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Abstract

This paper studies a competitive cheap talk model with two senders. Each sender, who
is responsible for a single project, only observes the return of his own project. Exactly one
project will be implemented. Both senders share some common interests with the receiver, but
at the same time have own project biases. Under simultaneous communication, all equilibria are
shown to be partition equilibria, and the partitions of the two agents are intimately related: the
interior partition points of the two agents have an alternating structure. In the most informative
equilibrium, the agent with a smaller bias always has the sure option/veto power to determine
which alternative is implemented and weakly more messages. Simultaneous communication,
sequential communication and simple delegation are essentially all outcome equivalent. As the
number of agents increases, each agent transmits more information in symmetric equilibrium.

JEL Classification Numbers: D23, D74, D82

Keywords: Cheap talk; Multiple senders; Competition

1 Introduction

Decision makers often seek advice from multiple experts. For instance, consider an economics

department trying to hire a junior faculty member. The two targeted fields are, say micro theory

and macro. Due to budget constraints exactly one position will be filled. In each field a single

candidate is identified. The theory group of the department observes the quality of the theory

candidate but not that of the macro candidate. Similarly, the macro group observes the quality

of the macro candidate but not that of the theory candidate. The department chair, say a labor

economist, does not observe the quality of either candidate. The chair prefers to hiring the candidate

of higher quality. For each group, though they also prefer the higher quality candidate being hired,

they have own-field biases: if the candidate of a group is hired that group derives an additional

positive private benefit.
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The above example has several distinguishing features. (i) A decision maker (DM) consults two

experts regarding two alternative options (projects). (ii) The experts’interests are largely aligned

with the DM’s, but each expert has his own-project bias. (iii) The two experts only observe the

return of his own project. (iv) The DM’s action is binary (which project to adopt) and exactly one

project will be adopted. The two agents are thus essentially competing with each other in having

their own projects adopted. The purpose of this paper is to study communication or information

transmission in the above setting, with communication being modeled as cheap talk (Crawford and

Sobel, 1982, CS hereafter). The novelty of the paper is that we introduce an aspect of competition

explicitly into cheap talk models with multiple senders: each sender has an extra incentive to have

his own project implemented at the expense of the other sender.

Real world situations of competitive cheap talk, which share the above features, abound. For

instance, consider a CEO of a firm deciding on launching one of two alternative new products

(projects). The CEO consults two managers, who each are responsible for one of the two products,

regarding the profitability of each product. Each manager only knows the profitability of his own

product and has an extra incentive to have his own product launched. Alternatively, consider the

President weighing between two alternative policies to address a particular environmental issue.

The President consults two experts who each are responsible for investigating the effectiveness of

one policy. Each expert only observes the effectiveness of his own policy but has an extra incentive

to have his own policy adopted.

Specifically, there are two symmetric projects and the return of each project is uniformly dis-

tributed. The DM’s payoff is just the return of the adopted project. Each agent’s payoff has two

components. The first component is the return of the adopted project. This component implies

that the two experts’and the DM’s interests are largely aligned: all prefer to implement a project

with higher return. The second component is a private benefit: an agent receives this additional

payoff if and only if his own project is adopted. We call this component the agent’s own-project

bias, and allow it to vary across the agents. This own-project bias creates a conflict of interests:

for two projects of equal value to the DM, each agent prefers having his own project implemented.

Given that exactly one project will be implemented, the own-project biases of the two agents create

competition between them.

We first study a situation in which the two agents send messages simultaneously. As in standard

cheap talk models, all equilibria are shown to be partition equilibria in which each agent only

indicates to which interval the return of his own project belongs. Within the set of equilibria,

we focus on asymmetric equilibria where the messages of the two agents can be strictly ranked

according to the posterior induced and the DM will thus have a strict preference for one project

over the other for all combinations of messages. The reason for this focus is two-fold. First, these

equilibria are ex post equilibria, whereby the agents don’t want to change their messages even

after learning the message of the other agent and thus the decision induced. Second, while there

also exists a sequence of symmetric equilibria where the agents send messages that have the same

information content and thus ties are possible, these equilibria (i) require exact randomization by

the DM to sustain them and thus are not robust to even small perturbations in beliefs and (ii) are
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shown to be dominated by the asymmetric equilibria at least in a subset of cases.

