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Euler equations with gravitational source terms are used to model many astrophysical and 
atmospheric phenomena. This system admits hydrostatic balance where the flux produced 
by the pressure is exactly canceled by the gravitational source term, and two commonly 
seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation 
of these equilibria is desirable as many practical problems are small perturbations of such 
balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes 
have been proposed in [22], but only for the isothermal equilibrium state. In this paper, 
we design high order well-balanced finite volume WENO schemes, which can preserve 
not only the isothermal equilibrium but also the polytropic hydrostatic balance state 
exactly, and maintain genuine high order accuracy for general solutions. The well-balanced 
property is obtained by novel source term reformulation and discretization, combined 
with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are 
performed to verify well-balanced property, high order accuracy, as well as good resolution 
for smooth and discontinuous solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Euler equations with gravitational source terms are widely used to model many interesting physical phenomena in the 
astrophysical and atmospheric science. These equations governing the conservation of mass, momentum and energy, coupled 
with source terms due to the gravitational field, are given by

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + pId) = −ρ∇φ,

Et + ∇ · ((E + p)u) = −ρu · ∇φ,

(1.1)

where x ∈ Rd (d = 1, 2, 3) is the spatial variable, ρ denotes the fluid density, u is the velocity, p represents the pressure, 
and E = 1

2 ρ‖u‖2 +ρe (e is internal energy) is the non-gravitational energy which includes the kinetic and internal energy of 
the fluid. φ = φ(x) is the time independent gravitational potential. The operators ∇ , ∇· and ⊗ are the gradient, divergence 
and tensor product in Rd , respectively, and Id stands for the identity matrix. To close the system, the pressure p is linked to 
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the density and the interval energy through an equation of state denoted by p = p(ρ, e). The ideal gas law for the equation 
of state takes the form of

p = (γ − 1)ρe = (γ − 1)
(

E − ρ‖u‖2/2
)

, (1.2)

where γ is the ratio of specific heats.
In one spatial dimension, the Euler equations (1.1) take the form of

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = −ρφx,

Et + ((E + p)u)x = −ρuφx,

(1.3)

with u being the velocity. Such model belongs to the general class of hyperbolic conservation laws with source terms, often 
referred as hyperbolic balance laws, which takes the general form of

Ut + f (U )x = S(U , φ), (1.4)

where U is the solution vector with the corresponding flux f (U ), and S(U , φ) is the source term. The balance law usually 
admits non-trivial steady state solutions, in which the source term is exactly balanced by the flux gradient.

The Euler equations (1.3) under the static gravitation potential admit the hydrostatic stationary solution, also called 
mechanical equilibrium, where the velocity is zero and the external forces such as gravity are balanced by the pressure 
gradient force:

ρ = ρ(x), u = 0, px = −ρφx. (1.5)

Two important special steady state arising in the applications are the constant temperature (isothermal) [22] and polytropic 
hydrostatic equilibrium states [9].

If the hydrostatic state is isothermal, we have T (x) ≡ T0 = const with T (x) being the temperature. For an ideal gas 
satisfying

p(x) = ρ(x)RT (x), (1.6)

where R is the gas constant, integrating the steady state solution (1.5) yields

ρ = p0

RT (x)
exp

⎛⎝−
x∫

x0

φx(s)

RT (s)
ds

⎞⎠ , u = 0, p = p0 exp

⎛⎝−
x∫

x0

φx(s)

RT (s)
ds

⎞⎠ , (1.7)

where p0 is the initial pressure at some reference position x0. Under the isothermal assumption, the equilibrium corre-
spondingly becomes

ρ = ρ0 exp

(
− φ

RT0

)
, u = 0, p = p0 exp

(
− φ

RT0

)
, (1.8)

with p0 = ρ0 RT0.
The other polytropic hydrostatic equilibrium is characterized by

p = Kρν, (1.9)

which will lead to the form of

ρ =
(

ν − 1

Kν
(C − φ)

) 1
ν−1

, u = 0, p = 1

K
1

ν−1

(
ν − 1

ν
(C − φ)

) ν
ν−1

, (1.10)

where C , K and ν are all constants. A special case of ν is the ratio of specific heats γ .
The simplest encountered gravity is the linear gravitational potential field with φx = g , and the corresponding isothermal 

and polytropic hydrostatic balances take the form of

ρ = ρ0 exp

(−gρ0x

p0

)
, u = 0, p = p0 exp

(−gρ0x

p0

)
, (1.11)

and

p = p
1

ν−1
0

(
p0 − ν − 1

gρ0x

) ν
ν−1

, u = 0, ρ = ρ0

(
p
) 1

ν

. (1.12)

ν p0
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Many physical applications of the Euler equations under a gravitational field involve nearly steady state flows which are 
small perturbation of the hydrostatic equilibrium states. It is important to correctly capture the effect of gravitational force 
in these simulations, especially if a long-time integration is involved, for example in modeling star and galaxy formation. Im-
proper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates 
from the equilibrium after a long time run. The problem can be resolved if the mesh size is extremely refined, which may 
not be feasible in some applications. To save the computational cost, well-balanced schemes, which preserve exactly these 
steady state solutions up to machine accuracy, are specially designed to ensure accurate simulations and exhibit essential 
stability properties on relatively coarse meshes. Another prototypical example considered extensively in the literature for 
hyperbolic balance laws is the shallow water equations over a non-flat bottom topology. Many well-balanced methods for 
the shallow water equations were designed in the past decade, see, e.g. [2,7,1,11,15,25,20,24,23] and the references therein.

