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PREDICTIVE DENSITY ESTIMATION
FOR MULTIPLE REGRESSION
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Suppose we observe X ~ N,,(AB,0%I) and would like to estimate the predictive
density p(y|8) of a future Y ~ N, (BB,o%I). Evaluating predictive estimates p(y|x)
by Kullback-Leibler loss, we develop and evaluate Bayes procedures for this prob-
lem. We obtain general sufficient conditions for minimaxity and dominance of
the “noninformative” uniform prior Bayes procedure. We extend these results to
situations where only a subset of the predictors in A is thought to be potentially
irrelevant. We then consider the more realistic situation where there is model uncer-
tainty and this subset is unknown. For this situation we develop multiple shrink-
age predictive estimators and obtain general minimaxity and dominance conditions.
Finally, we provide an explicit example of a minimax multiple shrinkage predic-
tive estimator based on scaled harmonic priors.

1. INTRODUCTION

We begin with the canonical normal linear model setup
X ~ N,(AB,a?D), (1)

where X is an m X 1 vector of m observations, A is a full rank, fixed m X p
matrix of p potential predictors where m = p, and B is a p X 1 vector of unknown
regression coefficients. Based on observing X = x, we consider the problem of
estimating the predictive density p(y|B) of a future n X 1 vector ¥ where

Y ~ N, (BB, o2I). ()

Here B is a fixed n X p matrix of the same p potential predictors in A, although
with possibly different values. We also assume that X and Y are conditionally
independent given B. Finally, we assume that o2 is known and without loss of
generality set o2 = 1 throughout.
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For each value of x, we evaluate a predictive estimate p(y|x) of p(y|8) by
the well-known Kullback—Leibler (KL) loss

p(yIB)
p(yl )

The overall quality of the procedure p = p(y|x) for each B is then conve-
niently summarized by the KL risk

L(B,p(ylx) = Jp(ylﬂ) log 3

Ra(B,9) = [ px|BILB,p(y1) d. @

Letting 3, = (A’A)"'A’x be the traditional least squares estimate of 8 based
on x, it is tempting to consider the plug-in predictive estimate Pyig. (¥ B,
which simply substitutes 3, for 8 in p(y|B). However, as we show in Sec-
tion 2 by extending the arguments of Aitchison (1975), the formal Bayes pre-
dictive estimate

Jp(xiﬁ)p(ylﬁ)dﬁ
pu(ylx) = )
[rxiras

has smaller KL risk than pypg.i.(¥] B,) for every B. Thus, Potug-in(¥1 B,) should
be ruled out, and we turn our focus to Bayes procedures.
For a prior 7 on 8, the Bayes predictive estimator p,(y|x) is given by

JP(xIB)p(yIB)w(ﬁ)dB
Balylx) = . ®
[pxiprmipyas

It also follows from the arguments of Aitchison (1975) that for proper =, p,
minimizes the average risk 7,.(p) = [ Ry (B, p)7(B) df. Note that py in (5) is
the formal Bayes estimate under the improper uniform “noninformative” den-
sity 7y (8) = 1 and would seem to be a good default procedure. Indeed, py; has
constant risk and is minimax under KL loss; see Liang (2002) and Liang and
Barron (2004). But surprisingly, as we will show, in many cases py itself can
be uniformly dominated in terms of KL risk by other Bayes predictive estimators.

In Section 2, we develop general conditions under which p, will be mini-
max and uniformly dominate py in terms of the KL risk (4) for the multiple
regression prediction problem. Our results can be seen as a substantial gener-
alization of the work of George, Liang, and Xu (2006), who considered the
special case of this problem when X ~ N,(u,02I) and Y ~ N, (p,071),
where u is the common unknown multivariate normal mean. Moving further
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away from this common mean setup, we proceed in Section 3 to extend these
results to the setting where only a subset of the p predictors is considered to
be potentially irrelevant. In Section 4, we consider the more realistic model
uncertainty setting where such a subset is unknown, and we develop minimax
multiple shrinkage predictive densities that adaptively shrink toward the model
most favored by the data. In Section 5, we conclude by showing how our
results can be extended for minimax shrinkage prediction toward any linear
subspaces. Although we do not consider the issue of admissibility in this paper,
it may be of interest to note that for the preceding multivariate normal predic-
tion problem Brown, George, and Xu (2007) recently established that all admis-
sible predictive densities are Bayes procedures.

