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Abstract

In this short note, we survey and apply our recently designed
high order accurate well-balanced finite volume WENO (weighted
essentially non-oscillatory) schemes and discontinuous Galerkin finite
element schemes for solving a class of hyperbolic systems. Two different
approaches to obtain high order well balanced schemes, which are also
essentially non-oscillatory for general solutions with discontinuities, have
been designed. Such schemes are particularly useful in computing small
perturbations to such steady state solutions. Some applications of these
well balanced schemes on hyperbolic balance laws, including the shallow
water equation, the elastic wave equation, the hyperbolic model for a
chemosensitive movement, the nozzle flow, a model in fluid mechanics,
the Goldstein-Taylor model of the Boltzmann equation and a two phase
flow model, are introduced at the end.
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1 Introduction

We are interested in numerically solving the following hyperbolic conservation
laws with source terms, also referred to as hyperbolic balance laws:

ut + f1(u, x, y)x + f2(u, x, y)y = g(u, x, y) (1)
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or in the one dimensional case

ut + f(u, x)x = g(u, x) (2)

where u is the solution vector, f1(u, x, y) and f2(u, x, y) (or f(u, x)) are the
fluxes and g(u, x, y) (or g(u, x)) is the source term. Hyperbolicity refers to the

fact that the Jacobians ∂f1(u,x,y)
∂u

and ∂f2(u,x,y)
∂u

(or ∂f(u,x)
∂u

) always have real
eigenvalues and complete sets of eigenvectors. Often, this balance law would
admit steady state solutions in which the source term is exactly balanced by the
flux gradient. Notice that in such situations the solution u is typically a non-
trivial function, hence a straightforward numerical scheme may fail to preserve
exactly this balance. Many physical phenomena come from small perturbations
of these steady state solutions, which are very difficult to capture numerically,
unless the numerical schemes can preserve the unperturbed steady state at the
discrete level. Schemes which can preserve the unperturbed steady state at
the discrete level are the so called well balanced schemes. Our purpose is to
design well balanced schemes without sacrificing the high order accuracy and
non-oscillatory properties of the scheme when applied to general, non-steady
state solutions.

A prototype example for the balance laws (2), which has been investigated
extensively in the literature, is the shallow water equation with a non-flat
bottom topology. Many geophysical flows are modeled by the variants of the
shallow water equations. In one space dimension, they take the form







ht + (hu)x = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghbx,
(3)

where h denotes the water height, u is the velocity of the fluid, b represents
the bottom topography and g is the gravitational constant. The steady state
solutions are given by

hu = constant and
1

2
u2 + g(h + b) = constant. (4)

Often, we are particularly interested in the still water stationary solution,
denoted by

u = 0 and h + b = constant. (5)

Bermudez and Vazquez [2] first introduced the concept of the “exact C-
property”, which refers to the ability of the scheme to exactly preserve the
still water stationary solution. Many well balanced schemes satisfying the exact
C-property have been developed in the literature, mostly for first and second
order accuracy, e.g. [2, 8, 9, 11, 12, 13, 14, 19]. It is technically difficult to
construct schemes which are genuinely high order accurate in smooth regions
for general solutions, are essentially non-oscillatory for general solutions with
discontinuities, and at the same time can preserve exactly certain steady state
solutions.
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Recently, we have developed high order well-balanced finite difference
and finite volume WENO (weighted essentially non-oscillatory) schemes and
discontinuous Galerkin finite element schemes for solving a class of hyperbolic
systems with separable source terms. In [15], we started our investigation by
designing a class of high order finite difference WENO schemes which are well
balanced for the still water solution of the shallow water equations. In [16],
the well balanced high order finite difference WENO schemes designed in [15]
are generalized to a general class of balance laws with separable source terms,
including the elastic wave equation, the hyperbolic model for a chemosensitive
movement, the nozzle flow and a two phase flow model. In [17], well balanced
high order finite volume WENO schemes and finite element discontinuous
Galerkin schemes are designed for the same class of balance laws as those in
[16], which are more suitable for computations in complex geometry and / or for
using adaptive meshes. The key ingredient of the technique used in [15, 16, 17]
to obtain well balanced property is a special decomposition of the source term,
allowing a discretization to the source term to be both high order accurate
for general solutions and exactly well balanced with the flux gradient for some
steady states.

