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In this paper, we generalize the high order well-balanced finite difference weighted
essentially non-oscillatory (WENO) scheme, designed earlier by us in Xing and
Shu (2005, J. Comput. phys. 208, 206–227) for the shallow water equations, to
solve a wider class of hyperbolic systems with separable source terms including
the elastic wave equation, the hyperbolic model for a chemosensitive movement,
the nozzle flow and a two phase flow model. Properties of the scheme for the shal-
low water equations (Xing and Shu 2005, J. Comput. phys. 208, 206–227), such
as the exact preservation of the balance laws for certain steady state solutions,
the non-oscillatory property for general solutions with discontinuities, and the
genuine high order accuracy in smooth regions, are maintained for the scheme
when applied to this general class of hyperbolic systems.

KEY WORDS: Hyperbolic balance laws; WENO scheme; high-order accuracy;
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1. INTRODUCTION

In this paper, we generalize the high order well-balanced finite difference
weighted essentially non-oscillatory (WENO) scheme, designed earlier by
us in [19] for the shallow water equations, to solve a wider class of hyper-
bolic systems with separable source terms including the elastic wave equa-
tion, the hyperbolic model for a chemosensitive movement, the nozzle flow
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and a two phase flow model. Properties of the scheme for the shallow
water equations [19], such as the exact preservation of the balance laws for
certain steady state solutions, the non-oscillatory property for general solu-
tions with discontinuities, and the genuine high-order accuracy in smooth
regions, are maintained for the scheme when applied to this general class
of hyperbolic systems.

We describe the procedure only for the one dimensional case in this
paper. Generalizations to multi-dimensions can be done for some cases,
following the same procedure as in [19]. The one-dimensional hyperbolic
system of conservation laws with source terms (also called balance laws)
under consideration is:

ut +f (u, x)x =g(u, x), (1.1)

where u is the solution vector, f (u, x) is the flux and g(u, x) is the source
term. This balance law admits steady state solutions in which the source
term is exactly balanced by the flux gradient. The objective of well bal-
anced schemes is to preserve exactly some of these steady state solutions.

A typical example considered extensively in the literature for balance
laws is the shallow water equation with a non-flat bottom topology (see
Sec. 3.1). Bermudez and Vazquez [4] first introduced the concept of the
“exact C-property”, which means that the scheme is exact when applied
to the still water stationary solution. Many well balanced schemes satisfy-
ing the exact C-property have been developed in the literature, mostly for
first and second order accuracy (e.g. [4, 10, 11–14, 17, 20]).

In a recent paper [19], we have developed a well balanced high order
finite difference WENO scheme for solving the shallow water equation,
which is non-oscillatory, well balanced (satisfying the exact C-property) for
still water, and genuinely high order in smooth regions. Extensive one and
two-dimensional numerical experiments are provided in [19] to demon-
strate the good behavior of this scheme. The main idea in [19] is a special
decomposition of the source term, allowing a discretization to the source
term to be both high order accurate for general solutions and exactly well
balanced with the flux gradient for still water. In this paper, we extend
this idea of decomposition of source terms to a general class of balance
laws with separable source terms, allowing the design of well balanced
high order finite difference WENO scheme for all balance laws falling into
this category. This class is quite general, including the elastic wave equa-
tion, the hyperbolic model for a chemosensitive movement, the nozzle flow
and a two phase flow model. In Sec. 2, we describe the class of bal-
ance laws under consideration and develop well balanced finite difference
WENO schemes for such balance laws. In Sec. 3, we give several exam-
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ples in applications which fall into the category of balance laws discussed
in Sec. 2, and show selective numerical results to demonstrate the behavior
of our schemes. Concluding remarks are given in Sec. 4.