The first main result of the paper is that the equilibrium information transmissions of the two

agents are intimately related. In particular, in equilibrium the messages of the two agents must

exhibit an alternating ranking structure: for any message belonging to one agent, the two messages

of adjacent rankings must belong to the other agent. Correspondingly, the two agents’ interior

partition points also have an alternating or staggering feature: one agent’s partition point must

be neighbored by two partition points of the other agent. As a result, in equilibrium the two

agents have either the same number of distinct messages, or the number of messages differs by one.

This implies that the amount of (meaningful) information transmitted by the two agents cannot

be too far apart. Moreover, if one agent’s bias decreases, then both agents will transmit more

information in the most informative equilibrium. Thus in some sense the two agents’information

transmissions are strategic complements. The underlying reason for these features is as follows.

The DM’s problem is to select the better project to implement. Thus it is the comparison of the two

projects’returns that matters. If one agent transmits much more information than the other agent

does, then some information transmitted by the first agent will be wasted as it cannot improve the

DM’s decision making. When one agent’s bias decreases, this agent will naturally transmit more

information, and this also allows the other agent to transmit more (meaningful) information.

Within the full set of messages used by the two agents, the lowest message has the feature that

it guarantees a rejection against all recommendations by the other agent. Similarly, the highest

message guarantees acceptance against all recommendations by the other agent. We will call these

lowest and highest overall messages as the give-up option and the sure option, respectively. Given

that the rest of the communication equilibrium responds to the allocation of these options, there

are four qualitatively different equilibria, as determined by the allocation of these two messages

among the two agents. We will call an equilibrium with agent i having the give-up option and

agent j having the sure option an iGjS equilibrium.

Our second set of results examines how the give-up and sure options should be allocated among

the two agents to maximize the informativeness of communication and thus the DM’s expected

payoff. We begin by considering the case where the agents’private benefit consists of a multiplicative

component only. In this case, the agents’interests become perfectly aligned as their alternatives

become worthless. Therefore, the allocation of the give-up option does not matter in equilibrium.

The sure option, on the other hand, should always be allocated to the less biased agent. The

reason is that the less biased agent will be more conservative in exercising the sure option, which

directly benefits the DM and further helps the more biased agent to also be more conservative in

his recommendations due to the complementarity identified above.

We then consider the case where the agents’private benefit consists of an additive component

only. The allocation of the give-up option will matter as well now, because there is no point where

the agents would agree on the value of a given project. The first result is that allocating the give-up

option to the less biased agent will lead to weakly more equilibrium messages, because it maximizes

the use of the give-up option and thus benefits the rest of the communication equilibrium due to

its recursive structure. The second result is that, other things equal, the sure option should be
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allocated to the less biased agent. This is because making the sure option more precise is more

important since it is more likely to be exercised in equilibrium than the give-up option.1 Based

on these two results, the DM would like to allocate both the sure and the give-up options to the

less biased agent (1G1S equilibrium). However, because the equilibrium can sustain only a finite

number of messages, allocating the give-up option to one agent may necessitate allocating the sure

option to the other agent in the equilibrium that maximizes the number of distinct messages. In

other words, allocating both options to the less biased agent may reduce the number of messages by

one. The resolution of this tradeoff is as follows. The less biased agent should always have the sure

option. This is because the sure option is more important in determining the overall informativeness

of communication. Given that the less biased agent has the sure option, the give-up option will

then be allocated to either agent to maximize the number of equilibrium messages.

Thus, only 1G1S equilibria and 2G1S equilibria can arise as the most informative equilibrium.

This implies that in the most informative equilibrium the less biased agent has weakly more unique

messages. Further, noting that having the sure option is equivalent to having veto power to prevent

the implementation of a project, each agent would naturally prefer having the sure option for

themselves as it increases the likelihood of having their alternative implemented. The DM, however,

always prefers allocating this option to the less biased agent. And thus the less biased agent is

always better offrelative to the more biased agent. Finally, an interesting feature worth emphasizing

is that the most informative equilibrium might not be the equilibrium with the maximum number

of messages. In particular, the most informative equilibrium could be an 1G1S equilibrium while

an 1G2S equilibrium with one more message exists.

We also study quasi-symmetric mixed strategy equilibrium (QSMSE), in which the two agents

have the same set of messages and the DM implements both projects with strictly positive probabil-

ities whenever there is a tie. In QSMSE, the give-up option and sure option are allocated randomly.

