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Many interesting astrophysical and atmospheric problems involve flows near the hydro-
static equilibrium state where the pressure gradient is balanced by the gravitational force. 
In this paper, we design high order well-balanced discontinuous Galerkin methods for 
the Euler equations with gravitation, which can preserve the discrete polytropic and 
isothermal hydrostatic balance states exactly. To achieve the well-balancedness, we propose 
to combine the numerical fluxes based on a generalized hydrostatic reconstruction, with 
an equilibrium state recovery technique and a novel source term approximation. Extensive 
one- and two-dimensional numerical examples are shown to demonstrate the performance 
of our well-balanced methods, and comparison with non-well-balanced results is included 
to illustrate the importance of maintaining the balance between pressure gradient and 
gravitational force numerically.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we design high order well-balanced discontinuous Galerkin (DG) methods for the solutions of the Euler 
equations with gravitation

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + pId) = −ρ∇φ,

Et + ∇ · ((E + p)u) = −ρu · ∇φ,

(1.1)

that preserve their steady state solutions exactly in the discrete sense. Here x ∈ Rd (d = 1, 2, 3) is the spatial variable, 
ρ , u, p denote the fluid density, the velocity, and the pressure, respectively. E = 1

2 ρ‖u‖2 + ρe (e is internal energy) is 
the non-gravitational energy which includes the kinetic and internal energy of the fluid. The operators ∇ , ∇· and ⊗ are 
the gradient, divergence and tensor product in Rd , respectively, and Id denotes the identity matrix. The source terms on 
the right hand side of the equations represent the effect of the gravitational force, and φ = φ(x) is the time independent 
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gravitational potential. To close this system, the pressure p is linked to the density ρ and the interval energy e through an 
equation of state, denoted by p = p(ρ, e). For example, the ideal gas law takes the form of

p = (γ − 1)ρe = (γ − 1)
(

E − ρ‖u‖2/2
)

, (1.2)

where γ is the ratio of specific heats. This ideal gas law is used in the numerical examples section, but the methods 
presented in this paper are applicable beyond the ideal gas equation of state.

Euler equations under gravitational fields play an important role in modeling many interesting astrophysical and at-
mospheric phenomena, with examples including the simulation of supernova explosions, climate modeling and numerical 
weather forecasting. In these applications, we often encounter nearly steady state flows, which are small perturbation of 
the hydrostatic equilibrium states arising from the balance of the flux term and gravitational source term in (1.1). Two 
well-known hydrostatic equilibriums states of the Euler equations under gravitation are the isothermal and the polytropic 
equilibria, which will be explained in detail in Section 2. One computational challenge in simulating these nearly steady 
flows comes from the imbalance of numerical approximations to these terms, which will lead to truncation error that may 
be comparable with the size of the physical perturbation. As a result, the numerical solution may either oscillate around 
the equilibrium or deviate from the correct approximation. To resolve this problem, one may need to use an extremely 
refined mesh, which increases the computational cost and can become quite burdensome in multi-dimensional simulations. 
Well-balanced methods are designed to preserve these steady states solutions exactly up to the machine accuracy, and can 
effectively capture these small perturbations well even on relatively coarse meshes.

Study of well-balanced methods has attracted many attention in the past decade, and many well-balanced methods have 
been designed in the literature. Most of them are proposed for the shallow water equations over a non-flat bottom topology, 
which is another prototypical example of hyperbolic conservation laws with source term. We refer the readers to [2,12,1,15,
21,31,26,30,29] and the references therein for some limited references in this context. Recently, some of these approaches 
have been extended to design well-balanced numerical methods for the Euler equations with gravitation. An early work can 
be found in [16], where the quasi-steady wave-propagation methods are applied to the Euler equations. Later, finite volume 
well-balanced methods have been proposed in [3] for the nearly hydrostatic flows in the numerical weather prediction. 
Gas-kinetic schemes have been extended to the multidimensional gas dynamic equations in [24,32,19], and well-balanced 
numerical methods were developed. Finite volume well-balanced schemes for the general hydrostatic equilibrium without 
any assumption of a thermal equilibrium are recently studied in [13,14]. Other related work can be found in [33,10,6]. The 
first high order version of well-balanced methods for the isothermal equilibrium of the Euler equations with gravitation is 
introduced in [28], based on a reformulation of the source term and a slightly modified weighted essentially non-oscillatory 
(WENO) reconstruction operator. The well-balanced approach based on reformulating the source term has been extended to 
DG methods in [17], to the nodal DG methods in [7], to the compact-reconstruction WENO methods for atmospheric flows 
in [11], and to the finite volume WENO methods in [18].

Another popular approach in designing well-balanced methods for the shallow-water equations is the hydrostatic recon-
struction idea, first proposed in [1] and later appearing in many well-balanced methods including some high order ones. 
Numerical flux based on hydrostatic reconstruction, combined with novel well-balanced source term approximation, is an 
important idea in designing well-balanced DG methods for the lake at rest steady state [27,30], and for the general moving 
equilibrium state of the shallow water equations [4,5,25]. In this paper, we plan to extend the hydrostatic reconstruction 
idea to investigate novel well-balanced DG methods for the polytropic equilibrium of the Euler equations with gravitation, 
which appears in most of these astrophysical applications. Their extension to the isothermal equilibrium state will also be 
described. Our well-balanced DG methods are build upon the first order methods in [13]. In [13], second order extension 
has also been presented, and our methods can be viewed as their extension to arbitrary high order methods in the DG 
setting. To achieve the well-balancedness, we proposed to combine the numerical fluxes based on hydrostatic reconstruc-
tion, with the equilibrium state recovery technique and a novel source term approximation. The proposed DG methods can 
also be viewed as a generalization of the methods designed for balancing the shallow water equations with moving water 
equilibrium in [25], and are very different from the existing two well-balanced DG methods in [17,7].

This paper is organized as follows. In Section 2, we present the one dimensional model and its steady state solutions. 
In Sections 3 and 4, our well-balanced DG methods for the polytropic hydrostatic steady states of the Euler equations 
under gravitational filed are presented. We start with one dimensional problem, and then extend the proposed method 
to multi-dimensional case. Section 5 contains extensive numerical simulation results to demonstrate the behavior of our 
well-balanced DG methods for one- and two-dimensional Euler equations under gravitational field, verifying high order 
accuracy, the well-balanced property, and good resolution for smooth and discontinuous solutions. Some conclusions are 
given in Section 6.

