
Bayesian Predictive Density Estimation

Edward I. George and Xinyi Xu ∗

Abstract

The richest form of a prediction is a predictive density over the space of all pos-

sible outcomes, a density which is obtained naturally by the Bayesian approach.

In this chapter, we describe a variety of recent results that use a decision theo-

retic framework based on expected Kullback-Leibler loss to evaluate the long run

performance of Bayesian predictive estimators. In particular, we focus on high

dimensional prediction for the multivariate normal distribution and extensions to

the normal linear regression model. General conditions for minimaxity and admis-

sibility, as well as a complete class theorem, are described.
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1 Introduction

Predictive analysis, which extracts information from historical and current data

to predict future trends and behavior patterns, is one of the most fundamental and

important areas in statistics. Of the many possible forms a prediction can take, the

richest is a predictive density, a probability distribution over all possible outcomes.

Such a comprehensive description of future uncertainty opens the door to sharper risk

assessment and better decision making. The statistical challenge of course is how

to estimate an unknown predictive density from historical or current data. For this

purpose, the Bayesian approach of introducing a prior on the unknowns provides a

natural and immediate answer. For example, suppose we observe data X ∼ p(x | θ)
with unknown parameter θ and wish to predict Y ∼ p(y | θ). Given a prior π on θ,

it follows from purely probabilistic considerations that a natural estimate of p(y | θ) is

the predictive density

p̂π(y | x) =
∫
p(y | θ)π(θ | x)dθ, (1)

where π(θ |x) is the posterior distribution of θ. The sheer generality of this formulation

provides a systematic approach to estimating p(y |θ) in a wide variety of setups. For in-

stance, in subsequent sections we will illustrate how such predictive density estimates

can borrow strength by combining information across dimensions in a multivariate

setting and how they can adapt under model uncertainty in a regression setup. Fur-

thermore, modern developments in numerical and simulation methods, such as Markov

Chain Monte Carlo, and the rapid growth in computing power have unleashed the

potential of these Bayesian predictive methods even in rather complicated settings.

Although a subjective Bayesian would find the predictive formulation above to be

compelling, a skeptical frequentist might wonder how one should go about selecting a

“good” prior or, for that matter, why should one even restrict attention to a Bayesian

predictive density in the first place. At it turns out, these questions can be answered

within a statistical decision theory framework, at least for certain formulations. In

such a framework, the performance potential of a density estimator p̂(y | x) of p(y | θ)
is evaluated by a loss L(p, p̂) which is typically averaged over x or θ or both (Berger,
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1985). An appealing loss function here is the Kullback-Leibler (KL) or entropy loss,

L(p, p̂) =
∫
p(y | θ) log

p(y | θ)
p̂(y | x)

dy, (2)

which when averaged with respect to p(x | θ) leads to a measure of average long run

performance, the KL risk criterion

RKL(p, p̂) =
∫
p(x | θ)L(p, p̂)dx. (3)

Aitchison (1990) noted that the KL loss is coherent here in the sense that for a given

π(θ), the Bayes rule under RKL(p, p̂) is p̂π(y | x), a property not shared for example

by the symmetrized KL loss. For further discussion of the many attractive properties

of KL loss, including considerations of information theory, proper local scoring and

invariance, see Bernardo and Smith (1994) and the references therein. A more general

class of loss functions, the divergence losses, have been considered for prediction in

Ghosh et al. (2008).

A traditional approach to predictive density estimation has been to substitute an

estimator θ̂ for θ and then use p̂(y | x) = p(y | θ̂). Although appealing in its simplic-

ity, this commonly used “plug-in” approach has been shown by many to often lead to

inferior predictive density estimators (Aitchison 1975, Levy and Perng 1986, Geisser

1993, Komaki 1996, Barberis 2000, Tanaka and Komaki 2005, Tanaka 2006). In partic-

ular, Aitchison (1975) showed that maximum likelihood plug-in density estimators for

Gamma models and for normal models are uniformly dominated under RKL(p, p̂) by

Bayesian predictive estimators based on flat priors (π(θ) ≡ 1). Intuitively, the problem

with plug-in estimators is that they ignore the uncertainty about θ by treating it as if

were known and equal to θ̂. In contrast, the Bayesian approach directly addresses this

parameter uncertainty by margining out θ with respect to a prior distribution, thereby

incorporating it into the density estimator.

