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ABSTRACT

Superparameterization (SP) is a large-scale modeling system with explicit representation of small-scale and

mesoscale processes provided by a cloud-resolving model (CRM) embedded in each column of a large-scale

model. New efficient sparse space–time algorithms based on the original idea of SP are presented. The large-

scale dynamics are unchanged, but the small-scale model is solved in a reduced spatially periodic domain to

save the computation cost following a similar idea applied by one of the authors for aquaplanet simulations. In

addition, the time interval of integration of the small-scale model is reduced systematically for the same

purpose, which results in a different coupling mechanism between the small- and large-scale models. The new

algorithms have been applied to a stringent two-dimensional test suite involving moist convection interacting

with shear with regimes ranging from strong free and forced squall lines to dying scattered convection as the

shear strength varies. The numerical results are compared with the CRM and original SP. It is shown here that

for all of the regimes of propagation and dying scattered convection, the large-scale variables such as hori-

zontal velocity and specific humidity are captured in a statistically accurate way (pattern correlations above

0.75) based on space–time reduction of the small-scale models by a factor of 1/3; thus, the new efficient al-

gorithms for SP result in a gain of roughly a factor of 10 in efficiency while retaining a statistical accuracy on

the large-scale variables. Even the models with 1/6 reduction in space–time with a gain of 36 in efficiency are

able to distinguish between propagating squall lines and dying scattered convection with a pattern correlation

above 0.6 for horizontal velocity and specific humidity. These encouraging results suggest the possibility of

using these efficient new algorithms for limited-area mesoscale ensemble forecasting.

1. Introduction

Atmospheric processes of weather and climate cover

about 10 decades of spatial scales, from a fraction of a mil-

limeter to planetary. Regarding atmospheric fluid dynam-

ics, one is primarily concerned with spatial scales larger

than tens of meters because the smaller scales fall within the

inertial range of atmospheric turbulence. Spatial scales

between 100 m and 100 km, referred to as small through

mesoscale, show an abundance of processes associated with

dry and moist convection, clouds, waves, boundary layer,

topographic, and frontal circulations. A major stumbling

block in the accurate prediction of weather and short-term

climate is the accurate parameterization of moist convec-

tion. Cloud-system-resolving models (CRMs) realistically

represent small-scale and mesoscale processes. But because

of their high computational cost, they cannot be applied to

large ensemble-size level weather prediction or climate

simulations within the near future.

A different modeling approach, the cloud-resolving

convection parameterization (CRCP) or superparame-

terization (SP) was developed recently (Grabowski and

Smolarkiewicz 1999; Grabowski 2001, 2004; Randall

et al. 2003). The idea is to use a 2D CRM in each column

of a large-scale model to explicitly represent small-scale
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and mesoscale processes and interactions among them.

It blends conventional parameterization on a coarse

mesh with detailed CRM on a finer mesh. This approach

has been shown to be ideal for parallel computations and

it can easily be implemented on supercomputers. The

method has yielded promising new results regarding

tropical intraseasonal behavior (Grabowski 2001, 2004;

Khairoutdinov et al. 2005) and has the potential for many

other applications in climate–atmosphere–ocean science

(Wyant et al. 2006; Majda 2007).

There is a crucial difference in applying SP in a climate

model (grid length of a few hundreds of kilometers) and in

a limited-area mesoscale (LAM) model (grid length of

a few tens of kilometers). The key point is that in the

former case both convective and mesoscale dynamics

have to be treated by 2D CRM, but only convective dy-

namics have to be treated by the SP model in the latter

(Grabowski 2006). This has far-reaching implications. An

obvious one is that the outer model time step is much

shorter in the case of the LAM model (a couple of min-

utes) than in the climate model (tens of minutes). This is

important because a time step of a few minutes is signifi-

cantly shorter than the lifetime of a single convective cell

[typically quoted as 20 min; (Byers and Braham 1949)].

This is not the case for the climate model. A similar

argument can be made for the size of the domain of the SP

model. In the climate model case, the fact that SP has to

treat mesoscale dynamics implies that the domain cannot

be too small. But for the convective scale only as in the

LAM case, it might be possible that the domain can be as

small as to host just a single chaotic convective cell.

The purpose of this paper is to present new efficient

sparse space–time algorithms for superparameterization

(SSTSP), which require less computational cost and yet

provide statistically accurate large-scale features. We

note that the small-scale models are actually solved over

the whole time in the original superparameterization,

which occupies the most computational time. In the new

efficient algorithm, we can solve the small-scale models

for a reduced partial time and over a reduced periodic

domain. The reduction in the spatial periodic domain

follows the original idea of superparameterization and

an application for aquaplanet simulations Grabowski

(2002), although the effect of spatial reduction has not

been tested systematically before in the present meso-

scale context (Grabowski 2006; Majda and Grote 2009).

The reduced time strategy is completely novel here.

Numerical comparison with a CRM and the original

superparameterization shows that the large-scale features

are captured in a statistically accurate way. So this re-

duced approach already contains most of the necessary

information needed for the large-scale models. Hence,

the computational cost can be reduced significantly. The

paper is organized in the following way. In section 2,

the original superparameterization is introduced first,

followed by the development of the new efficient algo-

rithms. We test these algorithms on free and forced

squall-line simulations, as well as dying scattered con-

vection and compare the numerical results in section 3.

Concluding remarks are given in section 4.

2. Sparse space–time algorithms for
superparameterization

In this section, we start with a brief introduction to the

superparameterization approach proposed by Grabowski

and Smolarkiewicz (1999) and Grabowski (2001, 2004). By

replacing the 3D cloud-scale model by a 2D version, this

approach saves the computational cost tremendously, and

numerical comparison between SP and CRM simulations

shows that this approach captures the large-scale features

very well in some situations. We will present a new algo-

rithm based on this approach, by a reduced time strategy,

to efficiently solve the models. A reduced space strategy is

also presented. Then the combination algorithm based on

these two strategies, which will save the computational cost

by a factor of 1/p2 for an arbitrary constant p, is developed.

