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a b s t r a c t 

The positivity-preserving well-balanced discontinuous Galerkin (DG) method (Xing et al. J Sci Comput 57 , 

2013) is employed to solve the shallow water equations on an unstructured triangular mesh and to study 

their applications in computational hydrology. The grid convergence of the DG method is verified via the 

steady state oblique hydraulic jump problem. The dam-breaking problems with wet and dry river beds 

are conducted to demonstrate the positivity-preserving property of the scheme. The tidal bores in an 

idealized estuary problem are simulated to study the development and evolution of the tidal bores from 

different am plitudes of incoming tidal waves and topography of the river bed bottom. The numerical ex- 

periments above demonstrate that the DG method can be applied successfully to these class of problems 

in computational hydrology. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the field of hydrology, there is a class of special flows in

which the water level and velocity change rapidly and abruptly.

In these flows, strong gradients or discontinuities often appear

in the flows, for example, a sharp water level drop due to the

discontinuities in the initial condition resulting from a breaking of

a dam, and a development of sharp tidal bores due to the strong

nonlinearity interaction between an outgoing river water and an

incoming ocean tidal waves at the estuary. The tidal bores are a

tidal phenomenon along a coast where a river empties into a sea

in which the leading edge of the incoming high tide forms a wave

(or waves) of water that travels up the river against the direction

of the river current (also known as positive surge). However, there

are only a few places, under some specific geological conditions,

where the tidal bores can occur—not all coast features tidal bores.

The river must be fairly shallow and has a narrow outlet to the

sea. The estuary, the area where the river meets the sea, must

be wide and flat. The coast’s tidal wave length, the distance

between high and low tides must be quite large (typically at least

6 m ). When all of these conditions are satisfied, a tidal bore is
∗ Corresponding author. Tel.: +8613165072087. 
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ormed. A few notable tidal bore systems in the world are the

ororoca Tidal Bore with Amazon river, Brazil, Bono Tidal Bore

ith Kampar River, Indonesia, Severn Tidal Bore with Severn River,

nited Kingdom, Silver Dragon Tidal Bore with Qiantang River,

hina and Turnagain Arm Tidal Bore with Cook Inlet, Alaska. An

xception of the conditions above is the Amazon River where

he mouth of the river is not narrow but shallow and dotted by

any low-lying islands and sand bars. We refer the reader to

he national geographic website 1 for more descriptions about the

evelopment and evolution of the tidal bores in the nature. 

The research of the tidal bores has two basic goals. Academical-

ise, the study of strong intermittent flow such as the tidal bores

as been an important and challenging subject in hydrology.

esearch on the numerical simulations of tidal bores, not only

an reveal the water dynamics of nonlinear wave laws, but also

as an academic significance and a theoretical value in hydro-

ynamics and computational fluid dynamics. Engineering-wise,

he study of the formation and evolution of the tidal bores, the

n-depth understanding of its effect on estuarine environment

nd the effect of human activities on the tidal bores, can enhance

he human survival and the economic and social development

elated to water environmental problems, preventing the potential

armful effects from the tidal bores while keeping this unique and
aluable natural resource. 

1 http://education.nationalgeographic.com/encyclopedia/tidal-bore/ 
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The shallow water equations serve as a very important model

n the simulations of flows in the rivers, lakes and coastal areas, in-

luding the tidal bores. Although the shallow water equations have

een studied extensively in the past two decades, they remain an

ctive area of research in both theoretical studies and numerical

imulations due to their practical importance. The traditional

umerical methods for solving the shallow water equations are

he method of characteristics (MOC), finite element method (FEM)

nd finite different Method (FDM). These methods have been suc-

essful in the simulations of many continuous flows, but are not

atisfactory in solving discontinuous flows like the tidal bores. On

ne hand, one difficulty encountered in the simulation of shallow

ater equations is how to exactly balance the flux gradients by

he source terms in the steady-state solution. The well-balanced

chemes [1–6] are specially designed to preserve exactly the

teady-state solution up to the machine error with relatively

oarse meshes. Moreover, dry areas (where the water height is

xactly equal to zero) might appear in the natural environments

uch as the dam-breaking problem over a dry river bed. Due to

he Gibbs phenomenon when using a high order scheme without

mploying some forms of limiting on the solution and/or flux

limiter), a non-physical negative water height will be generated

umerically in the simulations. It causes problem in calculating the

igenvalues that involve a square root of the water height. There-

ore, many positivity-preserving schemes [7–11] were designed to

reserve the positivity of certain physical quantities, such as the

ass fraction in a reactive Euler equations and the water height

n the shallow water equations with a dry area. A few of existing

umerical methods [12–18] are able to maintain both the well-

alance and positivity of the numerical schemes simultaneously. 

