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Abstract. In this paper, we survey our recent work on designing high order positivity-
preserving well-balanced finite difference and finite volume WENO (weighted essen-
tially non-oscillatory) schemes, and discontinuous Galerkin finite element schemes for
solving shallow water equations with a non-flat bottom topography. These schemes
are genuinely high order accurate in smooth regions for general solutions, essentially
non-oscillatory for general solutions with discontinuities, and at the same time, they
preserve exactly the water at rest or the more general moving water steady state solu-
tions. A simple positivity-preserving limiter, valid under suitable CFL condition, has
been introduced in one dimension and reformulated to two dimensions with triangu-
lar meshes, and we prove that the resulting schemes guarantee the positivity of the
water depth.
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1 Overview

Free surface flows have wide applications in ocean, environmental, hydraulic engineer-
ing and atmospheric modeling, with examples including dam break and flooding prob-
lems, tidal flows in coastal water regions, nearshore wave propagation with complex
bathymetry structure, Tsunami wave propagation and ocean model. Three-dimensional
Navier-Stokes equations can be used to simulate such flows directly. However, in the
case where the horizontal length scale is much greater than the vertical length scale, one
can average over the depth to eliminate the vertical direction and reduce the model into
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two-dimensional nonlinear shallow water equations (SWEs). SWEs play a critical role in
the modeling and simulation of free surface flows in rivers and coastal areas, and can pre-
dict tides, storm surge levels and coastline changes from hurricanes and ocean currents.
SWEs also arise in atmospheric flows, debris flows, and certain hydraulic structures like
open channels and sedimentation tanks. SWEs take the form of non-homogeneous hy-
perbolic conservation laws with source terms modeling the effects of bathymetry and
viscous friction on the bottom. In one space dimension, SWEs are defined as follows

ht+(hu)x =0,

(hu)t+

(
hu2+

1
2

gh2
)

x
=−ghbx, (1.1)

where h denotes the water height, u is the velocity of the fluid, b represents the bottom
topography and g is the gravitational constant. In this paper, we will consider the vari-
ation of the bottom as the only source term, but other terms, such as a friction term or
variations of the channel width, could also be added.

Due to the large scientific and engineering applications of the SWEs, research on ef-
fective and accurate numerical methods for their solutions has attracted great attention in
the past two decades. Two types of difficulties are often encountered at the simulation of
the SWEs, coming from the preservation of steady state solutions and the preservation of
water height positivity. The first difficulty is related to the treatment of the source terms.
An essential part for the SWEs and other conservation laws with source terms is that they
often admit steady-state solutions in which the flux gradients are exactly balanced by the
source terms. SWEs admit the general moving water equilibrium, given by

m :=hu= const and E :=
1
2

u2+g(h+b)= const. (1.2)

where m, E are the moving water equilibrium variables. People are often interested in the
still water steady-state solution, which represents a still flat water surface, and referred
as the “lake at rest” solution:

u=v=0 and h+b= const. (1.3)

Still water steady state (1.3) is simply a special case of the moving water steady state
(1.2) when the velocity reduces to zero. Traditional numerical schemes with a straight-
forward handling of the source term cannot balance the effect of the source term and
the flux, and usually fail to capture the steady state well. They will introduce spurious
oscillations near the steady state. The well-balanced schemes are specially designed to
preserve exactly these steady-state solutions up to machine error with relatively coarse
meshes and therefore, it is desirable to design numerical methods which have the well-
balanced property. The other major difficulty often encountered in the simulations of the
SWEs is the appearance of dry regions in many engineering applications. Typical appli-
cations include the dam break problem, flood waves and run-up phenomena at a coast
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with tsunamis being the most impressive example. Special attention needs to be paid
near the dry/wet front to preserve the water height positivity, otherwise they may pro-
duce non-physical negative water height, which becomes problematic when calculating
the eigenvalues u±

√
gh to determine the time step size ∆t, and renders the system not

hyperbolic and not wellposed.
In the past two decades, many well-balanced numerical methods have been devel-

oped for the SWEs. The well-balanced property is often referred as “exact C-property”,
which means that the scheme is “exact” when applied to the stationary case (1.3). The
concept was first proposed by Bermudez and Vazquez in [4], where they extended up-
wind methods to the SWEs with source terms. Following this pioneering work, many
other schemes for the SWEs with such well-balanced property have been developed in
the finite volume community. A quasi-steady wave propagation algorithm based upon
modified Riemann problems is presented in [2, 33, 34]. Another popular approach is to
rewrite the equation in terms of the water surface instead of water height (also referred
as the pre-balanced formulation), and well-balanced methods [31,48,69] can be designed
based on such formulation. Well-balanced methods can also be derived utilizing the
idea of hydrostatic reconstruction initially proposed in [1]. A kinetic approach to achieve
well-balanced property has been shown in [44]. In the framework of residual distribu-
tion, simulation for the SWEs with well-balanced properties is shown in [46,47]. For more
related work, see also [17, 20, 22, 24, 25, 28, 35, 37, 49, 66].

Most of the works mentioned above are for numerical schemes of first or second
order accuracy. In recent years, high order accurate numerical schemes (with higher
than second-order accuracy), have attracted increasing attention in many computational
fields. They have been developed to reduce the number of computational cells and
minimize the computational time to achieve the desired resolution. Some finite differ-
ence/volume weighted essentially non-oscillatory (WENO) schemes with well-balanced
property have been designed for the SWEs recently. In [56,59], a special decomposition of
the source term was introduced which leads to high order finite difference and finite vol-
ume well-balanced WENO methods. The hydrostatic reconstruction idea is extended to
high order methods in [39,60] with a careful high order approximation of the source term.
Path-conservative methods for the non-conservative product are introduced in [13, 42]
and extended to the SWEs. Other high order finite volume methods include [10–12].
Recently, finite element discontinuous Galerkin (DG) methods have attracted increasing
attention in many computational fields. Several advantages of the DG method, including
its high order accuracy, high parallel efficiency, flexibility for hp-adaptivity and arbitrary
geometry and meshes, make it suited for the SWEs, see [16, 19, 23, 38, 51]. Several well-
balanced DG methods have been proposed in the last few years, by the idea of special
decomposition of the source term [59], hydrostatic reconstruction [18, 29, 60], and path-
conservative [45].

The well-balanced methods mentioned above target to preserve the still water steady
state (1.3). They cannot preserve the moving water steady state (1.2), and it is signifi-
cantly more difficult to obtain well-balanced schemes for such equilibrium. In a recent pa-
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per [63], several numerical examples are shown to demonstrate the advantage of moving-
water well-balanced schemes over still-water well-balanced schemes for the SWEs. Those
numerical examples clearly demonstrate the importance of utilizing moving-water well-
balanced methods for solutions near a moving-water equilibrium. There have been a
few attempts in developing well-balanced methods for the moving water equilibrium. A
class of first order accurate flux-vector-splitting schemes based on the theory of noncon-
servative products was proposed in [24]. Well-balanced second order central schemes
on staggered grids can be found in [49]. Numerical methods based on local subsonic
steady state reconstruction, which are exactly well-balanced for subsonic moving equi-
libria, was shown in [7]. A few high order accurate well-balanced methods for the mov-
ing water equilibrium have been introduced recently. In [40], well-balanced finite vol-
ume weighted essentially non-oscillatory (WENO) methods are designed for arbitrary
equilibria of the SWEs. The key component there is a special way to recover the moving
water equilibrium and a well-balanced quadrature rule of the source term. Other high or-
der well-balanced methods for the moving water equilibrium include the central WENO
methods [50], path-conservative WENO methods [14] and DG methods [55].