The strategy underlying the superparameterization

approach on mesoscales is to consider two distinct

models coupled in a particular way. The first is a 3D

large-scale flow model (e.g., a LAM or a GCM). The

large-scale model uses a horizontal grid length of a few

hundreds of kilometers in a GCM case and a few tens of

kilometers in a LAM case (32 km in section 3). The

second model is a 2D cloud-scale model formulated on

the x–z plane aligned east–west and embedded in each

column of the large-scale model. Cloud-scale and large-

scale models use the same vertical grid. The cloud-scale

model is applied on a sufficiently fine horizontal grid

(1 km) in order to permit moist convective dynamics.

The cloud-scale model is periodic in the horizontal.

The large-scale model employs moist anelastic equa-

tions. The anelastic system of equations can be com-

pactly written as

DU

Dt
5�$P 1 kgB 1 iFU

CS, $ � (r
0
U) 5 0,

DQ

Dt
5 FQ

CS,
DQ

y

Dt
5 F

Q
y

CS,
DQ

c

Dt
5 F

Q
c

CS, and

DQ
p

Dt
5 F

Q
p

CS. (1)

In (1), U 5 (U, V, W) is the large-scale flow in the east–

west, north–south, and vertical direction, respectively; Q is

the potential temperature; and Qy, Qc, and Qp are mixing

ratios for water vapor, cloud condensate (i.e., condensed

water carried by the flow), and precipitation (condensed
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water that falls relative to the air), respectively. Here

D/Dt 5 ›/›t 1 U � $; P is the pressure perturbation with

respect to a balanced ambient state, normalized by the

anelastic reference density r0. The buoyancy B 5 (Q 2

Qe)/Q0 1 �(Qy 2 Qye) 2 Qc 2 Qp, where Qe and Qye are

ambient potential temperature and temperature profile,

respectively; Q0 is the reference potential temperature

profile; and � 1 1 is the ratio of gas constants of water

vapor and dry air. The FCS terms on the right-hand side of

(1) represent the cloud-scale model feedback.

The anelastic equations of the cloud-scale model are

as follows:
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0
u) 5 0,

du

dt
5

u
e

T
e

L
y

c
p

(CON 1 DEP) 1 r

" #
1 s

u
1 f u

LS,

dq
y

dt
5�CON�DEP 1 s

q
y

1 f
q

y

LS,
dq

c

dt
5 CON�ACC�AUT 1 f

q
c

LS, and

dq
p

dt
5

1

r
0

›
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p
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where the lowercase symbols have the same meaning

as the respective uppercase symbols in (1). Here d/dt [

›/›t 1 u � $9 with $9 [ (›/›x, ›/›z). The terms fLS rep-

resent the large-scale forcing for the cloud-scale model;

Ly and cp are the latent heat of condensation and the

specific heat at constant pressure; and ue and Te are the

environmental potential temperature and temperature

profiles, respectively. The sources on the right-hand side

of (2) describe the formation of cloud condensate from

water vapor (CON), autoconversion of cloud condensate

into precipitation (AUT), accretion of cloud conden-

sate by precipitation (ACC), and source/sink of pre-

cipitation due to deposition/evaporation of water vapor

on/from precipitation particles (DEP). These sources

are represented using the simple scheme of Grabowski

(1998).

We denote the large-scale variables by Q (representing

a collection of U, Q, and Qy, etc.), and small-scale vari-

ables by q. The coupling formalism of the large-scale and

cloud-scale models is through the terms fLS and FCS.

In the original superparameterization implementa-

tion, the large-scale models are solved from T to T 1 DT

in the following way (Grabowski 2004):

Qjn11
5 Qjn 1 DT(A

Q
1 S

Q
)jn11

n 1 DTFQ
CSj

n, (3)

where AQ [ 2U � $Q is the large-scale advection term

(U is the large-scale flow), SQ is the large-scale sources

[pressure gradient or Coriolis acceleration in (1), etc.],

FQ
CS is the source due to small-scale processes, referred

as the small-scale feedback, and the notation jn11
n means

numerical time average of these terms. The large-scale

forcing to the small-scale models is defined as

f
q
LSj

n
5

Qjn11 � hqjni
DT

, (4)

where hi represents the spatial average over the small-

scale domain. The small-scale models are solved from

T to T 1 NDt (DT 5 NDt is assumed) by

qjn11
5 qjn 1 �

N

i51
Dt(a

q
1 s

q
)ji11

i 1 �
N

i51
Dtf

q
LSj

n, (5)

where aq [ 2u � $q (u is the small-scale flow), sq rep-

resents small-scale sources (surface drag for velocity or

latent heating due to phase changes, etc.). Note that

although the small-scale models are solved for N steps

within the big time step DT, the same large-scale forcing

f q
LSj

n is employed. Finally, the small-scale feedback is

defined by

FQ
CSj

n11
5
hqjn11i �Qjn11

DT
. (6)

a. Reduced time strategy

In the implementation above, DT 5 NDt is assumed,

so that the small-scale models are actually solved over

the whole time, which brings a high computational cost.

As we notice from the strategy explained above, all

we need from the small-scale models is the small-scale

feedback in (6). We can solve the small-scale models

for part of the time interval and find an approximate

estimation of FQ
CSj

n11. It may contain all the neces-

sary statistical information needed for the large-scale

model.