2. A GENERAL CLASS OF BALANCE LAWS

The main idea in [19] to design a high order finite difference WENO
scheme for the shallow water equation is to decompose its source term
into a sum of two terms, each of which is discretized independently using
a finite difference formula consistent with that of approximating the flux
derivative terms in the conservation law. In this section, we generalize this
idea to a class of general balance laws (1.1) We first consider the case that
(1.1) is a scalar balance law. The case of systems will be explored later. We
are interested in preserving exactly certain steady state solutions u of (1.1):

f (u, x)x =g(u, x). (2.1)

We make two assumptions on Eq. (1.1) and the steady state solution u of
(2.1) that we are interested to preserve exactly:

Assumption 2.1. The steady state solution u of (2.1) that we are
interested to preserve satisfies

a(u, x)= constant (2.2)

for a known function a(u, x).

Assumption 2.2. The source term g(u, x) in (1.1) can be decomposed
as

g(u, x)=
∑

i

si(a(u, x)) t ′i (x) (2.3)

for some functions si and ti .

Before proceeding further, let us comment on Assumption 2.1. We
consider a special case of (1.1):

ut +f (u)x =g(u) z′(x), (2.4)

i.e., when the flux f does not depend explicitly on x and the source term
g(u, x) in (1.1) is separable as a product of a function in u and a func-
tion in x. Notice that the case g(u, x)=g(u) falls into this category with
z(x)=x. The steady state solution of Eq. (2.4) is given by:

f (u)x =g(u) z′(x).
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Clearly
∫

f ′(u)

g(u)
du=

∫
f ′(u)

g(u)
ux dx =

∫
f (u)x

g(u)
dx =

∫
z′(x)dx = z(x)+ constant.

Hence we have

a(u, x)≡b(u)+ z(x)= constant, (2.5)

if we denote b(u)=− ∫ f ′(u)
g(u)

du. This is an example of (2.2).
We would like to preserve exactly the steady state solutions u which

satisfy Assumption 2.1, for a balance law (1.1) with a source term satis-
fying Assumption 2.2. Following the ideas in [19], we will first consider a
linear scheme with an identical finite difference operator for the flux deriv-
ative and the derivatives in the decomposed source terms. As usual, we
define a linear finite difference operator D to be one satisfying D(af1 +
bf2)=aD(f1)+bD(f2) for constants a, b and arbitrary grid functions f1
and f2. A scheme for (1.1) with a source term given by (2.3) is said to
be a linear scheme if all the spatial derivatives are approximated by linear
finite difference operators. Such a linear scheme would have a truncation
error

D0(f (u, x))−
∑

i

si(a(u, x))Di(ti(x)),

where Di are linear finite difference operators used to approximate the
spatial derivatives. We further restrict our attention to linear schemes
which satisfy

D0 =D1 =· · ·=D (2.6)

for the steady state solution. For such linear schemes we have

Proposition 2.3. For the balance law (1.1) with its source term given
by (2.3), linear schemes with (2.6) for the steady state solutions satisfying
(2.2) can preserve these steady state solutions exactly.

Proof. For the steady state solution u satisfying (2.2), the truncation
error for such linear schemes with (2.6) reduces to

D (f (u, x))−
∑

i

si(a(u, x))D (ti(x))

=D

(
f (u, x)−

∑

i

si(a(u, x)) ti(x)

)
, (2.7)
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where the linearity of D and the fact that a(u, x)=constant for the steady
state solution u are used. Clearly, for such steady state solution u,

d

dx

(
f (u, x)−

∑

i

si(a(u, x)) ti(x)

)
=f (u, x)x −

∑

i

si(a(u, x)) t ′i (x)

=f (u, x)x −g(u, x)=0,

that is, f (u, x) −∑
i si(a(u, x)) ti(x) is a constant. Hence the truncation

error (2.7) is 0 for any consistent finite difference operator D. This finishes
the proof.

We now consider high-order nonlinear finite difference WENO schemes
[3, 8], in which the non-linearity comes from the non-linear weights and the
smooth indicators. We follow the procedures described in [19] for the shal-
low water equations, to treat the general balance laws (1.1) to obtain well
balanced high-order finite difference WENO schemes.