Discontinuous Galerkin (DG) method is a class of finite element

ethods using discontinuous piecewise polynomial space as the

olution and test function spaces (see [19] for a historic review

nd basic idea). It has been used extensively in solving the shallow

ater equations [20–26] . Recently, the positivity-preserving well-

alanced DG method for the shallow water equations [16] was

roposed to maintain the still water steady state solution exactly,

nd to preserve the non-negativity of the water height without a

oss of mass conservation. In [17] , a simple positivity-preserving

imiter was extended to the DG method on the unstructured

riangular meshes to guarantee the positivity of the water height. 

In this study, we investigate the application of the positivity-

reserving well-balanced DG method designed in [17] to the

omputational hydrology on the unstructured grids. We employ

his method for simulating several challenging practical engineer-

ng problems such as the dam-breaking problems with wet and

ry river beds and the development and evolution of the tidal

ores in an idealized estuary. The grid convergence of the DG

ethod is verified in the case of steady state oblique hydraulic

ump. The positivity-preserving limiter is used in the DG method

o avoid the non-physical negative water height in the simulations

f dam-breaking problems with a dry river bed. The evolution of

he flooding of the wet and dry river beds shows different flow

tructures that are unique in each individual case. A tidal bore

s simulated to study the formation and evolution of the tidal

ores with a trumpet-like shape river mouth emptying into an

cean while subjected to a large incoming tidal wave, similar to

he one at the Qiantang River, China. We study factors like the

idal amplitude and river topography, which are related to the

ropagation and breaking of the undular tidal bores while moving

p to the river against the current. 

The paper is organized as follows. In Section 2 , a very brief

ntroduction to the positivity-preserving well-balanced DG method

or the shallow water equations will be given. In Section 3 , a

lassical two-dimensional steady state example is presented to

alidate the accuracy and convergence of the DG method. The
ositivity-preserving well-balanced DG method is then applied to

he dam-breaking problems with both wet and dry river beds.

lso, an idealized estuary problem that simulates the formation

nd evolution of the tidal bores in a long straight river is shown.

inally, conclusion and future work are given in Section 4 . 

. Positivity-preserving well-balanced DG method 

The two-dimensional shallow water equations take the form 

 

 

 

 

 

 

 

h t + (hu ) x + (h v ) y = 0 

(hu ) t + 

(
hu 

2 + 

1 

2 

gh 

2 
)

x 
+ ( hu v ) y = −ghb x 

(h v ) t + ( hu v ) x + 

(
h v 2 + 

1 

2 

gh 

2 
)

y 
= −ghb y , 

(1) 

here h is the water height, ( u, v ) T is the velocity vector, b ( x, y )

s the bottom topography and g is the gravitational constant. In a

ompact form, (1) can be written as 

 t + ∇ · F (Q ) = S (h, b) , 

here Q = (h, hu, h v ) T with the superscript T denoting the trans-

ose, F (Q ) = ( f (Q ) , g(Q )) is the flux vector and S ( h, b ) is the

ource term. 

Let T τ be a family of triangular partitions of the computational

omain � parameterized by τ > 0. For any triangle K ∈ T τ , we de-

ne τ K := diam( K ) and τ := max 
K∈T τ

τK . For each edge e i 
K 

(i = 1 , 2 , 3)

f K , we denote its length by l i 
K 
, and outward unit normal vector

y n 

i 
K 

. Let K ( i ) be the neighboring triangle along the edge e i 
K 

and

 K | be the area of the triangle K . In a high order DG method,

e seek an approximation, still denoted by Q with an abuse of

otation, which belongs to the finite dimensional space: 

 τ = { w ∈ L 2 (�) ; w | K ∈ P k (K) ∀ K ∈ T τ } , (2)

here P k ( K ) denotes the space of polynomials of degree at most k

n K . 