When the two agents’biases are suffi ciently similar, then QSMSE can never improve on the best

asymmetric equilibrium. When the two agents’ biases are enough apart, however, QSMSE can

generate a higher expected payoff to the DM than the most informative pure strategy equilibrium.2

This implies that sometimes it is beneficial to give the more biased agent some authority/veto

power through randomization.

We then ask the following comparative statics question: fixing the combined bias of the two

agents, will the DM be better or worse off when the two agents’biases become relatively more

unequal? Intuitively, the bias(es) of the agent(s) who hold(s) the sure and give-up options are

most important for determining the equilibrium quality of communication. Thus, in the case of

multiplicative bias, where only the sure option matters, reducing the bias of the agent with the

sure option is relatively more important. And since the sure option is always allocated to the less

biased agent, asymmetry in biases thus improves expected performance. In the case of additive

bias, asymmetry unambiguously improves the performance under the 1G1S equilibrium, where

1More precisely, the effi ciency loss is increasing and convex in partition sizes. Thus, reducing the size of the
largest partition (that of the sure option) is the dominant concern.

2 In particular, randomization cannot improve the outcome when 1G1S is optimal, but for some cases can improve
upon 2G1S equilibrium.
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both options are allocated to the less biased agent. The result is ambiguous, however, in the 2G1S

equilibrium: on one hand, the use of the sure option is improved, but at the same time the use

of the give-up option is worsened, and the comparison can go either way. Finally, because the

DM’s payoff depends on both the combined bias and the distribution of the biases between the two

agents, the DM’s payoff in the most informative equilibrium may increase even when the combined

bias increases.

Having analyzed the case of simultaneous talk, we then consider both sequential communication,

where the two agents send public messages in a sequence, and simple delegation, under which

the DM delegates the decision right to one of the agents. Here, we first establish an outcome-

equivalence between simultaneous and sequential communication. The rough intuition behind this

result is that, even under simultaneous talk, when the marginal type of one agent decides which

message to send, he conditions his choice on the other agent’s message having adjacent rankings

and thus his choice of message actually being consequential for the final outcome. This implies

that, under sequential talk, the second agent’s ability to directly condition his message on the first

agent’s message does not matter. Second, delegation is essentially equivalent to sequential talk.

The reason is that there exists an equilibrium in the sequential talk setting where the DM always

follows the recommendation of the second agent, which in turn is equivalent to the agent having the

sure option in the case of simultaneous communication. Therefore, simultaneous talk, sequential

talk, and simple delegation are all outcome equivalent in terms of the most informative equilibrium.

This is quite surprising, as in other cheap talk models delegation, sequential talk, and simultaneous

talk usually lead to different equilibrium outcomes. Following the results under simultaneous talk,

the DM always prefer delegating the decision rights to the less biased agent.

We conclude by considering the case with more than two agents. We simplify the setting to

consider symmetric agents with the same bias, and the resulting symmetric communication equi-

librium. We show that as the number of agents increases, each agent transmits more information,

suggesting that more intense competition among agents leads to more information transmission.

Intuitively, with more agents it is more likely that there is at least one agent whose project has

a higher return. This means that the cost of sending a higher message increases for each agent,

which reduces each agent’s incentive to exaggerate the return of his own project.

This paper is related to the growing literature on cheap talk with multiple senders. For some

models (Gilligan and Krehbiel, 1989; Epstein 1998; Krishna and Morgan, 2001a, 2001b; Li, 2010),

the state space is one dimensional and both senders perfectly observe the same realized state. In

Austen-Smith (1993), senders receive correlated (conditionally independent) signals regarding the

state.3 The main differences to this literature are two-fold. First, in our model the two senders

observe non-overlapping private information (each only observes the return of his own project),

which makes the cross-checking of recommendations in hopes of inducing more precise information

transmission impossible, a topic which has been the main focus of the above literature. Second,

3This line of inquiry is extended in Battaglini (2002) and Ambrus and Takahashi (2008), who study multidi-
mensional cheap talk models with multiple senders. In both models, each sender observes the realized states in all
dimensions and the decision is a two-dimensional vector. In this setting, full information revelation can be typically
achieved in equilibrium.
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the binary nature of the final decision introduces an explicit element of competition that is absent

in the other models and leads to different interactions between the sources of information.4