2. PRIORS FOR MINIMAX PREDICTIVE ESTIMATION

In this section, we develop general conditions on 7 for p,, in (6) to uniformly
dominate py in (5) under KL risk (4). The minimaxity of such p, will then
follow immediately from the minimaxity of py.

We begin by establishing some convenient notation. As indicated previously,
we use B, = (A’A)"'A’x to denote the least squares estimate of 8 based on x.
Although y is not observed, it will be useful to use

3 —(C’C)"C’(x) h c—(A> | 7
By~ y where C = B )

to denote the least squares estimate of 8 based on x and y. Note that ,é'x ~
N,(B,3%,) and ﬁx,y ~ N,(B,3.¢), where for notational convenience throughout
we let 3,4 = (A’A)™! and 3¢ = (C'C)™L. It will also be useful to let RSS, =
|x — AB.|? and

x A
RSS, , = y = CBy

denote the corresponding residual sums of squares (RSS). In terms of this nota-
tion, we have the following result.

2

LEMMA 1. The uniform prior predictive estimate py in (5) can be ex-
pressed as

) 1 |ccl RSS, , — RSS,
pu(ylx) = expy———

Gy |ATA| 2
1 {(y—BBx)'\v—‘(y—BBx)}
T em)w 7P 2 ’

®
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where ¥ = I + B3, B'. Moreover, the KL risk of Pu is uniformly smaller than
that of the plug-in estimator Ppg.in(¥1B:).

Proof. Because Bx| B ~ N,(B,3,), the posterior of 8 under the uniform
prior is B| B, ~ N, (BX,EA) It follows that the posterior of BB is BB|B, ~
N, (B,Bx,BEAB ), and thus the predictive estimator is

Y|B, ~ Np(B,Bx,I + B3, B’).

To calculate the risk of Pu, let H, = A(A’A)'A’ denote the hat matrix based
on x and He = C(C'C)™1C’ denote the hat matrix based on both x and y. It is
easy to see that

Ry (B, py) = JJP(XI,B)P(}’W)]Og POIE) dxdy

Pu(y]x)
|C'C]

1 _—

! f+1ﬂ(| )p(y|B)IRSS, , — RSS, ] dxd
5 |A’A[ 575 p(x|B)p(y|B %,y ] dxdy

1 |IC'Cl n 1 N N
= -2-1 -I—X’Z[— -3 + - 3 [trace(l,,., — H¢) — trace(l,, — H,)]
1 |C'Cl n n
= —log —=+=
2 T AAl 2 2
1 »
=5 2 log(ei + 1)’
2=
where ¢;,...,e, are the eigenvalues of (A’A)"'B’B. Moreover,
. 5 p(y1B)
RealBobsn9\8) = [ [ p318)p 018108 522 2 sy
plug-ln(ylﬁx

1 A
T2 H p(x1B)p(yB)ly — BE,I* — |y — BO|*] dxdy

1 A
=~ [ pipiBe, - BoI? ax

trace(B(A’A)'B’)

l\)l*-‘

N | =
~
]
-
-

e
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That pyy dominates Ppuug-in(¥| B,) follows from the fact that log(x + 1) < x for
any x > Q. [ |

Risk comparisons of a Bayes predictive density p,. with py are greatly facil-
itated by the following representation of p,, in terms of py;,. An analogous rep-
resentation of the posterior mean in terms of the maximum likelihood estimator
(MLE), which simplifies multivariate normal mean estimation under quadratic
risk, was proposed by Brown (1971). For our representation, it will be useful to
denote the marginal distribution of Z|B ~ N,(B,%) under = by

m,(z;3) = fp(zlﬁ)W(B)dB- )

ThusZ the marginal distributions of ,éx and ,éx, y under 7 are denoted by
mq(By,24) and m, (B, ,,3c), respectively.