The other difficulty in simulating the SWEs is associated with the robustness of the
numerical methods near the wet/dry front. This problem relates to the fact that there is
no water in these areas, while the SWEs (1.1) are only defined in wet regions. Therefore
we may need to deal with moving boundary problems. One could use the mesh adaption
technique [6] which tracks the dry front by changing the meshes. It has the advantage
in accuracy but is computationally expensive. A more popular approach is the thin layer
technique, which maintains a very thin layer in dry elements and includes these dry el-
ements in the computation. The difficulty then reduces to the issue of preserving the
non-negativity of water height for the SWEs during the computation. Another related
problem is the computation of velocity given height and discharge in the nearly dry re-
gion. One usually introduces a threshold on the velocity (or on the water height) to avoid
extremely large velocity when h�1. There have been a number of positivity-preserving
schemes [1, 5, 8, 15, 21, 32, 35] in the finite volume framework. They usually rely on the
positivity-preserving Riemann solver, for example the HLL solver [26]. Some positivity-
preserving DG methods with P1 polynomial spaces [9, 18, 30] have been developed in
the past few years, mainly relying on modifying the slope to avoid negative values of
water height. For both finite volume and DG methods, the issue of positivity-preserving
property for high order methods is non-trivial. Most existing high order wetting and dry-
ing treatments are focused on post-processing reconstruction of the data obtained from
the numerical solution at each time level. One example is to project the solution to a
non-negative linear element in the cell near the wet/dry front. Even though the post-
processing can bring the reconstruction to satisfy non-negative water height, this alone
usually does not guarantee that the solution (e.g., cell average from a finite volume or DG
scheme) at the next time step still maintains the non-negative water height property. If
negative cell averages for the water height are obtained at the next time level, the positiv-
ity reconstruction post-processing will destroy the conservation. Recently, following the



Xing and Shu / J. Math. Study, x (201x), pp. 1-28 5

general approach introduced in [67], a sufficient condition on the time step size to ensure
the positivity of cell averages of water height, plus a simple positivity-preserving limiter,
has been studied in [61] for the finite volume methods, and in [64,65] for the DG methods
in one dimension and two dimensions with unstructured meshes.

In this paper, we survey the development of high order well-balanced positivity-
preserving finite difference and finite volume WENO schemes and finite element DG
methods developed by us recently in a series of papers [40, 41, 55–61, 64, 65], and com-
ment on their applicability in different situations. In Section 2, we describe well-balanced
finite difference WENO methods. High order well-balanced positivity-preserving finite
volume WENO schemes and DG methods are discussed in Sections 3 and 4, respectively.
Concluding remarks are given in Section 5. We do not present any numerical simulation
results here, and simply refer to these papers for more details.

2 Finite difference methods

In this section, we focus on high order accurate finite difference WENO methods for the
SWEs, which are well-balanced for the still water at rest steady state (1.3). The main idea
is to decompose the source term into a sum of two terms, and discretize each term inde-
pendently using a finite difference formula consistent with the WENO approximation to
the flux derivative terms in the conservation law.

For the ease of presentation, we denote the SWEs (1.1) by

Ut+ f (U)x = s(h,b)

where U=(h,hu)T with the superscript T denoting the transpose, f (U)=(hu,hu2+ 1
2 gh2)T

is the flux and s(h,b) is the source term. In this paper, we mainly focus on the spatial dis-
cretization. Total variation diminishing (TVD) high order Runge-Kutta time discretiza-
tion [54] is usually used in practice for stability and to increase temporal accuracy. For
example, the third order TVD Runge-Kutta method can be coupled with all the spatial
discretization introduced in this paper:

U(1) = Un+∆tF (Un) (2.1)

U(2) =
3
4

Un+
1
4

(
U(1)+∆tF (U(1))

)
Un+1 =

1
3

Un+
2
3

(
U(2)+∆tF (U(2))

)
,

where F (U) is the spatial operator.
We first rewrite the SWEs by splitting the source term−ghbx into two terms

(
gb2/2

)
x−

g(h+b)bx. Hence the equations become
ht+(hu)x =0

(hu)t+

(
hu2+

1
2

gh2
)

x
=

(
1
2

gb2
)

x
−g(h+b)bx. (2.2)
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One could also incorporate the source term (gb2/2)x to the numerical flux on the left
hand side. We will show that, if written in this form, any linear scheme is well-balanced
for the still water at rest steady state (1.3). We define a linear finite difference operator
D to be one satisfying D(a f1+b f2)=aD( f1)+bD( f2) for constants a, b and arbitrary grid
functions f1 and f2. A scheme for (2.2) is said to be a linear scheme if all the spatial
derivatives are approximated by linear finite difference operators. For any consistent
linear scheme, the first equation (hu)x=0 is satisfied exactly at the still water steady state
(1.3). The second equation has the truncation error

D1

(
hu2+

1
2

gh2
)
−D2

(
1
2

gb2
)
+g(h+b)D3(b),

where D1, D2 and D3 are linear finite difference operators. We further restrict our atten-
tion to linear schemes which satisfy

D1=D2=D3=D (2.3)

for the still water steady state solutions. We can easily prove such linear scheme is well-
balanced, and the detailed proof can be found in [56].

We now already have high order well-balanced schemes for the SWEs. However,
these schemes are linear, hence they will be oscillatory when the solution contains dis-
continuities. We would need to consider nonlinear schemes, for example, high order
finite difference WENO schemes [3, 27, 36]. Next, we will use the fifth order finite differ-
ence WENO scheme as an example to demonstrate the basic ideas. We will not give the
details of the base WENO schemes, and refer to [27, 53] for such details.

We first consider the situation when the WENO scheme is used without the flux split-
ting and the local characteristic decomposition. The first equation in (2.2) does not cause
a problem for the still water solution, as hu = 0 and the consistent WENO approxima-
tion to (hu)x is exact. For the second equation in (2.2), there are three derivative terms,(

hu2+gh2/2
)

x,
(

gb2/2
)

x and bx, that must be approximated. The approximation to the
flux derivative term

(
hu2+gh2/2

)
x proceeds as before using the WENO approximation.

We notice that the WENO approximation to dx where d= hu2+gh2/2 can be eventually
written out as

dx|x=xi
≈

r

∑
k=−r

akdi+k≡Dd(d)i (2.4)

where r=3 for the fifth order WENO approximation and the coefficients ak depend non-
linearly on the smoothness indicators involving the grid function d. The key idea now
is to use the difference operator Dd with d = hu2+gh2/2 fixed, namely to use the same
coefficients ak obtained through the smoothness indicators of d= hu2+gh2/2, and apply
this difference operator Dd to approximate

(
gb2/2

)
x and bx in the source terms. Thus(

1
2

gb2
)

x

∣∣∣∣
x=xi

≈
r

∑
k=−r

ak

(
1
2

gb2
)

i+k
≡Dd

(
1
2

gb2
)

i
;
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bx|x=xi
≈

r

∑
k=−r

akbi+k≡Dd(b)i.

Clearly, the finite difference operator Dd, obtained from the fifth order WENO proce-
dure, is a fifth order accurate approximation to the first derivative on any grid function,
thus our approximation to the source terms is also fifth order accurate. Plus, the finite
difference operator Dd, with the coefficients ak based on the smoothness indicators of
d= hu2+gh2/2 fixed, is a linear operator on any grid functions. Thus we can prove that
component-wise WENO schemes, without the flux splitting or local characteristic de-
composition, are well-balanced with the special handling of the source terms described
above.