Hori (2006) and Yang and McGee (2013) study cheap talk models in which two senders have

partial and non-overlapping private information, and where the receiver’s action space is one-

dimensional but continuous. Alonso et al. (2008), Rantakari (2008), and Yang (2013) study models

of coordinated adaptation where the need for communication arises from the need to coordinate

decisions across different senders. Hagenbach and Koessler (2010) and Galeotti et al. (2013) study

strategic communication in network, where the need for communication again arises from the value

of coordination and each agent is a sender and a receiver at the same time. Highlighting the

differential reasons for communication, the coordination models exhibit either independence or

substitutability across the sources of information.

In a two-stage auction setting, Quint and Hendricks (2013) model the first stage indicative

bidding as a cheap talk game. The two bidders who send the highest messages will be selected by

the seller (receiver) to advance to the second stage of auction. In some sense, bidders in the first

stage are competing with each other for the two spots in the second stage through cheap talk, an

aspect closely related to our paper. The most important difference is that in their model there is

only pure conflict of interests among the bidders (senders), while in our setting senders have some

common interests as they care about the quality of the adopted project.

Our paper is the first paper that studies a general model of competitive cheap talk. In an

extension, Rantakari (2014) considers how uncertainty over the agents’biases affects the allocation

of the sure option when the bias is multiplicative. Rantakari (2013a) considers the effects of allowing

the receiver/principal to investigate the proposals after the cheap talk stage and Rantakari (2013b)

considers how the level of conflict arises endogenously through incentive contracts if the agents

need to be motivated to generate the alternatives in the first place.

This paper is also related to “comparative”cheap talk (Chakraboty and Harbaugh, 2007, 2010;

Che et al., 2013). In those models, a single expert observes the realized returns of multiple projects,

and makes recommendation to the receiver, who then makes decision about which project to im-

plement. Under certain conditions, Chakraboty and Harbaugh (2007, 2010) show that some infor-

mation can be credibly transmitted by the expert by making comparative statements. Focusing

on asymmetric projects, Che et al. (2013) find that pandering is possible: the expert sometimes

might recommend a “conditionally better-looking”project whose realized return is lower than that

of the other project. Our paper is related to these papers in that the receiver’s action is binary

(which project to implement),5 but we consider the complementary problem, where instead of a

singe agent ranking multiple projects, multiple agents advocate for their own alternatives.

The rest of the paper is organized as follows. Section 2 sets up the model and offers some

4For example, in Krishna and Morgan (2001a) the competition between two senders is implicit in that the receiver
can combine the information transmitted by both senders and fine tune his action continuously, as his action space
is continuous.

5Jindapon and Oyarzun (2013) also study a one-sender cheap talk model in which the receiver takes a binary
action as to whether to accept a good recommended by the sender. The sender has two possible types, honest or
biased, and his type is unobservable to the receiver.
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preliminary analysis. In Section 3 we study simultaneous communication with asymmetric agents,

both for the case of multiplicative bias and the case of additive bias. Section 4 studies sequential

communication and simple delegation, and the case of more than two agents is investigated in

Section 5. Section 6 offers conclusions and discussions. All the proofs can be found in the Appendix.

2 Model and Preliminary Analysis

Consider a principal or a decision maker (DM) who is facing a choice between two alternative

projects. The return of project i, i = 1, 2, is θi, which is uniformly distributed on [0, 1]. We

assume that θ1 and θ2 are independent from each other. There are two agents, with each agent

i being responsible for investigating project i. The realization of θi is only observed by agent i.6

The DM has to adopt exactly one project. Adopting both projects is not feasible, which could

be due to budget or technological constraints.7 In short, the two projects will be competing for

implementation. Adopting neither project is not an option either.8

In the basic model we consider one round of simultaneous and non-mediated communication,

where the two agents send messages to the DM who then makes the final decision. Denote agent

i’s message as mi. After hearing messages m1 and m2, the DM decides which project to adopt.

Let d ∈ {1, 2} be the DM’s decision, with d = i indicating that project i is adopted.