2. Mathematical model

In one spatial dimension, the Euler equations (1.1) reduce to the form of

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = −ρφx,

E + ((E + p)u) = −ρuφ ,

(2.1)

t x x
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governing the conservation of mass, momentum and energy. Here u is the one dimensional velocity. This model admits the 
hydrostatic stationary solution, where the pressure gradient force is balanced by the external forces such as gravity:

ρ = ρ(x), u = 0, px = −ρφx. (2.2)

As explained in [13], such relation alone is not complete, and the pressure stratifications are not uniquely defined. One usu-
ally needs to specify the profile of another variable, usually the temperature or entropy, to determine the stable equilibrium. 
Two important special equilibria arising in the applications are the isothermal (constant temperature) [28] and polytropic 
(constant entropy) hydrostatic equilibrium states [13].

For an ideal gas satisfying

p(x) = ρ(x)RT (x), (2.3)

with R being the gas constant, we can integrate the steady state solution (2.2) and obtain

ρ = p0

RT (x)
exp

⎛
⎝−

x∫
x0

φx(s)

RT (s)
ds

⎞
⎠ , u = 0, p = p0 exp

⎛
⎝−

x∫
x0

φx(s)

RT (s)
ds

⎞
⎠ , (2.4)

where p0 is the initial pressure at some reference position x0. For the isothermal equilibrium state, the temperature T (x) ≡
T0 becomes a constant, and the equilibrium correspondingly becomes

ρ = ρ0 exp

(
− φ

RT0

)
, u = 0, p = p0 exp

(
− φ

RT0

)
, (2.5)

with p0 = ρ0 RT0.
The other polytropic hydrostatic equilibrium, which appears frequently in the astrophysical applications and is the focus 

of this paper, is characterized by

p = Kργ , (2.6)

which will lead to the form of

ρ =
(

γ − 1

Kγ
(C − φ)

) 1
γ −1

, u = 0, p = 1

K
1

γ −1

(
γ − 1

γ
(C − φ)

) γ
γ −1

, (2.7)

where C and K are both constants. As shown in [13], an equivalent formulation of (2.7) is given by

u = 0, h + φ = C, (2.8)

where h = e + p/ρ denotes the specific enthalpy. The equilibrium (2.8) is obtained from the thermodynamics relation 
dh = T ds + dp/ρ . In the case of constant entropy, we have ds ≡ 0, therefore dh = dp/ρ = −dφ, namely d(h + φ) = 0, which 
consequently leads to (2.8). The equilibrium state (2.7) can now be rewritten as

ρ =
(

γ − 1

Kγ
h

) 1
γ −1

, u = 0, p = 1

K
1

γ −1

(
γ − 1

γ
h

) γ
γ −1

. (2.9)

The simplest gravity encountered is the linear gravitational potential field with φx = g , and the corresponding polytropic 
hydrostatic balance takes the form of

p = p
1

γ −1
0

(
p0 − γ − 1

γ
gρ0x

) γ
γ −1

, u = 0, ρ = ρ0

(
p

p0

) 1
γ

. (2.10)

3. Well-balanced DG methods for one dimensional problem

In this section, we present high order well-balanced DG methods for the Euler equations with gravity, with the objective 
to maintain the polytropic steady state solution (2.8) and the isothermal steady state solution (2.5). We will concentrate on 
the one-dimensional case in this section, and discuss the generalization to high dimensional case in the next section.
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3.1. Notations

We start by presenting some standard notations to be used later in the paper. The interval I = [a, b] is divided into 
N subintervals and we denote the cells by I j = [x j− 1

2
, x j+ 1

2
] for j = 1, · · · , N . The center of each cell is x j = 1

2 (x j− 1
2

+
x j+ 1

2
), and the mesh size is denoted by τ j = x j+ 1

2
− x j− 1

2
, with τ = max

1≤ j≤N
τ j being the maximal mesh size. The piecewise 

polynomial space V k
τ is defined as the space of polynomials of degree up to k in each cell I j :

V k
τ =

{
v : v|I j ∈ Pk(I j), j = 1,2, · · · , N

}
. (3.1)

Note that the functions in V k
τ are allowed to have discontinuities across element interfaces.

Following the standard DG notation, for any unknown variable u, its numerical approximation in the DG methods is 
denoted by uτ , which belongs to the finite element space V k

τ . We denote by u+
τ , j+ 1

2
and u−

τ , j+ 1
2

the limit values of uτ at 
x j+ 1

2
from the right cell I j+1 and from the left cell I j , respectively.

For the sake of easy presentation, we introduce the following notations:

U =
⎛
⎝ ρ

ρu
E

⎞
⎠ , V =

⎛
⎝ ρ

u
p

⎞
⎠ , (3.2)

to denote the conservative and the primitive variables, respectively. The Euler equations with gravitation (2.1) are re-written 
as

Ut + F (U )x = S(U , φ), (3.3)

where F (U ) and S(U , φ) denote the flux and source term, respectively.

3.2. Recovery of the well-balanced states

The first difficulty in designing well-balanced DG methods is the recovery of well-balanced states from the initial con-
dition, provided as a piecewise polynomial in V k

τ . Let’s assume that the initial data U (x, t = 0) = U0(x) are in a perfect 
equilibrium state, i.e.,

u = 0, h + φ = constant C, (3.4)

where h = h(U0(x)) = e + p/ρ can be computed from the variables U0. Usually, we take the L2 projection of U0 to be the 
initial condition of the DG methods. However, the projected polynomial, denoted by U0,τ , may not be in the equilibrium 
state. Therefore, the cell boundary values U±

τ , j+ 1
2

, which will be used to evaluate the numerical fluxes, may not be in equi-

librium, and this will increase the complexity in designing well-balanced methods. The same difficulty has been observed 
when designing well-balanced methods for the shallow water equation with moving water equilibrium state. In [20,25], 
we define the initial condition of equilibrium variables as the solution of a nonlinear equation and solve it by Newton’s 
iteration. Such approach can also be extended here, but it is rather complicated.

In this paper, we propose a different approach to recover the well-balanced states. The initial condition of DG methods 
can be any polynomial which approximates the exact solution and at the same time has enough accuracy. We introduce a 
new projection of the initial condition by defining Pc

τ ω to be a projection of ω into V k
τ , such that∫

I j

P
c
τωv dx =

∫
I j

ωv dx,

for any v ∈ Pk−1 on I j , and

(Pc
τω)(x j) = ω(x j), at the center x j of the cell I j.