Thus, we want to save computational cost by using N/p

small-scale time steps instead of N small-scale time steps,

for an arbitrary constant p. So we follow the same strat-

egy, and solve the large-scale models first by (3). Because

the small-scale models are solved from T to T 1 N/pDt 5

T 1 DT/p, we define the new large-scale forcing as
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f
q
LSj

n
5

Qjn11 � hqjni
DT/p

5 p
Qjn11 � hqjni

DT
, (7)

where DT/p is used instead of DT as in (4). Then the

solver for the small-scale models takes the following

form:

qjn1(1/p)
5 qjn 1 �

N/p

i51
Dt(a

q
1 s

q
)ji11

i 1 �
N/p

i51
Dtf

q
LSj

n. (8)

The last term �N/p

i51Dtf
q
LSj

n represents the forcing of the

large-scale model to the small-scale models, and we have

the relation

�
N/p

i51
Dtf

q
LSj

n
5

N

p
Dtp

Qjn11 � hqjni
DT

5 �
N

i51
Dt

Qjn11 � hqjni
DT

, (9)

where the right-hand side is exactly the last term of (5) in

the original superparameterization approach. Hence,

although the small-scale models are solved in a reduced

time interval, the impact of the large-scale models on

small-scale models are fully resolved through the ap-

proach above. We anticipate that this approach can

capture the large-scale variables reasonably well under

appropriate circumstances.

Next we need to obtain qjn11, which is necessary for

the large-scale model. The simple assumption qjn11
5

qjn11/p is employed here (see section 2d for an inter-

pretation). Finally, we define the small-scale feedback as

the same formula from (6):

FQ
CSj

n11
5
hqjn11i �Qjn11

DT
5
hqjn11/pi �Qjn11

DT
. (10)

In summary, the change is to multiply the original

large-scale forcing by p and keep the same small-scale

feedback. By doing this, the small-scale models are

solved from T to T 1 N/pDt, and we reduce the com-

putational cost by a factor of 1/p.

b. Reduced space strategy

In the previous section, we considered the case to use

1/p small-scale time steps to save the computational cost.

Following this direction, here we consider a similar

possible spatial strategy (i.e., using 1/p small-scale spa-

tial cells for an arbitrary constant p). To be simple, we

assume the large-scale model is two-dimensional, but

the whole strategy introduced here can be easily im-

plemented into 3D large-scale/2D small-scale models

without any change.

In the original mesoscale superparameterization

(Grabowski 2006), the large-scale domain is divided into

grids with horizontal size DX of a few tens of kilometers,

which is also assigned to be the domain of each small-

scale simulation. Here, we keep the large-scale cell size be

DX, but let the horizontal domain of the small-scale

models be DX/p. By doing this, we do not need to solve

the small-scale model everywhere. However, optimisti-

cally, the reduced model can capture enough small-scale

effects statistically, and pass them to the large-scale

model correctly. We mention again that the contribution

of the small-scale models to the large-scale models is

through the small-scale feedback FQ
CS. A similar idea

has been applied by one of the authors for aquaplanet

simulations Grabowski (2002) in the original super-

parameterization.

The large-scale forcing and small-scale feedback re-

main the same, but the spatial average is over the

smaller DX/p periodic domain:

f
q
LSj

n
5

Qjn11 � hqjni
DT

and

FQ
CSj

n11
5
hqjn11i �Qjn11

DT
. (11)

Everything else is the same: the models are solved by

(3) and (5).

c. Reduced time and space together

In the preceding discussion, we first introduced how to

save the computational cost by reducing the time interval

of integration by the small-scale model, then we showed

how similar spatial savings can be obtained. It is natural to

combine those two strategies to save both time and spatial

computational cost. Assume 1/p small-scale time steps

and spatial cells are both employed, then the savings are

large, since the computational cost is decreased by 1/p2.

Although the combination of these is rather straight-

forward, we summarize and present the new efficient

SSTSP below:

d Solve the large-scale models first by

Qjn11
5 Qjn 1 DT(A

Q
1 S

Q
)jn11

n 1 DTFQ
CSj

n. (12)

d Define the new large-scale forcing, with the spatial

average over the DX/p domain:

f q
LSj

n
5

Qjn11 � hqjni
DT/p

5 p
Qjn11 � hqjni

DT
. (13)

d Solve the small-scale models by
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qjn11/p
5 qjn 1 �

N/p

i51
Dt(a

q
1 s

q
)ji11

i 1 �
N/p

i51
Dtf

q
LSj

n. (14)

d Assume qjn11
5 qjn11/p, and define the small-scale

feedback as

FQ
CSj

n11
5
hqjn11i �Qjn11

DT
5
hqjn11/pi �Qjn11

DT
, (15)

d with the spatial average over DX/p domain.

Note that the space-reducing parameter and the time-

reducing parameter are set equal here for convenience,

but this is not essential.

d. An alternative formulation of the algorithm

In each time step of the original SP and SSTSP, we

solve the large-scale models first, and then the small-scale

models. We can switch the order and obtain an alterna-

tive formulation with an interesting reinterpretation of

the method.

For SP, we can first solve the small-scale models from

T to T 1 NDt 5 T 1 DT by

hqjn11i5 hqjni1 �
N

i51
Dth(a

q
1 s

q
)ji11

i i

1 �
N

i51
Dth f q

LS,SOj
ni, (16)

where f
q
LS,SO is the large-scale forcing for the small-scale

models with ‘‘SO’’ representing ‘‘switching order.’’ The

small-scale feedback to the large-scale models is then

defined as

FQ
CS,SOj

n
5
hqjn11i �Qjn

DT
. (17)

With these data, the large-scale models are then solved

from T to T 1 DT by

Qjn11
5 Qjn 1 DT(A

Q
1 S

Q
)n11

n 1 DTFQ
CS,SOj

n, (18)

and the large-scale forcing to small-scale models is set as

f
q
LS,SOj

n11
5

Qjn11 � hqjn11i
DT

. (19)

Note that a different form of large-scale forcing and

small-scale feedback are obtained because of this switch.

Simple calculation leads to the following relation:

Qjn11
5 Qjn 1 DT(A

Q
1 S

Q
)jn11

n

1 �
N

i51
Dth(a

q
1 s

q
)ji11

i i, (20)

which means that large-scale variables include all the

required effects at the n 1 1 time level. The small-scale

variables, on the other hand, do not include the large-

scale forcing at the n 1 1 time level. Note that for the

original SP (Grabowski 2004), the situation is reversed

and the small-scale model has all the sources correct:

hqjn11i5 hqjni1 DT(A
Q

1 S
Q

)jn11
n

1 �
N

i51
Dth(a

q
1 s

q
)ji11

i i, (21)

FIG. 1. Periodic extension of the small-scale solution on the small

domain I to the big domain. An illustration of p 5 5.