We note in passing that for plug-in estimators, KL predictive risk is closely related

to squared error estimation risk since by a Taylor expansion

RKL(p(y | θ), p(y | θ̂)) ≈ I(θ)
2
E(θ − θ̂)2, (4)
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where I(θ) is the Fisher information. However, for Bayesian predictive estimators, this

simple relationship does not hold. In fact, a Bayes rule does not necessarily belong to

the class {p(y | θ) : θ ∈ Rp}, i.e., p̂π(y | x) does not correspond to a “plug-in” estimator

for θ, although under suitable conditions on π, p̂π(y | x) → p(y | θ) as the sample size

n→∞. Interestingly, as will be described in the next section, for Bayesian predictive

densities under the multivariate normal model, there is a direct relationship between

the KL predictive risk and the squared error estimation risk, a connection that was

established using Stein’s unbiased estimate of risk in George et al. (2006).

The main challenge for the implementation of the Bayesian predictive approach

is the choice of an appropriate prior π. Ideally, such a choice would be guided by

meaningful subjective information. However, such information is often not available,

especially in complicated problems with many unknown parameters. As noted by Liang

et al. (2008), “Subjective elicitation of priors for model-specific coefficients is often

precluded, particularly in high-dimensional model spaces, such as in nonparametric

regression using spline and wavelet bases. Thus, it is often necessary to resort to

specification of priors using some formal method (Berger and Pericchi 2001; Kass and

Wasserman 1996).” Perhaps the simplest such “objective” approach is to attempt to

reduce prior influence by using a diffuse prior such as a flat prior. Although such priors

may yield reasonable procedures in low dimensional settings, such priors can also lead

to inadequate predictive estimators, especially in high dimensional settings (see, e.g.,

Jeffreys, 1961 and Berger and Bernardo, 1989).

Ultimately, a criterion such as the KL risk function described above provides a

statistical decision theory framework in which the performance properties of Bayesian

predictive densities can be compared and evaluated. Recent work using this approach

has been fruitful for a number a high dimensional problems. In particular, work by

Komaki (2001), Liang and Barron (2004), George et al. (2006) and Brown et al.

(2007) has established conditions for minimaxity and admissibility as well as complete

class results for Bayesian predictive density estimators in the fundamental multivariate

normal setup. For distributions beyond the normal, new KL risk results for Bayesian

predictive densities have been developed by Aslan (2006), Hartigan (1999), Komaki

(1996, 2004, 2006) and Sweeting et al. (2004). In the following sections, we begin

by describing the multivariate normal results in more detail, showing how they lead to

uniformly improved Bayesian predictive density estimators over those based on uniform
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priors. We then proceed to describe how these results can be extended to the linear

regression setting. After a simulated illustration of the potential of some of these

Bayesian predictive estimators, we conclude with a discussion of directions for future

research in this area.

2 Prediction for the Multivariate Normal Distribution

We now focus exclusively on predictive density estimation for the multivariate

normal distribution, the centerpiece of parametric models. For this setup, we ob-

serve X | µ ∼ Np(µ, vxI) and wish to predict Y | µ ∼ Np(µ, vyI), two independent p-

dimensional multivariate normal vectors with common unknown mean µ. Here vx > 0

and vy > 0 are assumed to be known. By a sufficiency and transformation reduction,

this problem is equivalent to estimating the predictive density of Xn+1 based on ob-

serving X1, · · · , Xn where X1, · · · , Xn | θ i.i.d. ∼ Np(θ,Σ) with unknown θ and known

Σ.

The Bayesian predictive density p̂U under the uniform prior πU (θ) ≡ 1, namely

p̂U (y | x) =
1

{2π(vx + vy)}
p
2

exp

{
− ‖y − x‖

2

2(vx + vy)

}
, (5)

dominates the plug-in rule p(y | θ̂MLE), which substitutes the maximum likelihood

estimate θ̂MLE = x for θ (Aitchison 1975). Moreover, it is best invariant and minimax

with constant risk (Murray 1977, Ng 1980, Liang and Barron 2004), and is admissible

when the model dimension p = 1 or 2 (Liang and Barron, 2004, Brown et al., 2008).