Well-balanced numerical schemes for the Euler equations under a gravitational field have attracted many attention re-
cently. LeVeque and Bale [12] have extended the quasi-steady wave-propagation methods to the Euler equations. Later, finite 
volume well-balanced discretizations has been proposed by Botta et al. [3] for the nearly hydrostatic flows in the numerical 
weather prediction. Gas-kinetic schemes have been extended by Xu and his collaborators [19,26,14] to the multidimensional 
gas dynamic equations to develop well-balanced numerical methods, where the gravitational potential was modeled as a 
piecewise step function with a potential jump at the cell interface. High order finite difference well-balanced schemes for 
the isothermal equilibrium only are introduced in [22] by Xing and Shu. Second order finite volume well-balanced schemes 
for the isentropic hydrostatic equilibrium are proposed by Käppeli and Mishra [9]. They have extended their results to 
general hydrostatic equilibrium without any assumption of a thermal equilibrium in [10], by introducing a local second-
order hydrostatic equilibrium preserving pressure reconstruction. Chertock et al. [5] designed a second-order well-balanced 
central-upwind scheme for the Euler equations of gas dynamics with gravitation. Chandrashekar and Klingenberg [4] extend 
the approach in [22] and provide a well-balanced second order Godunov-type method, which can preserve both isother-
mal and polytropic stationary solutions exactly. We applied the technique in [22] to design a high order well-balanced 
discontinuous Galerkin method for the isothermal model [13]. More recently, Ghosh et al. have studied the applications of 
well-balanced methods for the numerical simulation of atmospheric flows [6]. By extending the result in [22], they designed 
well-balanced finite difference weighted essentially non-oscillatory (WENO) and compact-reconstruction WENO methods for 
a more general form of the hydrostatic balance, including the isothermal equilibrium and other stratified atmosphere en-
countered in the applications.

In this paper, we plan to extend the well-balanced technique in [22] from several aspects. First, we propose to design 
high order well-balanced finite volume WENO schemes. Finite volume schemes represent the underlying physics in a nat-
ural way, and are very popular for solving hyperbolic conservation laws. They are widely used in the physical applications. 
Second, the well-balanced technique in [22] is only designed for the isothermal equilibrium. A nice second order general-
ization to both isothermal and polytropic cases is provided in [4], which may not be extended to high order version in a 
straightforward way. Here, we provide a different approach to apply high order well-balanced technique on the polytropic 
equilibrium. Similarly as in [22], we first rewrite the source terms in an equivalent special form using the corresponding hy-
drostatic equilibrium (1.7) or (1.8). They are then discretized to be both high order accurate for general solutions and exactly 
well-balanced with the pressure gradient at the equilibrium state. The extra computational cost to obtain the well-balanced 
property can be negligible.

This paper is organized as follows. In Section 2, we first present the novel one-dimensional high order well-balanced 
WENO schemes, which can preserve both the isothermal and polytropic hydrostatic balance solutions exactly. Section 3
contains extensive numerical simulation results to demonstrate the behavior of our well-balanced WENO schemes for 
one-dimensional Euler equations under a gravitational field. We then extend the proposed well-balanced schemes to multi-
dimensional cases in Section 4, and present some numerical results in Section 5. In Section 6, some conclusion remarks are 
provided.

2. One-dimensional well-balanced WENO schemes

In this section, we present high order well-balanced finite volume WENO schemes for the Euler equations under grav-
itational fields. We begin with the isothermal case, and then extend the idea to the polytropic case. We will confine our 
discussion to one-dimensional problem only in this section, and discuss the generalization to multi-dimensional case in 
Section 4.

2.1. Notations and WENO reconstruction

We first introduce some notations and the standard WENO reconstruction which will be used later. In one spatial di-
mension, the computational domain is divided into cells I j = [x j−1/2, x j+1/2]. We denote the size of the j-th cell by �x j

and the maximum mesh size by �x = max j �x j . The usual notation {u} = 1
2 (u+ + u−) is used to represent the arithmetic 

average of the function u at the element interfaces.
In a finite volume scheme for the equations (1.4), our computational variables are U j(t), which approximate the cell 

averages U (x j, t) = 1 ∫
U (x, t) dx. The conservative WENO scheme is given by
�x j I j
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d

dt
U j(t) + 1

�x j

(
f̂ j+ 1

2
− f̂ j− 1

2

)
= 1

�x j

∫
I j

S(U , φ)dx, (2.1)

with f̂ j+1/2 = F (U−
j+1/2, U

+
j+1/2) being the numerical flux. The simplest numerical flux is the well-known Lax–Friedrichs 

flux

F (a,b) = 1

2
( f (a) + f (b) − α(b − a)), (2.2)

where α = max(|u| + √
γ p/ρ) and the maximum is taken over the whole domain. U−

j+1/2 and U+
j+1/2 are the high order 

pointwise approximations to U (x j+1/2, t) from left and right, respectively. They are computed through the neighboring cell 
average values by a high order WENO reconstruction procedure. Basically, for a (2k − 1)-th order WENO scheme, we first 
compute k reconstructed boundary values U (k),±

j+1/2 corresponding to different candidate stencils. Then by providing each value 
a weight which indicates the smoothness of the corresponding stencil, we define the (2k −1)-th order WENO reconstruction 
U±

j+1/2 as a convex combination of all these k reconstructed values. Eventually, the WENO reconstruction can be written 
out as:

U+
j+ 1

2
=

k∑
r=−k+1

wr U j+r, U−
j+ 1

2
=

k−1∑
r=−k

w̃r U j+r, (2.3)

where k = 3 for the fifth order WENO approximation and the coefficients wr and w̃r depend nonlinearly on the smoothness 
indicators involving the cell average U . For hyperbolic systems of conservation laws, we usually apply the local characteristic 
decomposition procedure, which is more robust than a component by component version. The complete algorithm can be 
found in [8,16].

For the temporal discretization, high order total variation diminishing (TVD) Runge–Kutta methods [17] can be used. In 
the numerical section of this paper, we apply the third order Runge–Kutta methods:

U (1) = Un + �tF(Un) (2.4)

U (2) = 3

4
Un + 1

4

(
U (1) + �tF(U (1))

)
Un+1 = 1

3
Un + 2

3

(
U (2) + �tF(U (2))

)
,

with F(U ) being the spatial operator.

2.2. Well-balanced schemes for the isothermal equilibrium

In this subsection, we will present well-balanced finite volume WENO schemes for the isothermal equilibrium (1.8). Fol-
lowing the approach in our finite difference work [22], we utilize the structure of the equilibrium (1.8) and first reformulate 
the original governing equations as

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p

)
x
= p0

ρ0
ρ exp

(
φ

RT0

)(
exp

(
− φ

RT0

))
x
,

Et + ((E + p)u)x = −ρuφx, (2.5)

where −ρφx in the second equation is replaced by p0
ρ0

ρ exp
(

φ
RT0

)(
exp

(
− φ

RT0

))
x
. By writing in this special form, we hope 

to create the derivative term in the source term, which can be treated in the similar way as the flux term at the steady 
state (1.8) to achieve the well-balanced property. It is not necessary to change the source term in the last equation, since 
the well-balanced property for this equation can be easily obtained when u = 0 at the steady state.