Given the project choice d, the DM’s payoff is UP (d) = θd. The DM thus cares only about the

return on the implemented project. Agent i’s payoff, on the other hand, is given by

Ui(d) =

 θd if d 6= i

ciθd + bi if d = i
,

where ci ≥ 1 and bi ∈ [0, 1) capture agent i’s own project bias, which we allow to arise both from

a fixed benefit bi and a multiplicative benefit ci. There is thus some alignment in the interests

among the DM and the two agents: all of them care about the return to the adopted project and

want to choose the project with a higher return, other things equal. Each agent, however, has a

bias to have his own project adopted, with this bias increasing in both ci and bi. In particular,

given θi, agent i’s private benefit of implementing project i is (ci − 1)θi + bi. If bi = 0 and ci = 1

for both agents, then the agents’interests would be perfectly aligned with both the DM and each

other. We allow the biases to differ between the agents and to ensure that some information can

be transmitted in equilibrium, we further assume that b1 ≤ b2 < 1/2.9 Both bi and ci, i = 1, 2, are

common knowledge. All players are expected utility maximizers.

6This feature that different agents observe different information is understudied in the cheap talk literature. It
is reasonable due to specialization in the modern world: in organizations such as firms and governments, different
divisions (groups) specialize in different functional areas.

7For example, integrating two product improvements in the same design may be technologically infeasible.
8 In Section 6 we will discuss what will happen if there is a third option of implementing neither project.
9 In particular, this condition implies that if one agent babbles then it is possible for the other agent to transmit

some information.
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There are multiple potential sources for an agent to have either a fixed bias and/or a value-

dependent bias in favor of his alternative. For instance, consider the hiring example. An individual

proposing a particular hire may receive both a fixed benefit bi > 0 from the particular individual,

independent of his quality, and also benefit disproportionately more from the overall talent level

of the individual (e.g. a microeconomics group may derive some fixed benefit from just having an

additional microeconomist but then also benefit disproportionately more from the quality of the

microeconomist relative to the macroeconomics group). Alternatively, the multiplicative element

can arise if the two agents are responsible for two separate divisions or units of a firm, and their

compensation contracts have a division-level component in addition to a firm-level component

(equivalently, if each agent is only compensated based on firm-level performance, ci = 1). Similarly,

the additive component can arise through career concerns, where the acceptance of a proposal may

be positive news regarding an individual’s ability, whether in firms or in public offi ce, or the manager

whose project is chosen is likely to be the one who will carry out the project, which can bring private

benefits.

Under simultaneous communication, a strategy for agent i then specifies a message mi for each

θi, which is denoted as the communication rule µi(mi|θi). A strategy for the DM specifies an

action d for each message pair (m1,m2), which is denoted as decision rule d(m1,m2). Let the belief

function g(θ1, θ2|m1,m2) be the DM’s posterior beliefs on θ1 and θ2 after hearing messages m1

and m2. Since θ1 and θ2 are independent and agent i observes only θi, the belief function can be

decomposed into distinct belief functions g1(θ1|m1) and g2(θ2|m2).

Our solution concept is Perfect Bayesian Equilibrium (PBE), which requires:

(i) Given the DM’s decision rule d(m1,m2) and agent j’s communication rule µj(mj |θj), for
each i, agent i’s communication rule µi(mi|θi) is optimal.

(ii) The DM’s decision rule d(m1,m2) is optimal given beliefs g1(θ1|m1) and g2(θ2|m2).

(iii) The belief functions gi(θi|mi) are derived from the agents’communication rules µi(mi|θi)
according to Bayes rule whenever possible.

Given the two agents’strategies, the DM’s optimal decision is just to implement the project

that has a higher expected return. That is, the optimal decision can be written as

d(m1,m2) =


i if E[θi|mi] > E[θj |mj ]

j if E[θi|mi] < E[θj |mj ]

i or j if E[θi|mi] = E[θj |mj ]

. (1)

And the DM’s expected (interim) payoff given m1 and m2 is given by E[Up(m1,m2)] =

max{E[θ1|m1], E[θ2|m2]}.
Let {mi,n} be a set of messages for agent i. Given a message pair (mi,n,mj,n′), denote Pr(d =

i|mi,n,mj,n′) as the probability that project i is implemented. Note that the DM’s decision rule

is embodied in Pr(d = i|mi,n,mj,n′). Denote Pr(d = i|mi,n) as the probability that project i is

implemented if agent i sends message mi,n, and E (θj |d = j,mi,n) as the expected return of project
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j given that agent i sends message mi,n but project j is implemented. By these definitions, we have

Pr(d = i|mi,n) =
∑
n′

Pr(mj,n′) Pr(d = i|mi,n,mj,n′),

E (θj |d = j,mi,n) =
∑
n′

Pr(mj,n′)
Pr(d = j|mi,n,mj,n′)

Pr(d = j|mi,n)
E
(
θj |mj,n′

)
.