To present the basic ideas, we first consider the situation when the
WENO scheme is used without a flux splitting (e.g., the WENO-Roe
scheme as described in [8]). We notice that the WENO approximation to
dx where d =f (u, x) can be eventually written out as

dx |x=xj
≈

r∑

k=−r

akdk+j ≡Dd(d)j , (2.8)

where r = 3 for the fifth-order WENO approximation and the coefficients
ak depend non-linearly on the smoothness indicators involving the grid
function d. As explained in [19], the key idea now is to use the finite
difference operator Dd with d =f (u, x) fixed, and apply it to approximate
t ′i (x) in the source terms. Thus

t ′i (xj )≈
r∑

k=−r

ak ti(xk+j )=Dd (ti(x))j .

Clearly, the finite difference operator Dd , obtained from the high-order
WENO procedure and when d =f (u, x) is fixed, is a high-order accurate
linear approximation to the first derivative for any grid function. Therefore
the proof for Proposition 2.3 will go through and we conclude that the
high-order finite difference WENO scheme as stated above, without the
flux splitting, and with the special handling of the source terms described
above, maintains exactly the steady state.

Now, we consider WENO schemes with a Lax-Friedrichs flux split-
ting, such as the WENO-LF and WENO-LLF schemes described in [8].
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Here the flux f (u, x) is written as a sum of f +(u, x) and f −(u, x), defined
by

f ±(u, x)= 1
2

[f (u, x)±αu] , (2.9)

where α = maxu

∣∣∣ ∂f (u,x)
∂u

∣∣∣ with the maximum being taken over either a
local region (WENO-LLF) or a global region (WENO-LF) (see [8, 16]
for more details). We now make a modification to this flux splitting, by
replacing ±αu in (2.9) with ±α sign

(
∂a(u,x)

∂u

)
a(u, x). We would need to

assume here that ∂a(u,x)
∂u

does not change sign. The constant α should
be suitably adjusted by the size of ∂a(u,x)

∂u
in order to maintain enough

artificial viscosity. The term a(u, x) can also be replaced by p(a(u, x))

for any function p, whose choice should be such that p(a(u, x)) is as
close to u as possible in order to emulate the original LF flux splitting
with ±αu. This modification does not affect accuracy, which relies only
on the fact f (u, x) = f +(u, x) + f −(u, x). For the steady state solution
satisfying (2.2), the artificial viscosity term ±α sign

(
∂a(u,x)

∂u

)
a(u, x) (or

±α sign
(

∂p(a(u,x))
∂u

)
p(a(u, x))) in the Lax-Friedrichs flux splitting becomes

a constant, and by the consistency of the WENO approximation, the effect
of these viscosity terms towards the approximation of f (u, x)x is zero.
The flux splitting WENO approximation in this situation becomes simply
f ±(u, x)= 1

2f (u, x), hence the steady state solution is preserved as before,
if we simply split the derivatives in the source term as:

t ′i (x)= 1
2
t ′i (x)+ 1

2
t ′i (x) (2.10)

and apply the same flux splitting WENO procedure to approximate them
with the nonlinear coefficients ak coming from the WENO approximations
to f ±(u, x), respectively. This will guarantee (2.6). We have thus proved
that

Proposition 2.4. The WENO-Roe, WENO-LF, and WENO-LLF
schemes as implemented above are exact for steady state solutions satis-
fying (2.2) and can maintain the original high-order accuracy.

We now discuss the system case. The framework described for the
scalar case can be applied to systems provided that we have certain knowl-
edge about the steady state solutions to be preserved in the form of (2.2).
Typically, for a system with m equations, we would have m relationships
in the form of (2.2):
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a1(u, x)= constant, · · · am(u, x)= constant (2.11)

for the steady state solutions that we would like to preserve exactly. We
would then still aim for decomposing each component of the source
term in the form of (2.3), where si could be arbitrary functions of
a1(u, x), . . . , am(u, x), and the functions si and ti could be different for
different components of the source vector. The remaining procedure is
then the same as that for the scalar case and we again obtain well bal-
anced high order WENO schemes. Examples of such systems will be given
in next section. We should also mention that local characteristic decompo-
sition is typically used in high order WENO schemes in order to obtain
better non-oscillatory property for strong discontinuities. When computing
the numerical flux at x

i+ 1
2
, the local characteristic matrix R, consisting of

the right eigenvectors of the Jacobian at u
i+ 1

2
, is a constant matrix for

fixed i. Hence this characteristic decomposition procedure does not alter
the argument presented above for the scalar case (we refer to [19] for more
details).