The standard WENO schemes as outlined in (2.1) do not have the well-balanced property automatically. To preserve the 
steady state solution (1.8), we need to introduce a non-standard approximation to the integration of the second source term, 
denoted by S[2] . For ease of presentation, we introduce the following notation

d(x) = exp

(
− φ

RT0

)
,

and the isothermal steady state solution (1.8) then becomes

ρ = ρ0d(x), u = 0, p = p0d(x). (2.6)
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The source term S[2] can be rewritten as 
p0

ρ0

ρ

d
dx , and we can decompose its integral as

1

�x

∫
I j

S[2]dx = 1

�x

p0

ρ0

∫
I j

ρ

d
dx dx

= 1

�x

p0

ρ0

∫
I j

(
ρ

d
− ρ̄ j

d̄ j
+ ρ̄ j

d̄ j

)
dx dx

= 1

�x

p0

ρ0

ρ̄ j

d̄ j

(
d j+1/2 − d j−1/2

)+ 1

�x

p0

ρ0

∫
I j

(
ρ

d
− ρ̄ j

d̄ j

)
dx dx.

(2.7)

Our numerical approximation to it takes the following form

1

�x

∫
I j

S[2] dx ≈ 1

�x

p0

ρ0

ρ̄ j

d̄ j

({
d j+1/2

}− {
d j−1/2

})+ 1

�x

p0

ρ0

∫
I j

(
ρ

d
− ρ̄ j

d̄ j

)
dx dx, (2.8)

where d j+1/2 is replaced by 
{

d j+1/2
} = 1

2 (d+
j+1/2 + d−

j+1/2), and the integration in the last term can be obtained by the 
standard Gaussian quadrature rule. To achieve well-balanced property, the boundary terms d±

j+1/2 are computed by applying 
the WENO reconstruction on the cell averages d̄ j . For the integration of the source term in the third equation, we can apply 
the standard Gaussian quadrature rule to evaluate it.

The last piece in designing well-balanced WENO schemes is to slightly modify the numerical flux f̂ j+1/2. The term 
α(b − a) in the Lax–Friedrichs flux (2.2) contributes to the numerical viscosity term, which is essential for nonlinear con-
servation laws. However they may destroy the well-balanced property at the steady state (1.8). Here, we propose to modify 
it as

f̂ j+1/2 = 1

2

[
f
(

U−
j+1/2

)
+ f

(
U+

j+1/2

)
− α′

(U+
j+1/2

d+
j+1/2

− U−
j+1/2

d−
j+1/2

)]
, (2.9)

where the coefficient α′ is defined as

α′ = α max
j

d̄ j (2.10)

to maintain enough artificial numerical viscosity. This modification does not affect the accuracy, but at the steady state (2.6)
where the term U/d becomes a constant, the effect of these viscosity terms disappears. The numerical flux now reduces to 
a simple form

f̂ j+1/2 = 1

2

[
f
(

U−
j+1/2

)
+ f

(
U+

j+1/2

)]
. (2.11)

All these together lead to high order well-balanced WENO schemes for the Euler equations.

Proposition 1. For the Euler equations under the static gravitational potential field, reformulated in the form of (2.5), the semi-discrete 
WENO schemes (2.1), combined with the source term approximation (2.8) and the modified numerical fluxes (2.9), are well-balanced 
for the isothermal steady state solution (1.8).

Proof. At the steady state (1.8), we have

ρ̄ j = ρ0d̄ j, ū j = 0, p̄ j = p0d̄ j .

Easy to observe that the well-balanced property holds for the first and third equations, as both the flux and source term 
approximations in these equations become zero. For the momentum equation, we have ρ̄ j/d̄ j = ρ(x)/d(x) = ρ0, and the 
source term approximation (2.8) becomes

1

�x

∫
I j

S[2]dx ≈ 1

�x
p0
({

d j+1/2
}− {

d j−1/2
})

. (2.12)

Since u = 0, the second flux term f [2](U ) = ρu2 + p reduces to p. Its numerical approximation takes the form of

1 (
f̂ [2]

j+1/2 − f̂ [2]
j+1/2

)
= 1

p0
({d j+1/2} − {d j−1/2}

)
, (2.13)
�x �x
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where (2.11) is used. We can conclude that the flux and source term approximations balance exactly each other, which leads 
to the well-balanced property of our schemes. �

We complete this subsection with some remarks.

Remark 1. The well-balanced finite volume WENO schemes constructed above are very similar to the well-balanced discon-
tinuous Galerkin methods in [13], especially in the well-balanced flux and the source term approximation. This is expected, 
due to the connection between finite volume schemes and discontinuous Galerkin methods. As commented in [13], the 
choice of ρ̄/b̄ in (2.8) is not unique, and can be replace by any other term that can recover constant ρ0 at the steady 
state (2.6).

Remark 2. The well-balanced finite volume schemes can also be viewed as the generalization of the well-balanced schemes 
designed for the shallow water equations in [21]. But unlike the shallow water case, we don’t need to use the solution U
to compute the coefficients of the WENO reconstruction for d̄ j , therefore our source term approximation is more nature in 
this sense.

Remark 3. In some examples, we may know the solutions converge to the isothermal equilibrium (2.6), but the constant 
T0 is not explicitly given. In these cases, we could simply replace T0 in (2.5) by the average of the temperature function T
computed at the current time level tn .

2.3. Well-balanced schemes for polytropic equilibrium

Well-balanced WENO schemes have been designed for the isothermal steady state (1.8) in the previous subsection. In 
the subsection, we extend these schemes to the polytropic steady state (1.10). For ease of presentation, we introduce the 
following notations

ρe(x) =
(

ν − 1

Kν
(C − φ)

) 1
ν−1

, u = 0, pe(x) = 1

K
1

ν−1

(
ν − 1

ν
(C − φ)

) ν
ν−1

, (2.14)

for the equilibrium states. Note that these two functions only depend on the gravitation potential φ(x) and ν , and are 
independent of the solutions U .