For the situation when the local characteristic decomposition or Lax-Friedrichs flux
splitting is invoked in the WENO procedure, the same well-balanced property can be
obtained when we apply the local characteristic decomposition or flux splitting to the
source terms as well. One change in the Lax-Friedrichs flux is to replace the flux f (U)
defined by

f±(U)=
1
2

[(
hu

hu2+ 1
2 gh2

)
±αi

(
h

hu

)]
(2.5)

to

f±(U)=
1
2

[(
hu

hu2+ 1
2 gh2

)
±αi

(
h+b
hu

)]
. (2.6)

for the i-th characteristic field, where αi=maxu|λi(u)|with λi(u) being the i-th eigenvalue
of the Jacobian f ′(U). This modification is to ensure that the effect of this viscosity term

±αi

(
h+b
hu

)
towards the approximation of f (U)x is zero for the still water stationary

solution (1.3), hence it will not violate the well-balanced properties. This modification is
justified since b does not depend on the time t, hence the first equation in (1.1) can also
be considered as an evolution equation for h+b instead of for h. We refer to [56] for the
details. Therefore, we have

Proposition 2.1. The WENO schemes as stated above are well-balanced for the still water
steady state (1.3), and maintain their original high order accuracy.

Remark 2.1. One popular approach in designing well-balanced methods for the SWEs is
to replace the water height h by the water surface H :=h+b in the equations (1.1) [31,69],
which leads to the pre-balanced formulation [48]

Ht+(hu)x =0,

(hu)t+

(
(hu)2

H−b
+

1
2

g(H−b)2
)

x
=−g(H−b)bx =−gHbx+

(
1
2

gb2
)

x
,

(2.7)

or equivalently, 
Ht+(hu)x =0,

(hu)t+

(
(hu)2

H−b
+

1
2

gH2−gHb
)

x
=−gHbx.

(2.8)
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Although derived from totally different approaches, the special decomposition of the
source term in (2.2) and the pre-balanced formulation share similar source terms struc-
ture. This also justifies the modification in the numerical flux from (2.5) to (2.6).

A major advantage of the high order finite difference WENO schemes is that it is
straightforward to extend them to multiple space dimensions, by simply approximating
each spatial derivative along the relevant coordinate. We can show that it is also straight-
forward to extend the well-balanced finite difference WENO schemes described above to
two dimensions.

Remark 2.2. In [58,62], we have generalized these high order well-balanced finite differ-
ence WENO scheme, to solve a wider class of hyperbolic systems with separable source
terms. This class of hyperbolic balance laws is quite broad, and includes the elastic wave
equation, Euler equation with gravitational field, the hyperbolic model for a chemosen-
sitive movement, the nozzle flow and a two phase flow model.

3 Finite volume methods

Finite volume schemes are very popular for solving hyperbolic conservation laws. They
represent the underlying physics in a natural way. In this section, we recall the positivity-
preserving high order well-balanced finite volume WENO schemes developed by us in
[40,59–61]. We first present two approaches to achieve well-balanced methods for the still
water steady state (1.3), followed by high order well-balanced methods for the moving
water equilibrium (1.2). A simple positivity-preserving limiter will also be introduced to
take care of numerical difficulty near the wet-dry front.

We first introduce some notations which will be used later. We discretize the compu-
tational domain into cells Ij = [xj−1/2,xj+1/2], and denote the size of the j-th cell by ∆xj
and the maximum mesh size by ∆x=maxj4xj. In a finite volume scheme, our computa-
tional variables are U j(t), which approximate the cell averages U(xj,t)= 1

∆xj

∫
Ij

U(x,t)dx.
The conservative numerical scheme is given by

d
dt

U j(t)+
1

∆xj

(
f̂ j+ 1

2
− f̂ j− 1

2

)
=

1
∆xj

∫
Ij

s(h,b)dx, (3.1)

with f̂ j+1/2=F(U−j+1/2,U+
j+1/2) being the numerical flux. U−j+1/2 and U+

j+1/2, the high order
pointwise approximations to U(xj+1/2,t) from left and right respectively, are computed
through the neighboring cell average values U j by a high order WENO reconstruction
procedure. Basically, for a (2k−1)-th order WENO scheme, we first compute k recon-
structed boundary values U(k),±

j+1/2 corresponding to different candidate stencils. Then by
providing each value a weight which indicates the smoothness of the corresponding sten-
cil, we define the (2k−1)-th order WENO reconstruction U±j+1/2 as a convex combination
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of all these k reconstructed values. Eventually, the WENO reconstruction can be written
out as:

U+
j+ 1

2
=

k

∑
r=−k+1

wrU j+r, U−
j+ 1

2
=

k−1

∑
r=−k

w̃rU j+r. (3.2)

where k= 3 for the fifth order WENO approximation and the coefficients wr and w̃r de-
pend nonlinearly on the smoothness indicators involving the cell average ū.

3.1 Well-balanced methods for the still water

In order to achieve the well-balanced property, we are interested in numerical methods
which balance the numerical approximation of the flux and source term at the still water
stationary solution (1.3). The key idea is to introduce high order accurate numerical dis-
cretization of the source term, which mimics the approximation of the flux term, so that
the exact balance between the source term and the flux can be achieved at the steady state
numerically. Here we present two different approaches to achieve such goal. The first ap-
proach focus on a non-standard discretization of the source term, by following the idea
of decomposing the source terms, as shown in Section 2. The second approach employs
the idea of hydrostatic reconstruction [1] to modify the approximation of numerical flux
and keep a simple source term approximation.

The main idea in Section 2 to design a well-balanced high order finite difference
WENO scheme is to decompose the source term into a sum of two terms in (2.2), each
of which is discretized independently using a finite difference formula consistent with
that of approximating the flux derivative terms in the conservation law. We follow a
similar idea in the finite volume framework. After applying the WENO reconstruc-
tion on U j to obtain U±j+1/2 in (3.2), we apply the same reconstruction to the function
(b(x),0)T, with coefficients computed from (h,hu)T, to obtain b±j+1/2. It is easy to verify
that h±j+1/2+b±j+1/2 = constant at the still water steady state (1.3). We now rewrite the
integration of the source term as∫

Ij

−ghbxdx=
∫

Ij

((
1
2

gb2
)

x
−g(h+b)bx

)
dx

=

(
1
2

gb2
)
(xj+ 1

2
)−
(

1
2

gb2
)
(xj− 1

2
)−g(h+b)j(b(xj+ 1

2
)−b(xj− 1

2
))−

∫
Ij

g((h+b)−(h+b)j)bxdx,

and approximate it numerically by

sj =
g
2
{b2

j+ 1
2
}− g

2
{b2

j− 1
2
}−g(h+b)j({bj+ 1

2
}−{bj− 1

2
})−

∫
Ij

g
(
(h+b)−(h+b)j

)
bxdx, (3.3)

where the notation {φ} is defined as the average of φ±, and the last integral in (3.3) is
approximated by a suitable high order Gaussian quadrature rule. The approximation of
the values at those Gauss points are obtained by the WENO reconstruction procedure.
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The semi-discrete form of the algorithm takes the form of

d
dt

U j(t)=−
1
4xj

( f̂ j+ 1
2
− f̂ j− 1

2
)+

1
4xj

Sj, (3.4)

where Sj=(0, sj)
T. If the Lax-Friedrichs numerical flux is used, we would need to modify

it as in (2.6). It is easy to observe that high order accuracy is guaranteed for our scheme,
and even if discontinuities exist in the solution, the non-oscillatory property is main-
tained. The well-balanced property for the still water (1.3) can be proved, and we refer
to [59] for the details.