The polynomial Pc
τω on each cell I j can be obtained by solving a linear algebra problem of size (k + 1) × (k + 1) locally. It 

is easy to show [8] the optimal convergence of this projection:

‖ωe‖ + τ‖ωe‖∞ + τ
1
2 ‖ωe‖�τ ≤ Cτ k+1, (3.5)

where ωe = ω − P
c
τω and �τ denotes the set of boundary points of all cells. The constant C depends on the function ω, 

but is independent of the mesh size τ .
We define the initial condition U0,τ , and the projection of gravitational potential φτ (x), to be

U0,τ (x) = P
c
τ U0(x), φτ (x) = P

c
τ φ(x). (3.6)
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In addition to optimal convergence of the projection Pc
τ , we can show that

U0,τ (x j) = U0(x j), φτ (x j) = φ(x j), for all j,

which leads to

h(pτ (x j), ρτ (x j)) + φτ (x j) = h(p(x j), ρ(x j)) + φ(x j) = C, for all j. (3.7)

Therefore, at the center of each cell, we have recovered the equilibrium state (3.4), which now holds for the piecewise 
polynomials U0,τ and φτ , the projection of the exact initial conditions. Note that even the initial condition is in the perfect 
equilibrium, such relation is only true for the numerical initial condition at the point x j within each cell I j .

Next, we propose to decompose the solution Uτ into the reference equilibrium state U e
τ and the remaining part U r

τ . This 
is one of the key ideas in designing the well-balanced methods, and will be applied to not only the initial condition but also 
the solution at each time step. To compute U e

τ , we first define the equilibrium component of the specific enthalpy he(x) as

he(x) = h(pτ (x j), ρτ (x j)) + φτ (x j) − φ(x). (3.8)

From the equilibrium state of the form (2.9), we can obtain the equilibrium component of the density, velocity, and pressure 
as follows:

ρe(x) =
(

1

K

γ − 1

γ
he(x)

) 1
γ −1

,

pe(x) =
(

1

K

) 1
γ −1

(
γ − 1

γ
he(x)

) γ
γ −1

, (3.9)

ue(x) = 0,

where K can be simply evaluated by K j = pτ (x j)/ρτ (x j)
γ in the cell I j . We denote them by

V e(x) = (
ρe(x), ue(x), pe(x)

)T := V e(he(x)), (3.10)

and can compute the equilibrium functions U e(x) = U (V e(x)) from (3.2). Since they may not be polynomials, we now 
project them into the piecewise polynomial space V k

τ using the same projection Pc
τ , and denote the resulting functions by

U e
τ (x) = P

c
τ U e = P

c
τ U (V e(x)). (3.11)

Therefore, we can decompose the numerical solutions Uτ as follows:

Uτ = U e
τ + U r

τ , (3.12)

where U r
τ = Uτ − U e

τ ∈ V k
τ . Both U e

τ and U r
τ will be used exclusively during the construction of well-balanced fluxes and 

source term approximation.

Remark 1. If the initial condition is the equilibrium state (3.4), the numerical initial condition U0,τ is then given by the 
projection Pc

τ in (3.6). Based on the procedure above, we know that he(x) recovers the exact specific enthalpy h(x) by 
(3.7). Therefore, V e(x) is exactly the initial condition, and the equilibrium component U e

0,τ is the same as U0,τ . So we have 
U r

0,τ = 0 in this case.

Remark 2. We would like to comment that the choice of the projection Pc
τ is not unique. Instead of requiring the projected 

function matches the original function at the cell center x j , we can choose any other point y j within the cell I j , with 
the relation (3.7) now holding at the point y j . The standard L2 projection is another popular choice to define the initial 
condition of DG methods. Although we cannot prove (3.7) theoretically when L2 projection is used, we have tested it 
numerically and noticed that the error is relatively small (around 10−14) when quadratic polynomial (i.e., k = 2) is used.

3.3. Well-balanced numerical fluxes

The standard DG methods for the equations (3.3) are given by∫
I j

(Uτ )t vdx −
∫
I j

F (Uτ )vxdx + F̂ j+ 1
2

v(x−
j+ 1

2
) − F̂ j− 1

2
v(x+

j− 1
2
) =

∫
I j

S vdx, (3.13)

where v(x) is a test function in the test space V k
τ , and F̂ j±1/2 are the numerical flux. A well-balanced DG method for the 

isothermal equilibrium state of the Euler equation has been designed in [17] using this formulation and a novel source term 
reformulation. Here, we would like to follow a different approach by utilizing the hydrostatic reconstruction idea in the 
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numerical flux. Such well-balanced DG methods for the shallow water equations have been studied in [27,30,25]. Following 
the setup in those papers, the semi-discrete well-balanced DG methods for (3.3) are defined as follows: for any test function 
v(x) ∈ V k

τ , Uτ is given by

∫
I j

(Uτ )t vdx −
∫
I j

F (Uτ )vxdx + F̂ l
j+ 1

2
v(x−

j+ 1
2
) − F̂ r

j− 1
2

v(x+
j− 1

2
) =

∫
I j

S vdx, (3.14)

or equivalently,∫
I j

(Uτ )t vdx −
∫
I j

F (Uτ )vxdx + F̂ j+ 1
2

v(x−
j+ 1

2
) − F̂ j− 1

2
v(x+

j− 1
2
) (3.15)

=
∫
I j

S vdx +
(

F̂ j+ 1
2

− F̂ l
j+ 1

2

)
v(x−

j+ 1
2
) −

(
F̂ j− 1

2
− F̂ r

j− 1
2

)
v(x+

j− 1
2
),

where the numerical fluxes F̂ l
j+ 1

2
and F̂ r

j− 1
2

are computed based on hydrostatic reconstruction idea and will be defined in 
(3.17) below. The left side of (3.15) is the traditional DG method, and the right side can be viewed as our approximation to 
the source term. We point out here that F̂ j+ 1

2
− F̂ l

j+ 1
2

and F̂ j− 1
2

− F̂ r
j− 1

2
are both high order correction terms at the level of 

O (
xk+1) regardless of the smoothness of the solution U .
At each time step tn , the cell boundary values U±