In [18] we discuss a new approach of high order well balanced finite volume
WENO schemes and discontinuous Galerkin finite element schemes. We show
that the traditional RKDG methods can achieve the well balanced property
with a small modification of either the initial value or the flux. This is by far
the simplest approach to obtain a high order well balanced scheme. Very little
additional computational cost over the traditional RKDG methods is involved to
obtain a well balanced property. Similar ideas are then applied to obtain well
balanced finite volume WENO schemes. Comparing with our previous work
[17], the new approach [18] requires less computational cost, and is easier to
understand and to code, at least for the RKDG methods and for the application
problems with simple functions in numerical integration. For the cases we have
tested, this simpler approach seems to yield comparably good numerical results.

Here, we survey the new approach of high order well balanced finite
element discontinuous Galerkin methods developed in [18], and present several
applications not covered in [18]. In Section 2, we describe the algorithm to
construct genuine high order well-balanced RKDG schemes for the shallow
water equations. In Section 3, we give several examples in applications, and
indicate how the algorithm discussed in Section 2 is implemented for each of
them. Concluding remarks are given in Section 4.

2 A well balanced RKDG schemes for shallow water

equations

We first present the well balanced schemes for the shallow water equation. The
generalization of these schemes to other balance laws will be presented in Section
3. We will show that, for one-dimensional and two-dimensional shallow water
equations, the traditional high order RKDG method is indeed a well balanced
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scheme for still water, based on a suitable choice of the initial value or the
flux. This choice will not affect the property of the scheme, such as high order
accuracy in smooth region and non-oscillatory shock resolution, and it increases
the computational cost only slightly.

For the shallow water equations (3), the purpose of well balanced schemes is
to preserve the still water stationary solution (5) exactly. Recall in a traditional
RKDG method, U is usually approximated by the piecewise polynomial Uh,
which belongs to Vh, the space of piecewise polynomials of degree at most k.
(We refer to [4] for more details of the traditional RKDG methods.) Here
we also project the bottom function b into the same space Vh, to obtain an
approximation bh. This implies that hh + bh = constant if h + b = constant.
Because the first equation (hu)x = 0 is satisfied exactly for any consistent
scheme since hu = 0, here we only concentrate on the second equation, and
denote it by

(hu)t + f(U)x = g(h, b)

where U = (h, hu)T with the superscript T denoting the transpose.
Following the idea first introduced by Audusse et al. [1], and later used in

the recent paper by Noelle et al. [10], we write our numerical scheme in the
following form:

∫

Ij

∂t(hu)hvhdx −

∫

Ij

f(Uh)∂xvhdx + f̂ l
j+ 1

2

vh(x−

j+ 1

2

) − f̂r
j− 1

2

vh(x+
j− 1

2

) =

∫

Ij

g(hh, bh)vhdx. (6)

Comparing with the standard RKDG scheme, we can see that the single valued
fluxes f̂j+ 1

2

and f̂j− 1

2

have been replaced by the left flux f̂ l
j+ 1

2

and the right

flux f̂r
j− 1

2

, respectively. We can rewrite the above scheme in a new form,

where the left side is the traditional RKDG scheme, and the right side is an
approximation to the source term with some high order correction terms at the
level of O(△xk+1). Therefore, the scheme (6) is a (k + 1)-th order conservative
scheme and will converge to the weak solution.

In order to obtain the well balanced property, we need the residue in
the scheme (6) to be zero if the still water stationary state (5) is reached.
The following three conditions, which only need to be valid for the still water

stationary state, are sufficient to guarantee this zero residue property.

All the integrals should be calculated exactly for the still water. This can
be easily achieved by using suitable Gauss-quadrature rules since hh, bh

and vh are polynomials in each cell Ij , hence f , g are both polynomials.
Note that (hu)h = 0 for the still water.

We assume that

f̂ l
j+ 1

2

= f(Uh(x−

j+ 1

2

, t)), f̂r
j− 1

2

= f(Uh(x+
j− 1

2

, t)) (7)
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for the still water. Note that this condition is not obvious. Later we will
comment on how to make it possible for the RKDG method.

We assume that Uh, which is the numerical approximation of U , is a
steady state solution of the equation (hu)t + f(U)x = g(h, bh), where bh

has substituted b, hence we have ∂xf(Uh) = g(hh, bh).

Proposition 1: RKDG schemes which satisfy the above three conditions for
the shallow water equations are exact for the still water stationary state (5).

