (5.9) are soliton waves that travel along the x-direction at a speed of 1. The time
history of energy, plotted in Fig. 15, indicates the energy of numerical results by ETDRK4
will decrease slightly as time goes. This numerical test demonstrates that the ETDRK4
LDG-C method works well on large systems of NLSEs.

6 Conclusion and Future Work

We have developed and analyzed an LDG approximation based ETDRK4 method for
solving the underlying N-coupled NLSEs. The accuracy, efficiency and stability of the
numerical method are discussed. It has been evident from the analysis and numerical
results that the method is highly efficient and reliable. Future work includes continuing
developments of highly accurate exponential time differencing strategies and the adap-
tive mesh designs for the multidimensional coupled NLSEs.
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