A different approach to achieve well-balanced property is to utilize the hydrostatic
reconstruction idea in the numerical flux. As mentioned in [60], our well-balanced nu-
merical scheme has the form

d
dt

U j(t)+
1

∆xj

(
f̂ l
j+ 1

2
− f̂ r

j− 1
2

)
=

1
∆xj

∫
Ij

s(h,b)dx. (3.5)

The left and right fluxes f̂ l
j+1/2 and f̂ r

j−1/2 are given by:

f̂ l
j+ 1

2
= F(U∗,−

j+ 1
2
,U∗,+

j+ 1
2
)+

(
0

g
2 (h
−
j+ 1

2
)2− g

2 (h
∗,−
j+ 1

2
)2

)

f̂ r
j− 1

2
= F(U∗,−

j− 1
2
,U∗,+

j− 1
2
)+

(
0

g
2 (h

+
j− 1

2
)2− g

2 (h
∗,+
j− 1

2
)2

)
(3.6)

with the left and right values of U∗ defined as:

U∗,±
j+ 1

2
=

(
h∗,±

j+ 1
2

h∗,±
j+ 1

2
u±

j+ 1
2

)
, (3.7)

h∗,±
j+ 1

2
= max

(
0,h±

j+ 1
2
+b±

j+ 1
2
−max(b+

j+ 1
2
,b−

j+ 1
2
)
)

. (3.8)

b±j+1/2 are constructed in the same way, i.e., we apply the same WENO reconstruction to
the function (b(x),0)T, with coefficients computed from (h,hu)T, to obtain b±j+1/2. This
ensures that h±j+1/2+b±j+1/2= const if the still water h̄j+ b̄j = const is given.

Then, we use interpolation to obtain a high order polynomial hh (or bh) on the cell Ij,
based on the boundary values h+j−1/2, h−j+1/2 (or b+j−1/2, b−j+1/2) and several other neighbor-
ing boundary values. For example, we can use h−j+3/2, h−j+1/2, h+j−1/2 and h+j−3/2 to interpo-
late a third degree polynomial. Therefore,

∫
Ij

s(hh,bh)dx, a high order approximation to

the source term
∫

Ij
s(h,b)dx, can be exactly computed by a suitable Gauss quadrature. In

order to obtain a (2k−1)-th order accurate method, hh and bh need to approximate h and
b with (k+1)-th order accuracy. Combining these together, we have proven in [60] that
the above methods (3.5) are actually well-balanced for the still water steady state (1.3) of
the SWEs.
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Remark 3.1. The well-balanced numerical scheme (3.5) can also be rewritten as

d
dt

U j(t)+
1

∆xj

(
f̂ j+ 1

2
− f̂ j− 1

2

)
=

1
∆xj

∫
Ij

s(h,b)dx+
1

∆xj

(
f̂ j+ 1

2
− f̂ l

j− 1
2

)
− 1

∆xj

(
f̂ j+ 1

2
− f̂ r

j− 1
2

)
.

We point out here that f̂ j+1/2− f̂ l
j+1/2 and f̂ j−1/2− f̂ r

j−1/2 are high order correction terms
at the level of O(4xk+1) regardless of the smoothness of the solution U. Therefore, the
scheme (3.5) is still a spatially (k+1)-th order conservative scheme and will converge to
the weak solution.

3.2 Well-balanced methods for the moving water

The above approaches preserve the still water steady state (1.3). The more general mov-
ing water steady state of the SWEs take the form of (1.2). In this section, we generalize
the approach to present a high order finite volume method which is well-balanced for the
moving water (1.2).

In order to construct our well-balanced scheme, it is essential to transform the conser-
vative variables U :=(h,m)T into the equilibrium variables V :=(m, E)T and vice versa.
Given conservative variables U and a bottom function b, the energy E, and hence the
equilibrium variables V = V(U), can be easily computed by (1.2). The main difficulty
comes from the inverse transform U=U(V). As in [40], we first label the different flow
regimes by defining the sign function

σ :=sign(Fr−1), Fr := |u|/
√

gh, (3.9)

and a state is called sonic, sub- or supersonic if σ is zero, negative or positive. With
given V =(m,E), b and σ, one can recover the conservative variable h and establish the
transform U=U(V) in the following way. If m=0, the transformation is trivial. Assume
m is a fixed nonzero parameter, we define the function ϕ by

ϕ(h) :=
m2

2h2 +gh, (3.10)

which achieves its minimum value ϕ0=3(g|m|)2/3/2 at h0=g−1/3(|m|)2/3. Therefore, we
have the following result (see [40] for details):

Lemma 3.1. Let m be given, and suppose either E= ϕ0+gb if σ= 0 or E> ϕ0+gb if σ=±1.
Then there exists a unique solution h=h(E,b,σ) to the equation ϕ(h)=E−gb, such that

h<h0 for σ=1, h=h0 for σ=0, h>h0 for σ=−1. (3.11)

Given the set (E,b,σ) satisfying the condition in Lemma 3.1, it is straightforward to
compute the solution h by Newton’s method, and we refer to [40] for the strategy.

Assume the initial values U j and b̄j are given. At each time step, we first apply the
WENO reconstruction procedure to the variables U j to obtain U±j+1/2, and hence V±j+1/2.
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The first difficulty encountered in designing well-balanced methods is the recovery of
well-balanced states from the provided initial equilibrium data. Let’s assume the initial
data are in perfect equilibrium, i.e. V(x)≡V for some equilibrium state V. However, the
reconstructed cell boundary values U±j+1/2, or V±j+1/2 may not be in equilibrium any more.
A strategy has been proposed in [40] to recover the well-balanced states. The main idea
is, given cell averages U j and a bottom function b(x), we choose local reference values V j
of the equilibrium variables, which are defined implicitly by the requirement that

1
∆xj

∫
Ij

U(V j,x)dx=U j. (3.12)

V j is chosen as the unique (see [40, Def.3.2]) local equilibrium such that the corresponding
conserved variables U(V j,b(x)) have the same cell average U j. It was proven that, if the
data U(x) and b(x) are in the equilibrium (i.e., V(U(x),x)≡V for all cells Ij ), then the
reference states V j computed via (3.12) coincide with the true equilibrium V. The WENO
reconstruction is then completed by limiting the reconstruction V±j+1/2 with respect to the

reference values V j:

Ṽ±
i+ 1

2
= lim(V±

i+ 1
2
;V j,Vi±1), (3.13)

where we refer to [40, (3.16)] for the the limiter function lim. At the steady state where
V(x)≡V, the limited values (3.13) satisfy

Ṽ±
i+ 1

2
= Ṽj =V j =V for all i. (3.14)

We can then update Ũ±j+1/2 by

Ũ±
j+ 1

2
:=U(Ṽ±

j+ 1
2
,b±

j+ 1
2
,σ±

j+ 1
2
). (3.15)

We would like to comment that, compared with the still water case, these extra difficulties
in designing well-balanced schemes for moving water mainly comes from the nonlinear-
ity of the equilibrium variables V.