The proof of this result is rather straightforward and can be found in [18].
We also need to comment on the limiter procedure in the discontinuous

Galerkin method. To prevent the limiter procedure from destroying the
preservation of h+b = constant, we apply the limiter procedure on the function
(hh + bh, (hu)h)T instead. The modified RKDG solution is then defined by
hmod

h ≡ (h + b)mod
h − bh. We can easily observe that this procedure will not

destroy the conservativity of hh, which should be maintained during the limiter
process. We refer to [17, 18] for more details.

Here the only thing remaining is to check that the above three conditions
are satisfied for shallow water equations. It is easy to observe that the first
and third conditions are true. As presented in [18], we have two choices for the
second condition.

Choice A: We define the initial value and the approximation bh by continuous
piecewise polynomials by using the idea of essentially non-oscillatory (ENO)
procedure [7]. Based on the values uj+ 1

2

, we can choose suitable stencils for
each individual cell Ij by an ENO procedure, and then obtain a polynomial on
Ij through an interpolation. If the steady state hh + bh = constant is reached,
because bh is continuous, we will have a continuous hh, which makes

f̂j+ 1

2

= F (Uh(x−

j+ 1

2

, t), Uh(x+
j+ 1

2

, t)) = f(Uh(x−

j+ 1

2

, t)) = f(Uh(x+
j+ 1

2

, t)).

We can therefore simply define the left and right fluxes as the usual flux f̂j+ 1

2

,

and it will fulfill the second condition. This makes our scheme (6) to be identical
to the traditional RKDG scheme without any modification.

Choice B: This idea follows the one of Audusse et al. [1]. After computing
boundary values U±

h,j+ 1

2

, we set

h
∗,+

h,j+ 1

2

= max
(

0, h+
h,j+ 1

2

+ b+
h,j+ 1

2

− max(b+
h,j+ 1

2

, b−
h,j+ 1

2

)
)

(8)

h
∗,−

h,j+ 1

2

= max
(

0, h−

h,j+ 1

2

+ b−
h,j+ 1

2

− max(b+
h,j+ 1

2

, b−
h,j+ 1

2

)
)

(9)

and redefine the left and right values of U
∗,±

h,j+ 1

2

by replacing h±

h,j+ 1

2

with h
∗,±

h,j+ 1

2

.

Then the left and right fluxes f̂ l
j+ 1

2

and f̂r
j− 1

2

are given by:

f̂ l
j+ 1

2

= F (U∗,−

h,j+ 1

2

, U
∗,+

h,j+ 1

2

) +

(

0
g
2 (h−

h,j+ 1

2

)2 − g
2 (h∗,−

h,j+ 1

2

)2

)

(10)
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f̂r
j− 1

2

= F (U∗,−

h,j− 1

2

, U
∗,+

h,j− 1

2

) +

(

0
g
2 (h+

h,j− 1

2

)2 − g
2 (h∗,+

h,j− 1

2

)2

)

(11)

Here F is a monotone flux. It is easy to check that the second condition is
satisfied. We again refer to [18] for details.

Remark 2: Choice A provides a simpler scheme with smaller computational
cost, hence it would be preferred. Unfortunately, although it works well for
small perturbation solutions from still water for a smooth bottom, the numerical
resolution for a discontinuous bottom is not ideal. On the other hand, Choice
B provides good numerical results for all the test cases we have experimented.
!

The extension of the well-balanced high order RKDG schemes to 2-D shallow
water equations























ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghby

(12)

with the still water stationary solution

h + b = constant, hu = 0, hv = 0, (13)

is straightforward. This scheme can be applied on any triangulation.
The generalization of this algorithm to finite volume WENO schemes is

simple. We refer to [18] for details.

3 Other applications

In this section, we generalize the high order well balanced RKDG schemes,
designed in Section 2, to other balance laws. The applications are quite general
and include the elastic wave equation, the hyperbolic model for a chemosensitive
movement, the nozzle flow, a model of fluid mechanics, a two phase flow model
and the Goldstein-Taylor model of the Boltzmann equation. Our well balanced
high order finite difference and finite volume WENO schemes and discontinuous
Galerkin methods presented in [15, 16, 17] can also be designed for these cases.
We refer to [15, 16, 17] for details. Due to page limitation, only the nozzle
flow, fluid mechanics model and Goldstein-Taylor model are investigated here,
however our technique can also be applied to the other cases. We will not present
many numerical experiment results here, and refer to [18] for such details.

3.1 A model in fluid mechanics with spherical symmetry

A classical singularity arising in fluid mechanics in case of spherical symmetry
leads to the following model equation

ut +

(

u2

2

)

x

=
1

x
u2, (14)
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which has been considered in [3]. Notice that here the source term is a nonlinear
function of u. The steady state we are interested to preserve for this problem
is given by

u

x
= constant.