τ , j+ 1
2

can be computed from the piecewise polynomial solution Uτ (x)

directly. However, in the case of equilibrium state, these cell boundary values do not equal the exact solution values at the 
same point even Uτ (x) are computed from the exact equilibrium, because the projection does not preserve the equilibrium 
state at two cell boundary points. To overcome this problem, we redefine an updated boundary value as:

U∗,−
τ , j+ 1

2
= U

(
V e

(
h(pτ (x j), ρτ (x j)) + φτ (x j) − φ∗

τ , j+ 1
2

))
+ U r,−

τ , j+ 1
2
,

U∗,+
τ , j− 1

2
= U

(
V e

(
h(pτ (x j), ρτ (x j)) + φτ (x j) − φ∗

τ , j− 1
2

))
+ U r,+

τ , j− 1
2
, (3.16)

where

φ∗
τ , j+ 1

2
= max

(
φ−

τ , j+ 1
2
, φ+

τ , j+ 1
2

)
, for all j,

and

U r,−
τ , j+ 1

2
= U r

τ (x−
j+ 1

2
), U r,+

τ , j− 1
2

= U r
τ (x+

j− 1
2
).

Here, the function V e(·) is presented in (3.10) and U r
τ is defined in (3.12). In the case of equilibrium state, we have U r,±

τ , j+ 1
2

=
0, and h(pτ (x j), ρτ (x j)) + φτ (x j) ≡ C from (3.7), therefore, U∗,+

τ , j+ 1
2

= U∗,−
τ , j+ 1

2
for all j.

Next, we define the well-balanced numerical fluxes in (3.14) as follows:

F̂ l
j+ 1

2
= f

(
U∗,−

τ , j+ 1
2
, U∗,+

τ , j+ 1
2

)
+ F

(
U−

τ , j+ 1
2

)
− F

(
U∗,−

τ , j+ 1
2

)
,

F̂ r
j− 1

2
= f

(
U∗,−

τ , j− 1
2
, U∗,+

τ , j− 1
2

)
+ F

(
U+

τ , j− 1
2

)
− F

(
U∗,+

τ , j− 1
2

)
, (3.17)

where f (a1, a2) is a numerical flux. For example, we could use the simple Lax–Friedrichs flux

f (a1,a2) = 1

2
(F (a1) + F (a2) − α(a2 − a1)), (3.18)

where α = max
x

|λ(U )| with λ(U ) being the eigenvalues of the Jacobian F ′(U ), and the maximum is taken over the whole 

region. When the condition U∗,+
τ , j+ 1

2
= U∗,−

τ , j+ 1
2

holds, we can easily observe that ̂F l
j+ 1

2
= F

(
U−

τ , j+ 1
2

)
and ̂F r

j− 1
2

= F

(
U+

τ , j− 1
2

)
from the consistency of the numerical flux f (a1, a2).
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3.4. The source term approximation

To approximate the source term 
∫
I j

S(Uτ , φτ )v dx, we first use the decomposition of Uτ in (3.12) to rewrite it as

∫
I j

S(Uτ ,φτ )v dx =
∫
I j

S(U e
τ ,φτ )v dx +

∫
I j

S(U r
τ ,φτ )v dx, (3.19)

since the source terms −ρφx and −ρuφx in (2.1) are linear with respect to ρ and ρu.
The second term on the right hand side of (3.19) can be computed by the Gaussian quadrature rule directly. Here we 

discuss the numerical procedures for the first term only. Using the fact that U e is the equilibrium state, we have the relation∫
I j

S(U e, φ)v dx = −
∫
I j

F (U e)vx dx + F (U e,−
j− 1

2
)v(x−

j+ 1
2
) − F (U e,+

j− 1
2
)v(x+

j− 1
2
). (3.20)

Since U e
τ = P

c
τ U e , φτ are the projection of U e and φ, we obtain that∫

I j

S(U e
τ ,φτ )v dx +O(τ k+1) = −

∫
I j

F (U e
τ )vx dx + F (U e,−

τ , j− 1
2
)v(x−

j+ 1
2
) − F (U e,+

τ , j− 1
2
)v(x+

j− 1
2
). (3.21)

Therefore, the source term (3.19) can be approximated by∫
I j

S(Uτ ,φτ )v dx ≈ −
∫
I j

F (U e
τ )vx dx + F (U e,−

τ , j− 1
2
)v(x−

j+ 1
2
) − F (U e,+

τ , j− 1
2
)v(x+

j− 1
2
) +

∫
I j

S(U r
τ ,φτ )v dx. (3.22)

For the source term − 
∫
I j

(ρu)τ (φτ )x v dx which becomes zero at the equilibrium state, we can also apply the Gaussian 

quadrature rule with enough accuracy directly. The approximation to the other source term takes the form of

−
∫
I j

ρτ (φτ )x v dx ≈
(
ρe

τ (ue
τ )2 + pe

τ

)−
j+ 1

2

v(x−
j+ 1

2
) −

(
ρe

τ (ue
τ )2 + pe

τ

)+
j− 1

2

v(x+
j− 1

2
)

−
∫
I j

(
ρe

τ (ue
τ )2 + pe

τ

)
vx dx −

∫
I j

ρr
τ (φτ )x v dx

= pe,−
τ , j+ 1

2
v(x−

j+ 1
2
) − pe,+

τ , j− 1
2

v(x+
j− 1

2
) −

∫
I j

pe
τ vx dx −

∫
I j

ρr
τ (φτ )x v dx, (3.23)

due to the approximation (3.22) and the fact that ue
τ = 0.