Similarly, we first take in consideration the targeting polytropic equilibrium state (2.14), and rewrite the governing equa-
tions (1.3) as

ρt + (ρu)x = 0

(ρu)t +
(
ρu2 + p

)
x
= ρ

ρe
pe

x

Et + ((E + p)u)x = −ρuφx,

(2.15)

which is the analogy of the equations (2.5) for the isothermal steady state (1.8).
The semi-discrete well-balanced WENO schemes still take the form of (2.1), but with modified numerical fluxes and the 

source term approximations outlined below. Following the same technique as stated above, we decompose the integral of 
the source term in the second equation as

1

�x

∫
I j

S[2]dx = 1

�x

∫
I j

ρ

ρe
pe

x dx

= 1

�x

∫
I j

(
ρ

ρe
− ρ̄ j

ρ̄e
j

+ ρ̄ j

ρ̄e
j

)
pe

x dx

= 1

�x

ρ̄ j

ρ̄e
j

(
pe

j+1/2 − pe
j−1/2

)
+ 1

�x

∫
I j

(
ρ

ρe
− ρ̄ j

ρ̄e
j

)
pe

x dx,

(2.16)

and approximate it by

1

�x

∫
I

S[2] dx ≈ 1

�x

ρ̄ j

ρ̄e
j

({
pe

j+1/2

}
−
{

pe
j−1/2

})
+ 1

�x

∫
I

(
ρ

ρe
− ρ̄ j

ρ̄e
j

)
pe

x dx, (2.17)

j j
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where ρe
j+1/2 is replaced by 

{
ρe

j+1/2

}
. The integral of the source term in the third equation is still approximated by the 

Gaussian quadrature rule, and the numerical flux takes a similar form as in (2.9):

f̂ j+1/2 = 1

2

[
f
(

U−
j+1/2

)
+ f

(
U+

j+1/2

)
− α′

j

(
Ũ+

j+1/2 − Ũ−
j+1/2

)]
, (2.18)

with the coefficient α′ being defined as

α′ = α max
j

(
ρ̄e

j , p̄e
j

)
, (2.19)

and Ũ is given by

Ũ =
(

ρ

ρe(x)
,

ρu

ρe(x)
,

E

pe(x)

)
,

which ensures that Ũ = const and the effect of the viscosity terms 
(

Ũ+
j+1/2 − Ũ−

j+1/2

)
disappears at the steady state.

Following the same proof, we can show that the semi-discrete WENO schemes (2.1), combined with (2.17) and (2.18), are 
well-balanced for the polytropic steady state solutions (1.10) of the Euler equations (2.15) under the gravitational field φ(x).

3. One-dimensional numerical results

In this section, we carry out extensive one-dimensional numerical experiments to demonstrate the performances of the 
resulting well-balanced WENO scheme. In all the computations, we use the third order TVD Runge–Kutta time discretization 
(2.4) and take CFL = 0.6.

Following [9], we define the sound crossing time τsound as

τsound = 2
∫
I

1

c(x)
dx, (3.1)

to characterize the time scale on which a model reacts to perturbations of its equilibrium, with c(x) = √
γ p/ρ being the 

sound speed.

3.1. Shock tube under gravitational field

In this standard Sod test, the initial conditions are given by

(ρ, u, p) =
{

(1,0,1) if x ≤ 0.5,

(0.125,0,0.1) otherwise,

on a unit computational domain with a constant gravitational field g = φx = 1. We compute this problem up to t = 0.2. 
The numerical results with 100 uniform meshes, compared with the reference solutions obtained with much refined 2000
meshes, are shown in Fig. 3.1. Due to the gravitational force acting in the left direction, the density distribution is pulled 
towards left, and negative velocity appears in some regions. We observe that the discontinuities in this test problem is well 
solved by the proposed WENO methods on the relatively coarse mesh with 100 cells, and the numerical solutions agree 
well with the reference ones.

3.2. One-dimensional isothermal equilibrium in a linear gravitational field

The purpose of this test case, used in [12,22,19], is to demonstrate the well-balanced property of our proposed methods 
on an isothermal equilibrium, as well as their capability for capturing the small perturbation of such a steady state. We set 
the computational domain as [0, 1], and consider an ideal gas with γ = 1.4 under the linear gravitational field φx = g = 1
acting in the negative x direction. The isothermal equilibrium solution takes the form of (1.8), given by

ρ0(x) = p0(x) = exp(−x) and u0(x) = 0. (3.2)

We first verify the well-balanced property of the WENO scheme. The initial condition is taken as the steady state solu-
tion (1.8), which should be exactly preserved by any well-balanced methods. The solutions are computed until t = 2 (the 
reference sound crossing time τsound ≈ 1.69) using both 100 and 200 uniform cells. In order to demonstrate that the steady 
state is indeed maintained up to the round-off error, we use single precision and double precision respectively to perform 
the computation. The L1 errors of ρ , ρu and E are shown in Table 3.1, from which we can clearly observe that the errors 
are all at the level of round-off error for different precisions. This verifies the expected well-balanced property.
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Fig. 3.1. The numerical solutions of the shock tube problem under gravitational field in Sect. 3.1 at time t = 0.2. Top left: density distribution; top right: 
velocity distribution; bottom left: energy distribution; bottom right: pressure distribution.

Table 3.1
L1 errors for different precisions for the steady state solution in Sect. 3.2.

N Precision ρ ρu E

100 Single 2.63E-7 3.28E-7 4.40E-7
Double 4.31E-14 6.16E-14 7.84E-14

200 Single 3.81E-7 9.63E-7 5.34E-7
Double 1.03E-15 1.30E-15 1.75E-15

Next, we demonstrate the advantage of well-balanced methods in capturing a small perturbation of the isothermal steady 
state solution (3.2). The density and velocity are kept the same, but a small perturbation is added to the initial pressure 
state, i.e.,

p(x,0) = p0(x) + η exp(−100(x − 0.5)2),

where η is a non-zero perturbation parameter. Two cases have been considered: η = 0.01 and η = 0.0001. The pressure 
perturbations at t = 0.25 on a mesh with 200 cells, compared with a reference solution obtained with much refined 2000
cells, are shown in Fig. 3.2. We also include the initial pressure perturbation in the plot as a dashed line. For comparison, we 
run the same numerical test using non-well-balanced WENO methods, with a straightforward numerical integration of the 
source term, and include their results in Fig. 3.2. We can easily observe that the well-balanced methods provide numerical 
solutions that agree well with the reference solutions for both cases. Notice that the non-well-balanced WENO scheme do 
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Fig. 3.2. The pressure perturbation of a hydrostatic solution in Section 3.2. The result of the well-balanced (denoted by WB) scheme with 200 and 2000
cells, and that of the non-well-balanced (denoted by non-WB) scheme with 200 cells at time t = 0.25. Left: η = 0.01; right: η = 0.0001.