First, we project the initial value to obtain uh, and also project x to obtain
xh. Since x is a polynomial, we know that xh is the same as x. Then, we check
the three conditions in Section 2 one by one.

1: The source term can be written as: u
xu. If the steady state is reached,

uh
x is constant and uh is a polynomial, hence the integral of the source term

can be calculated exactly. Similarly, the integral of the flux can be calculated
exactly.

2: We set

u
∗,+

h,j+ 1

2

=
u+

h,j+ 1

2

x+
h,j+ 1

2

max(x+
h,j+ 1

2

, x−

h,j+ 1

2

) = u+
h,j+ 1

2

(15)

u
∗,−

h,j+ 1

2

=
u−

h,j+ 1

2

x−

h,j+ 1

2

max(x+
h,j+ 1

2

, x−

h,j+ 1

2

) = u−

h,j+ 1

2

. (16)

Then we define the left and right fluxes as:

f̂ l
j+ 1

2

= F (u∗,−

h,j+ 1

2

, u
∗,+

h,j+ 1

2

) +
1

2

(

u−

h,j+ 1

2

)2

−
1

2

(

u
∗,−

h,j+ 1

2

)2

= F (u−

h,j+ 1

2

, u+
h,j+ 1

2

)

f̂r
j− 1

2

= F (u∗,−

h,j− 1

2

, u
∗,+

h,j− 1

2

) +
1

2

(

u+
h,j− 1

2

)2

−
1

2

(

u
∗,+

h,j− 1

2

)2

= F (u−

h,j− 1

2

, u+
h,j− 1

2

).

3: We note that uh, satisfying uh
x , is the steady state solution of :

(

u2
h

2

)

x

=
1

x
u2

h.

With these three conditions, we can repeat the proof of Proposition 1 to
show that our new schemes are indeed well balanced and high order accurate.
We can observe that the well balanced schemes for this problem are actually
the traditional RKDG methods, without any modification.

Next, we present a numerical result to demonstrate the well balanced
property. The initial and boundary conditions are given by

u(x, 0) = 0, x ∈ [−5, 5] (17)

u(x = −5, t) = 10, u(x = 5, t) = −10. (18)

The choice of this information allows us to compute the steady state, which is
u = −2x. Numerical computations are performed by the well-balanced version
of finite volume WENO schemes and RKDG methods. To see the benefit of
well balanced schemes, we also compute with non well balanced finite volume
WENO schemes and RKDG methods, and compare the results. We use 100
uniform cells here. The comparison of the convergence history, measured by
the L1 norm of the difference with the steady state, is given in Figure 1. The
advantage of the well balanced schemes can be easily observed.
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Figure 1: Comparison of the convergence history in L1 error. Left: FV WENO
schemes; right: RKDG schemes.

3.2 Nozzle flow

In this subsection we consider the balance laws for a quasi one-dimensional
nozzle flow [5]. The governing equations for the quasi-one-dimensional unsteady
flow through a duct of varying cross-section can be written in conservation form
as:







(ρA)t + (ρuA)x = 0
(ρuA)t +

(

(ρu2 + p)A
)

x
= pA′(x)

(EA)t + ((E + p)uA)x = 0
(19)

where the quantities ρ, u, p and E = 1
2ρu2 + p

γ−1 represent the density, velocity,

pressure and total energy, respectively. A = A(x) denotes the area of the cross
section. γ is the ratio of specific heats.

As in [5], we are interested in preserving the steady state solution

ρ(x, t) = ρ̄(x), p(x, t) = p̄, and u(x, t) = 0 (20)

where ρ̄(x) is an arbitrary function in x and p̄ is a constant.

First, we project the initial value to obtain Uh = ((ρA)h, (ρuA)h, (EA)h)T ,
and also project A to obtain Ah. Then, we check the three conditions in Section
2 one by one. Only the second equation in (19) is relevant for the well balanced
property.

1: If the steady state is reached, p is constant and Ah is a polynomial, hence
the integral of the source term can be calculated exactly. Similarly, the integral
of the flux can be calculated exactly.