Let x denotes ( x, y ), the standard DG scheme is given by 

 ∫ 
K 

Q t w d x −
∫ ∫ 

K 

F (Q ) · ∇w d x + 

3 ∑ 

i =1 

∫ 
e i 

K ̂

 F | e i 
K 

· n 

i 
K w d s = 

∫ ∫ 
K 

S w d x , (3)

here w ( x ) is a test function, and the numerical flux ̂  F is defined

y 

 

 | e i 
K 

· n 

i 
K = F(Q 

int(K) 
i 

, Q 

ext(K) 
i 

, n 

i 
K ) , (4)

here Q 

int(K) 
i 

and Q 

ext(K) 
i 

are the approximations to the values on

he edge e i K obtained from the interior and the exterior of K . We

ould, for example, use the simple global Lax–Friedrichs flux 

(a 1 , a 2 , n ) = 

1 

2 
[ F (a 1 ) · n + F (a 2 ) · n − α(a 2 − a 1 ) ] , 

here α = max 

(
(| u | + 

√ 

gh , | v | + 

√ 

gh ) · n 

)
and the maximum is

aken over the whole region. Notice that h ≥ 0 should be a non-

egative value at all time. 

In order to achieve the well-balanced property, we are inter-

sted in preserving the still water stationary solution, namely, 

 + b = const, u = v = 0 , (5)

xactly. Well-balanced numerical methods are designed in [16,17] ,

nd take the form 

 ∫ 
K 

Q t w d x −
∫ ∫ 

K 

F (Q ) · ∇w d x + 

3 ∑ 

i =1 

∫ 
e i 

K ̂

 F ∗| e i 
K 

· n 

i 
K w d s = 

∫ ∫ 
K 

S w d x , 

(6) 

here the well-balanced numerical fluxes ̂  F ∗ are given by 

 

 

∗| e i 
K 

· n 

i 
K = F(Q 

∗,int(K) 
i 

, Q 

∗,ext(K) 
i 

, n 

i 
K ) + 〈 δ∗

i,x , δ
∗
i,y 〉 · n 

i 
K , (7) 
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Table 1 

The numerical solutions and the exact solution for the 

steady state oblique hydraulic jump problem. 

τ K ( m ) N α ( °) h ( m ) u ( m / s ) 

1 .0 2683 30 .8 1 .495 7 .895 

0 .5 10586 30 .4 1 .498 7 .954 

0 .25 42104 30 .1 1 .499 7 .957 

Exact solution 30 .0 1 .500 7 .956 
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2 http://www-dinma.univ.trieste.it/nirftc/research/easymesh/ 
with the hydrostatic reconstruction 

h ∗,int(K) 
i 

= max 
(
0 , h int(K) 

i 
+ b int(K) 

i 
− max 

(
b int(K) 

i 
, b ext(K) 

i 

))
, 

h ∗,ext(K) 
i 

= max 
(
0 , h ext(K) 

i 
+ b ext(K) 

i 
− max 

(
b int(K) 

i 
, b ext(K) 

i 

))
, (8)

and 

Q 

∗,int(K) 
i 

= 

h ∗,int(K) 
i 

h int(K) 
i 

Q 

int(K) 
i 

, δ∗
i,x = 

(
0 , 

g 

2 
(h int(K) 

i 
) 2 − g 

2 
(h ∗,int(K) 

i 
) 2 , 0 

)T 

, 

Q 

∗,ext(K) 
i 

= 

h ∗,ext(K) 
i 

h ext(K) 
i 

Q 

ext(K) 
i 

, δ∗
i,y = 

(
0 , 0 , 

g 

2 
(h int(K) 

i 
) 2 − g 

2 
(h ∗,int(K) 

i 
) 2 

)T 

, 

(9)

on the edge e i K . More details of the well-balanced properties can

be found in [17,27] . 