3. APPLICATIONS

In this section we give several examples from applications which fall
into the category of balance laws considered in the previous section, and
present well balanced high order finite difference WENO schemes for
them. Due to page limitation, only selected numerical results are shown
to give a glimpse of how these methods work. In the numerical tests, time
discretization is by the classical fourth order Runge–Kutta method, and
the CFL number is taken as 0.6.

3.1. Shallow Water Equations

The shallow water equations have wide applications in ocean and
hydraulic engineering and river, reservoir, and open channel flows, among
others. We consider the system with a geometrical source term due to the
bottom topology. In one space dimension, the equations take the form

ht + (hu)x =0,

(hu)t +
(

hu2 + 1
2
gh2

)

x

=−ghbx,
(3.1)

where h denotes the water height, u is the velocity of the fluid, b(x) rep-
resents the given bottom topography and g is the gravitational constant.
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We are interested in preserving the still water solution, which satisfies
(2.11) in the form

a1 ≡h+b= constant, a2 ≡u=0.

The first component of the source term is 0. A decomposition of the sec-
ond component of the source term in the form of (2.3) is

−ghbx =−g (h+b) bx + 1
2
g
(
b2
)

x
,

i.e., s1 = s1(a1)=−g (h+b), s2 = 1
2g, t1(x)=b(x), and t2(x)=b2(x).

More details of the high-order finite difference WENO scheme applied
to this system, and extensive numerical results, can be found in [19].

3.2. Elastic Wave Equation

We consider the propagation of compressional waves [2, 18] in an
one-dimensional elastic rod with a given media density ρ(x). The equa-
tions of motion in a Lagrangian frame are given by the balance laws:

(ρε)t + (−ρu)x =−u
dρ

dx
,

(ρu)t + (−σ)x =0,
(3.2)

where ε = ε(x, t) is the strain, u = u(x, t) is the velocity and σ is a given
stress–strain relationship σ(ε, x). The equation of linear acoustics can be
obtained from the elasticity problem if the stress–strain relationship is
linear,

σ(ε, x)=K(x) ε,

where K(x) is the given bulk modulus of compressibility.
The steady state we are interested to preserve for this problem is char-

acterized by

a1 ≡σ(ε, x)= constant, a2 ≡u= constant,

which is of the form (2.11). The second component of the source term is
0. The first component of the source term is already in the form of (2.3)
with s1 = s1(a2)=−u and t1 =ρ(x).

We now show two numerical examples to demonstrate the fifth-order
well balanced finite difference WENO scheme for (3.2). The first exam-
ple, from [18], is to test the fifth order accuracy for smooth solutions, for
which we take the initial conditions as
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Table I. L1 Errors and Numerical Orders of Accuracy for the Example
in Sec. 3.2

Balanced WENO

ρ ε ρ u

Number of points L1 error Order L1 error Order

20 2.33E-002 2.80E-002
40 3.21E-003 2.86 3.50E-003 3.00
80 3.75E-004 3.10 2.30E-004 3.93

160 1.59E-005 4.56 1.10E-005 4.38
320 5.20E-007 4.93 3.92E-007 4.81
640 1.65E-008 4.97 1.25E-008 4.97

ρ ε(x,0)= −1−1.5 e−(8x)2

(1−0.5 sin(πx))2
, u(x,0)=0

with the density ρ(x) and bulk modulus of compressibility K(x) given by:

ρ(x)= 1
1−0.5 sin(πx)

, K(x)=1−0.5 sin(πx).

The computational domain is [−1,1] and periodic boundary condition is
used. The exact solution is unknown in this case, hence we use the same
fifth-order well balanced WENO scheme with N = 5120 grid points to
compute a reference solution and use this reference solution as the exact
solution in computing the numerical errors at t =0.1 s. Table I contains the
L1 errors and numerical orders of accuracy. We can clearly see that fifth-
order accuracy is achieved for this example.