Now we are ready to present well-balanced methods for the moving water steady
state (1.2). The well-balanced methods take the form of (3.5), where the left and right
fluxes f̂ l

j+1/2 and f̂ r
j−1/2 are given by:

f̂ l
j+ 1

2
= F(U∗,−

j+ 1
2
,U∗,+

j+ 1
2
)− f (U∗,−

j+ 1
2
)+ f (Ũ−

j+ 1
2
),

f̂ r
j− 1

2
= F(U∗,−

j− 1
2
,U∗,+

j− 1
2
)− f (U∗,+

j− 1
2
)+ f (Ũ+

j− 1
2
), (3.16)

and the left and right values of U∗ defined as:

U∗,±
j+ 1

2
=U(Ṽ±

j+ 1
2
,b∗,±

j+ 1
2
,σ±

j+ 1
2
). (3.17)
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The intermediate values b∗,±j+1/2 are required to satisfy

min{b−
j+ 1

2
,b+

j+ 1
2
}≤b∗,±

j+ 1
2
≤max{b−

j+ 1
2
,b+

j+ 1
2
}. (3.18)

In [1], Audusse et al. chose the maximum value in their well-balanced methods for the
still water steady state, and our methods in Section 3.1 follows that choice. In [40,41], the
minimum value is chosen, inspired by a simple example of supersonic flow. It was then
commented in [41] that the optimal choice of b∗,±j+1/2 remains an open problem. Recently,
in the proof of the positivity preserving property, we found out in [55] that the optimal
choice is to take the maximum value in the subsonic or sonic region, and take the mini-
mum value in the supersonic region. See [55, Remark 3.1] for more explanations on the
choice of b∗,±j+1/2.

The last remaining piece is to define the source term approximation in (3.5). As ex-
plained in [40], some simple calculation leads to a second-order well-balanced approxi-
mation sj(Ũ+

j−1/2,Ũ−j+1/2,b+j−1/2,b−j+1/2), where

sj(Ul ,Ur,bl ,br)=−g
hl+hr

2
(br−bl)+

1
4
(hr−hl)(ur−ul)

2. (3.19)

For smooth flows, the cubic correction term on the right side of (3.19) is so small that it
does not affect the order of the quadrature rule. In [40], we showed how to limit this term
when the jumps hr−hl and ur−ul are no longer of the order of the gridsize, so that the
resulting methods still satisfy the Lax-Wendroff theorem and converge to weak solutions.
Using the idea of extrapolation [39, 40], we can extend the source term approximation to
any order of accuracy. A fourth-order method has been implemented and tested in [40].
We refer to that paper for the details of the proof of well-balanced properties for the
moving water steady state.

3.3 Positivity-preserving limiters

In this section, we present a simple positivity-preserving limiter for the finite volume
WENO methods for the SWEs (1.1) with dry areas. In the previous subsection, we dis-
cussed several different approaches to design well-balanced methods. The main differ-
ence of these approaches is how to approximate the source term and flux terms in the
momentum equation, which has non-zero source term. Their discretizations to the mass
equation are similar. The positivity-preserving property mainly relies on the numeri-
cal approximation to the mass equation, therefore, the positivity-preserving limiter dis-
cussed in this section can be applied to all these well-balanced methods.

We only consider the Euler forward in time (3.5) in this subsection. The same results
can be generalized to TVD high order Runge-Kutta [54] and multi-step [52] time dis-
cretizations since TVD time discretizations are convex combinations of the Euler forward
operators. By plugging (3.7) and (3.6) into (3.5), the scheme satisfied by the cell aver-
ages of the water height in the well-balanced finite volume WENO methods (3.5) can be
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written as

h
n+1
j =h

n
j −λ

[
F̂
(

h∗,−
j+ 1

2
,u−

j+ 1
2
;h∗,+

j+ 1
2
,u+

j+ 1
2

)
− F̂
(

h∗,−
j− 1

2
,u−

j− 1
2
;h∗,+

j− 1
2
,u+

j− 1
2

)]
, (3.20)

where λ=∆x/∆t, h∗,±j+1/2 are defined in (3.8) and

F̂
(

h∗,−
j+ 1

2
,u−

j+ 1
2
;h∗,+

j+ 1
2
,u+

j+ 1
2

)
=

1
2

(
h∗,−

j+ 1
2
u−

j+ 1
2
+h∗,+

j+ 1
2
u+

j+ 1
2
−α(h∗,+

j+ 1
2
−h∗,−

j+ 1
2
)
)

. (3.21)

Note that the well-balanced methods for moving water in Section 3.2 take the same form.
For the first order scheme with the well-balanced flux, we have the following lemma

on its positivity.

Lemma 3.2. Under the CFL condition λα≤1, with α=max(|u|+
√

gh), consider the following
scheme

hn+1
j =hn

j −λ
[

F̂
(

h∗,+j ,un
j ;h∗,−j+1,un

j+1

)
− F̂
(

h∗,+j−1,un
j−1;h∗,−j ,un

j

)]
(3.22)

with F̂ the same as in (3.21) and

h∗,+j =max
(

0,hn
j +bj−max(bj,bj+1)

)
, h∗,−j =max

(
0,hn

j +bj−max(bj−1,bj)
)

. (3.23)

If hn
j , hn

j±1 are non-negative, then hn+1
j is also non-negative.

We now consider the (2k−1)-th order scheme (3.20). For the ease of presentation, we
consider a reconstructed polynomial pj(x) of degree 2k−2, which satisfies

pj(xj− 1
2
)=h+

j− 1
2
, pj(xj+ 1

2
)=h−

j+ 1
2
,

1
∆x

∫
Ij

pj(x)dx=h
n
j . (3.24)

Moreover, pj(x) should be a (2k−1)-th order accurate approximation to the exact solution
on Ij. As we will explain later, this polynomial only serves the theoretical purpose to
understand the derivation of the limiter and will not need to be explicitly constructed in
the implementation.

Let us introduce the N-point Legendre Gauss-Lobatto quadrature rule on the interval
Ij =[xj−1/2,xj+1/2], which is exact for the integral of polynomials of degree up to 2N−3.
We choose N such that 2N−3≥2k−2, therefore this N-point Gauss-Lobatto quadrature
is exact for polynomial of degree 2k−2. We denote these quadrature points on Ij as

Sj =
{

xj− 1
2
= x̂1

j , x̂2
j ,··· , x̂N−1

j , x̂N
j = xj+ 1

2

}
.

Let ŵr be the quadrature weights for the interval [−1/2,1/2] such that ∑N
r=1 ŵr =1. Since

pj(x) is polynomial of degree 2k−2 and this quadrature is exact, we have

h
n
j =

1
∆x

∫
Ij

pj(x)dx=
N

∑
r=1

ŵr pj(x̂r
j )=

N−1

∑
r=2

ŵr pj(x̂r
j )+ŵ1h+

j− 1
2
+ŵNh−

j+ 1
2
. (3.25)
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If we introduce the variable

ξ j =
1

∑N−1
r=2 ŵr

N−1

∑
t=2

ŵr pj(x̂r
j )=

h
n
j −ŵ1h+

j− 1
2
−ŵNh−

j+ 1
2

1−ŵ1−ŵN
, (3.26)

we have
h

n
j =(1−ŵ1−ŵN)ξ j+ŵ1h+

j− 1
2
+ŵNh−

j+ 1
2
. (3.27)

Following the approaches in [43, 61, 65, 67], we have the following result.