2: We set

(EA)∗,+

h,j+ 1

2

=
(EA)+

h,j+ 1

2

A+
h,j+ 1

2

max(A+
h,j+ 1

2

, A−

h,j+ 1

2

) (21)
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(EA)∗,−

h,j+ 1

2

=
(EA)−

h,j+ 1

2

A−

h,j+ 1

2

max(A+
h,j+ 1

2

, A−

h,j+ 1

2

), (22)

and similarly, we can define (ρA)∗,±

h,j+ 1

2

. Then we redefine the left and right

values of U as:

U
∗,±

h,j+ 1

2

=







(ρA)∗,±

h,j+ 1

2

(ρuA)±
h,j+ 1

2

(EA)∗,±

h,j+ 1

2






(23)

At last, we define the left and right fluxes as:

f̂ l
j+ 1

2

= F (U∗,−

h,j+ 1

2

, U
∗,+

h,j+ 1

2

) +





0

(pA)−
h,j+ 1

2

− (pA)∗,−

h,j+ 1

2

0



 . (24)

f̂r
j− 1

2

= F (U∗,−

h,j− 1

2

, U
∗,+

h,j− 1

2

) +





0

(pA)+
h,j− 1

2

− (pA)∗,+

h,j− 1

2

0



 (25)

where (pA)−
h,j+ 1

2

and (pA)∗,±

h,j+ 1

2

are calculated by the relationship between pA

and EA, ρA, ρuA.
3: We note that Uh, satisfying uh ≡ 0 and p = constant, is the steady state

solution of :
(

(ρu2 + p)Ah

)

x
= pA′

h(x).

With these three conditions, we can repeat the proof of Proposition 1 to
show that our new schemes are indeed well balanced and high order accurate.

The limiter procedure is performed similarly as in Section 2. We refer to
[17, 18] for more details.

3.3 Goldstein-Taylor model of the Boltzmann equation

In the kinetic theory of rarefied gases classically described by the Boltzmann
equation, the following two velocity model [6] is frequently used to describe the
evolution of the density distribution of a fictitious gas made of two kinds of
particles. Both of them move with equal speed parallel to the x-axis, either in
the positive direction with a density u, or in the negative one with a density v.
This model takes the form:











∂u

∂t
+

1

ǫ

∂u

∂x
=

1

ǫ2
(v − u)

∂v

∂t
−

1

ǫ

∂v

∂x
=

1

ǫ2
(u − v)

. (26)

The steady state we are interested to preserve for this problem is given by

u − v = constant c,
∂u

∂x
=

∂v

∂x
=

1

ǫ
c.
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First, we project the initial value to obtain uh. Then, we check the three
conditions in Section 2 one by one. Both equations in (26) need to be considered
for the well balanced property.

1: If the steady state is reached, uh − vh and ǫ are both constant, hence the
integral of the source term can be calculated exactly. Similarly, the integral of
the flux can be calculated exactly.

2: If the steady state is reached, both u and v are linear functions. Hence
their approximations uh and vh in the space Vh are exactly the same as them.
We know the fact U−

h,j+ 1

2

= U+
h,j+ 1

2

and

F (U−

h,j+ 1

2

, U+
h,j+ 1

2

) = f(U−

h,j+ 1

2

) = f(U+
h,j+ 1

2

).

From these facts, we can define

f̂ l
j+ 1

2

= f̂r
j+ 1

2

= F (U−

h,j+ 1

2

, U+
h,j+ 1

2

).

and prove that the second condition in Section 2 is satisfied.
3: We note that uh and vh are the steady state solution of :

1

ǫ

∂uh

∂x
=

1

ǫ2
(vh − uh)

−
1

ǫ

∂vh

∂x
=

1

ǫ2
(uh − vh).

With these three conditions, we can repeat the proof of Proposition 1 to
show that our schemes are indeed well balanced and high order accurate.

4 Concluding remarks

Two different approaches of well balanced high order finite volume WENO
schemes and finite element discontinuous Galerkin schemes can be designed for
a class of hyperbolic systems, including the shallow water equations, the elastic
wave equation, the hyperbolic model for a chemosensitive movement, the nozzle
flow, a model in fluid mechanics, the Goldstein-Taylor model of the Boltzmann
equation and a two phase flow model. The key idea of the first approach is a
suitable decomposition of source terms [15, 16, 17], and the second approach
replies on the exact calculation of the integral and special treatment of the flux
term [18]. These schemes maintain properties of the exact preservation of the
balance laws for certain steady state solutions, the non-oscillatory property for
general solutions with discontinuities, and the genuine high order accuracy in
smooth regions. The generalization of these techniques to treat more general
PDEs and more general steady state solutions constitutes an ongoing work.
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