FIG. 2. Plot of U(z).
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and the large-scale model does not include the small-

scale feedback at the n 1 1 time level.

The same thing can be applied on the SSTSP algo-

rithms. We first solve the small-scale models by

hqjn11/pi5 hqjni1 �
N/p

i51
Dth(a

q
1 s

q
)ji11

i i

1 �
N/p

i51
Dth f q

LS,OSj
ni, (22)

with the spatial average over DX/p domain. By assuming

qjn11
5 qjn11/p, we define the small-scale feedback as

FQ
CS,OSj

n
5
hqjn11/pi �Qjn

DT/p
5 p
hqjn11i �Qjn

DT
. (23)

The large-scale models are then solved by

Qjn11
5 Qjn 1 DT(A

Q
1 S

Q
)jn11

n 1 DTFQ
CS,OSj

n, (24)

and the large-scale forcing is

f
q
LS,OSj

n11
5

Qjn11 � hqjn11i
DT

. (25)

The two main changes, when compared with SP, include

the same assumption qjn11
5 qjn11/p utilized earlier in

section 2c, and also that the small-scale feedback FQ
CS,OSj

n

is p times bigger, which can both be explained in the

following way. Instead of solving the small-scale models

in the original DX 3 DT domain denoted by D, we limit

them to a much smaller domain 1/pDX 3 1/pDT in

SSTSP, denoted by I in Fig. 1. We can periodically ex-

tend the solutions in space–time inside the domain I, to

FIG. 3. The contours of the surface precipitation from different simulations when a 5 1: (a) CRM squall-line

simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.
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the big domain D, as shown in Fig. 1. Then we obtain an

approximate solution of the small-scale model every-

where inside the domain D. The assumption qjn11
5

qjn11/p, used here and in the earlier SSTSP algorithm,

can be easily understood following this periodic exten-

sion. From time T to T 1 DT, small-scale models solu-

tions on domain I are repeated p times. Therefore, the

small-scale feedback, which represents the information

transferred from small-scale models to large-scale models

during time interval [T, T 1 DT], should be p times the

one contributed by the small domain I only. This explains

the two main changes between SP and SSTSP methods, as

pointed out above. To be consistent with the original SP

developed by Grabowski (2004), the performance of the

SSTSP algorithms developed in section 2c will be as-

sessed on a stringent test bed in section 3. However, the

alternative algorithm developed here with this appealing

interpretation has also been tested and performs com-

parably on the same stringent test bed. The correlations

differ in the third decimal place.

3. Application to squall lines

In this section, we apply the new efficient sparse

space–time algorithms developed in section 2 to squall-

line experiments that have either dying scattered con-

vection or quasi-steady squall lines of varying strength

for a long time. We also run the same tests with a CRM

simulation and the original SP approach. The compari-

son of these numerical results shows that significant

large-scale features such as horizontal velocity and spe-

cific humidity are captured with significant skill by the

new SSTSP algorithms as well as the mean propagation

speed. Furthermore, the regime of dying scattered con-

vection with weak ambient shear is also captured by the

SSTSP algorithms. The standard units kilometers (for x

and height z) and meters per second (for velocity) will be

used in the following sections without further explanation.

a. Experimental design

We explore the squall-line experiment designed in

Jung and Arakawa (2005) and Grabowski (2006) to test

the superparameterization algorithm. A similar suite of

experiments are developed in Majda and Xing (2010) to

analyze the multiscale properties of squall lines. The

model we solve is a simplified 2D version of (1) and (2) in

both the large-scale and small-scale models. Horizontal

velocities Uh and uh are reduced to the east–west com-

ponent only. The large-scale model has a 2D domain

of 1024-km length and 25-km height, with the horizontal

grid size 32 km. The CRM is run on this domain with

1-km resolution and provides the truth standard to test

performance of the SSTSP algorithms. We also run

mesoscale SP as in Grabowski (2006) with full spatial

resolution in order to explore the effect of the spatial

periodicity approximation alone. Thus, for the super-

parameterization test, the small-scale model is solved on

each cell, hence the periodic domain is 32 km long and

TABLE 1. The jet max and squall-line speed of these five

simulations when a 5 1.

CRM SP SSTSP2 SSTSP3 SSTSP6

Jet max (km) 11.25 11.25 11.25 11.25 11.25

Mean propagation

speed (m s21)

8.25 8.25 8.25 8.25 8.25

FIG. 4. The contours from the CRM test with 32-km resolution when a 5 1: (a) surface precipitation and

(b) large-scale horizontal velocity.
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25 km high. A total of 32 independent small-scale models

are solved through the 1024-km horizontal domain. A

uniform 1-km horizontal grid is used for the small-scale

models as in the CRM. A 100-point vertical grid is taken

for both large- and small-scale models, with a gravity

wave absorber applied in the uppermost 7 km of the do-

main. The time step is set as 60 s for the large-scale

models, and 10 s for the small-scale models, hence the

small-scale models are solved 6 times in each big time

step. An open lateral boundary condition is utilized for

the large-scale model, and a periodic boundary condition

is used for the small-scale model. The initial temperature,

humidity profiles and horizontal wind fields are based

on the Global Atmospheric Research Program (GARP)

Atlantic Tropical Experiment (GATE) phase-III mean

sounding. In standard fashion, a 4-km-deep, 512-km-long

cold pool of Du9 5 26.75 K and Dqy9 5 23.5 g kg21 (see

Majda and Xing 2010 for details) is placed in the domain

on the initial data to initiate convection. This initial cold

pool is set to mimic the background cold air produced by

a decaying cold front in the synoptic environment.