In order to obtain positivity-preserving property, we first

introduce a special quadrature rule with the set of quadrature

points denoted by S K and weights w x , satisfying: it is exact for

integration of h K ( x ) on K ; it include all L -point Gauss quadrature

points for each edge e i 
K 

; and all the quadrature weights should

be positive (see [17] for how to construct the quadrature rule

and why these properties are useful). We would like to comment

that this special quadrature rule is used only for the purpose of

introducing the positivity-preserving limiters, and we can use any

quadrature rule in computing the integral in (6) . We then have

the following results for the high order DG methods [17] : 

Proposition 1. For the scheme (6) with a forward Euler time dis-

cretization to be positivity-preserving, i.e., h 
n +1 

K ≥ 0 , a sufficient con-

dition is that h K ( x ) ≥ 0, ∀ x ∈ S K for all K, under the CFL condition:

α
�t 

| K| 
3 ∑ 

i =1 

l i K ≤
2 

3 ̂

 w 1 . (10)

Here h K ( x ) denotes the polynomial for the water height at time level

n and the cell K , ̂ w 1 = 1 / 6 (k = 2 , 3) or ̂ w 1 = 1 / 12 (k = 4 , 5) is the

quadrature weight of the M-point Gauss–Lobatto quadrature rule on

[ −1 / 2 , 1 / 2] for the first quadrature point. 

At time level n , given the water height DG polynomial h K ( x )

with its cell average h 
n 

K ≥ 0 , to enforce the sufficient condition

h K ( x ) ≥ 0, ∀ x ∈ S K , the limiter in [16,17,28] can be used directly.

The idea is to replace h K ( x ) by a linear scaling around the cell

average: 

 h K (x ) = θK (h K (x ) − h 

n 

K ) + h 

n 

K , (11)

where θK ∈ [0, 1] is determined by 

θK = min 

x ∈ S K 
θx , θx = min 

{
1 , 

h 

n 

K 

h 

n 

K − h K (x ) 

}
. (12)

An alternative limiter is to enforce a relaxed condition, by replac-

ing (12) with 

θK = min 

{
θx ∗ , min 

x ∈ ̃  S K 

θx 

}
, θx = min 

{
1 , 

h 

n 

K 

h 

n 

K − h K (x ) 

}
, (13)

to save time in evaluating θK . Here, we let S K and 

˜ S K be the set

of points which lie in the interior and on the edges of triangle K,

respectively. Since 
∑ 

x ∈ S K h K (x ) w x / 
∑ 

x ∈ S K w x is a convex combina-

tion of point values of h K ( x ), thus by the Mean Value Theorem,

there exists some point x ∗ ∈ K such that 

h K (x 

∗) = 

1 ∑ 

x ∈ S K 
w x 

∑ 

x ∈ S K 

h K (x ) w x , 

which provides θx ∗ in (13) . Both limiters, (11) and (13) , are conser-

vative (the cell average of ̃  h K is still h 
n 

K ) and high order accurate. 
When applied to problems containing discontinuous solution,

G methods may generate oscillation and even nonlinear instabil-

ty. TVB limiters [29] are often applied to control these oscillations.

or time discretization, the third order TVD Runge–Kutta scheme is

sed. The CFL = 1/3 and k = 2 are used in the following numerical

xamples. In the numerical experiments in the next section, the

nstructured triangular meshes are generated by Easymesh 

2 . 

. Numerical experiments 

In this section, we perform the positivity-preserving well-

alanced DG method to simulate several challenging problems

uch as the oblique hydraulic jump problem, the dam-breaking

roblems with wet and dry river beds and the tidal bores in an

dealized estuary. The grid convergence of the DG method is con-

ucted in the case of steady state oblique hydraulic jump. For the

am-breaking problem, we investigate the effectiveness of a simple

ositivity-preserving limiter which is used in the DG method to

void the non-physical negative water height when the river bed is

ry. Finally, we simulate the tidal bores with a trumpet-like shape

iver mouth similar to the one at the Qiantang River, China and

tudy the effects of the tidal range and river topography, which are

elated to the propagation and breaking of the undular tidal bores.

.1. Oblique hydraulic jump 

In this simple example with an exact solution, an oblique hy-

raulic jump is introduced by means of an interaction between a

upercritical flow and a converging wall deflected to the left by an

ngle θ . In the left figure of Fig. 1 , a 40 m long river with upstream

idth 30 m which is deflected at the location (x, y ) = (10 m, 0 m ) by

n angle θ = 8 . 95 ◦ is shown. The initial conditions are h = 1 m, u =
 . 57 m/s and v = 0 m/s . A free-stream inflow and outflow boundary

ondition is set for the left and right boundaries respectively. A re-

ective boundary condition is imposed along the y -direction. It is

 classical discontinuous flow problem and often used to validate

he accuracy of a numerical algorithm. According to the results in

30,31] , the exact steady state solutions are h = 1 . 5 m, u = 7 . 956 m/s

nd the angle of the hydraulic jump is α = 30 ◦. 