LEMMA 2. If m,(z;3) is finite for all z and 2, then p,(y|x) is a proper
probability distribution. Furthermore, it can be expressed as

mw(BAx,y 2C)
mﬂ(ﬁ,w 2A)

where py is defined by (8).

P (ylx) = Pu(ylx), (10)

Proof. When m,(z;2) is finite for all z and 3, that p,,.(y|x) is a proper prob-
ability distribution follows from integrating with respect to y and switching the
order of integration.

Next, straightforward calculation yields

[paipyme)as

1 lx—AB|?
= f @ eXp{—T}W(B)dﬁ

1 |x = AB.I? + | AB. - AB|?
=f (277_),,,/2 exp{_ ) }W(B) ap

1 x—AB07
- (277)(m_p)/2 Cxp 2

1 AB, — AB|?
X fWexp{—u}W(ﬁ)dB

2
|A'A|~ V2 RSS,
- (277)m=p)/2 €Xp) — )

}m,,(éx,z,,). §5))
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Similarly, we obtain

lclc|—1/2 RSSx,y .
[risOImB a8 = & s 0| =2 (B3l

(12)
The representation (10) follows immediately from (6), (11), and (12). u

The next result provides a representation of the difference between the KL
risks of py and p,, in terms of the marginal distributions of j;, and B, ,.

LEMMA 3. The difference between the KL risks of py and p, is given by
Ry (B, Py) — Rr (B, pr) = Ep s log mw(ﬁx,y;zc) —Eg 5, log M (BeiZa),
(13)
where Eg 5(-) stands for expectation with respect to the N,(B,3) distribution.

Proof. The KL risk difference between p;; and p,. can be expressed as

) o Pa(y|x)
Rea(B,bu) ~ Rua(B: ) = [ [ pixlBIp(y18) 108 YR

dxdy

mqr(Bx,;u 2C)

- [[reimroipnes oS
T x? A

where the last equality follows from Lemma 2. The result then follows from
the change of variable theorem. n

To exploit the representation (13), we proceed to transform the distributions
to canonical form. Because 3,4 and 3. are both symmetric and positive defi-
nite, there exists an invertible p X p matrix W such that

3,=WW' and 3.=WI, W/, 14
where
3p = diag(dy,...,d,). 15)

Because 3¢ = (C’C) ! = (A’A + B’B)™! and B'B is nonnegative definite, d; €
(O,I]Afor all 1 =i =< p with at least one d; < 1. Finally, let p = WB, b, =
W13, and fi, , = W18, ,, so that

i:l’x NNp(lL,I) and ﬁx,y~Np(M’2D)° (16)




534 EDWARD |. GEORGE AND XINY1 XU

LEMMA 4. Let wy () = w(Wu). Then, the difference between the KL risks
of py and p,. is given by

R (B, py) — Ry (B, Pr) = E,u,zD log mﬂw(i:"x,y;ED) —E, log m‘rrw(/:l’x;l)’
a7
where E, s(-) stands for expectation with respect to the N,(u,2) distribution.

Proof. The result follows by transforming the expressions in Lemma 3:

Eps,logm,(B;3,) = j p(B.1B)log f p(B:\B)m(B) dpdp,

= [ Pl iyton [ oGl () s,

=E, jlogm, (f.;]).
Similarly,
Eg s logm, (B3 3c) = E, 5,108 My, (i, 3 Ep).
Thus, (17) equals (13). [ |

We now proceed to find conditions on m,, for which the risk difference (17)
is nonnegative for all u. Because py is minimax, this will then imply that p,, is
minimax under the prior 7 corresponding to 7. Now for w € [0,1], let

V,=wl+(1—w3p, (18)
where 3 is defined as in (15). Next, for Z ~ N,(u,V,,), let

h,(V,)=E, y logm, (Z;V,). (19)
Thus, we may rewrite (17) as

R (B, bu) — Rer(Bs ) = by (Vo) — by (V3). (20)