Next, we present the numerical result for a linear acoustic test [2].
The properties of the media are given by

c(x)=
√

K(x)

ρ(x)
=1+0.5 sin(10πx), Z(x)=ρ(x)c(x)=1+0.25 cos(10πx)

and are shown in Fig. 1. The initial conditions are given by

ρ ε(x,0)=

⎧
⎪⎨

⎪⎩

−1.75+0.75 cos(10πx)

c2(x)
, if 0.4<x <0.6,

−1
c2(x)

, otherwise,
u(x,0)=0.
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Fig. 1. The impedance Z(x) and the sound speed c(x) for the smooth media.

It is a test case where the impedance Z(x) and hence the eigenvectors
are both spatially varying. We perform the computation with 200 uniform
cells, with the ending time t =0.4 s. An “exact” reference solution is com-
puted with the same scheme over a 2000 grid point uniform cells. The sim-
ulation results are shown in Fig. 2. The numerical resolution shows very
good agreement with the “exact” reference solution.

3.3. Chemosensitive Movement

Originated from biology, chemosensitive movement [5, 7] is a process
by which cells change their direction reacting to the presence of a chemi-
cal substance, approaching chemically favorable environments and avoiding
unfavorable ones. Hyperbolic models for chemotaxis are recently introduced
[7] and take the form

nt + (nu)x =0,

(nu)t + (nu2 +n)x =nχ ′(c)
∂c

∂x
−σnu,

(3.3)

where the chemical concentration c = c(x, t) is given by the parabolic
equation

∂c

∂t
−Dc�c=n− c.
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Fig. 2. The numerical (symbols) and the “exact” reference (solid line) stress σ(x) at time
t =0.4 s.

Here, n(x, t) is the cell density, nu(x, t) is the population flux and σ is
the friction coefficient. In [5], a well balanced WENO scheme is con-
structed based on a different approach, which can maintain the steady
state solutions with zero population flux to the size of a small parame-
ter ε in the non-linear WENO weights. Here we construct well balanced
WENO schemes based on the framework in Sec. 2, which does not have
this restriction.

We would like to preserve the steady state solution to (3.3) with a
zero population flux, which satisfies

nχ ′(c)cx −nx =0, nu=0, (3.4)

where c = c(x) does not depend on t in steady state. The first equality
above does not seem to be of the form (2.11). However, (3.4) is equiva-
lent to

a1 ≡ log(n)−χ(c)= constant, a2 ≡nu=0,

which is clearly in the form of (2.11). The first component of the source
term is 0. A decomposition of the second component of the source term
in the form of (2.3) is

nχ ′(c)
∂c

∂x
−σnu= elog(n)−χ(c) d

dx
eχ(c) −σnu
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Table II. L1 Errors for Different Pre-
cisions for the Stationary Solution in

Sec. 3.3

L1 error

Precision n nu

Single 7.34E-07 3.16E-07
Double 1.02E-15 3.96E-16
Quadruple 9.13E-34 2.32E-34

i.e. s1 = s1(a1)=elog(n)−χ(c), s2 = s2(a2)=σnu, t1(x)=eχ(c(x)), and t2(x)=x.
We now show two numerical examples to demonstrate the fifth order

well balanced finite difference WENO scheme for (3.3). The first example
is to test the well balancedness property of the scheme. We take the initial
conditions as

n(x,0)= 1
10

(1+ c(x)), nu(x,0)=0

with

c(x)=
{

1, if |x|�0.5,

0.125, otherwise, χ(c)= log(1+ c), σ =1.

The initial condition is a steady state solution which should be exactly
preserved. We compute the solution until t = 2.0 s using N = 500 uniform
mesh points. In order to demonstrate that the steady state is indeed main-
tained up to round-off error, we use single precision, double precision and
quadruple precision to perform the computation, and show the L1 errors
for the cell density n (note: n in this case is a discontinuous function!) and
the population flux nu in Table II for these different precisions. We can
clearly see that the L1 errors are at the level of round-off errors for differ-
ent precisions, verifying the steady state conservation.