Table 3.2
L1 errors for different precisions for the steady state solution in Sect. 3.3.

N Precision ρ ρu E

100 Single 3.05E-7 4.14E-7 3.03E-7
Double 2.65E-14 2.41E-14 7.34E-14

200 Single 2.74E-8 1.72E-8 4.14E-8
Double 2.71E-15 7.77E-15 1.11E-15

not perform well for the small perturbation case on a relatively coarse mesh with 200 cells. This phenomenon demonstrates 
the importance of the well-balanced property in capturing small perturbations to equilibrium states.

3.3. One-dimensional gas falling into a fixed external potential

In this test taken from [18,19,22], we verify the performance of well-balanced methods for the isothermal equilibrium in 
a more general gravitational field. The isothermal steady state takes the form of

ρ = ρ0 exp

(
− φ

RT

)
, u = 0 and p = RTρ0 exp

(
− φ

RT

)
, (3.3)

with a constant temperature T , and the gravitational field is given by the sine wave form:

φ(x) = −φ0
L

2π
sin

2πx

L
,

where L is the computational domain length, and φ0 is the amplitude.
We first verify the well-balanced property of the proposed WENO schemes. We take the initial conditions as in (3.3)

with parameters ρ0 = 1, R = 1, T = 0.6866, L = 64, γ = 5/3, and φ0 = 0.02. The solutions are computed up to t = 50 (the 
reference sound crossing time τsound ≈ 120) using both 100 and 200 uniform cells. We use both single and double precisions 
to carry out the computation. The L1 errors of ρ , ρu and E are presented in Table 3.2, from which we can clearly observe 
that the errors are all at the level of round-off error for different precisions.

Next, we impose a small perturbation to the steady state (1.7), and let the solution run for a long time until it converges 
to an isothermal hydrostatic state. We would like to compare the performance of well-balanced and non-well-balanced 
schemes for this simple test.

Taking the initial data as

ρ = ρ0 exp

(
− φ

RT

)
, u = 0, p = RTρ0 exp

(
− φ

RT

)
+ 0.001 exp

(
−10(x − 32)2

)
,

with the same parameters used in the well-balanced test, we run the simulation for 1, 000, 000 time steps with 64 uniform 
cells. The stopping time T is 179980.53, which is much larger than the reference sound crossing time τsound ≈ 120. The 
numerical results at the final time are shown in Fig. 3.3. For comparison, we also run the same test with non-well-balanced 



154 G. Li, Y. Xing / Journal of Computational Physics 316 (2016) 145–163
Fig. 3.3. The numerical solutions of well-balanced scheme (solid line, denoted by WB) and non-well-balanced scheme (square box, denoted by non-WB) 
for the convergence test in Section 3.3 after 1,000,000 time steps. Top left: density distribution; top right: velocity distribution; bottom left: pressure 
distribution; bottom right: temperature distribution.

WENO schemes and include their numerical results in the figures. It is easy for us to observe that the constant velocity and 
constant temperature distributions of the isothermal equilibrium state are correctly captured by the well-balanced WENO 
schemes, while the non-well-balanced schemes fail to achieve this.

3.4. Polytropic equilibrium in a linear gravitational field

The purpose of the test is to investigate the performance of our proposed scheme near the polytropic equilibrium states. 
We consider a polytropic hydrostatic atmosphere in the linear gravitational field with φ(x) = gx. The polytropic steady state 
solutions, taken from [9], are given by

ρ(x) =
(
ρ

γ −1
0 − 1

K0

γ −1
γ gx

) 1
γ −1

,

u(x) = 0,

p(x) = K0ρ(x)γ ,

(3.4)

with g = 1, γ = 5/3, ρ0 = 1, p0 = 1 and K0 = p0/ρ
γ
0 on a computational domain [0, 2].

We first show an example to demonstrate the well-balanced property of the proposed WENO schemes. The initial condi-
tion (3.4) should be exactly preserved by the well-balanced scheme. In order to demonstrate that the steady state is indeed 
maintained up to the round-off error, we use single precision and double precision respectively to perform the computation. 
We compute the solution until t = 4 (the sound crossing time τsound ≈ 3.92) using both 100 and 200 uniform mesh cells, 
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Table 3.3
L1 errors for different precisions for the steady state solution in Section 3.4.

N Precision ρ ρu E

100 Single 1.01E-6 1.48E-7 8.27E-7
Double 1.33E-15 1.55E-16 8.75E-16

200 Single 4.53E-6 5.24E-7 2.83E-7
Double 3.34E-15 5.10E-15 2.67E-16

Fig. 3.4. Small amplitude waves traveling up the isentropic hydrostatic atmosphere. The pressure perturbations and velocity of a hydrostatic solution in 
Section 3.4. The result of the well-balanced (denoted by WB) scheme with 200 and 2000 cells, and that of the non-well-balanced (denoted by non-WB) 
scheme with 200 cells at t = 1.5.

and present the L1 errors of numerical solutions in Table 3.3. We can clearly observe that the numerical errors are all at 
the level of round-off error for different precisions, which verifies the desired well-balanced property.

Next, we impose a small perturbation to the polytropic hydrostatic equilibrium, and compare the performance of well-
balanced and non-well-balanced schemes. At the bottom of the atmosphere, we add a periodic velocity perturbation of the 
form

u(0, t) = A sin(4πt),

with A = 10−6 as a small perturbation. The solutions are computed at the time t = 1.5, before these perturbation waves 
propagate to the upper boundary x = 2. As the wave moves through the domain, its amplitude is modified by the density 
and pressure stratification because of the gravity.