Because #,(w) is continuous in w, it suffices to derive conditions on m, such
that (3/0w)h,(w) < O for all u and w € [0,1]. Letting v; be the ith diagonal
element of V,,, we have by the chain rule

3 ? oh, v, P dh
—h,=>—+—=>(1-d)—". 21
ow “ ; ov; 0 ;( 2 ov; 1)

The following result provides unbiased estimates of the components of (21)
that, when combined with (17), will be seen to play a key role in establishing
sufficient conditions on m,, for p,, to be minimax and to dominate p;,;. As noted
by George et al. (2006), these estimates are very similar to the unbiased esti-
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mates of risk for the estimation of a multivariate mean under squared error
loss; see Stein (1974, 1981).

LEMMA 5. If m, (z;1) is finite for all z, then for any 0 = w < 1,
m,,(z;V,,) is finite. Moreover,

82
— zZ;V,
9 a2 "BV 2
—6—1—)_- h# = E,u,Vw m - E 'ézlog m,,W(Z;VW) 22)
62
QVMWW(Z;VW)
=E,y |2 —————— |. (23)

\m, (Z;V,)

Proof. When m,_(z;I) is finite for all z, it is easy to check that for any
fixedzand any 0 =w =1,

k

I1 df‘”) Mo (z:1) < co.
i=1

m, (zV,) = (

Next, letting Z* = V,;Y2(Z — u) ~ N(0,I), we have

ih =—6—Elogm (VI2Z* + u3V,)
ov; * v, R W W

d

o Mo (VJ?Z* + u3V,)
V;

=FE , 24
mvrw V“}/2Z* + M’;Vw) ( )

where

3
P m (V22" + uV,)

i

9 1 { i(\/_v_,-Z?Jrﬂ.--Mé)z} () dut
=— | —————expy— T
d; J @m0, P =1 2v; WAk

*2

1 i :'2 i P —
J<__+'("Z———li—)-—'Z——""Z—LIL_M)>P(Z“L')7TW(M')dM'

2v; 207 2v; 2072

It

- :u’i)(zi - M;)
2v?

d i
o, m,.(zV,) — f & pzlp )y (') dp.
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Making use of the well-known univariate heat equation

2

10
— M (BV,) (25)

—m, (zV,)=—
(50D =5 o

ov;

1

(see, e.g., Steele, 2001, and the Brown, 1971, representation E, (u!|z;) = z; +
v;(3/9z;)log m,,_(2)), (22) and (23) can be verified via the same steps as in the
proof of Lemma 3 in George et al. (2006). n

Now we can obtain sufficient conditions for a Bayes procedure p,, to be mini-
max by combining (20), (21), and Lemma 5. The following result provides a
substantial generalization of Theorem 1 of George et al. (2006).

THEOREM 1. Suppose that m,.(z;WW') is finite for all z with the invertible
matrix W defined as in (14). Let H(f(zy,...,z,)) be the Hessian matrix of f.

(i) If trace{H(m,(z;WV,W'D[Z, — 21} =0 for allw € [0,1], then p,, is
minimax under Ry;. Furthermore, p,. dominates py unless m = my.

(ii) If trace{H(\m, (z; WV, W"))[S, — Sc1} < 0 for all w € [0,1], then p,,
is minimax under Rg;. Furthermore, p, dominates py if for all w € [0,1],
this inequality is strict on a set of positive Lebesgue measure.

Proof. To prove the minimaxity of p, under Ry;, it suffices to show that
(22) or (23) is nonpositive because by (21) that would imply the nonnegativity
of (20). Dominance would further follow by showing that (22) or (23) is also
strictly negative on a set of positive Lebesgue measure.