However, when p ≥ 3, it turns out that p̂U (y | x) can be further dominated by other

predictive estimators. Indeed, Komaki (2001) showed that p̂H , the Bayesian predictive

density under the Harmonic prior πH(β) ∝ ‖β‖−(p−2) dominates p̂U when the number

of potential predictors p ≥ 3. Similarly, Liang and Barron (2004) showed that proper

Bayes rules p̂a under Strawderman priors πa(β), which are defined hierarchically as

β | s ∼ Np(0, sv0I), s ∼ (1 + s)a−2, also dominate p̂U when p ≥ 5.

It is interesting to note that these results closely parallel some key developments

concerning minimax estimation of a multivariate normal mean under quadratic loss.
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Based on observing X | θ ∼ Np(θ, I), that problem is to estimate θ under

RQ(θ, θ̂) = E‖θ̂ − θ‖2. (6)

The maximum likelihood estimator θ̂MLE , which is best invariant, minimax and ad-

missible when p = 1 or 2, is dominated by the Bayes rules θ̂π =
∫
θ π(θ |x)dθ under the

Harmonic prior (Stein, 1974) and under the Strawderman prior (Strawderman, 1971) in

high dimensions. Note that in the predictive density estimation problem, p̂U plays the

same “straw man” role as θ̂MLE in the point estimation problem. A further connection

between θ̂MLE and p̂U is revealed by the fact that θ̂MLE can also be motivated as the

Bayes rule under the uniform prior πU (θ) ≡ 1.

George et al. (2006) drew out these parallels by establishing a unifying theory

that not only subsumes the specialized results of Komaki (2001) and Liang and Bar-

ron (2004), but can also be used to construct large new classes of improved minimax

Bayesian predictive densities. Their developments began by showing that any Bayes

predictive density p̂π can be represented in terms of the uniform prior estimator p̂U
and the corresponding marginal mπ, namely

p̂π(y | x) =
mπ(w; vw)
mπ(x; vx)

p̂U (y | x), (7)

where W = vyX+vxY
vx+vy

is a weighted average of X and Y . The principal benefit of the

representation (7) is that it reduces the KL risk difference between p̂π and p̂U to a

simple functional of the marginal mπ(z; v)

RKL(θ, p̂U )−RKL(θ, p̂π) = Eθ,vw logmπ(W ; vw)− Eθ,vx logmπ(X; vx)

=
∫ vx

vw

∂

∂v
Eθ,v logmπ(Z; v)dv. (8)

Using the heat equation, Brown’s representation (Brown 1971) and Stein’s identity

(Stein 1981), this risk difference can be represented by

RKL(θ, p̂U )−RKL(θ, p̂π) =
∫ vx

vw

Eθ,v

(
∇2mπ(Z; v)
mπ(Z; v)

− 1
2
‖∇ logmπ(Z; v)‖2

)
dv(9)

=
∫ vx

vw

Eθ,v

[
2∇2

√
mπ(Z; v)/

√
mπ(Z; v)

]
dv. (10)
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It is easy to see from (9) and (10) that a sufficient condition for a Bayes predictive

density p̂π to be minimax is that mπ(z; v) or
√
mπ(z; v) is superharmonic, or as a direct

collary, that the prior π is superharmonic. These conditions are essentially the same as

the minimax condition for the quadratic risk estimation problem. In both problems,

that the Bayes rules under the harmonic prior and the Strawderman prior are minimax

in high dimensions now follows easily from the fact that their corresponding marginals

or square rooted marginals are superharmonic.

Comparing (9) and (10) with Stein’s unbiased estimate of risk (Stein 1974, 1981),

George et al. (2006) reveals a fascinating identity that provides a connection between

KL risk reduction to quadratic risk reduction

RKL(θ, p̂U )−RKL(θ, p̂π) =
1
2

∫ vx

vw

1
v2

[
RvQ(θ, θ̂vU )−RvQ(θ, θ̂vπ)

]
dv. (11)

Ultimately, it is this connection identity that yields similar sufficient conditions for

minimaxity and domination in these two problems.