Assuming the mesh size to be τK = 0 . 5 m, we generate the

nstructured triangular meshes with the total number of elements

 = 10 , 586 . A small section of the meshes is shown in the middle

gure of Fig. 1 . The contour of the water surface level h + b at

ime t = 6 s is shown in the right figure of Fig. 1 . The solution

eaches the steady state solution and agrees well with those given

n the literature [30,31] . Table 1 shows the grid convergence of the

umerical solutions which also agree well with the exact solution

32] . The error decays with the decreasing mesh sizes τ K . 

.2. Dam-breaking problem 

Next, we investigate the performance of the positivity-

reserving well-balanced DG method in simulating the two-

imensional dam-breaking problems with wet and dry river beds.

http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
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Fig. 1. (Left) The sketch of the computational domain, (Middle) a small section of the meshes and (Right) the water surface level h + b at time t = 6 s . 

Fig. 2. The dam-breaking problem with a wet river bed. (Left) The contour of the water surface level h + b and its velocity field and (right) the surface of the water surface 

level h + b at time t = 7 . 2 . 
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he computational domain is [0, 200] 2 . The width of the dam is

et to be 5 and the breach is located from x = 97 to x = 102 and

etween y = 95 and y = 170 . A mesh size of τK = 5 and N = 3742

nstructured triangular elements are generated. The boundary

onditions are reflective at the top and bottom boundaries. The in-

ow and outflow boundary conditions are imposed in the left and

ight boundaries respectively. The initial conditions are given as 

 (x, y, 0) = 

{
10 , if x ≤ 100 

h 0 , otherwise 
, u (x, y, 0) = v (x, y, 0) = 0 , 

(14) 

here h 0 is the water height in the river bed. 

• For the wet river bed with h 0 = 5 , the water surface level and

its velocity field are shown in Fig. 2 at time t = 7 . 2 . The sharp

water front formed by the breaking of the dam is captured es-

sentially oscillations free. The shear vortical structures gener-

ated at the edges of the breach are similar to those shown in

[33] and are well captured by the DG method. 
• For the dry river bed with h 0 = 0 , the water surface level and

its velocity field are shown in Fig. 3 at time t = 7 . 2 . The results

are drastically different from those given in the case with a wet

river bed above. For example, there is no vortical rollup struc-

ture around the edge of the breach of the dam. The positivity-

preserving limiter in the DG method prevents the non-physical

negative water height, that is, h ( x, y, t ) ≥ 0 at all time. We
observe that the wave front is more gradual, and the two-

dimensional flow features in the dry case are less than those

in the wet case, which are also consistent with the published

results in [34,35] . 

In this study, we also run the simulations until the final

ime t = 50 in order to examine the long time behaviors of the

ositivity-preserving well-balanced DG method. In these cases, the

omputational domain is enlarged to [0, 600] × [0, 200]. Fig. 4

hows the contour lines of the water surface level h + b with both

et and dry river beds at times t = 10 , 20 , 50 . 

• For the wet river bed (see the left figure of Fig. 4 ), a strong

hydraulic jump (a strong gradient of the water surface in front

of flood) is formed at the early time t = 10 . At time t = 20 , the

hydraulic jump spreads and surges forward, and near the top

of breach two vortical rollups due to the shear of the flows are

formed. At time t = 50 , the hydraulic jump maintains its form

and moves downstream away from the dam while the vortical

rollups are dissipated gradually. 
• For the dry river bed (see the right figure of Fig. 4 ), the flood

water rushes out from the breach, but there is no hydraulic

jump as that in the wet river bed case. The flood water simply

collides with the top wall and a strong reflected wave is formed

at time t = 20 . A similar reflective phenomenon happens on the

bottom wall at the later time t = 50 . During the propagation of

the water in the dry river bed, no hydraulic jump in the water
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Fig. 3. The dam-breaking problem with a dry river bed. (Left) The contour of the water surface level h + b and its velocity field and (right) the surface of the water surface 

level h + b at time t = 7 . 2 . 

Fig. 4. The contour lines of the water surface level h + b with (left) wet and (right) dry river beds at times t = 10 , 20 , 50 . 
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surface is formed in front of flood because there is no water

preventing the flooding of the dry area. 