3.5. Summary of the well-balanced DG methods

We now summarize the complete procedure of our high order well-balanced DG methods for solving the Euler equations 
(2.1) with the polytropic equilibrium (2.9). The numerical methods are given by (3.14), with the numerical fluxes F̂ l and 
F̂ r computed in (3.17), and the source term approximated by (3.22) or (3.23). The method is completed by combining with 
high order total variation diminishing (TVD) Runge–Kutta methods [23]. In the numerical section of this paper, we apply 
the following third order Runge–Kutta methods:

U (1) = Un + 
tF(Un)

U (2) = 3

4
Un + 1

4

(
U (1) + 
tF(U (1))

)
Un+1 = 1

3
Un + 2

3

(
U (2) + 
tF(U (2))

)
,

(3.24)

with F(U ) being the spatial operator.
Slope limiter procedure is usually needed for the hyperbolic conservation laws when the solution may contain disconti-

nuities. The total variation bounded (TVB) limiter [9,22] is used in this paper. However, the standard TVB limiter procedure 
may violate the exact preservation of the steady state solution, and destroy the well-balanced property. Here we propose the 
following well-balanced way to perform the TVB limiter. In each cell I j , the DG solution Uτ is separated as the sum of two 
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polynomials U e
τ and U r

τ , where U e
τ is the projection of the equilibrium component of the solution. Since the equilibrium 

state does not contain any discontinuity, we can focus on the U r
τ in the slope limiter procedure. Therefore, we proposed to 

apply the TVB slope limiter on the polynomials U r
τ only, and then add U e

τ back to obtain the limited solution Uτ . When the 
limiting procedure is implemented this way, if the steady state is reached, U r

τ = 0, hence we do not apply any TVB limiter. 
Therefore the well-balanced property is maintained.

A detailed implementation of this algorithm consists of the following steps:

1. Compute the projection of U0 and the gravitational potential function φ based on the given initial data, and denote 
them by U0,τ and φτ .

2. At each time step, compute the reference value V e from (3.9)–(3.10), and decompose the solution Uτ as the sum of U e
τ

and U r
τ following (3.11)–(3.12).

3. Compute the well-balanced numerical fluxes following the hydrostatic reconstruction idea in (3.16)–(3.18).
4. Evaluate the source term approximation by (3.22) or (3.23), as well as the Gaussian quadrature rule.
5. Apply the TVD Runge–Kutta method (3.24) to advance in time, implement the updated slope limiter procedure, and 

repeat steps 2–5.

All these together lead to a well-balanced DG method for the Euler equations with the polytropic hydrostatic balance 
under the gravitational field, as outlined in the following proposition.

Proposition 3.1. For the Euler equations (2.1) under the gravitational field, the semi-discrete DG methods (3.14), combined with (3.17)
and (3.22), are well-balanced for the steady state solution (2.9).

Proof. Suppose that the initial data are the polytropic steady state. Easy to observe that the well-balanced property holds 
for the first and third equations, as both the flux and source term approximations in these equations become zero. We only 
need to show that the numerical approximations to the flux and source term of the second momentum equation cancel 
exactly.

By the construction of U e
τ , we can show that U e

τ is equivalent to Uτ and U r
τ = 0 in (3.12). Therefore the source term 

approximation (3.22) becomes∫
I j

S(Uτ ,φτ )v dx = −
∫
I j

F (U e
τ )vx dx + F (U e,−

τ , j− 1
2
)v(x−

j+ 1
2
) − F (U e,+

τ , j− 1
2
)v(x+

j− 1
2
)

= −
∫
I j

F (Uτ )vx dx + F (U−
τ , j− 1

2
)v(x−

j+ 1
2
) − F (U+

τ , j− 1
2
)v(x+

j− 1
2
). (3.25)

For the numerical fluxes, we have U r,±
τ , j+ 1

2
= 0, and therefore, U∗,+

τ , j+ 1
2

= U∗,−
τ , j+ 1

2
from the calculation in (3.16). The consis-

tency property of numerical flux F in (3.17) leads to

F̂ l
j+ 1

2
= F

(
U−

τ , j+ 1
2

)
, F̂ r

j− 1
2

= F

(
U+

τ , j− 1
2

)
, (3.26)

and the approximation of the flux terms on the left hand side of (3.14) becomes

−
∫
I j

F (Uτ )vx dx + F (U−
τ , j− 1

2
)v(x−

j+ 1
2
) − F (U+

τ , j− 1
2
)v(x+

j− 1
2
),

which is exactly the same as the source term approximation in (3.25). Therefore, we can conclude that the proposed meth-
ods achieve the desired well-balanced property. �
Remark 3. If there is no gravitation field, i.e., φx = 0, our well-balanced DG methods become the traditional DG methods. 
Also, the first order version of our well-balanced methods reduces to the one presented by Käppeli and Mishra in [13].

3.6. Well-balanced methods for the isothermal equilibrium

The well-balanced methods described above are designed for the polytropic equilibrium (2.8), but the same methodology 
can be easily applied to the isothermal equilibrium (2.5). The first step is to rewrite the equilibrium state (2.5) as

η + φ = C, where η(p,ρ) = p
logρ, (3.27)
ρ
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where C is a constant. The new variable η is the analogue of h in the case of polytropic equilibrium. Following the previous 
procedure, we can construct the equilibrium component of η(x), denoted by ηe(x), in the same way as in (3.8), which leads 
to the equilibrium component of the density, velocity, and pressure as follows:

ρe(x) = exp

(
η

RT0

)
,

pe(x) = RT0 exp

(
η

RT0

)
, (3.28)

ue(x) = 0,

the analogue of (3.9) in the case of polytropic equilibrium. If the constant temperature T0 is not explicitly given, we can 
replace it by the average of temperature at the current time level tn . From now on, the exact same approach to construct 
well-balanced numerical flux and source term approximation can be applied, and these will lead to well-balanced DG 
methods for the isothermal equilibrium (2.8) (or the equivalent form (3.27)). To save space, we do not repeat all these steps 
here.

4. Extension to multi-dimensional case

The one-dimensional well-balanced techniques presented in the previous section can be easily extended to multi di-
mensions. In this section, we discuss well-balanced DG methods for multi-dimensional Euler equations (1.1) with the 
gravitational field φ. The polytropic equilibrium is given by

u = 0, h + φ = C, (4.1)

or equivalently

ρ =
(

γ − 1

Kγ
h

) 1
γ −1

, u = 0, p = 1

K
1

γ −1

(
γ − 1

γ
h

) γ
γ −1

, (4.2)

where h = e + p/ρ denotes the specific enthalpy.
Consider the computational domain �, let Tτ be a family of partitions parameterized by τ > 0. For any element K ∈ Tτ , 

we define τK := diam(K ) and τ := max
K∈Tτ

τK . For each edge ei
K (i = 1, 2, · · · ) of K , we denote the outward unit normal vector 

by ν i
K and the area of the triangle K by |K |.