Brown et al. (2006) used the connection identity (11) to investigate the admissibility

of Bayesian predictive density estimators. As proper Bayes rules are easily shown to

be admissible in the KL risk setting, see Berger (1985), the focus was on formal Bayes

rules. They showed that under essentially the same tail conditions for π as in Brown

and Hwang (1982), there exists a sequence of densities {πn} such that
∫
‖θ‖≤1 πn(θ)dθ =∫

‖θ‖≤1 π(θ)dθ > 0 and that BQ(πn, θ̂)−BQ(πn, θ̂πn)→ 0, which using (11) leads to

BKL(πn, p̂π)−BKL(πn, p̂πn) =
1
2

∫ vx

vw

1
v2

[
Bv
Q(πn, θ̂π)−Bv

Q(πn, θ̂πn)
]
dv → 0.

Then by a variant of Blyth’s method, the corresponding Bayes predictive estimator

p̂π is admissible. The admissibility of p̂U when p = 1 or 2, and the admissibility of

the Bayes rule under the harmonic prior when p ≥ 3 follow directly from these tail

conditions.

Going beyond obtaining prior tail conditions for admissibility, Brown et al. (2008)

established a compelling justification for restricting attention to Bayesian predictive

density estimators for the multivariate normal setup. They showed that for this setup,

the class of all generalized Bayes rules forms a complete class under the KL risk crite-

rion. Thus, any predictive estimator, including any plug-in estimator, can at least be
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matched if not dominated in risk, by some Bayesian predictive density estimator.

These recent results for the multivariate normal model have laid the foundations

for the development of new predictive methods for more complicated settings. In

particular, the connection identity (11) provides a bridge between the predictive density

estimation problem and the classic point estimation problem, providing a tool to borrow

strength from some important, beautiful and fundamental results in the latter area.

3 Predictive Density Estimation for Linear Regression

Linear regression models are the mainstay of statistical modeling, in many scenar-

ios at least providing useful approximations to the relationship between explanatory

variables and the future outcome of interest (Gelman et al. 2003). George and Xu

(2008) and Kobayashi and Komaki (2008) both independently studied the problem of

predictive density estimation under KL loss in a linear regression setting where they

successfully extended a variety of the results discussed in the previous section.

The predictive density estimation problem in this context begins with the canonical

normal linear model

Yn×1 = Xn×pβp×1 + εn×1, (12)

where ε ∼ Nn(0, σ2I) and X is a full rank, fixed n× p matrix of p potential predictors

where n ≥ p. Based on observing X = x, the goal is to estimate the density of a future

vector Ỹ where

Ỹm×1 = X̃m×pβp×1 + τm×1.

Here τ ∼ Nm(0, σ2I) is independent of ε and X̃ is a fixed m× p matrix of the same p

potential predictors in X with possibly different values. Assume that σ2 is known, and

without loss of generality set σ2 = 1 throughout.

Letting β̂y be the traditional maximum likelihood estimate of β based on the ob-

served data, it is tempting to consider the plug-in predictive estimate p̂plug−in(ỹ | β̂y),
which simply substitutes β̂y for β in p(ỹ | β). However, as shown by George and Xu

(2008), it can be dominated by the Bayesian predictive density p̂U (ỹ | y) under the
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uniform prior π(β) ≡ 1, namely,

p̂LU (ỹ | y) =
1

(2πσ2)
p
2 |Ψ|

exp

{
(ỹ − X̃β̂y)′Ψ−1(ỹ − X̃β̂y)

2σ2

}
, (13)

where Ψ = I + X̃(X ′X)−1X̃ ′. Moreover, p̂LU has constant risk and is minimax under

the KL loss (Liang and Barron 2004). Thus, like p̂U in (5), it plays the role of straw

man in this linear regression setup and is a good default predictive estimator. But

not surprisingly, it can be improved upon by other Bayesian predictive densities when

p ≥ 3.

Analogous to the development in the multivariate normal case, the key marginal

representation for Bayesian predictive estimator p̂Lπ in linear regression can be expressed

as

p̂Lπ (ỹ | y) =
mπ(β̂y,ỹ, (W ′W )−1)
mπ(β̂y, (X ′X)−1)

p̂LU (ỹ | y), (14)

where W = (X ′, X̃ ′)′ and

β̂y = (X ′X)−1X ′y ∼ Np(β, (X ′X)−1)

β̂y,ỹ = (W ′W )−1W ′(x′, y′)′ ∼ Np(β, (W ′W )−1).