A large-scale forcing representing the climatological

background is imposed on the model through the cooling

and moistening rates. We keep this large-scale forcing

for 6 h, then remove it and observe whether a squall line

forms and keeps propagating for many hours afterward as

a turbulent free-traveling wave. To provide small-scale

excitation (important for the initial development of

convection), a 10% amplitude random noise is added

to the surface fluxes, with random numbers generated

at every model time step. Rotational effects are not

considered.

THE TEST BED

We use a stringent test bed to evaluate the computa-

tional performance of the SSTSP algorithms. Four dif-

ferent initial large-scale background shears are used to

generate the squall lines. They are given by

FIG. 5. The contours of the large-scale horizontal velocity hui from different simulations when a 5 1: (a) CRM

squall-line simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.
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U(z) 5
10a cos

pz

12

� �
� cos

2pz

12

� �� �
, if z , 12,

�20a, otherwise,

8<
:

(26)

for a fixed coefficient a. We show the case when a 5 1 in

Fig. 2. The jet max refers to the maximum of the back-

ground shear, which is marked in Fig. 2. Next, we run

this squall-line experiment for four different cases with

a 5 1 (a strong background shear), a 5 0.8 (a weak

shear), and a 5 0.5 (a weaker shear), as well as a 5 0.3.

We systematically reduce the ambient shear and thus

raise the Richardson number (Majda 2003, chapter 3).

Thus, the resulting forcing strength implied by the

method changes quite a lot from experiment to experi-

ment for large values of p. This is achieved in the test

bed. It is shown that a propagating squall line always

emerges in these three cases with the same speed (Majda

and Xing 2010). The weakest shear, a 5 0.3, results in

dying scattered convection. We repeat these tests with

the SSTSP algorithms and want the coarse numerical

methods to reproduce this behavior. If the squall line has

zero propagation speed in a reference frame, it is easier

to process statistical data. For this purpose, in standard

fashion, we subtract the mean propagation speed, which

can be obtained by calculating the propagation speed of

the surface precipitation, from the initial large-scale

vertical wind profile in our experiment so the squall

line stays near the center of the domain. This is the

background shear we actually use and get statistically

steady turbulent fronts. In addition, in section 3d, we

consider forced propagating squall lines to compare the

speed of propagation predicted by SSTSP in an in-

homogeneous environment.

FIG. 6. As in Fig. 5, but for the contours of the large-scale specific humidity hq
y
i from different simulations when a 5 1.

TABLE 2. The correlation between the large-scale variables

[defined in (27)] from these simulations for a 5 1.

SP SSTSP2 SSTSP3 SSTSP6

hui SP — 0.9025 0.8621 0.5876

CRM 0.9132 0.8735 0.8082 0.6215

hq
y
i SP — 0.9417 0.8738 0.7168

CRM 0.8932 0.8521 0.7781 0.6571
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b. Performance of the SSTSP algorithms

In this subsection, we apply the new efficient SSTSP

explained in section 2 to the above test bed. Three dif-

ferent simulations are considered with different co-

efficients p. To make the comparison, we apply the

original SP to the same squall-line experiment, and also

the CRM simulation in the same setup. The large-scale

features are compared to check the statistical accuracy

of the SSTSP algorithms. (Note that by using the effi-

cient algorithms, computational cost is saved by a factor

of 1/p2.) Detailed results are shown.

We start with the case when a 5 1 for the background

shear in (26). We run the original SP simulation, CRM

test, and 3 different SSTSP algorithms with p (defined in

section 2) 5 2, 3, and 6, respectively. From now on, we

refer to these five simulations as SP, CRM, SSTSP2,

SSTSP3, and SSTSP6, with no further explanation. In the

original superparameterization, the small-scale periodic

domain size is 32 km and the small-scale models are

solved 6 times in each big time step. As mentioned in

section 2, 1/p small-scale time steps and 1/p small-scale

horizontal cells are used in the efficient algorithms to save

the computational cost. Hence, the small-scale periodic

domain size is set as 16, 10, and 6 km, respectively, for

the SSTSP2, SSTSP3, and SSTSP6, while the small-scale

models are solved for 3, 2, and 1 time steps, respectively,

in each big time step. The savings in computational cost,

1/p2, can be easily observed from these reductions.

We run the experiments for 36 h, when the squall line

remains statistically steady for a long time. This can be

observed from the contour plots of the surface pre-

cipitation, as shown in Fig. 3. In Table 1, we show the

mean propagation speed (also noted as squall-line speed),

and jet max, from which we observe that mean propaga-

tion speeds keep the same for all these five experiments.

FIG. 7. The contours of the eddy flux �(hu9ihw9i)
z

[(m s21)2 km21] from different simulations when a 5 1: (a)

CRM squall-line simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6. [Note: Different scales are used in this figure. The

scale in (d) is much smaller.]

4316 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



These results show that the reduced description through

the SSTSP algorithms does not affect the propagation

speed of the squall line. One may wonder whether that is

because the small-scale models have negligible impact. To

emphasize that the small-scale models play an important

role in capturing the squall line, we run the CRM code

with very coarse 32-km resolution, which is exactly the

resolution for the large-scale model of the SP test. The

other setup is the same as the above test. The surface

precipitation and large-scale horizontal velocity, as de-

fined in (27), are shown in Fig. 4, from which we can

observe that no squall line is developed on such coarse

meshes. The resolution is too big to capture those cloud-

scale effects, while these effects are measured by the

small-scale model in the SP and SSTSP tests, and thus

information is passed to the large-scale model through

the small-scale feedback.

Next, we concentrate on large-scale features in these

simulations. As we can see from the surface precipitation

contour plots, these squall lines are statistically quasi-

steady as turbulent traveling waves after the initial phase.