For the ease of presentation, let us denote the multi-dimensional Euler equations (1.1) by

Ut + ∇ · F(U ) = S(U , φ),

where U = (ρ, ρu, E)T , F(U ) is the flux and S is the source term. The DG solution Uτ belongs to the finite dimensional 
piecewise polynomial space defined as

V k
τ ≡ {w ∈ L2(�); w|K ∈ Q k(K ), ∀K ∈ Tτ }, (4.3)

where Q k(K ) denotes the space of tensor products of one-dimensional polynomials of degree up to k. The standard (non-
well-balanced) semi-discrete DG method then takes the form of

∫∫
K

∂t Uτ w dx −
∫
K

F(Uτ ) · ∇w dx +
m∑

i=1

∫
ei

K

F̂|ei
K

· ν i
K w ds =

∫
K

S(Uτ ,φτ )w dx, (4.4)

where w(x) is a test function in the space V k
τ . The numerical flux ̂F is defined by

F̂|ei
K

· ν i
K = F(U int(K )

τ ,i , U ext(K )
τ ,i , ν i

K ), (4.5)

where U int(K )
τ ,i and U ext(K )

τ ,i are the approximations to the values on the edge ei
K obtained from the interior and the exterior 

of K . For example, the simple global Lax–Friedrichs flux is given by

F(a1,a2, ν) = 1

2
[F(a1) · ν + F(a2) · ν − α(a2 − a1)] , (4.6)

which satisfies the conservativity and consistency

F(a1,a2, ν) = −F(a2,a1,−ν), F(a1,a1, ν) = F(a1) · ν. (4.7)
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In order to achieve the well-balanced property in multi space dimensions, we are interested in preserving the steady state 
solution (4.1) exactly, which can be achieved by extending the well-balanced techniques designed in section 3. Following 
the steps in one-dimensional case, we first introduce the special projection Pc

τ , defined as the tensor product of the one 
dimensional projections Pc

τ . We then define the initial condition U0,τ , and the projection of gravitational potential φτ (x), to 
be

U0,τ (x) = Pc
τ U0(x), φτ (x) = Pc

τ φ(x), (4.8)

which satisfy that

h(pτ (xK ), ρτ (xK )) + φτ (xK ) = C, for all elements K , (4.9)

where xK denotes the center of the element K . Similarly, at each time step, we first define the equilibrium component of 
the specific enthalpy he(x) as

he(x) = h(pτ (xK ), ρτ (xK )) + φτ (xK ) − φ(x), (4.10)

and obtain the equilibrium component of the density, velocity, and pressure as follows:

ρe(x) =
(

1
K

γ −1
γ he(x)

) 1
γ −1

,

pe(x) = ( 1
K

) 1
γ −1

(
γ −1
γ he(x)

) γ
γ −1

,

ue(x) = 0.

(4.11)

Then we can compute the equilibrium functions U e(x) from them, and use the same projection Pc
τ to project them into the 

piecewise polynomial space V k
τ by:

U e
τ (x) = Pc

τ U e. (4.12)

Therefore, we can decompose the DG solution Uτ into the reference equilibrium state U e
τ and the remaining part U r

τ as 
follows:

Uτ = U e
τ + U r

τ . (4.13)

As in the one dimensional case, the semi-discrete well-balanced DG methods, modified from the standard version (4.4), 
are defined as follows:∫∫

K

∂t Uτ w dx −
∫∫
K

F(Uτ ) · ∇w dx +
m∑

i=1

∫
ei

K

F̂∗|ei
K

· ν i
K w ds =

∫∫
K

s(h,b)w dx. (4.14)

The well-balanced numerical flux ̂F∗ is computed based on the hydrostatic reconstruction technique as follows. At each time 
step tn , after computing the boundary values U int(K )

τ ,i and U ext(K )
τ ,i on the edge ei

K , we first evaluate the updated boundary 
value, denoted by U∗,int(K )

τ ,i and U∗,ext(K )
τ ,i , in a way analogous to (3.16) in the one dimensional case. The well-balanced 

numerical flux ̂F∗ is then given by:

F̂∗|ei
K

· ν i
K = F(U∗,int(K )

τ ,i , U∗,ext(K )
τ ,i , ν i

K ) +
(

F(U int(K )
τ ,i ) − F(U∗,int(K )

τ ,i )
)

· ν i
K .

Following the derivation in section 3.4, the well-balanced approximation to the source term is given by:∫∫
K

S(Uτ ,φτ )w dx

≈ −
∫∫
K

F(U e
τ ) · ∇w dx +

m∑
i=1

∫
ei

K

F (U e,int(K )
τ ,i ) · ν i

K w ds +
∫∫
K

S(U r
τ ,φτ )w dx.

Again, for the source term −
∫∫
K

(ρu)τ · ∇φτ w dx which becomes zero at the equilibrium state, we can also apply the 

Gaussian quadrature rule with enough accuracy directly. Due to the fact that ue
τ = 0, the approximation to the other source 

term takes the simplified form of

−
∫∫
K

ρτ ∇φτ w dx ≈
m∑

i=1

∫
ei

pe,int(K )
τ ,i wint(K )ν i

K ds −
∫∫
K

pe
τ∇w dx −

∫∫
K

ρr
τ∇φτ w dx. (4.15)
K
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Table 1
L1 errors and numerical orders of accuracy for the test case of Section 5.1.

N
ρ ρu E

L1 error Order L1 error Order L1 error Order

50 8.41E−03 1.47E−02 6.51E−02
100 2.38E−03 1.82 4.40E−03 1.74 1.82E−02 1.84
200 4.42E−04 2.43 7.01E−04 2.65 2.88E−03 2.66
400 6.44E−05 2.78 9.99E−05 2.81 3.94E−04 2.87
800 8.56E−06 2.91 1.29E−05 2.95 5.20E−05 2.92
1600 1.06E−06 3.01 1.64E−06 2.98 6.41E−06 3.02

The fully discretized method can be obtained by combining with high order TVD Runge–Kutta methods. All the desired 
properties proved in the one-dimensional case, such as high order accuracy and the well-balanced property, are still valid 
in the multi-dimensional case.

Remark 4. If the finite dimensional piecewise polynomial space is defined as

V k
τ ≡ {w ∈ L2(�); w|K ∈ Pk(K ), ∀K ∈ Tτ }, (4.16)

where Pk(K ) denotes the space of polynomials on the element K with at most k-th degree, the initial projection Pc
τ can no 

longer be defined in this way. Under this circumstance, we can replace this special projection by the standard L2 projection 
as in one-dimensional case, and observe numerically that the relation (4.9) holds with a round-off error.