Noting that m,,_(z;V,,) = m,(Wz; WV,,W'), and letting Wz = Z, we obtain

k 92 k 92
> (U —d) = m. (zV,) = 2 (1—d;) — m (WY, W)
i=1 aZ,- i=1 0z;
k 4 Zm, (ZWV,W')
= E(I_di)z Evvjz'_:_:—_" ki
i=1 j=1lk=1 0%;0Z;

= trace{(I -~ 2,)W'H(m . (; WV, W' )W}
= trace{H(m, (Z; WV, W' )W — 3,)W'}
trace{H(m,, (Z; WV, W' )2, — 21} (26)

Similarly,

k 82
; (1-4d) @\/mww(z;Vw) = trace{H(Vm, (GWV, W[, - Sc1 @D

Now (i) and (ii) follow immediately from (22), (23), (26), and (27). n



PREDICTIVE DENSITY ESTIMATION FOR MULTIPLE REGRESSION 537

The next result follows using the fact that (9%/9z7)m,, (z;V,) = 0 when
0%3ui)my(p) = 0.

COROLLARY 1. Suppose that m,(z;WW') is finite for all z. Then p, will
be minimax if

trace{ H(m (BN [Z, — 21} =0 ae
Furthermore, p,, will dominate py unless m = ary.
Example (Scaled harmonic prior)

Suppose that A = B. In this case,

1
trace{H(m(B)[24 — 21} = 2 trace{H(7(B))3 4}

trace{H(m (B))WW'}

N | =

V2o ). (28)

=

Let my(p) oc u] =P~ when p = 3 and 7y (u) o 1 when p < 3. Note that
ay is harmonic, i.e., VZary(u) = 0, and not equal to 7y, when p = 3. For
p = 3, the corresponding prior on S is a “scaled harmonic prior”

7(B) oc [W'BI~?7? = |diag (n; ', ..., 1, /) BI~ 772, (29)

where 1y,...,m, > 0 are the eigenvalues of 34 and for p < 3, w(B) « 1.
(The expression (29) is obtained using the fact that there exists an orthonor-
mal matrix O such that W = O diag(5}’?,...,1,/*)0".) By Corollary 1 and
(28), the predictive estimator p, under this prior is minimax and dominates
py when p = 3. It is easy to check that these results hold when A = rB for
any known constant r.

3. PREDICTIVE DENSITY ESTIMATION NEAR SUBSET MODELS

When a prior centered at O such as the scaled harmonic prior (29) is applied to
B, the risk reduction of p,. over py is greatest when all the components of 3 are
close to 0. Thus, it would be sensible to use this prior if it was felt that all p
predictors in A and B were potentially irrelevant. However, such a prior would
be ineffectual if only a subset of the p predictors were irrelevant, in other words,
if only a subset of the 8 components were close to 0. In this section, we extend
our results for the setting where such a subset is known. This will set the stage
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for Section 4, where we develop new results for the more realistic model uncer-
tainty setting where such a subset is unknown,

Let S be the subset of {1,...,p} corresponding to the indices of the poten-
tially irrelevant predictors and let gs = | S| be the number of elements in S. Let
Bs be the subvector of B corresponding to the columns of A indexed by S. Sim-
ilarly, let .éS,x and BS,x,y be the subvectors of BAX and [-Alx,y, respectively, corre-
sponding to Bs. Finally, for notational convenience, let 3, s and S ¢ be the
stmatﬁcE:s of 3,4 and 3, respectively, which are the covariance matrices of
BS,x and .BS,x,y-

When only the elements of By are thought to be close to zero, it would be
sensible to consider a prior that is uniform on B85, where § is the complement
of S. We denote such a prior by s and let 7§ be the restriction of 7rg to Bg so
that

ms(B) = w5(Bs) (30)

is a function of By only. To exploit the possibility that B is close to zero, g
would then be centered around O.

LEMMA 6. If m, (z;3) is finite for all z and 3, then p, (y|x) is a proper
probability distribution. Furthermore, it can be expressed as

mw;(ﬂs,x,y’zc,s)

Py (y|x), (31)
m'rr;(ﬁS,x,EA,S) Pu y[

Py (p]x) =

where py is defined by (8).