The representation (14) facilitates the the KL risk comparison of p̂LU and p̂Lπ , where the

difference takes the form

RKL(β, p̂LU )−RKL(β, p̂Lπ )

= Eβ,(W ′W )−1 logmπ(β̂y,ỹ; (W ′W )−1)− Eβ,(X′X)−1 logmπ(β̂y; (X ′X)−1).

Since (W ′W )−1 and (X ′X)−1 are both symmetric and positive definite, there exists an

invertible p× p matrix P such that

(X ′X)−1 = PP ′ and (W ′W )−1 = PΣDP
′, (15)

where ΣD = diag(d1, . . . , dp). Moreover, di ∈ (0, 1] for all 1 ≤ i ≤ p with at least

one di < 1, because (W ′W )−1 = (X ′X + X̃ ′X̃)−1 and X̃ ′X̃ is nonnegative definite.
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Therefore, the KL risk difference between p̂U and p̂π can then be represented by

RKL(β, p̂LU )−RKL(β, p̂Lπ ) =
p∑
i=1

(1− di)
∫ 1

di

∂

∂vi
Eβ,V logmπP (Z, V )dvi, (16)

where πP (β) = π(Pβ) and V = diag(v1, · · · , vp). Paralleling the development of (9)

and (10), unbiased estimates of the components in (16) can be obtained. By com-

bining the above results, George and Xu (2008) established that a sufficient condi-

tion for p̂Lπ to be minimax is trace
{
H(mπ(z;PVwP ′))[(X ′X)−1 − (W ′W )−1]

}
≤ 0

or trace
{
H(
√
mπ(z;PVwP ′))[(X ′X)−1 − (W ′W )−1]

}
≤ 0 for all 0 ≤ w ≤ 1, where

H(f(z1, · · · , zp)) is the Hessian matrix of a function f(z1, · · · , zp). These results pro-

vide substantial generalizations of those in George et al. (2008), and can be used to

construct improved predictive predictive estimators for linear regression models using

scaled harmonic priors, shifted inverted gamma priors and generalized t-priors, follow-

ing the development in Fourdrinier et al. (1998).

4 Multiple Shrinkage Predictive Density Estimation

As will be illustrated in the simulation examples of the next section, Bayesian pre-

dictive density estimators can achieve dramatic risk reduction, but only in relatively

small neighborhoods of prior modes. Thus, a desirable prior will not only satisfy the

minimax and domination conditions above, but will also concentrate prior probability

in a neighborhood of β. Now although β will almost always be unknown, there will

sometimes be good reason to believe that β may be close to a particular subspace. For

example, in large regression problems, it will often be suspected that at least some sub-

set of the predictors is irrelevant in the sense that their coefficients, the corresponding

components of β, are very small or zero. In this case, this suspicion would translate

into the belief that β might be close to a subspace of β values for which a subset of

components is identically zero. To exploit this possibility, George and Xu (2008) pro-

posed the following minimax multiple shrinkage predictive estimators that adaptively

shrink β towards the subspace most favored by the data.

First consider the construction of a predictive density estimator that shrinks a

particular subset of the β components towards 0. Let S be the subset of {1, . . . , p}
corresponding to the indices of the irrelevant predictors, and let βS be the subvector
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of β corresponding to the columns of X indexed by S. If the components of βS were

in fact small or zero, it would be have been effective to have used a prior, such as

the harmonic prior, that was centered around 0 on βS and was uniform on βS̄ , where

S̄ denotes the complement of S. Denoting such a prior by πS and letting π∗S be the

restriction of πS to βS , i.e., π∗S(βS) = πS(β) is a function of βS only, the Bayesian

predictive density p̂LπS
(y | x) can be expressed as

p̂π∗S (ỹ | y) =
mπ∗S

(β̂S,y,ỹ, (W ′SWS)−1)

mπ∗S
(β̂S,y, (X ′SXS)−1)

p̂U (ỹ | y).

This shrinkage predictive density estimator offers substantial risk reduction when the

components of βS are all very small or zero by shrinking the posterior on the corre-

sponding coefficients of β towards 0.