5. Numerical results

In this section, we carry out extensive one- and two-dimensional numerical experiments to demonstrate the performance 
of the proposed well-balanced DG methods. In all the computations, we use the third order TVD Runge–Kutta methods 
(3.24), coupled with third order finite element DG methods (i.e., k = 2). The CFL number is taken as 0.18.

5.1. Accuracy test

The accuracy of the proposed DG methods is tested in this example. In analogy to [6], we take the following initial data

ρ(x,0) = exp(−x), u(x,0) = 0, p(x,0) = (1 + x)exp(−x),

coupled with φ(x) = x as well as γ = 1.4 on a unit domain [0, 1]. We compute this example up to t = 0.1, and use a 
much refined mesh of 6400 cells to compute a reference exact solution. The numerical errors and the order of accuracy are 
demonstrated in Table 1. It is obvious to observe that the expected high order accuracy is achieved by the proposed DG 
methods.

5.2. Hydrostatic atmosphere in a linear gravitational field

Next, we consider a very simple setup of polytropic hydrostatic atmosphere studied in [13]. Under a linear gravitational 
field φ(x) = gx, the steady state solutions are given by

ρ(x) =
(
ρ

γ −1
0 − 1

K0

γ −1
γ gx

) 1
γ −1

,

p(x) = K0ρ(x)γ ,

u(x) = 0,

(5.1)

with g = 1, γ = 5/3, ρ0 = 1, p0 = 1 and K0 = p0/ρ
γ
0 on a computational domain [0, 2]. In the following, we consider 

three different test cases, respectively.

5.2.1. Well-balanced property
We use the first example to test the well-balanced property of the proposed DG methods. The initial conditions are taken 

as the steady state solutions (5.1). In order to demonstrate that the steady state is indeed maintained up to the round-off 
error, we apply single precision and double precision respectively to carry out the computation. We compute this example 
up to t = 4 on meshes with both 100 and 200 uniform cells, and present the L1 errors of numerical solutions in Table 2. 
We can clearly observe that the numerical errors are all at the level of round-off error for different precisions, which verify 
the desired well-balanced property accordingly.
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Table 2
L1 errors for different precisions for the steady state solutions in Section 5.2.1.

N Precision ρ ρu E

100 Single 7.02E−08 3.74E−07 1.75E−07
Double 9.14E−15 4.98E−16 5.94E−16

200 Single 1.98E−07 6.69E−07 3.44E−07
Double 7.42E−15 6.21E−15 7.08E−16

Fig. 1. Small amplitude wave propagation in Section 5.2.2. Numerical results by well-balanced DG methods with 200 and 2000 cells, and those by non-
well-balanced (denoted by non-WB) DG methods with 200 cells at t = 1.5. Pressure perturbation (left) and velocity (right).

5.2.2. Small amplitude wave propagation
In this test, we impose a small perturbation to the equilibriums state, and compare the performance of well-balanced 

and non-well-balanced DG methods in capturing such small perturbation. A periodic velocity perturbation

u(x, t) = A sin(4πt),

with A = 10−6 is added to the system at the bottom of the atmosphere. We compute the solutions until t = 1.5, before 
the waves propagate to the upper boundary. The amplitude of the generated wave is modified by the density and pressure 
stratification as it moves through the domain.

In Fig. 1, we present the pressure perturbation and the velocity at t = 1.5 on a mesh with 200 cells against the reference 
solutions obtained with a much refined 2000 cells. Moreover, we run the same numerical test with non-well-balanced DG 
methods using a straightforward integration of the source term, and show their results in the same figure for the sake of 
comparison. Easy to observe that the results by the well-balanced DG methods are in good agreement with the reference 
solutions, while those by the non-well-balanced DG methods are not consistent with the reference solutions for x > 1.5. 
This observation indicates the importance of the well-balanced methods in capturing small amplitude perturbations to the 
equilibrium state.

5.2.3. Large amplitude wave propagation
At the end, we repeat the calculation with a large amplitude perturbation A = 0.1. We compute the solutions until 

t = 1.5, before the waves propagate to the upper boundary.
Both the numerical results by the well-balanced and non-well-balanced DG methods against the reference solutions 

are displayed in Fig. 2. The numerical results by both DG methods match well with the reference solutions for this large 
amplitude perturbation. This shows that, as expected, the well-balanced methods perform similarly as non-well-balanced 
methods when far away from the steady states. This large amplitude test shows that the hydrostatic reconstruction and 
non-trivial source term approximation introduced in this paper do not destroy the robustness of the DG methods for general 
solutions.

5.3. Contact discontinuity under gravitational field

In this example, we test an initial contact discontinuity wave under a linear gravitational field φ(x) = x as in [6]. The 
initial data are defined as follows:
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Fig. 2. Large amplitude wave propagation in Section 5.2.3. Numerical results by well-balanced DG methods with 200 and 2000 cells, and those by non-
well-balanced (denoted by non-WB) DG methods with 200 cells at t = 1.5. Pressure perturbation (left) and velocity (right).

(ρ, u, p) =
{

(1,0,1) if x < 0.5,

(10,0,1) otherwise,

on a computational domain [0, 1] with γ = 1.4. On both end points, we impose the solid wall boundary conditions. We 
present the numerical solutions at t = 0.6 on a mesh with 200 cells against the reference solutions obtained with 2000
cells in Fig. 3. In addition, we also show the numerical results by the non-well-balanced DG methods with a straightforward 
numerical discretization of the source term. We can easily observe a better performance of the well-balanced methods over 
the non-well-balanced ones.

5.4. Two-dimensional polytrope

As in [13,18], in this example, we consider a two-dimensional test case from the astrophysical problem. These model 
stars are constructed from the hydrostatic equilibrium:

dp

dr
= −ρ

dφ

dr
, (5.2)

with γ = 2. This model has the following steady state

ρ(r) = ρc
sin(αr)

αr
, u(r) = 0, v(r) = 0, p(r) = Kρ(r)2, (5.3)

coupled with a given gravitational potential

φ(r) = −2Kρc
sin(αr)

αr
, (5.4)

where α =
√

4π g
2K with K = g = ρc = 1 and r = √

x2 + y2 being the radial variable. We refer to [13] for the detailed deriva-
tion of the steady state.