Proof. The first assertion was proved in Lemma 2. Next, proceeding as in
the derivation of (11), we obtain

[pxirrs(ras

1 Ix = AB.I?
- (277)m=p)/2 €Xp1— 2

1 1AB. — ABI*\
X f(Zw)p/z exp{—_—?——}ﬂs(ﬁs)dﬂ

|A’A|~ 12 RSS,
- (277.)(m*p)/2 €xXpY~ 2

} ﬂ;(és,x:zA,S)- (32)
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Similarly, we obtain

[r1B118Y7s(8) a8

lclcl—l/Z RSSx,y
B (277)(m+n=p)/2 eXp1—

} mar;(:és,x,y’ 2C,S)' (33)

The representation (31) follows immediately from (6), (32), and (33). n

The following results provide sufficient conditions for the minimaxity of p.,_
and for its dominance over py. We omit the proofs, which are obtained using
the same arguments leading to Theorem 1 and Corollary 1. Analogously to our
previous development there, we let W be an invertible gs X gs matrix such that
S4s=WsWgand S s=W3p sW’', where 3p 5 = diag(d,, ...,d,) asin (15).
Finally, let Vg, = wl + (1 — w)3.p as in (18).

THEOREM 2. Suppose that m,»(z;WsWy) is finite for all z. Let H(f(z;,
..+22,,)) be the Hessian matrix of f.

(i) If trace{H(m2(z;Ws Vs, W))[Zas — Z2es]t = 0 for all w € [0,1],
then p,._ is minimax under Ry;. Furthermore, p, dominates py unless
s = Ty-

(ii) If trace{H(\m,+(z;Ws Vs, Ws))[Z4 5 — Z¢s]t = 0 for all w € [0,1],
then p,, is minimax under Ry;. Furthermore, p,.. dominates py if for all
w € [0,1), this inequality is strict on a set of positive Lebesgue measure.

COROLLARY 2. Suppose that m,:(z;WsWy) is finite for all z. Then p,,
will be minimax if

trace{H(m5(Bs)[Zps — s} =0 ae

Furthermore, p,, will dominate py unless ws = my.
Example (continued) (Scaled harmonic prior)

Suppose that A = B so that as in (28),
* 1 2
trace{ H(m5(Bs)[Zas — Zcslt = 2 Viary (ms), 34

where pg = Ws''Bs. Here let my (p) o |us|™@~? when g5 = 3 and
mw(us) o< 1 when gs < 3. As before, 7y, is harmonic, i.e., V7y (p) = 0,
and not equal to 77y when gg = 3. For g5 = 3, the corresponding scaled har-
monic prior on B is
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75(B) = w5(Bs) o [Ws! Bs|™@72) = |diag(ny V2, ..., mp ") Bs =972, (35)

where 1y,...,m,, > 0 are the eigenvalues of %4 s and for g5 < 3, ws(B) o 1.
By Corollary 2 and (34), p,.. here is minimax and dominates p; when gg = 3.

4. MINIMAX MULTIPLE SHRINKAGE PREDICTIVE ESTIMATION

We consider the more realistic model uncertainty setting where there is uncer-
tainty about which subset of the p predictors in A and B should be included in
the model. For each choice of S, we have obtained general sufficient conditions
for p,,, to be minimax and to dominate 7y. However, such p, . will only offer
meaningful risk reduction when B is near the region where 7y is largest. For
example, under the scaled harmonic prior in (35), such risk reduction occurs
when B; is close to 0. The difficulty then is how to proceed when the subset of
irrelevant predictors indexed by S is unknown. Rather than arbitrarily selecting
S, an attractive alternative is to use a multiple shrinkage predictive estimator
that uses the data to adaptively emulate the most effective p,, .