3.3. Tidal bores in an idealized estuary 

Along the Qiantang River in Hangzhou, China, with its trumpet

shaped mouth, there is the site of the world’s largest tidal bores.

The tidal bores with waves as tall as 9 m move as fast as 40 km / h

up into the river from the coast. The tide behind the wave makes

the river’s water rise for hours after the tidal bores pass. The tidal

wave sweeps past Hangzhou, menacing ship and destroying docks

in the harbor and sweeping unsuspected people off the river

bank into the water and drown. In Fig. 5 , the temporal evolution

of the tidal bores obtained from a measurement of the water

height during the period of October 9th–17th, 2010 at a measuring
tation Yanguan along the Qiantang River [36] is shown. The sharp

teepening of the waves can be observed in the tidal bores. 

In this prelimary study, we consider an idealized estuary model

imilar to the Qiantang River in order to simulate the development

nd evolution of the large scale gross structures of the tidal bores

see Remark 2 ). Fig. 6 shows the sketch of an idealized estuary

odel. For the examples presented below, we take the length of

he river to be 900 km ( x ∈ [ −900 km, 0 km ] ) in order to avoid spuri-

us waves reflected from the left artificial boundary of a truncated

hysical domain in a long time simulation. The downstream length

f the idealized estuary area is set to be x ∈ [0 km , 100 km ] in a

hape of a trumpet. The angle between the coastline and the river

ank line is set to be θ = 30 ◦. The width of the river is set to

e y ∈ [ −2 km, 2 km ] . The inflow flow rate (flux) of the river at

 = −900 km is set to be 2000 m 

3 / s . The river and ocean water

urface heights are h = 10 m at the initial time t = 0 in the whole
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Fig. 5. The temporal evolution of the water height of the tidal bores taken from October 9th–17th, 2010 at a measuring station Yanguan along the Qiantang River, China. 

Fig. 6. The sketch of an idealized estuary model. 

Fig. 7. The illustration of the tidal range and the height of a tidal bore. 
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Table 2 

The tidal range and height of the tidal bores at different locations with the 

amplitudes a = 2 m and a = 1 m in a flat bottom idealized estuary system ( b = 

0 ). 

Location ( km ) 60 10 –40 –140 –200 –300 

a = 2 m Tidal range ( m ) 7 .4 8 .4 7 .4 6 .6 6 .4 5 .9 

Tidal height ( m ) – – 6 .2 5 .9 6 .4 5 .9 

a = 1 m Tidal range ( m ) 3 .5 4 .1 3 .9 3 .8 3 .8 3 .5 

Tidal height ( m ) – – – 2 .3 3 .2 3 .1 
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stuary system. To simulate the left-going ocean tidal waves in the

dealized estuary model, a time dependent sinusoidal perturbation

f the water height at the right boundary ( x = 100 km ) is imposed

s h (100 km, t) = a cos 2 πωt, where a and ω = 1 / 21600 s −1 (or

 / 12 h −1 ) are the incoming tidal wave amplitude and frequency

espectively. In the examples below, a mesh size of τK = 1 km and

 = 23 , 936 unstructured triangular elements are generated. For

he sake of clarity, we define the height of a tidal bore and the

idal range as illustrated in Fig. 7 . 

We begin by investigating the effect of the incoming tidal wave

mplitudes a = 2 m and a = 1 m on the formation of the tidal bores

nder the idealized estuary system with a flat bottom, that is, b =
 . 

The left and right figures of Fig. 8 shows the water surface level

 + b at six locations x = 60 km, 10 km , −40 km, −140 km, −200 km,

300 km (the positive and negative signs mean that the measure-

ent is taken in the ocean and river side of the idealized estuary

ystem respectively) with the amplitudes a = 2 m and a = 1 m re-

pectively. In the figures, the distances between two dashed lines

re 10 m and 5 m for the amplitudes a = 2 m and a = 1 m respec-

ively. 
As the tidal waves move upstream from the right boundary and

efore entering the river in the trumpet shape region, one can

bserve 1) the deformation of the shape of the sinusoidal waves,

) the rising of the water surface level h + b, and 3) a shorter

avelength between two tidal waves. More specifically, the wave-

engths have changed from 5.5 h to 4.1 h at the locations x = 60 km

nd x = 10 km respectively. It is because the ocean water is fun-

eled into the smaller volume as they move upstream toward the

arrowed mouth of the river. The shape was deformed due to the

trong nonlinearity of the shallow water equations with large am-

litudes. In the case of the smaller amplitude a = 1 m, the original

inusoidal shape of the ocean tidal wave is maintained quite well

ven at the entrance of the narrowed mouth of the river. In either

ase, the tidal bores have not been fully developed yet. 