Hence, we compute the time average over the 5 h be-

tween the 18th and 23rd hours to gather time-averaged

statistical data. This time-averaged numerical solution

of horizontal velocity is denoted by hui(x). Thus, the

large-scale horizontal velocity hui, on mesoscales of order

100 km, is defined as the spatial average:

hui(x) 5
1

96

ð48

�48

hui(x 1 s) ds, (27)

and the spatial fluctuation of velocity is given by

hu9i(x) 5 hui(x)� hui(x). (28)

FIG. 8. The contours of the surface precipitations from different simulations with a 5 0.3: (a) CRM squall-line

simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.
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For computational convenience, 96 is used instead of

100 in (27). Similarly, we can compute hui and hq
y
i. The

large-scale horizontal velocity and specific humidity are

shown in Figs. 5 and 6 for different experiments. From

these figures, we observe that the large-scale horizontal

velocities have very similar structures, which have shock-

like structures with strong negative velocities at low levels

in front but at high levels behind the squall line (i.e.,

a jump updraft; Lafore and Moncrieff 1989). To further

explore the statistical skill of the SSTSP algorithms, we

compute the correlation between these plots. The results

are shown below in Table 2. We remind the reader that

these large-scale variables are the most important thing to

examine as the output in a squall line. The correlation is

above 0.75 for both the horizontal velocity and humidity

for the simulations SSTSP2 and SSTSP3, which shows nice

structural agreement. Hence, the large-scale variables are

captured well in a statistical way by our new efficient al-

gorithms SSTSP2 and SSTSP3, with a much lower com-

putational cost. Even SSTSP6 has pattern correlation

above 0.6 for velocity and humidity. There are only six

grid points in the small-scale model with SSTSP6; never-

theless, there is enough chaotic dynamics here in the

small-scale model to capture some statistical features of

the CRM simulation.

As shown in Lafore and Moncrieff (1989), Wu and

Moncrieff (1996), and Houze (2004), the eddy flux

divergences �hu9w9iz and �hw9u9iz can be important in

determining the large-scale features. Among them, the

eddy momentum flux divergence �hu9w9i
z

has been

shown to be one important connection between the

large- and small-scale models. We show �(hu9ihw9i)z

explicitly in Fig. 7. From the result of the CRM test, we

can observe that there exists a positive region below and

a negative region above. The positive momentum flux

divergence below is associated with the acceleration of

the positive large-scale flow and the deceleration of

negative flow in these areas, which is a typical example

FIG. 9. The contours of the large-scale horizontal velocity hui from different simulations when a 5 0.8: (a) CRM

squall-line simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.

4318 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



of the upscale transfer in squall lines of moist available

potential energy to the large-scale horizontal momen-

tum (Lafore and Moncrieff 1989; Moncrieff 1992; Wu

and Moncrieff 1996; Moncrieff and Liu 2006; Majda and

Xing 2010). This phenomenon is captured qualitatively

by both the SP and the SSTSP3 algorithm, although the

detailed vertical location of the dipole structure is dif-

ferent and the magnitude of the eddy flux divergence is

diminished. The fact that the full-resolution SP has this

vertical discrepancy suggests that the source of this shift

in the dipole is the periodic spatial domain in the small-

scale models in SP. This shows that SSTSP3 algorithm is

a good statistical approximation to the CRM results, but

with a gain of a factor of 9 in efficiency over SP. We also

find that SSTSP6 does not provide a satisfying result

here for this eddy momentum flux divergence.

c. Numerical results with weaker shears

In this subsection, we repeat the same numerical tests as

in section 3b, but with weaker background shears. Notice

that the background shear is defined in (15) with a pa-

rameter a, which is set as 1 in section 3b. Here we run the

same tests with a 5 0.8, a 5 0.5, and a 5 0.3, respectively.

We want to show that SSTSP algorithms capture the

large-scale features of the CRM in these tests as well.

As shown in Majda and Xing (2010), we find that when

a 5 0.3 or smaller, the squall line generated by CRM test

dies after the initial formation. We repeat this test for

SP, SSTSP2, SSTSP3, and SSTSP6, and the same behav-

ior is observed. The corresponding surface precipitation is

shown in Fig. 8 for a 5 0.3, from which we observe that

for the first few hours the initial cold pools generate

forced squall lines. The squall lines stay there for few

hours, and after that they start to die with scattered

convection. They disappear completely after the 24th

hour. The SSTSP3 and SSTSP6 both capture this fact.

This shows that the SSTSP algorithms not only capture

the large-scale features when a squall line is developed,

but also have significant skill in the situation when no

quasi-steady squall line is formed.

Next we consider a 5 0.8, and observe that the mean

propagating speed stays the same for all these experiments.

FIG. 10. As in Fig. 9, but for the large-scale specific humidity.
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The contour plots of surface precipitation are not in-

cluded here for simplicity. As in section 3b for a 5 1, the

large-scale horizontal velocity and specific humidity

are shown in Figs. 9 and 10, with the corresponding

correlation shown in Table 3. We also compute the

correlation compared with the ones from the original SP

simulation and CRM simulation. The high correlation,

above 0.75, of large-scale horizontal velocity and specific

humidity between SSTSP2, SSTSP3, CRM, and SP shows

that the new SSTSP algorithms capture the main large-

scale feature of the squall line as in section 3b. There is

even correlation skill above 0.6 for the SSTSP6 algorithm

with 1/36 computational savings.

Finally, we address the case a 5 0.5. The same envi-

ronment is explored. Similarly, we observe that the

mean propagating speed stays the same for all these

experiments. The large-scale variables are shown in

Figs. 11 and 12, with the corresponding correlation

shown in Table 4. The same conclusion holds as in the

earlier experiments and we observe the high correlation

of large-scale horizontal velocity and specific humidity

for the SSTSP2 and SSTSP3 tests with similar moderate

skill for SSTSP6 as reported earlier. The new efficient

algorithm SSTSP3 saves the computational cost of these

small-scale models by a factor of 9, and captures the

main large-scale effects of all the squall-line experi-

ments in a statistically accurate fashion.

d. Forced propagating squall lines

Above we showed that for a suite of quasi-steady squall-

line experiment in a system-relative reference frame, the

FIG. 11. The contours of the large-scale horizontal velocity hui from different simulations with a 5 0.5: (a) CRM

squall-line simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.