In Fig. 3.4, we present the pressure perturbations and velocity of the solutions at time t = 1.5 on a coarse mesh with 
200 cells. For comparison, we include the reference solutions obtained with much refined 2000 cells. In addition, we run 
the same numerical test using non-well-balanced WENO schemes on 200 cells, and show their results in the figure. It is 
obvious that the results of well-balanced WENO schemes are in good agreement with the reference solutions, while the 
perturbations of non-well-balanced schemes are not consistent with the reference solutions, especially for the region when 
x > 1.5.

Lastly, we keep the setting in the previous test, but impose a large amplitude perturbation instead. The similar test case 
as above, but with A = 0.1, is tested. We again evolve the simulation until t = 1.5. The numerical results by both well-
balanced and non-well-balanced WENO schemes with 200 cells are displayed in Fig. 3.5, compared against the reference 
solutions (with 2000 cells). From the figures, we can observe that both methods are able to capture the large perturbation 
waves well. This agrees with our expectation, as we hope the well-balanced methods to perform similarly as non-well-
balanced methods when far away from the steady states.

4. Extension to multi-dimensional case

The one-dimensional well-balanced techniques for both the isothermal and polytropic equilibrium solutions can be ex-
tended to multi-dimension. In this section, we present well-balanced finite volume WENO schemes to multi-dimensional 
Euler equations (1.1) under the gravitational field φ on structured meshes. The multi-dimensional isothermal steady state 
solution we are interested to preserve is given by
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Fig. 3.5. Large amplitude waves traveling up the isentropic hydrostatic atmosphere. The pressure perturbations and velocity of a hydrostatic solution in 
Section 3.4. The result of the well-balanced (denoted by WB) scheme with 200 and 2000 cells, and that of the non-well-balanced (denoted by non-WB) 
scheme with 200 cells at t = 1.5.

ρ = ρ0 exp

(
− φ

RT0

)
, u = 0, p = RTρ = RTρ0 exp

(
− φ

RT0

)
, (4.1)

and the polytropic equilibrium takes the form of

ρ =
(

ν − 1

Kν
(C − φ)

) 1
ν−1

, u = 0, p = 1

K
1

ν−1

(
ν − 1

ν
(C − φ)

) ν
ν−1

. (4.2)

For ease of presentation, we restricted our discussion in this section to two spatial dimensions only, although the algorithm 
can be easily designed for three spatial dimensions as well.

We discretize the computational domain into cells Ii, j = [xi− 1
2
, xi+ 1

2
] ×[y j− 1

2
, y j+ 1

2
]. For simplicity, we assume a uniform 

mesh is used. The sizes of each rectangle cell are denoted by �x and �y, with λ1 = �t/�x, λ2 = �t/�y. The integrals will 
be approximated by quadratures with sufficient accuracy. Let us assume that we use a Gaussian quadrature with L points. 
We assume

Sx
i = {xβ

i : β = 1, · · · , L}, S y
j = {yβ

j : β = 1, · · · , L} (4.3)

denote the Gaussian quadrature points on [xi− 1
2
, xi+ 1

2
] and [y j− 1

2
, y j+ 1

2
], respectively. For instance, (xi− 1

2
, yβ

j ) (β = 1, · · · , L) 
are the Gaussian quadrature points on the left edge of the (i, j) cell. Let wβ be the Gaussian quadrature weights for the 
interval [− 1

2 , 12 ]. The two-dimensional finite volume WENO scheme is then given by

d

dt
U ij(t) = − 1

�x

(
f̂ i+ 1

2 , j − f̂ i− 1
2 , j

)
− 1

�y

(
ĝi, j+ 1

2
− ĝi, j− 1

2

)
+ 1

�x�y

∫
Ii, j

S(h, φ)dxdy, (4.4)

where

f̂ i+ 1
2 , j =

∑
β

wβ F

(
U−

x
i+ 1

2
,yβ

j

, U+
x

i+ 1
2
,yβ

j

)
, (4.5)

is an approximation to the integration of f in y-direction:

1

�y

y
j+ 1

2∫
y

j− 1
2

f (U (xi+ 1
2
, y, t))dy,

where the Lax–Friedrichs flux

F (a1,a2) = 1
( f (a1) + f (a2) − α1(a2 − a1)), α1 = max(|u| +√

γ p/ρ),

2
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is used. U±
x

i+ 1
2
,yβ

j

are the high order pointwise approximations to U ((xi+ 1
2
, yβ

j , t) by a WENO reconstruction procedure. 

For rectangular meshes, a practical way to perform the reconstruction in two space dimensions is given as follows. We 
first perform a one-dimensional reconstruction in one of the directions (e.g., the y-direction), obtaining one dimensional 
cell averages of the function u in the other direction (e.g., the x-direction). A reconstruction in the other direction is then 
applied to obtain the approximated point values. The other flux ĝi, j+ 1

2
is computed in the similar way with

G(a1,a2) = 1

2
(g(a1) + g(a2) − α2(a2 − a1)), α2 = max(|v| +√

γ p/ρ).

To extend our well-balanced finite volume WENO scheme in Section 2 to two dimensions, we first rewrite the source 
term using the targeting equilibrium states, as in (2.5) for the isothermal solution or (2.15) for the polytropic case. Below, 
we take the polytropic case as an example to demonstrate the two-dimensional well-balanced WENO schemes. The Euler 
equations (1.1) can be reformulated as

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = ρ

ρe
pe

x,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ

ρe
pe

y,

Et + ((E + p)u)x + ((E + p)v)y = −ρuφx − ρvφy, (4.6)

with ρe(x) and pe(x) defined in (2.14).
Following the same technique as stated in Section 2, we decompose the integral of the source term in the second 

equation as

1

�x�y

∫
Ii j

S[2]dxdy = 1

�x�y

∫
Ii j

ρ

ρe
pe

x dxdy (4.7)

= 1

�x�y

ρ̄i j

ρ̄e
i j

⎛⎜⎜⎝
y

j+ 1
2∫

y
j− 1

2

pe
x

i+ 1
2
,ydy −

y
j+ 1

2∫
y

j− 1
2

pe
x

i− 1
2
,ydy

⎞⎟⎟⎠+ 1

�x�y

∫
Ii j

(
ρ

ρe
− ρ̄i j

ρ̄e
i j

)
pe

x dxdy,

and approximate it by

1

�x�y

∫
Ii j

S[2]dxdy ≈ 1

�x�y

ρ̄i j

ρ̄e
i j

⎛⎝∑
β

wβ

{
pe

x
i+ 1

2
,yβ

j

}
−
∑
β

wβ

{
pe

x
i− 1

2
,yβ

j

}⎞⎠ (4.8)