The multiple shrinkage procedure here is obtained by using a finite mixture
of the contemplated priors. A similar multiple shrinkage construction for param-
eter estimation under squared error loss was proposed and developed by George
(1986a, 1986b, 1986c). Let O be the set of all the subsets S under consider-
ation, possibly even the set of all possible subsets. For each S &€ Q, let 75 be
the designated prior of the form (30) on B and assign it probability ws € [0,1]
such that X gcqws = 1. Thus we construct the mixture prior

7 (B) = 2, wsms(B). (36)
7=
This prior yields the multiple shrinkage predictive estimator

p*(ylx) = X p(S|x)Pay(y1%). (37

S0

Here each p,,_ is given by (31) in Lemma 6, and each posterior probability is of
the form

Wsmw;(ﬂs,x’ 2"A,S)

p(S|x) = (38)

N s
Wg mﬂ';(ﬁS,;v 2A,S)
SeQ

which follows from (32).
The form (37) reveals p*(y|x) to be an adaptive convex combination of the

individual shrinkage predictive estimates p, . Note that through p(S|x), p*
doubly shrinks py(y|x) by putting more weight on the p,,  for which m,» is
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largest and hence p, is shrinking most. Thus, we expect p* to offer meaning-
ful risk reduction whenever Bs is near the region where 7g is largest for any
§ € Q. For example, if every 75 in 7* is one of the scaled harmonic priors in
(35), such risk reduction occurs when B is close to 0 for any S € Q for
which gs = 3. Thus, the potential for risk reduction using p* is far greater
than the risk reduction using an arbitrarily chosen p,, .

We should also note that the allocation of risk reduction by p* is in part
determined by the wg weights in (38). Because each p(S]x) is so adaptive through
m,x, choosing the weights to be uniform should be adequate. However, one
may also want to consider some of the more refined suggestions for choosing
such weights for the multiple shrinkage estimators in George (1986b).

The potential for a multiple shrinkage p* to offer meaningful risk reduction
in many different regions of the parameter space is greatly enhanced when it is
minimax and therefore can only improve on the “noninformative” minimax py.
The following two results show that such minimaxity and dominance of py; can
be obtained. We then conclude with an explicit example of such domination.

THEOREM 3. Suppose for all § € Q, m.»(z;WsWy) is finite for all z. Let
H(f(z1,...,24)) be the Hessian matrix of f. If for all S € Q,

trace{H(m,3(z;Ws Vs, Wi))[34 s — 251} =0 forallw €[0,1], (39)
then p* in (37) is minimax under Ryg;. Furthermore, p* dominates py unless
Tt =Ty,

Proof. From (31), (37), and (38), it is straightforward to show that p* can be
reexpressed as

2 Wg mﬂgf(ﬂs,x,y’EC,S)

SEQ

2 wSm'tr;(ES,x72A,S)

se

p*(ylx) = Bu(ylx). (40)

Because p* is of the same form as j,,_ in (31), namely, a ratio of marginals
times Py, we can apply the same arguments leading to the proofs of Theo-
rems 1 and 2. These steps show that a sufficient condition for the minimaxity
and dominance claims is

{ S ws H(mops(z;Ws Vs, W) [S a5 — zc,s]} =0 forallw€[0,1].

SEN

This condition is implied if (39) holds for all § € Q. u

The next result follows using the same argument leading to Corollaries 1
and 2.
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COROLLARY 3. Suppose for all § € Q, m,:(z;WsWy) is finite for all z.
Then p* in (37) will be minimax if for all § € Q

trace{H(m5(Bs))[Zas —2csl} =0 ae

Furthermore, p* will dominate py unless m = ry.
Example (continued) (Scaled harmonic prior)

For each S € Q, let m¢{B) be the scaled harmonic prior given by (35) when
gs = 3 and by 75(8) oc 1 when g5 < 3. When A = B, by Corollary 3, p* under
these priors will be minimax and will dominate py if gs = 3 for at least one
Se Q.

5. PREDICTIVE DENSITY ESTIMATION NEAR LINEAR SUBSPACES

The harmonic prior predictive estimator p, (y|x) described in Section 3 and
incorporated into the multiple shrinkage predictive estimators p*(y|x) in Sec-
tion 4 offers risk reduction in the region of the parameter space where Bg is
close to 0. This can be seen as a special case of the following general construc-
tion of a predictive estimator that obtains risk reduction when S is close to a
linear subspace of R”?.