The computational domain is set as [−0.5, 0.5] ×[−0.5, 0.5]. In order to test the capability of the well-balanced methods 
in capturing small perturbations of the hydrostatic equilibrium and preserving the axial symmetry, we initially impose a 
small Gaussian hump perturbations in pressure to the steady state (5.3) as follows:

p(r) = Kρ(r)2 + 0.001 exp(−100r2).

We evolved the solution up to t = 0.2 on a mesh with 100 × 100 uniform cells. The contour plots of the pressure per-
turbation and the velocity 

√
u2 + v2 are presented in Figs. 4 and 5. From these figures, we can clearly observe that the 

non-well-balanced DG methods are not capable of capturing such small perturbation on the relatively coarse mesh, while 
the well-balanced ones can resolve it very well. Also, the well-balanced DG methods preserve the axial symmetry, but the 
non-well-balanced ones can not keep this symmetry well.
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Fig. 3. Contact discontinuity under gravitational field in Section 5.3. Numerical results by well-balanced DG methods with 200 and 2000 cells, and those 
by non-well-balanced (denoted by non-WB) DG methods with 200 cells at t = 0.6. Top left: density; Top right: velocity; Bottom left: energy; Bottom right: 
pressure.

5.5. Polytropic hydrostatic solution

In the last test case, we consider a polytropic hydrostatic solution inspired by [6]

ρe(x, y) = (Te(x, y))
1

γ −1 , ue(x, y) = ve(x, y) = 0, pe(x, y) = (Te(x, y))
γ

γ −1 , (5.5)

on a unit domain [0, 1] × [0, 1] with Te(x, y) = 1 − γ −1
γ φ(x, y), γ = 1.4, as well as φ(x, y) = x + y.

5.5.1. Well-balanced property
We first test the well-balanced property of our proposed DG methods. Taking the equilibrium state (5.5) as the initial 

condition, we compute the solution up to t = 0.5 on meshes with 50 × 50 and 100 × 100 uniform cells. In order to demon-
strate that the steady state is indeed maintained up to round-off error even on the coarse meshes, we use single precision 
and double precision respectively to carry out the computation. The L1 errors of ρ , ρu, ρv and E are shown in Table 3, 
where the well-balanced property can be easily observed.

5.5.2. Perturbation to the polytropic hydrostatic solution
Subsequently, we impose a perturbation to the initial pressure state:
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Fig. 4. Two-dimensional polytrope in Section 5.4. Contours of numerical results by well-balanced DG methods with 100 × 100 cells at t = 0.2. Left: pressure 
perturbation; Right: velocity 

(√
u2 + v2

)
.

Fig. 5. Two-dimensional polytrope in Section 5.4. Contours of numerical results by non-well-balanced DG methods with 100 × 100 cells at t = 0.2. Left: 
pressure perturbation; Right: velocity 

(√
u2 + v2

)
.

Table 3
L1 errors for different precisions for the steady state solutions (5.5) in Section 5.5.1.

N Precision ρ ρu ρv E

50 × 50 Single 7.95E−7 5.42E−7 4.32E−7 2.04E−7
Double 6.20E−14 8.07E−14 8.07E−14 9.81E−14

100 × 100 Single 1.41E−6 9.42E−6 8.01E−7 3.61E−6
Double 8.79E−14 1.10E−13 1.10E−13 5.15E−13

ρ(x, y,0) = ρe(x, y)

u(x, y,0) = 0,

v(x, y,0) = 0,

p(x, y,0) = pe(x, y) + η exp
(−100ρ0 g((x − 0.3)2 + (y − 0.3)2)/p0

)
,

with g = 1, ρ0 = 1.21 and p0 = 1. We show the numerical results with perturbation size η = 0.1 at t = 0.15 by both well-
balanced and non-well-balanced DG methods in Figs. 6 and 7. It is evident that the numerical results by the well-balanced 
DG methods are with more resolution when compared with those by the non-well-balanced DG methods. Moreover, we 
reduce the size of the perturbation to η = 0.001 and repeat the simulation. The numerical results at t = 0.15 are shown in 
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Fig. 6. Perturbation to the polytropic hydrostatic solution with η = 0.1 in Section 5.5.2. Contours of numerical results by well-balanced DG methods with 
100 ×100 cells at t = 0.15. Left: twenty equally spaced contours between −0.03 and +0.03 of pressure perturbation. Right: twenty equally spaced contours 
between 0.01 and 0.12 of velocity 

(√
u2 + v2

)
.

Fig. 7. Perturbation to the polytropic hydrostatic solution with η = 0.1 in Section 5.5.2. Contours of numerical results by non-well-balanced DG methods 
with 100 × 100 cells at t = 0.15. Left: twenty equally spaced contours between −0.03 and +0.03 of pressure perturbation. Right: twenty equally spaced 
contours between 0.01 and 0.12 of velocity 

(√
u2 + v2

)
.

Figs. 8 and 9. Again, the well-balanced DG methods continue to produce numerical results with good resolution, while the 
non-well-balanced DG methods fail to capture the small perturbation thoroughly.

6. Concluding remarks

In this paper, we have constructed well-balanced DG methods for the polytropic and isothermal equilibrium state solu-
tions of the Euler equations with gravitation. The idea of hydrostatic reconstruction is used to construct the well-balanced 
numerical flux. By combining it with a novel source term approximation, one can achieve the well-balanced property. Exten-
sive one- and two-dimensional numerical examples are carried out to demonstrate the high order accuracy, well-balanced 
property, ability to capture small perturbation of the equilibrium state on relatively coarse meshes, and good resolution of 
the proposed numerical methods for both continuous and discontinuous solutions.
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Fig. 8. Perturbation to the polytropic hydrostatic solution with η = 0.001 in Section 5.5.2. Contours of numerical results by well-balanced DG methods with 
100 × 100 cells at t = 0.15. Left: twenty equally spaced contours between −0.00025 and +0.00025 of pressure perturbation. Right: twenty equally spaced 
contours between 0.0001 and 0.0014 of velocity 

(√
u2 + v2

)
.

Fig. 9. Perturbation to the polytropic hydrostatic solution with η = 0.001 in Section 5.5.2. Contours of numerical results by non-well-balanced DG methods 
with 100 × 100 cells at t = 0.15. Left: twenty equally spaced contours between 0.006 and 0.025 of pressure perturbation. Right: twenty equally spaced 
contours between 0.0001 and 0.0014 of velocity 

(√
u2 + v2

)
.
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