As was mentioned above, there will typically be uncertainty about which subset of

the p predictors in X should be included in the model. Rather than arbitrarily selecting

S, an attractive alternative is to use a multiple shrinkage predictive estimator which

uses the data to emulate the most effective p̂πS . Let Ω be the set of all potentially

irrelevant subsets S, possibly even the set of all possible subsets. For each S ∈ Ω, let

πS be a shrinkage prior constructed as above, and assign it probability wS ∈ [0, 1] such

that
∑
S∈ΩwS = 1. Then the mixture prior

π∗(β) =
∑
S∈Ω

wS πS(β)

will yield a multiple shrinkage predictive estimator

p̂∗(ỹ | y) =
∑
S∈Ω

p̂(S | y)p̂πS (ỹ | y), (17)

where p̂(S | y) is the model posterior probability of the form

p̂(S | y) =
wSmπ∗S

(β̂S,y, (X ′SXS)−1)∑
S∈ΩwSmπ∗S

(β̂S,y, (X ′SXS)−1)
.

The expression (17) shows that p̂∗(ỹ | y) is an adaptive convex combination of the

individual shrinkage predictive estimates p̂πS . Note that through p̂(S | y), p̂∗ doubly
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shrinks p̂U (ỹ | y) by putting more weight on the p̂πS for which mπ∗S
is largest and p̂πS

shrinks most. Thus p̂∗ is adaptive in the sense that it automatically adjusts to the

subset index S for which βS corresponds exactly to the zero or very small components

of β. We expect p̂∗ to offer meaningful risk reduction whenever any βS is small for

S ∈ Ω, and so the potential for risk reduction using p̂∗ is far greater than the risk

reduction obtained by using an arbitrarily chosen p̂πS .

It should be pointed out that the allocation of risk reduction by p̂∗ is in part

determined by the wS weights in p̂(S |x). Because each p̂(S | y) is so sensitive, through

mπ∗S
, to the value of β̂S,y, choosing the weights to be uniform should be adequate.

However, one may also want to consider some of the more refined suggestions in George

(1986b) for choosing such weights.

5 Simulation Studies

In this section, we demonstrate the shrinkage properties of some Bayesian predic-

tive densities and their risk improvements over the default procedure under the uniform

prior. To make the illustration simple and easy to understand, we use the multivariate

normal setup from Section 2 for our simulations. Similar results can be obtained for

linear regression models through direct extensions.

Figure 1 illustrates the shrinkage property of the Bayesian predictive density p̂H(y|x)

under the harmonic prior when vx = 1, vy = 0.2 and p = 5. Analogous to Bayes esti-

mators Eπ(θ | x) of θ that “shrink” θ̂MLE = x, the marginal representation (7) reveals

that Bayes predictive densities p̂π(y | x) “shrink” p̂U (y | x) by a multiplicative factor

of the form mπ(w; vw)/mπ(x; vx). However, the nature of the shrinkage by p̂π(y | x) is

different than that by Eπ(θ | x). To insure that p̂π(y | x) remains a proper probability

distribution, the factor cannot be strictly less than 1. In contrast to simply shifting

θ̂MLE = x towards the mean of π, p̂π(y | x) adjusts p̂U (y | x) to concentrate more on

the higher probability regions of π.

To study the potential risk improvements provided by Bayesian predictive densities,

we illustrate the risk differences of p̂U (y | x) with the Bayes rules under the harmonic

prior πH or the Strawderman’s prior πa with a = 0.5. Because p̂H and p̂a are unimodal

at 0, it intuitively seems that the risk functions RKL(θ, p̂H) and RKL(θ, p̂a) should take

on their minima at θ = 0, and then asymptote up to RKL(θ, p̂U ) as ‖θ‖ → ∞. That
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Figure 1: Shrinkage of p̂U (y | x) to obtain p̂H(y | x) when vx = 1, vy = 0.2 and
p = 5. Here y = (y1, y2, 0, 0, 0).
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this is exactly what happens for these priors is illustrated in Figure 2 and Figure 3,

which display the difference at θ = (c, . . . , c)′, 0 ≤ c ≤ 4 when vx = 1 and vy = 0.2 for

dimensions p = 3, 5, 7, 9. The largest risk reduction in all cases occurs close to θ = 0

and decreases rapidly to 0 as ‖θ‖ increases. (Recall that RKL(θ, p̂U ) is constant as

a function of θ). At the same time, risk reduction by p̂H and p̂a is larger for larger

p at each fixed ‖θ‖. Note that p̂a offers more risk reduction than p̂H , apparently

because it more sharply “shrinks p̂U (y | x) towards 0”. Note also that when p = 3,

[RKL(θ, p̂U )−RKL(θ, p̂a)] is negative for large θ, a manifestation of the non minimaxity

of pa when a = 0.5 and p = 3.