Finally, before considering the exact equilibrium communication outcome, let us establish the

structure of potential communication equilibria in this game. It turns out that, as in CS, all PBE

are interval equilibria. Specifically, the state space [0, 1] is partitioned into intervals and agent i

only reveals to which interval θi belongs.

Proposition 1 All PBE in the simultaneous communication game must be interval equilibria.

Intuitively, the single-crossing condition is satisfied in the present setting because the value of

inducing acceptance is increasing in the value of the agent’s alternative. In short, because of the own

project bias, each agent tries to overstate the return of his own project to some extent. The benefit

of overstating, say by agent 1, is that agent 1’s project will more likely be implemented and thus

agent 1 is more likely to reap the private benefit. On the other hand, there is a cost of overstating:

overstating by agent 1 reduces the probability that agent 2’s project will be implemented, which

might have a higher return. Consider two different types of agent 1 reporting as the same (higher)

type. Compared to the lower type, the overstating of the higher type involves a smaller cost. This

is simply because a higher type project 1 is more likely to be the better project than a given project

2. Therefore, a higher type of agent 1 will try to induce a higher posterior, which implies that all

PBE must be interval equilibrium. Therefore, while the language itself is indeterminate (as in any

cheap talk game), we can order the messages and interpret them in terms of the strength of the

claim in favor of a given alternative, and thus read the messages as claims to the alternative being

“poor,”“mediocre,”“good,”“fantastic,”and so on.

3 Equilibrium communication

Having established that all communication equilibria of the game must be interval equilibria, let

Ni be the number of intervals in the partition, and ai = (ai,0, ai,1, ..., ai,Ni) be the partition points,

for agent i. Given the state space, note that ai,0 = 0 and ai,Ni = 1. Agent i sends message mi,n if

θi ∈ [ai,n−1, ai,n]. For most of this section, we rule out the possibility that E (θi|mi,n) = E(θj |mj,n′)

for any (n, n′). That is, no pair of messages by the two agents induces exactly the same posterior to

the DM. This is generic when ci 6= cj and/or bi 6= bj , so that the biases and thus the credibility of the

two agents differ and so similar claims by the two agents will generally have different informational

content. For example, if two agents both claim that their projects are “great,”it may be natural for

the DM to discount the claim of the more biased agent more heavily and thus choose the alternative

of the less biased agent. However, as we will see shortly, because the content of the messages in
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terms of E (θi|mi,n) depends partly on how the message is interpreted, multiple equilibria will be

sustainable.10

To establish the nature of equilibrium communication, we will first offer two definitions.

Definition 1 Two messages of agent i are said to be outcome equivalent if, regardless of the mes-
sage sent by agent j, sending either of the two messages always leads to the same outcome as to

which project is implemented. A set of messages of agent i is said to be irreducible if any pair of

messages in the set are not outcome equivalent.

We will mainly focus on the sets of messages that are irreducible, since adding additional

outcome-equivalent messages will not affect the outcome (unless introducing reducible messages

makes the analysis easier). Second, recall that for all possible messages (for both players) associated

with an equilibrium the DM’s induced posteriors can be strictly ranked. A particular ranking

structure is described in the following definition.

Definition 2 A set of messages is said to have an alternating ranking structure between two agents
if (i) the messages having the highest, the 3rd highest, the 5th highest, and so on, posteriors belong

to agent i, and (ii) the messages having the 2nd highest, the 4th highest, the 6th highest, and so

on, posteriors belong to agent j.

The following lemma shows the relationship between irreducible sets of messages and the alter-

nating ranking structure, which is the key behind the structure of equilibrium communication.

Lemma 1 If a set of messages is irreducible, then (i) it must exhibit an alternating ranking struc-
ture, and (ii) the number of messages used by each agent can differ at most by one.