TABLE 3. The correlation between the large-scale variables

[defined in (27)] from these simulations when a 5 0.8.

SP SSTSP2 SSTSP3 SSTSP6

hui SP — 0.9011 0.8451 0.5924

CRM 0.9057 0.8834 0.8145 0.6734

hq
y
i SP — 0.9214 0.8512 0.7064

CRM 0.8865 0.8432 0.7623 0.6352
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SSTSP algorithms capture the large-scale features of the

squall line in a statistically accurate way. In this sub-

section, we modify this experiment to obtain a propagat-

ing squall line, and check the performance of the new

SSTSP algorithms as regards propagation speed.

The main setup of the squall-line experiment is the

same. A different initial large-scale background shear is

used for this experiment. It is the large-scale shear from

the GARP GATE phase-III experiment and has been

used in Grabowski (2006). The other difference between

this experiment and the one in section 3b is that a periodic

boundary condition is used on the large-scale model and

large-scale forcing is applied for all the time. Unlike the

earlier experiments, here we do not choose a flow-relative

reference frame so the forced squall line propagates with

an almost uniform speed. Because of the large-scale pe-

riodic boundary condition used, the squall line leaves the

domain and returns at the other end.

We run the experiments for 3 days, the outer limit of

squall-line persistence until the mesoscale background

environment is expected to change. We can observe the

formation of a moving steady squall line with a fixed

speed within the first 36 h. This can be inferred from the

contour plots of the surface precipitation, as shown in

Fig. 13. Propagating squall lines are obtained in all these

experiments, and as shown in Table 5, both the SSTSP3

and SSTSP6 cases reproduce the squall-line speed in the

CRM to within 10%. We notice that the active squall-

line region in the SSTSP tests is broader, compared with

the full-resolution CRM and SP tests. We believe this is

because fewer spatial cells are used in the computation

of SSTSP small-scale models; therefore, a larger spread

over the coarse mesh of the large-scale model is needed

FIG. 12. As in Fig. 11, but for the large-scale specific humidity hq
y
i.

TABLE 4. The correlation between the large-scale variables

[defined in (27)] from these simulations when a 5 0.5.

SP SSTSP2 SSTSP3 SSTSP6

hui SP — 0.8556 0.8023 0.6134

CRM 0.8761 0.8573 0.7654 0.6248

hq
y
i SP — 0.8932 0.8022 0.6573

CRM 0.8635 0.8154 0.7235 0.6154
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to support propagation. We have checked the statistical

large-scale features of these tests, and observed similar

high correlations between the large-scale horizontal

velocity and specific humidity as reported earlier in

sections 3b and 3c.

4. Conclusions

In section 2 we introduced the new efficient SSTSP

algorithms, based on a modification of the original SP

approach. By reducing the time interval of integration

and the spatial periodic domain of the small-scale

models with a factor of 1/p, the computational cost can

be reduced by a factor of 1/p2. A stringent test bed in-

volving moist convection interacting with shear ranging

from strong and weak free and forced propagating squall

lines, to dying scattered convection was utilized to test

the performance of the algorithms. Comparisons with

the full-resolved CRM results and the original fully re-

solved SP were presented throughout the test suite. In all

tests both the SSTSP3 and SSTSP6 algorithms captured the

squall-line speed with high accuracy as well as the process

of dying scattered convection with weaker shears. The

SSTSP3 algorithm was shown to capture the main large-

scale features of the squall-line tests in a statistically ac-

curate way with pattern correlation with the CRM above

FIG. 13. The contours of the surface precipitation from different simulations for the forced propagating squall lines:

(a) CRM squall-line simulation, (b) SP, (c) SSTSP3, and (d) SSTSP6.

TABLE 5. The jet max and squall-line speed of these five

simulations for the propagating squall-line tests.

CRM SP SSTSP2 SSTSP3 SSTSP6

Jet max (km) 14.1 14.1 14.1 14.1 14.1

Squall-line

speed (m s21)

11.5 10.5 10 10 10
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0.75 for both horizontal velocity and specific humidity, but

with 1/9 the computational cost of the original SP. The

computational cost was reduced significantly in this way.

Even the extreme version of the algorithm, with p 5 6 and

a 1/36 reduction in computational cost, retained significant

skill throughout the test suite with pattern correlation with

horizontal velocity and humidity above 0.6. This is sur-

prising because in the SSTSP formulation, these are only

six spatial grid cells and one small-scale time step for the

small-scale model in SSTSP6; nevertheless, the small-scale

model is chaotic enough in preconditioned regions of deep

convection to support chaotic convective cells that com-

municate significant information to the large-scale model.

For the strong squall line reported in section 3b, there is

a significant eddy flux divergence driving horizontal mo-

mentum at large scales. While SSTSP3 and SP qualita-

tively capture the vertical dipole with the correct sign that

occurred in the CRM result, the vertical location was

displaced. The fact that this occurred with the fully re-

solved SP algorithm indicates that small-scale periodicity

in the SP models is the probable source of this discrepancy.

The SSTSP6 algorithm had too coarse resolution to re-

produce this eddy flux divergence with any skill.

These new algorithms can be applied for parallel com-

putations and implemented on supercomputers easily.

Only 2D mesoscale models are tested in this paper. How-

ever, a 3D model will provide better statistics for SP

models in the vicinity of a given location, so this approach

might actually work even better in the case of a 3D large-

scale outer model. Recently, the first two authors have

developed a new asymptotic multiscale model for squall

lines (Majda and Xing 2010). This multiscale model can

be applied directly to these new algorithms to provide

basic understanding of SSTSP algorithms as numerical

methods. We leave all these for future research.

All of the results developed here point to the potential

use of the SSTSP algorithms for ensemble prediction

in limited area weather forecasting. The systematic de-

velopment and skill of these algorithms developed here in

the mesoscale atmosphere context suggest their potential

use in other areas of climate atmosphere ocean science,

such as for deep ocean convection, submesoscale eddies

in the ocean mixed layer, etc., and merits an examination

of the original SP algorithms for large-scale tropical dy-

namics (Grabowski 2002, 2003, 2004).