Figure 2: The risk difference between p̂U and p̂H when θ = (c, · · · , c), vx = 1, vy =
0.2.
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Figure 3: The risk difference between p̂U and p̂a with a = 0.5, vx = 1, vy = 0.2,
and θ = (c, · · · , c).
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As we have seen in Section 4, the underlying priors and marginals of the Bayesian

predictive densities can be readily modified to obtain minimax shrinkage towards sub-

spaces, and linear combinations of superharmonic priors and marginals can be con-

structed to obtain minimax multiple shrinkage predictive densities p̂∗ as in (17), which

are analogues of the minimax multiple shrinkage estimators of George (1986abc). As a

result of the shrinkage behavior of p̂∗, we would expect the risk reduction of RKL(θ, p̂∗)

over RKL(θ, p̂U ) to be greatest there wherever any βS is small for S ∈ Ω.

To see that this is precisely what would happen with p̂H∗ , a multiple shrinkage

version of p̂H in the multivariate normal setting of Section 2, we consider p̂H∗ ob-

tained analogously to (17) but using harmonic priors recentered at s1, s2 ∈ Rp, namely

πH1(β) ∝ ‖β − s1‖−(p−2) and πH2(β) ∝ ‖β − s2‖−(p−2). Figure 4 illustrates the risk

reduction [RKL(θ, p̂U )−RKL(θ, p̂H∗)] at various θ = (c, . . . , c)′ obtained by p̂H∗ , which

adaptively shrinks p̂U (y | x) towards the closer of the two points s1 = (2, . . . , 2)′ and

s2 = (−2, . . . ,−2)′ using equal weights w1 = w2 = 0.5. As in Figure 2 and 3, we

considered the case vx = 1, vy = 0.2 for p = 3, 5, 7, 9. As the plot shows, maximum

risk reduction occurs when θ is close to either s1 or s2, and goes to 0 when θ moves

away from these points. At the same time, for each fixed ‖θ‖, risk reduction by p̂H∗

is larger for larger p. It is impressive that the size of the risk improvement offered by

p̂H∗ is nearly the same as each of its single target counterparts. The cost of multiple

shrinkage enhancement seems negligible, especially compared to the benefits.

Figure 4: The risk difference between pU and multiple shrinkage pH∗, with
θ = (c, · · · , c), vx = 1, vy = 0.2, a1 = 2, a2 = −2, and w1 = w2 = 0.5.
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6 Concluding Remarks

Bayesian predictive densities have been widely used in many research areas. Be-

sides predicting future trends and behavior patterns (Taylor and Buizza 2004, Lewis

and Whiteman 2006, Weinberg et al. 2007), they have also been used in model check-

ing and model diagnostics (Pardoe 2001, Gelman et al. 2004, Sinharay et al. 2006),

missing data analysis (Rubin 1996, Gelman et al. 1998, Schafer 1999, Gelman and

Raghunathan 2001, Little and Rubin 2002), and data compression and information

theory (Barron et al. 1998, Clarke and Yuan 1999, Liang and Barron 2004).

Recent developments in Bayesian predictive density estimation for high-dimensional

models provide valuable guidance for the construction of predictive estimators for par-

ticular setups. However, there are many open directions with much more to be done,

especially for more general model setups. In this vein, Kato (2008) considered the pre-

dictive density estimation problem for a multivariate normal distribution where both

the means and the variances are unknown. The Bayesian predictive estimator under

an improper shrinkage prior was shown to dominate the default one under the right

invariant prior when p ≥ 3 and therefore be minimax. In another new direction, Xu

and Liang (2009) explored the problem of estimating the predictive density of future

observations from a nonparametric regression model. To evaluate the exact asymp-

totics of the minimax risk, they derived the convergence rate and constant for minimax

risk among Bayesian predictive densities under Gaussian priors, and then showed that

this minimax risk is asymptotically equivalent to that among all the density estimators.

Such results provide not only powerful theoretical tools, but also easily-implementable

prior selection strategies for predictive analysis.
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