The second example is to test the fifth order accuracy for smooth
solutions, for which we take the initial conditions as

n(x,0)=1+0.2 cos(πx), u(x,0)=0, x ∈ [−1,1]

with

c(x)= e−16x2
, χ(c)= log(1+ c), σ =0
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Table III. L1 Errors and Numerical Orders of Accuracy for the Example in
Sec. 3.3.

Balanced WENO

n nu

Number of points L1 error Order L1 error Order

20 1.02E-002 5.99E-003
40 1.05E-003 3.29 7.70E-004 2.96
80 1.31E-004 3.00 1.07E-004 2.85

160 6.57E-006 4.32 5.49E-006 4.29
320 2.44E-007 4.75 2.06E-007 4.73
640 7.58E-009 5.01 6.43E-009 5.00

with a periodic boundary condition. Since the exact solution is not known
explicitly for this problem, we use the same fifth-order WENO scheme
with N = 5120 points to compute a reference solution and treat it as the
exact solution when computing the numerical errors. Final time t =0.5 s is
used to avoid the development of shocks. Table III contains the L1 errors
and numerical orders of accuracy. We can clearly see that fifth-order accu-
racy is achieved for this example.

3.4. Nozzle Flow

In this subsection we consider the balance laws for a quasi
one-dimensional nozzle flow [6]. The governing equations for the
quasi-one-dimensional unsteady flow through a duct of varying cross-sec-
tion can be written in conservation form as:

(ρA)t + (ρuA)x =0,

(ρuA)t +
(
(ρu2 +p)A

)

x
=pA′(x),

(EA)t + ((E +p)uA)x =0,

(3.5)

where the quantities ρ, u, p and E = 1
2ρu2 + p

γ−1 represent the density,
velocity, pressure, and total energy, respectively. A=A(x) denotes the area
of the cross section. γ is the ratio of specific heats.

As in [6], we are interested in preserving the steady state solution

ρ(x, t)= ρ̄(x), p(x, t)= p̄, and u(x, t)=0, (3.6)
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Table IV. L1Errors and Numerical Orders of Accuracy for the Example in Sec. 3.4

Balanced WENO

ρA ρuA EA

Number of points L1 error Order L1 error Order L1 error Order

20 6.13E-003 3.90E-003 4.58E-003
40 2.14E-003 1.52 9.46E-004 2.04 8.90E-004 2.38
80 2.10E-004 3.35 9.72E-005 3.28 8.49E-005 3.37

160 1.01E-005 4.38 4.79E-006 4.34 4.11E-006 4.37
320 3.44E-007 4.88 1.60E-007 4.91 1.40E-007 4.87
640 1.04E-008 5.04 5.08E-009 4.98 4.29E-009 5.03

where ρ̄(x) is an arbitrary function in x and p̄ is a constant. The second
condition in (3.6)

a1 ≡p = p̄

is of the form (2.11). The first and third components of the source term
are 0. The second component of the source term is already in the form of
(2.3) with s1 = s1(a1)=p and t1 =A(x).

We now show two numerical examples to demonstrate the fifth order
well balanced finite difference WENO scheme for (3.5). The first example
is to test the fifth-order accuracy for smooth solutions, for which we take
the cross section area and the initial conditions as

A(x) =1+ sin2(πx), ρ(x)= cos(sin(2πx)),

u(x)=0, E(x)= esin(2πx)

with periodic boundary conditions. As before, we compute a reference
solution using the same fifth-order WENO scheme with N =10240 points.
Final time is chosen as t = 0.25 s when the solution is still smooth. Table
IV contains the L1 errors and numerical orders of accuracy. We can clearly
see that fifth order accuracy is achieved for this example.

The purpose of the second test case is to study the convergence in
time towards steady flow. Proposed by Anderson in [1], it is concerned
with a convergent-divergent nozzle flow with a parabolic area distribution,
which is given by

A(x)=1+2.2(x −1.5)2, 0�x �3. (3.7)

The shape of this section is illustrated in Fig. 3.
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Fig. 3. The shape of a convergent-divergent nozzle.