As the tidal waves continuing to surge up into the river, the

trong nonlinearity of the shallow water equations begins to de-

orm the shape of the smooth undular tidal bores further, and to

evelop a steep gradient in the front of and level off in the back

f a tidal bore, for example, at about x = −40 km with a = 2 m and

 = −140 km with a = 1 m . For the large amplitude a = 2 m, the tidal

ores heighten and steepen up quickly and reach the maximum

ocal tidal range about 7.4 m as the tidal bores move upstream

gainst the water current. For the small amplitude a = 1 m, the

eaker nonlinearity of the equations allows the smooth undular

idal bores to move further upstream before steepening at around

 = −200 km and x = −300 km . In Table 2 , we show the tidal range

nd tidal height of the tidal bores in the flat bottom idealized es-

uary system b = 0 with the amplitudes a = 2 m and a = 1 m . 
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Fig. 8. The evolution of the water surface level h + b of the tidal bores in a flat bottom idealized estuary system (b = 0) at different locations with the amplitudes (Left) 

a = 2 m and (Right) a = 1 m . 

Fig. 9. The evolution of the water surface level h + b of the tidal bores in a non-flat bottom idealized estuary system ( b � = 0) at different locations with the amplitudes (left) 

a = 2 m and (right) a = 1 m . 
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To demonstrate that the well-balanced DG method performs

well with a non-flat bottom b � = 0 in the tidal bore simulations,

we also consider the formation and evolution of the tidal bores

with a sloped terrain along the mouth of the river, given by 

b(x, y ) = 

{ 

0 , if 0 < x ≤ 100 

k (x − c) + d, if c < x ≤ 0 

d, otherwise 
, (15)

where c = −300 , d = 5 , k = 

5 
3 × 10 −3 . The evolution of the water

surface level h + b of the tidal bores in a non-flat bottom ideal-

ized estuary system ( b � = 0) at different locations with the ampli-

tudes a = 2 m and a = 1 m are shown in Fig. 9 . The undular tidal

bores are pushed upward sharply and deformed as they move up-

stream along the river in response to the sloped terrain. The hy-

draulic jump in the tidal bores appears quicker and closer to the

mouth of the river. Moreover, due to the smaller water height h

in the river, the hydraulic jumps become smaller as they move up-

stream in the river at the later time as compared with the flat bot-

tom river above (see Fig. 8 ). 

Remark 2. After the development of the steep tidal bores, strictly

speaking, the shallow water equations are no longer a valid formu-

lation in modeling the breaking of the tidal bores and turbulence

mixing of the air and water at the tips of the steep front. However,
he equations can still provide some gross observations of the evo-

ution of the tidal bores at the later time. 

. Conclusion and future work 

In this work, the positivity-preserving well-balanced DG

ethod on the unstructured triangular meshes was employed to

imulate several applications in the computational hydrology, in-

luding the oblique hydraulic jump problem, the dam-breaking

roblem involving wet and dry river beds, and the tidal bores in an

dealized estuary model. We verified the accuracy of the proposed

G method using the exact steady state solution of the oblique

ydraulic jump, and show that the positivity-preserving limiter

orked well in the simulations of dam-breaking problem with a

ry river bed. Different flow structures have been observed in the

volution of the flooding in the dam-breaking problem with the

et and dry river beds. At the end, the proposed method is used

o simulate the tidal bores in an idealized estuary model, to study

he formation and evolution of the tidal bores with a trumpet-like

hape river mouth emptying into an ocean while subjected to the

arge tidal wave inflow, similar to the one at the Qiantang River,

hina. Numerical examples show that the tidal range and topogra-

hy of the river bed play an important role in the formation and

volution of the tidal bores. 
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Other important factors, such as the friction along the river bot-

om, river topology, sand dune, full moon, shape and size of the

stuary and men-made structures (dam, bridges etc.), can greatly

ffect the formation and evolution of the tidal bores. They will be

eported in our on-going research work in the future. 
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