+ 1

�x�y

∫
Ii j

(
ρ

ρe
− ρ̄i j

ρ̄e
i j

)
pe

x dxdy. (4.9)

The approximation to the integral of the source term in the third equation follows the same idea. The numerical flux takes 
a similar form as in (2.9)

f̂ j+1/2 = 1

2

[
f
(

U−
j+1/2

)
+ f

(
U+

j+1/2

)
− α′

j

(
Ũ+

j+1/2 − Ũ−
j+1/2

)]
, (4.10)

where Ũ is given by

Ũ =
(

ρ

ρe(x)
,

ρu

ρe(x)
,

ρv

ρe(x)
,

E

pe(x)

)
,

which ensures that Ũ = const and the effect of the viscosity terms 
(

Ũ+
j+1/2 − Ũ−

j+1/2

)
disappears at the steady state. All 

the desired properties proved in the one-dimensional case, such as high order accuracy and the well-balanced property, are 
still valid in the two-dimensional case.

5. Two-dimensional numerical results

In this section, we carry out some two-dimensional numerical experiments to demonstrate the performances of the 
resulting well-balanced WENO scheme. The third order TVD Runge–Kutta time discretization (2.4) and CFL = 0.6 are also 
used in all the computations below.
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Table 5.1
L1 errors and numerical orders of accuracy for the example in Sect. 5.1.

Cells ρ ρu ρv E

L1 error Order L1 error Order L1 error Order L1 error Order

8 × 8 1.75E-02 1.97E-02 1.97E-02 1.13E-01
16 × 16 2.21E-03 2.98 2.83E-03 2.80 2.83E-03 2.80 1.97E-02 2.52
32 × 32 3.32E-04 2.74 2.01E-04 3.81 2.01E-04 3.81 2.81E-03 2.81
64 × 64 2.34E-05 3.83 8.14E-06 4.63 8.14E-06 4.63 2.02E-04 3.80

128 × 128 9.44E-07 4.63 2.73E-07 4.90 2.73E-07 4.90 8.19E-06 4.62
256 × 256 2.99E-08 4.98 3.08E-09 5.02 3.08E-09 5.02 2.54E-07 5.01

Table 5.2
L1 errors for different precisions for the steady state solution (5.1) in Sect. 5.2.

Precision ρ ρu ρv E

Single 5.91E-8 8.94E-8 8.93E-8 1.28E-8
Double 6.04E-14 8.92E-14 8.92E-14 1.27E-14

5.1. Testing the orders of accuracy

In this example, we test the numerical orders of accuracy based on the two-dimensional equations (1.1) with a linear 
gravitational field with φx = φy = 1 as in [22]. We consider the exact solution taking the form of

ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t(u0 + v0))),

u(x, y, t) = u0,

v(x, y, t) = v0,

p(x, y, t) = p0 + t(u0 + v0) − x − y + 0.2 cos(π(x + y − t(u0 + v0)))/π,

on a square domain [0, 2] × [0, 2]. We take u0 = v0 = 1 and p0 = 4.5 in this test case, and apply the exact solutions at the 
boundaries. The time step �t is taken to be proportional to (1/�x + 1/�y)−5/3. We run the simulation up to t = 0.1 and 
compute the numerical errors by comparing with the exact solutions. The L1 errors and orders of accuracy are shown in 
Table 5.1, where we can clearly see that the expected high order accuracy is achieved for the proposed well-balanced WENO 
scheme.

5.2. Two-dimensional isothermal equilibrium solution

The purpose of this test case is to demonstrate the well-balanced property of our proposed methods on an isothermal 
equilibrium solution and their capacity for capturing the propagation of small wave perturbation in the two-dimensional 
case. Consider an ideal gas with γ = 1.4 and the linear gravitational field φx = φy = g . As in [22], we consider the isothermal 
equilibrium state

ρ(x) = ρ0 exp
(
−ρ0 g

p0
(x + y)

)
,

u(x, y) = v(x, y) = 0,

p(x, y) = p0 exp
(
−ρ0 g

p0
(x + y)

)
,

(5.1)

with ρ0 = 1.21, p0 = 1 and g = 1 on a unit square domain.
Using this equilibrium state as the initial data, we first verify their well-balanced property. We compute the solution up 

to t = 1 on a mesh with 50 × 50 uniform cells. The L1 errors of ρ , ρu, ρv and E , using both single precision and double 
precision, are shown in Table 5.2, where we can easily observe that the errors are all at the level of round-off errors and 
the well-balanced property is obtained.

Next, we impose a small perturbation to the pressure state of the isothermal equilibrium solution (5.1):

p(x, y) = p0 exp

(
−ρ0 g

p0
(x + y)

)
+ 0.001 exp

(
−ρ0 g

p0

(
(x − 0.3)2 + (y − 0.3)2

))
,

and keep the density and velocities to be the same. Both well-balanced WENO schemes and non-well-balanced schemes 
(with a straightforward integration of the source term) are simulated. The contour plots of the pressure perturbation, for 
the numerical solutions at t = 0.15 with 50 × 50 cells and simple transmissive boundary conditions, are shown in Fig. 5.1. 
Fig. 5.2 contains the 3D figures of the pressure perturbations. The density perturbations are shown in Fig. 5.3. From these 
figures, we can observe that non-well-balanced WENO schemes are not able to capture these small perturbations on the 
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Fig. 5.1. The contours of the pressure perturbation of a two-dimensional hydrostatic solution in Section 5.2 at time t = 0.15 with 50 ×50 cells. 20 uniformly 
spaced contour lines from 0.0003 to 0.0003. Left: results based on well-balanced scheme. Right: results based on non-well-balanced scheme.

Fig. 5.2. The 3D figure of the pressure perturbation of a two-dimensional hydrostatic solution in Section 5.2 at time t = 0.15 with 50 × 50 cells. Left: results 
based on well-balanced scheme. Right: results based on non-well-balanced scheme.