The initial conditions are taken as

ρ(x,0)=1, u(x,0)=0 and p(x,0)=1.

The boundary conditions are taken as one bar of pressure at the left, 0.6784
bar of pressure at the right, and 300◦K of temperature at both ends. A shock
is established inside the pipe, and the exact solution for this, a steady state,
can be easily calculated. In this case, the Froude number Fr =u/c increases
to a value larger than one, and then decreases to less than one.

The computation is performed using N = 100 points. The pressure
p(x) is plotted in Fig. 4, which shows very good agreement with the ana-
lytical solution. The numerical resolution is very good without oscillations,
verifying the essentially non-oscillatory property of the modified WENO-
LF scheme.

3.5. Two Phase Flow

The dynamics of fluids consisting of several fluid components is of
great interest in a wide range of physical flows. In this subsection we are
interested in a flow model for the compressible 2-velocity 2-pressure sys-
tem [15, 9], which is suitable to describe liquid suspensions and bubbly
flows. The balance equations are written for the individual phases:
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Fig. 4. Steady state pressure for the nozzle flow.
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⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎠

t

+

⎛

⎜⎜⎜⎜⎜⎜⎝

agρgug

ag(ρgu
2
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2
l +pl)
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⎟⎟⎟⎟⎟⎟⎠
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=

⎛

⎜⎜⎜⎜⎜⎝

0
pi(ag)x + λ(ul −ug)+ agρgg

uipi(ag)x +λui(ul −ug)+µpi(pl −pg)+agρgugg

0
pi(al)x − λ(ul −ug)+ alρlg

uipi(al)x −λui(ul −ug)−µpi(pl −pg)+alρlulg

⎞

⎟⎟⎟⎟⎟⎠
, (3.8)

coupled with an additional equation for the volume fraction

(ag)t +ui(ag)x =−µ(pl −pg) (3.9)

and the algebraic relation for the volume fractions

ag +al =1.

Here, ak, k ∈ {l, g} is the volume fraction of the kth phase, and ρk, uk,
Ek = 1

2ρku
2
k + pk

γk−1 denote its density, velocity, and energy, respectively. λ
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is a velocity relaxation parameter and µ is a pressure relaxation parame-
ter. The closure equations for the interface pressure pi and the interface
velocity ui are

pi =agpg +alpl, ui = agρgug +alρlul

agρg +alρl

.

If the gravitation effect is ignored, one stationary solution for (3.8) is given
by:

ρg = ρ̄1(x), ρl = ρ̄2(x), ug =ul =0, pg =pl = p̄, (3.10)

where ρ̄1(x) and ρ̄2(x) are arbitrary functions of x and p̄ is a constant. We
would like to preserve this steady state solution exactly. (3.10) can clearly
be written in the form of (2.11):

a1 ≡pi = p̄, a2 ≡ul −ug =0, a3 ≡pl −pg =0, a4 ≡ui =0

and hence the source terms are already in the form of (2.3). For example,
the second component of the source term is of the form (2.3) with s1 =
s1(a1)=pi , t1 =ag(x), s2 = s2(a2)=λ(ul −ug), t2 =x; the third component
of the source term is of the form (2.3) with s1 =s1(a4, a1)=uipi , t1 =ag(x),
s2 = s2(a4, a2)=λui(ul −ug), t2 =x, s3 = s3(a1, a3)=µpi(pl −pg), t3 =x; etc.

4. CONCLUDING REMARKS

Well balanced, high order finite difference WENO schemes are designed
for a class of hyperbolic systems with separable source terms including the
elastic wave equation, the hyperbolic model for a chemosensitive movement,
the nozzle flow and a two phase flow model, following the ideas of suit-
able decomposition of source terms in [19] for the shallow water equations.
The schemes maintain properties of the exact preservation of the balance
laws for certain steady state solutions, the non-oscillatory property for gen-
eral solutions with discontinuities, and the genuine high order accuracy in
smooth regions. The approach is quite general and can be adapted to high
order finite volume and discontinuous Galerkin finite element methods on
arbitrary triangulations, which constitutes an ongoing work.
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