Proposition 3.1. Consider the scheme (3.20) satisfied by the cell averages of the water
height. Let ξ j be defined in (3.26). If h±j−1/2, h±j+1/2 and ξ j are all non-negative, then h

n+1
j

is also non-negative under the CFL condition

λα≤ ŵ1. (3.28)

This proposition tells us that for the scheme (3.20), we need to modify pj(x) (satisfying
(3.24)) such that pj(xj±1/2) and ξ j are all non-negative. At time level n, given h

n
j ≥0, we

consider the following limiter on the piecewise polynomial pj(x) introduced in [67]. It is
a linear scaling around the cell average:

p̃j(x)= θ
(

pj(x)−h
n
j

)
+h

n
j , θ=min

{
1,

h
n
j

h
n
j −mj

}
, (3.29)

with
mj =min

x∈Ij
pj(x). (3.30)

It is easy to observe that the conditions of Proposition 3.1 are satisfied with this limiter.
Moreover, it can also be shown that this limiter does not destroy the high order accuracy,
and we refer to [67] for the detailed proof. Let h̃+j−1/2= p̃j(xj−1/2), h̃−j+1/2= p̃j(xj+1/2), and

define h̃∗,+j−1/2, h̃∗,−j+1/2 following (3.8). Then, the revised positivity-preserving version of
the scheme (3.20) takes the form

h
n+1
j =h

n
j −λ

[
F̂
(

h̃∗,−
j+ 1

2
,u−

j+ 1
2
;h̃∗,+

j+ 1
2
,u+

j+ 1
2

)
− F̂
(

h̃∗,−
j− 1

2
,u−

j− 1
2
;h̃∗,+

j− 1
2
,u+

j− 1
2

)]
. (3.31)

Notice that in (3.30) we need to evaluate the minimum of the reconstructed polyno-
mial pj(x). We prefer to avoid an explicit construction of this additional reconstruction
polynomial pj(x), and propose to replace (3.30) by

mj =min(h+
j− 1

2
,h−

j+ 1
2
,ξ j). (3.32)

Since ξ j can be computed by (3.26) easily, it is very easy to evaluate mj. We have shown in
[61] that the limiter (3.29) and (3.32) is a high order accurate positivity-preserving limiter,
and preserves the conservation of pj(x). We now have the following proposition.
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Proposition 3.2. Consider the revised numerical scheme (3.31), with the positivity-preserving
limiter (3.29), (3.32), i.e.

h̃+
j− 1

2
= θ
(

h+
j− 1

2
−h

n
j

)
+h

n
j , h̃−

j+ 1
2
= θ
(

h−
j+ 1

2
−h

n
j

)
+h

n
j , (3.33)

with θ computed in (3.32). Suppose the well-balanced flux (3.7) is used, with h̃∗,+
j− 1

2
, h̃∗,−

j+ 1
2

computed following (3.8). This method is (2k−1)-th order accurate, positivity-preserving
and conserves the mass, under the CFL condition (3.28). For a fifth-order WENO scheme
with k=3, this CFL condition is λα≤1/12.

We would like to mention that in wet regions, where mj is O(1) above zero, the limiter
does not effect, i.e., p̃j(x)=pj(x). Therefore this positivity-preserving limiter is active only
in the dry or nearly dry region. For high order time discretizations, we need to apply the
limiter in each stage for a Runge-Kutta method or in each step for a multistep method. To
be efficient, we could implement the time step restriction (3.28) only when a preliminary
calculation to the next time step produces negative water height.

4 Finite element discontinuous Galerkin methods

Discontinuous Galerkin methods have been actively applied to hyperbolic conservation
laws, especially the SWEs recently. In this section, we recall the positivity-preserving
high order well-balanced finite element DG schemes developed by us in [55, 59, 60, 64,
65]. Similarly as in finite volume methods, we first present two approaches to achieve
well-balanced methods for the still water steady state (1.3), followed by high order well-
balanced methods for the moving water equilibrium (1.2). At the end, we introduce the
simple positivity-preserving limiter, as well as the extension to unstructured triangular
meshes.

We start by presenting the standard notations. In a high order DG method, we seek an
approximation, still denoted by U for the ease of presentation with an abuse of notation,
which belongs to the finite dimensional space

V∆x =Vk
∆x≡{w : w|Ij ∈Pk(Ij), j=1,..., J}, (4.1)

where Pk(I) denotes the space of polynomials of degree at most k and J is the total num-
ber of computational cells. We project the bottom function b into the same space V∆x, to
obtain an approximation which is still denoted by b, again with an abuse of notation. The
standard DG method is given by∫

Ij

∂tUvdx−
∫

Ij

f (U)∂xvdx+ f̂ j+ 1
2
v(x−

j+ 1
2
)− f̂ j− 1

2
v(x+

j− 1
2
)=

∫
Ij

s(h,b)vdx, (4.2)

where v(x) is a test function from the test space V∆x, f̂ j+1/2 = F(U(x−j+1/2,t),U(x+j+1/2,t))
and F(a1,a2) is a numerical flux.
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4.1 Well-balanced methods for the still water

We are interested in preserving the still water stationary solution (1.3) exactly. Since there
are a lot of similarities between finite volume and finite element methods, we follow
the approaches in Section 3.1 and present two different ways to achieve such goal. The
first approach focuses on a non-standard discretization of the source term, by following
the idea of decomposing the source terms as shown in Section 2 and 3.1. The second
approach employs the idea of hydrostatic reconstruction [1] to modify the approximation
of the numerical flux and keep a simple source term approximation. We notice that the
traditional DG methods are capable of maintaining certain steady states exactly, if a small
modification on the numerical flux is provided. The computational cost to obtain such a
well-balanced DG method is basically the same as the traditional DG method.

The main idea in Section 3.1 to design a well-balanced high order finite volume WENO
scheme is to decompose the source term into a sum of three terms in (3.3). Similarly, we
decompose the integral of the source term on the right-hand side of (4.2) as:∫

Ij

−ghbxvdx=
∫

Ij

(
1
2

gb2
)

x
vdx−g(h+b)j

∫
Ij

bxvdx−
∫

Ij

g
(

h+b−(h+b)j

)
bxvdx

=

(
1
2

gb2
)
(xj+ 1

2
)v(x−

j+ 1
2
)−
(

1
2

gb2
)
(xj− 1

2
)v(x+

j− 1
2
)−
∫

Ij

1
2

gb2vxdx

−g(h+b)j

(
b(xj+ 1

2
)v(x−

j+ 1
2
)−b(xj− 1

2
)v(x+

j− 1
2
)−
∫

Ij

bvxdx
)

−
∫

Ij

g(h+b−(h+b)j)bxvdx, (4.3)

We then replace this source term with a high order approximation of it given by

sj =

{
1
2

gb2
j+ 1

2

}
v(x−

j+ 1
2
)−
{

1
2

gb2
j− 1

2

}
v(x+

j− 1
2
)−
∫

Ij

1
2

gb2vxdx (4.4)

−g(h+b)j

(
{bj+ 1

2
}v(x−

j+ 1
2
)−{bj− 1

2
}v(x+

j− 1
2
)−
∫

Ij

bvxdx
)
−
∫

Ij

g(h+b−(h+b)j)bxvdx.

where
{

gb2
j+1/2/2

}
and {bj+1/2} are approximations to ghb2/2 and b at xj+1/2, similarly

as in (3.3). Combined with the semi-discrete form (4.2), this gives our well-balanced high
order DG schemes. Usually, we perform the limiter on the function U after each Runge-
Kutta stage. Note that the slope limiter procedure could destroy the preservation of still
water steady state, since if the limiter is enacted, the resulting modified solution h may no
longer satisfy h+b=constant. We therefore propose to first check whether any limiting is
needed based on the function h+b in each Runge-Kutta stage. If a certain cell is flagged
by this procedure needing limiting, then the actual limiter is implemented on h, not on
h+b, so that the slope limiter will not conflict with the well-balanced property. The well-
balanced property for the still water (1.3) can be easily proved, and we refer to [59] for
the details.
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A different approach to achieve well-balanced property is to utilize the hydrostatic
reconstruction idea in the numerical flux. As mentioned in [60], our well-balanced nu-
merical scheme has the form:∫

Ij

∂tUvdx−
∫

Ij

f (U)∂xvdx+ f̂ l
j+ 1

2
v(x−

j+ 1
2
)− f̂ r

j− 1
2
v(x+

j− 1
2
)=

∫
Ij

s(h,b)vdx, (4.5)

or equivalently,∫
Ij

∂tUvdx−
∫

Ij

f (U)∂xvdx+ f̂ j+ 1
2
v(x−

j+ 1
2
)− f̂ j− 1

2
v(x+

j− 1
2
) (4.6)

=
∫

Ij

s(h,b)vdx+( f̂ j+ 1
2
− f̂ l

j+ 1
2
)v(x−

j+ 1
2
)−( f̂ j− 1

2
− f̂ r

j− 1
2
)v(x+

j− 1
2
).