Recently (Majda 2007), systematic multiscale mod-

eling was utilized to establish a link between SP algo-

rithms on mesoscales and heterogeneous multiscale

methods (HMM) developed in the applied mathemat-

ics literature for complex systems with widely disparate

time scales (E and Engquist 2003; Vanden-Eijnden

2003; Engquist and Tsai 2005). In fact, the inter-

pretation of the new SSTSP algorithms developed in

section 3d can be regarded as a reduced time, HMM

method (Vanden-Eijnden 2003; Engquist and Tsai

2005). However, there are significant differences in the

physics of mesoscale moist convection which has in-

termittency in space–time due to evolving chaotic

moist and dry regions and only moderate values of

scale separation � ffi 1/6– 1/10 (Majda 2007; Majda and

Xing 2010), while the reduced time HMM time step-

pers are used for very different physical systems

with wide scale separation � 5 1023, 1024, and rapid

local equilibration in time (Vanden-Eijnden 2003;

Engquist and Tsai 2005). Thus, the skill reported here

for the new SSTSP algorithms is through very different

physical processes and time scales as compared with

HMM. For further applications to anisotropic turbu-

lence as mentioned above, it is very important to de-

velop a basic understanding of the SSTSP algorithms

and HMM as statistical numerical methods in an ide-

alized context. Such a family of test models has been

developed recently (Majda and Grote 2009).

Acknowledgments. The research of Andrew Majda is

partially supported by ONR N0014-05-1-0164 and NSF

DMS-0456713. Yulong Xing has been supported as a

postdoctoral fellow through these grants.

REFERENCES

Byers, H. R., and R. R. Braham, 1949: The Thunderstorm—Report

of the Thunderstorm Project. U.S. Government Printing Of-

fice, 287 pp.

E, W., and B. Engquist, 2003: The heterogeneous multiscale methods.

Comm. Math. Sci., 1, 87–132.

Engquist, B., and Y.-H. Tsai, 2005: Heterogeneous multiscale

methods for stiff ordinary differential equations. Math. Comput.,

74, 1707–1742.

Grabowski, W. W., 1998: Toward cloud resolving modeling of

large-scale tropical circulations: A simple cloud microphysics

parameterization. J. Atmos. Sci., 55, 3283–3298.

——, 2001: Coupling cloud processes with the large-scale dynamics

using the cloud-resolving convection parameterization (CRCP).

J. Atmos. Sci., 58, 978–997.

——, 2002: Large-scale organization of moist convection in ideal-

ized aquaplanet simulations. Int. J. Numer. Methods Fluids, 39,
843–853.

——, 2003: MJO-like coherent structures: Sensitivity simulations

using the cloud-resolving convection parameterization (CRCP).

J. Atmos. Sci., 60, 847–864.

——, 2004: An improved framework for superparameterization.

J. Atmos. Sci., 61, 1940–1952.

——, 2006: Comments on ‘‘Preliminary tests of multiscale model-

ing with a two-dimensional framework: Sensitivity to coupling

methods.’’ Mon. Wea. Rev., 134, 2021–2026.

——, and P. K. Smolarkiewicz, 1999: CRCP: A Cloud Resolving

Convection Parameterization for modeling the tropical con-

vecting atmosphere. Physica D, 133, 171–178.

Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geo-

phys., 42, RG4003, doi:10.1029/2004RG000150.

DECEMBER 2009 X I N G E T A L . 4323



Jung, J.-H., and A. Arakawa, 2005: Preliminary tests of multiscale

modeling with a two dimensional framework: Sensitivity to

coupling methods. Mon. Wea. Rev., 133, 649–662.

Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations

of the atmospheric general circulation using a cloud-resolving

model as a superparameterization of physical processes.

J. Atmos. Sci., 62, 2136–2154.

Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of

the organization and interaction of the convective and stratiform

regions of tropical squall lines. J. Atmos. Sci., 46, 521–544.

Majda, A. J., 2003: Introduction to PDEs and Waves for the

Atmosphere and Ocean. Vol. 9, Courant Lecture Notes in

Mathematics, American Mathematical Society, 234 pp.

——, 2007: Multiscale models with moisture and systematic strate-

gies for superparameterization. J. Atmos. Sci., 64, 2726–2734.

——, and M. J. Grote, 2009: Mathematical test models for super-

parameterization in anisotropic turbulence. Proc. Natl. Acad.

Sci. USA, 106, 5470–5474, doi:10.1073/pnas.0901383106.

——, and Y. Xing, 2010: New multi-scale models on mesoscales

and squall lines. Comm. Math. Sci., 8, 113–144.

Moncrieff, M. W., 1992: Organized convective systems: Arche-

typal dynamical models, mass and momentum flux the-

ory, and parameterization. Quart. J. Roy. Meteor. Soc., 118,

819–850.

——, and C. Liu, 2006: Representing convective organization in

prediction models by a hybrid strategy. J. Atmos. Sci., 63,

3404–3420.

Randall, D., M. Khairoutdinov, A. Arakawa, and W. W. Grabowski,

2003: Breaking the cloud parameterization deadlock. Bull.

Amer. Meteor. Soc., 84, 1547–1564.

Vanden-Eijnden, E., 2003: Numerical techniques for multiscale

dynamical systems with stochastic effects. Comm. Math. Sci.,

1, 385–391.

Wu, X., and M. W. Moncrieff, 1996: Collective effects of organized

convection and their approximation in general circulation

models. J. Atmos. Sci., 53, 1477–1495.

Wyant, M. C., M. Khairoutdinov, and C. S. Bretherton, 2006: Cli-

mate sensitivity and cloud response of a GCM with a super-

parameterization. Geophys. Res. Lett., 33, L06714, doi:10.1029/

2005GL025464.

4324 M O N T H L Y W E A T H E R R E V I E W VOLUME 137