Suppose one would like to obtain a predictive density estimator with great-
est risk reduction in the region where 8 is close to a linear subspace G C R”.
In the case of p, (y|x), G would be the subspace of all 8 € R” for which
Bs = 0. Alternately, if risk reduction was desired, say, when the components
of B were close to equal, then one would consider G = [1], the subspace
spanned by (1,...,1)". Let PgB = argmin,ec||B — g be the projection of B
onto G and define B¢ = (I — Pg)B to be the projection of 8 onto the orthog-
onal complement of G. For the construction of p, (y|x) in Section 3, B¢ =
Bs. For G =[11, Bg = (B — B) where B is the vector of components all equal
to (1/p) 271 B;-

The main idea behind the general construction is to use a prior that leads to
shrinkage of Bg toward 0 while leaving the remainder of B8 untouched. This
can be obtained by using a prior of the form

ws(B) = 77';;(,3(;), (41)

which is effectively uniform on (8 — Bg). This is a special case of the prior
over B in (30). Note that because B¢ is g = (p — dim(G)) dimensional, 7}
is a function from R% to R.

Analogous to the construction in Lemma 6, predictive density estimators p,,
corresponding to priors of the form 7 in (41) can be expressed as

mqu;(BG,x,wzC,G)

mw;(,BG,x,EA,G)

ﬁwa(ylx) = ﬁv(}’lx), (42)
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where py is defined by (8), B, = (I — Pg)B; and ,[?G,,,,y = (I~ PG),éx,y are
the projections of B, and B, , onto the orthogonal comAplement Aof G, respec-
tively, and 34 ¢ and 2., ; are the covariance matrices of B , and B, ,, respec-
tively. It is straightforward to see that Theorem 2 and Corollary 2 and their
proofs can be extended to obtain conditions on 75(Bs) for such j, to be
minimax and to dominate py. (Simply substitute the symbol G for the symbol
S throughout.)

Example (continued)

Extending (35), consider the following scaled harmonic prior on B. For
gc = 3, let

76(B) = mg(Be) o ldiag(ny V2,..., .} ") Bl ~4e ™, (43)

where 7y,...,m,, > 0 are the eigenvalues of 3, ¢, and for g5 < 3, let
ws(B) o« 1. Note that when g = 3 the resulting p,, . shrinks py toward G,
offering reduced risk when B is close to G. By the extension of Corollary 2,
such p,, . will be minimax and dominate py; when A = B and g = 3.

Finally, following the development in Section 4 one can easily incorporate
such p,, . into multiple shrinkage predictor estimators p*. Letting  be a set of
subspaces G under consideration, construct the mixture prior

7 (B) = 2, weme(B), (44)
GEQ

where for each G € Q, 7 is the designated prior of the form (41) and wg €
[0,1] is such that S seqwg = 1. This prior yields the multiple shrinkage pre-
dictive estimator

p*(ylx) = Gzﬂﬁ(Glx)ﬁﬂG(YIx), @5)

where each j, _ is given by (42) and each posterior probability is of the form

WGmwg(.BG,x,zA,G)

p(Glx) = (46)

Wa m—ng(,BG,x, ElA,G)
Gea

Here, p*(y|x) is an adaptive convex combination of the individual shrinkage pre-
dictive estimates p, _ and offers risk reduction whenever B¢ is near the region
where 7 is largest for any G € Q. Thus, the potential for risk reduction using
p* is far greater than the risk reduction using an arbitrarily chosen p, . It is
straightforward to see that Theorem 3 and Corollary 3 and their proofs can be
extended to get conditions for such p*(y|x) to be minimax and dominate py.
(Simply substitute the symbol G for the symbol § throughout.)
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Example (continued) (Scaled harmonic prior)

For each G € Q, let w5(B) be the scaled harmonic prior given by (43) when
gc = 3 and by 7w5(B) o< 1 when g; < 3. When A = B, by the extension of
Corollary 3, p* for these priors will be minimax and will dominate py if g = 3
for at least one G € Q.
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