The left side of (4.6) is the traditional DG scheme, and the right side is our approximation
to the source term. The design of the left flux f̂ l

j+1/2 and the right flux f̂ r
j−1/2 is the same

as in the finite volume methods and take the form of (3.6).
We also require that all the integrals in formula (4.5) should be calculated exactly at

the still water state. This can be easily achieved by using suitable Gauss-quadrature rules
since the numerical solutions h, b and v are polynomials at the still water state in each cell
Ij, hence f (U) and s(h,b) are both polynomials. We have proven in [60] that the above
methods (4.5), combined with the choice of fluxes (3.6), are actually well-balanced for the
still water steady state of the SWEs.

Remark 4.1. If we enforce the projection of the bottom bathymetry into the piecewise
polynomial space to be continuous, i.e., b−j+1/2 = b+j+1/2, (which can be done using the
idea of essentially non-oscillatory (ENO) procedure to interpolate the polynomial based
on the values bj+1/2, see [60] for the details), we can show that the left and right fluxes
reduces to the numerical flux of traditional DG methods:

f̂ l
j+ 1

2
= f̂ j+ 1

2
, f̂ r

j− 1
2
= f̂ j− 1

2
.

This make our well-balanced scheme (4.5) to be identical to the traditional DG methods
without any modification. Unfortunately, although it works well for small perturbation
solutions from still water for a smooth bottom, the numerical resolution for a discontin-
uous bottom is not ideal.

4.2 Well-balanced methods for the moving water

In this section, we design high order finite element DG methods for the SWEs (1.1), with
the objective to maintain the general moving steady state (1.2). The basic framework
of the well-balanced scheme follows the one introduced in Section 4.1. However, extra
attention is required to handle the flux and source term approximation due to the com-
plexity of moving water equilibrium.
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The main structure of well-balanced methods for moving water equilibrium (1.2) fol-
lows the one (4.5) for still water. The important ingredient in designing well-balanced
methods is the approximation of the source term integral in (4.5), which will be explained
below. As explained in Section 3.2, we could define the transformation between the con-
servative variables U into the equilibrium variables V, as well as the recovery of well-
balanced states V j = (m̄j,Ēj). The reference equilibrium values V j lead to the reference
equilibrium functions U(V j,b(x)). Since they may not be polynomials, we consider their
L2 projection into the finite element space V∆x which was introduced in (4.1), and denote
it by

Ue
j (x)=(he

j (x),me
j (x))=PU(V j,b(x)), (4.7)

in each cell Ij, where P denotes the L2 projection operator. Therefore, the numerical solu-
tions U, which are piecewise polynomials, can be decomposed as

U=Ue+Ur, (4.8)

where Ur =U−Ue∈V∆x. The source term approximation now becomes∫
Ij

s(h,b)vdx=
∫

Ij

s(he,b)vdx+
∫

Ij

s(hr,b)vdx, (4.9)

since s(h,b)=−ghbx is linear with respect to h. The second term on the right hand side
of (4.9) can be computed by the standard quadrature rule. Next, let us discuss how to
approximate the first term numerically. Given the fact that U(V j,b)=(h(V j,b),m̄j)

T is the
equilibrium state, we have the relationship∫

Ij

s(h(V j,b),b)vdx=−
∫

Ij

f (U(V j,b))vxdx+ f (U(V j,b−j+ 1
2
))v−

j+ 1
2
− f (U(V j,b+j− 1

2
))v+

j− 1
2
.

Since Ue is the L2 projection of U(V j,b), we conclude that∫
Ij

s(he,b)vdx+O(∆xk+1)=−
∫

Ij

f (Ue)vxdx+ f (Ue,−
j+ 1

2
)v−

j+ 1
2
− f (Ue,+

j− 1
2
)v+

j− 1
2
, (4.10)

and can approximate the source term integral (4.9) by∫
Ij

s(h,b)vdx≈−
∫

Ij

f (Ue)vxdx+ f (Ue,−
j+ 1

2
)v−

j+ 1
2
− f (Ue,+

j− 1
2
)v+

j− 1
2
+
∫

s(hr,b)vdx. (4.11)

Since Ue is always smooth inside a cell, the relation (4.10) is always true regardless of
the smoothness of the solution U. Therefore, numerical methods with this source term
approximation (4.11) will satisfy the Lax-Wendroff theorem and converge to the weak
solution.

Next, we discuss an important and last piece of our method, namely the well-balanced
numerical fluxes. They are computed by a generalized hydrostatic reconstruction. At
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each time step tn, one can compute the cell boundary values U±j+1/2 from the solution
U(x). But in the case of moving water equilibrium, suppose U(x) are computed from the
exact solution, these cell boundary values U±j+1/2 are not equal to the exact solution value
at the same point, as U(x) is the projection of the exact solution into the polynomial space
and this projection does not preserve the equilibrium state. To overcome this problem,
we redefine an updated boundary value as:

Ũ±
j+ 1

2
=U(V j,b±j+ 1

2
)+Ur,±

j+ 1
2
, (4.12)

where Ur is defined in (4.8). One can easily verify that Ũ±j+1/2=U(V j,b±j+1/2) in the case of
moving water equilibrium. We follow the idea of hydrostatic reconstruction to compute
the numerical fluxes and define

Ṽ±
j+ 1

2
=V(Ũ±

j+ 1
2
,b±

j+ 1
2
), (4.13)

and

b∗j+ 1
2
=

{
max(b+

j+ 1
2
,b−

j+ 1
2
), if σi+ 1

2
=−1,0,

min(b+
j+ 1

2
,b−

j+ 1
2
), if σi+ 1

2
=1.

(4.14)

The cell boundary values (used to evaluate the numerical fluxes) are then defined by:

U∗,±
j+ 1

2
=
(

max
(

0,h(Ṽ±
j+ 1

2
,b∗j+ 1

2
)
)

,m̃±
j+ 1

2

)T
=
(

max
(

0,h(Ṽ±
j+ 1

2
,b∗j+ 1

2
)
)

,m±
j+ 1

2

)T
, (4.15)

as one can easily observe that m̃±j+1/2=m±j+1/2. At the end, the left and right fluxes f̂ l
j+1/2,

f̂ r
j−1/2 are given by:

f̂ l
j+ 1

2
= F(U∗,−

j+ 1
2
,U∗,+

j+ 1
2
)+ f (U−

j+ 1
2
)− f (U∗,−

j+ 1
2
),

f̂ r
j− 1

2
= F(U∗,−

j− 1
2
,U∗,+

j− 1
2
)+ f (U+

j− 1
2
)− f (U∗,+

j− 1
2
). (4.16)

This completes the well-balanced DG methods for the moving water (1.2), and we have
proven their well-balanced property in [55].

4.3 Positivity-preserving limiters and extension to triangular unstructured meshes

In the previous sections, we have described our well-balanced methods in the one di-
mensional setting to illustrate the main idea. They also work on the two dimensional tri-
angular unstructured meshes. In this section, we present a simple positivity-preserving
limiter on triangular meshes, and couple it with well-balanced DG methods developed
for the SWEs in Section 4.1. Once again, for the ease of presentation, Euler forward time
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discretization will be discussed, but all the results hold for the TVD high order Runge-
Kutta and multi-step time discretizations.