Fig. 5.3. The contours of the density perturbation of a two-dimensional hydrostatic solution in Section 5.2 at time t = 0.15 with 50 × 50 cells. 20 uniformly 
spaced contour lines from −0.001 to 0.0002. Left: results based on well-balanced scheme. Right: results based on non-well-balanced scheme.
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Fig. 5.4. The contours of the pressure perturbation of a two-dimensional hydrostatic solution in Section 5.2 at time t = 0.15 with 200 × 200 cells. 20 uni-
formly spaced contour lines from −0.0003 to 0.0003. Left: results based on well-balanced scheme. Right: results based on non-well-balanced scheme.

coarse mesh, while the well-balanced ones can resolve them very well. We also refine the mesh to 200 × 200 uniform cells, 
and show their pressure perturbation results in Fig. 5.4. As we expected, the results of non-well-balanced WENO schemes 
are improving on this refined mesh. There are still some small oscillations in the non-well-balanced solution, which will 
disappear in much refined 400 meshes.

5.3. Two-dimensional polytropic equilibrium solution

In this last example, considered in [9], we verify the performance of our proposed WENO methods for a two-dimensional 
polytropic test case. The test is based on a static adiabatic gaseous sphere, called polytrope, which is held together by 
self-gravitation. From the hydrostatic equilibrium

dp

dr
= −ρ

dφ

dr
, (5.2)

and Poisson’s equation

1

r2

d

dr

(
r2 dφ

dr

)
= 4π gρ, (5.3)

in spherical symmetry with r =√
x2 + y2, one can derive the Lane–Emden equation

1

r2

d

dr

(
r2γ K

dρ

dr

)
= −4π gρ, (5.4)

where the polytropic relation p = Kργ with K being constant is used. The Lane–Emden equation can be solved analytically, 
for three special ratios of specific heats with γ = 6/5, 2, ∞. Here, we take γ = 2, and the analytical density and pressure 
are then given by

ρ(r) = ρc
sin(αr)

αr
, p(r) = Kρ(r)2, (5.5)

with α =
√

4π g
2K , ρc being the central density of the polytrope, and the gravitational potential taking the form of

φ(r) = −2Kρc
sin(αr)

αr
. (5.6)

The parameters K = g = ρc = 1 are used in the computation. The computational domain is set as [−0.5, 0.5] × [−0.5, 0.5]. 
We take the exact solutions (5.5)–(5.6) as the initial conditions, and set velocity to be zero.

Easy to verify that the initial condition is a steady state solution and satisfies the polytropic equilibrium. We first test 
the well-balanced property of our proposed WENO methods. We compute the solution up to t = 14.8 (≈ 20τsound) on 
meshes with 50 × 50 and 100 × 100 uniform cells. In order to demonstrate that the steady state is indeed maintained up 
to round-off error, we use single precision and double precision to carry out the computation. The L1 errors of ρ , ρu, ρv
and E are shown in Table 5.3, where the well-balanced property can be easily observed.
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Table 5.3
L1 errors for different precisions for the steady state solution (5.5) and (5.6) in Section 5.3.

N Precision ρ ρu ρv E

50 × 50 Single 4.96E-8 5.96E-8 5.87E-8 7.17E-8
Double 9.14E-16 3.53E-16 3.53E-16 1.31E-15

100 × 100 Single 5.99E-8 8.36E-8 8.33E-8 7.14E-8
Double 2.51E-15 1.16E-15 1.16E-15 3.94E-15

Fig. 5.5. The contours of the pressure perturbation and the velocity 
(√

u2 + v2
)

of the small amplitude wave propagation problem in Section 5.3 by 
well-balanced WENO scheme at time t = 0.2 with 200 × 200 cells. Left: pressure perturbation. Right: velocity. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Fig. 5.6. The contours of the pressure perturbation and the velocity 
(√

u2 + v2
)

of the small amplitude wave propagation problem in Section 5.3 by 
non-well-balanced WENO scheme at time t = 0.2 with 200 × 200 cells. Left: pressure perturbation. Right: velocity. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Next, we impose a small perturbation to the hydrostatic equilibrium and test the capability of our methods in capturing 
the propagation of such small perturbations. A small Gaussian hump perturbation is added to the pressure profile (5.5), 
which leads to

p(r) = Kρ(r)2 + A exp(−100r2).

We keep the velocity and pressure to be same, and set the amplitude parameter A as 10−3.
The simulation is run up to t = 0.2 on a mesh with 200 × 200 cells. The contour plots of their pressure perturbation and 

velocity 
√

u2 + v2 are shown in Fig. 5.5. The results are comparable with those in [9]. For comparison, we also include the 
numerical results of non-well-balanced WENO methods in Fig. 5.6. Moreover, we also show the 3D views of the pressure 
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Fig. 5.7. The 3D views of the pressure perturbation and the velocity 
(√

u2 + v2
)

of the small amplitude wave propagation problem in Section 5.3 by 
well-balanced WENO scheme at time t = 0.2 with 200 × 200 cells. Left: pressure perturbation. Right: velocity.

Fig. 5.8. The 3D views of the pressure perturbation and the velocity 
(√

u2 + v2
)

of the small amplitude wave propagation problem in Section 5.3 by 
non-well-balanced WENO scheme at time t = 0.2 with 200 × 200 cells. Left: pressure perturbation. Right: velocity.

perturbation and the velocity 
(√

u2 + v2
)

of the well-balanced and non-well-balanced schemes in Fig. 5.7 and Fig. 5.8, 
respectively. From these figures, we can clearly observe that non-well-balanced schemes are not capable of capturing such 
small perturbation on the relatively coarse mesh, while the well-balanced ones can resolve it very well.

6. Concluding remarks

In this paper, we develop high order well-balanced finite volume WENO scheme for the Euler equations under gravita-
tional field. This system admits the hydrostatic balance where the flux produced by the pressure is exactly canceled by the 
gravitational source term. Rigorous analysis as well as extensive numerical experiments all suggest that our proposed WENO 
schemes maintain the well-balanced property for both the isothermal and polytropic equilibriums solutions, and are able to 
capture the small perturbations of these hydrostatic balances states well on relatively coarse meshes.
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