The two-dimensional shallow water equations take the form
ht+(hu)x+(hv)y =0

(hu)t+

(
hu2+

1
2

gh2
)

x
+(huv)y =−ghbx

(hv)t+(huv)x+

(
hv2+

1
2

gh2
)

y
=−ghby,

(4.17)

where (u,v)T is the velocity vector. Let Tτ be a family of partitions of the computational
domain Ω parameterized by τ>0. For any triangle K∈Tτ, we define τK :=diam(K) and
τ :=max

K∈Tτ

τK. For each edge ei
K (i= 1,2,3) of K, we denote its length by li

K, and outward

unit normal vector by νi
K. Let K(i) be the neighboring triangle along the edge ei

K and |K|
be the area of the triangle K. For the ease of presentation, we denote the shallow water
equations (1.1) by

Ut+ f (U)x+g(U)y = s(h,b), or Ut+∇·F(U)= s(h,b),

where U = (h,hu,hv)T with the superscript T denoting the transpose, f (U), g(U) or
F(U)=( f (U),g(U)) are the flux and s(h,b) is the source term.

Let x denote (x,y), the DG scheme is given by∫∫
K

∂tUwdx−
∫∫

K
F(U)·∇wdx+

3

∑
i=1

∫
ei

K

F̂|ei
K
·νi

Kwds=
∫∫

K
s(h,b)wdx, (4.18)

where w(x) is a test function, and the numerical flux F̂ is defined by

F̂|ei
K
·νi

K =F (U
int(K)
i ,Uext(K)

i ,νi
K). (4.19)

where Uint(K)
i and Uext(K)

i are the approximations to the values on the edge ei
K obtained

from the interior and the exterior of K. We could, for example, use the simple global
Lax-Friedrichs flux

F (a1,a2,ν)=
1
2
[F(a1)·ν+F(a2)·ν−α(a2−a1)], α=max

(
(|u|+

√
gh,|v|+

√
gh)·ν

)
,

(4.20)
where the maximum is taken over the whole region.

For convenience, let F1 and F̂∗1 |ei
K
·νi

K denote the first components of F and F̂∗|ei
K
·νi

K

respectively. Then F̂∗1 |ei
K
·νi

K=F1(U
∗,int(K)
i ,U∗,ext(K)

i ,νi
K) by (3.6). Taking the test function as

w≡1 in (4.18), we get the the scheme satisfied by the cell averages for the water height h:

h
n+1
K =h

n
K−

∆t
|K|

3

∑
i=1

∫
ei

K

F1(U
∗,int(K)
i ,U∗,ext(K)

i ,νi
K)ds. (4.21)
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Suppose we use L-point Gaussian quadrature for the line integral in (4.21), and the sub-
script (i,β) will denote the point value at the β-th quadrature point of the i-th edge. Let
wβ denote the Gauss quadrature weight on [−1/2,1/2]. Then (4.21) becomes

h
n+1
K =h

n
K−

∆t
|K|

3

∑
i=1

L

∑
β=1
F1(U

∗,int(K)
i,β ,U∗,ext(K)

i,β ,νi
K)wβli

K. (4.22)

To investigate the positivity of a high order scheme (4.22), we need to study its first
order counterpart and have the following results:

Lemma 4.1. Under the CFL condition ∆t
|K|α

3
∑

i=1
li
K≤1, with

α=max
(
(|u|+

√
gh,|v|+

√
gh)·ν

)
, (4.23)

if hn
K is non-negative for any K, then hn+1

K is non-negative in the first order scheme

hn+1
K =hn

K−
∆t
|K|

3

∑
i=1
F1(U

∗,int(K)
i ,U∗,ext(K)

i ,νi
K)l

i
K, (4.24)

where

U∗,int(K)
i =

h∗,iK
hn

K
Un

K, U∗,ext(K)
i =

h∗,iK(i)

hn
K(i)

Un
K(i),

with

h∗,iK = max
(

0,hn
K+bK−max(bK,bK(i))

)
,

h∗,iK(i) = max
(

0,hn
K(i)+bK(i)−max(bK,bK(i))

)
.

Following the approach in [64], we introduce a special quadrature rule satisfying: it
is exact for integration of hK(x,y) on K; it include all L-point Gauss quadrature points for
each edge ei

K; and all the quadrature weights should be positive. This particular quadra-
ture rule has been constructed by a transformation of the tensor product of M-point
Gauss-Lobatto and L-point Gauss quadrature (see [64] for details). The set of quadra-
ture points SK for the P2-DG method are shown in Fig 1 as an example. Again, we would
like to comment that this special quadrature rule is used only for the purpose of introduc-
ing the positivity-preserving limiters, and we can use any quadrature rule in computing
the integral in (4.18). We have the following results for high order DG methods:

Proposition 4.1. For the scheme (4.22) to be positivity preserving, i.e., h
n+1
K ≥0, a sufficient

condition is that hK(x)≥0,∀x∈SK for all K, under the CFL condition

α
∆t
|K|

3

∑
i=1

li
K≤

2
3

ŵ1. (4.25)



Xing and Shu / J. Math. Study, x (201x), pp. 1-28 23

Figure 1: The quadrature points on a triangle for P2 polynomials. There are 24 distinct points.

Here hK(x) denotes the polynomial for water height at time level n, ŵ1 is the quadrature
weight of the M-point Gauss-Lobatto rule on [−1/2,1/2] for the first quadrature point.
For k=2,3, ŵ1=1/6 and for k=4,5, ŵ1=1/12.

At time level n, given the water height DG polynomial hK(x) with its cell average
h

n
K≥0, to enforce the sufficient condition hK(x)≥0,∀x∈SK, the limiter in [64, 65, 67] can

be used directly, i.e., replacing hK(x) by a linear scaling around the cell average:

h̃K(x)= θK(hK(x)−h
n
K)+h

n
K, (4.26)

where θK∈ [0,1] is determined by

θK =min
x∈SK

θx, θx =min

{
1,

h
n
K

h
n
K−hK(x)

}
. (4.27)

This limiter is conservative (the cell average of p̃K is still h
n
K), positivity-preserving (h̃K(x)≥

0,∀x∈SK) and high order accurate.
Let SK denote the set of the points in SK that lie in the interior of the triangle K, and

S̃K be the points which lie on the edges of K. As mentioned in [61, 68], for those points
in SK, instead of requiring hK(x)≥ 0,∀x∈ SK, it suffices to require ∑x∈SK

hK(x)wx≥ 0 to

have positivity of h
n+1
K . Notice that ∑

x∈SK

hK(x)wx/ ∑
x∈SK

wx is a convex combination of point

values of hK(x), thus by the Mean Value Theorem, there exists some point x∗∈K such that

hK(x∗)=
1

∑
x∈SK

wx
∑

x∈SK

hK(x)wx.

An alternative limiter is to enforce this relaxed condition, and we can replace (4.27) with

θK =min

{
θx∗ ,min

x∈S̃K

θx

}
, θx =min

{
1,

h
n
K

h
n
K−hK(x)

}
, (4.28)

to save time in evaluating θK.
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5 Conclusion remarks

In this paper we provide an overview of some recently developed high order positivity-
preserving well-balanced schemes, including finite difference, finite volume WENO schemes
and finite element DG methods for the SWEs. These schemes maintain well-balanced
properties for certain steady state solutions, the genuine high order accuracy in smooth
regions, and the robust simulation near the wet/dry front. The well-balanced approaches
are quite general, and could be extended to other hyperbolic conservation laws with
source terms, for example the Euler equations with a gravitational field [62]. The presen-
tation and discussion of the construction principles should enable the reader to imple-
ment and develop them further for an application at hand.
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