To establish this Lemma, suppose that agent j has Nj messages, with induced posteri-

ors E (θj |mj,1) < ... < E
(
θj |mj,Nj

)
, while agent i has Ni messages, with induced posteriors

E (θi|mi,1) < ... < E (θi|mi,Ni) . Now, if for any two messages, n and n + 1, it is the case that

E
(
θj |mj,n′

)
< E (θi|mi,n) < E (θi|mi,n+1) < E

(
θj |mj,n′+1

)
(agent i’s two messages have con-

secutive overall rankings), then the messages mi,n and mi,n+1 are outcome-equivalent and can be

combined into one message: both induce acceptance (of project i) against all messages mj ≤ mj,n′

while conceding against all messages mj ≥ mj,n′+1. Second, because of this alternating ranking

structure, it is immediate that the number of messages used by each agent can differ at most by

one. In other words, when considering the irreducible set of messages, eitherNi = Nj orNi = Nj±1.

The key implication of Lemma 1 is that the amount of meaningful information transmission by

the two agents is intimately related, a result which follows from the observation that the key piece

of information for the DM is the comparison of the two projects’returns. In particular, the amount

of meaningful information transmission by the two agents cannot be “too far apart,” in the sense

that the number of meaningful messages used by two agents can at most differ by one. To illustrate

this implication, consider an extreme case in which agent 1 has no bias (c1 = 1, b1 = 0) and agent

10We will discuss the case where E (θi|mi,n) = E (θj |mj,n′) is possible in Subsection 3.1, 3.5, and Section 5.
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2 has a very large bias (b2 > 1). In this case, agent 1 will fully reveal his information and agent 2

will reveal no information (babble). Note that although agent 1 fully reveals his information, given

that agent 2 reveals no information, his information cannot be fully utilized by the DM in decision

making. Actually, the amount of information of agent 1 that can be utilized in decision making is

at most a two-element partition: whether θ1 is below 1/2 (the unconditional mean of θ2), or above

1/2. If agent 2 reveals more information (say has N messages), then the meaningful amount of

information that can be transmitted by agent 1 increases as well (has N + 1 messages).

To solve for the most informative communication equilibrium, note first that the alternating

ranking structure implies that one of the agents will have the lowest overall message. If this message

is sent by the agent, then his alternative will never be implemented regardless of the other agent’s

message. For this reason, we call the lowest overall message the “give-up option.”Correspondingly,

one of the agents will have the highest overall message, and if sent, this guarantees the agent’s

project will be implemented for sure. We thus call the highest overall message the “sure option.”

When considering the optimal communication strategy, the allocation of these options will be

crucial, and we will return to them in more detail below. For now, note that their allocation will

depend on the number of messages used by each agent. In particular, if Ni = Nj + 1, then agent i

will have both the sure and the give-up options. Conversely, if Ni = Nj , then the two options are

split between the agents.

Next, we write a type θi of agent i’s expected payoff from sending message mi,n as

EUi (θi,mi,n) =
∑
n′∈Nj

Pr
(
mj,n′

)
[Pr(d = i|mi,n,mj,n′) (ciθi + bi)+Pr(d = j|mi,n,mj,n′)E(θj |mj,n′)].

Let the give-up option be allocated to agent i. That is, E (θi|mi,1) < E (θj |mj,1). Given the

alternating ranking structure, E (θi|mi,n) < E (θj |mj,n) , which, by the DM’s optimal decision rule,

implies that Pr(d = i|mi,n,mj,n′) = 1 for n′ < n and Pr(d = i|mi,n,mj,n′) = 0 for n′ ≥ n. Then,

we can write the indifference condition that defines the (interior) partition point ai,n, 1 ≤ n < Ni,

between messages mi,n and mi,n+1 as

Pr (mj,n) [(ciai,n + bi)− E (θj |mj,n)] = 0⇔ ai,n =
E (θj |mj,n)− bi

ci
. (2)

Intuitively, when choosing between the messages mi,n and mi,n+1, the type ai,n of agent i knows

that his choice will not matter if mj < mj,n, because then both messages will induce acceptance (of

project i), nor when mj > mj,n, because then both messages will lead to rejection. Thus, agent i

knows that his choice of message will be pivotal only when agent j sends exactly mj,n (the message

whose overall ranking lies between mi,n and mi,n+1), and optimizes his response to that. The same

logic then applies to the type aj,n of agent j, with the exception that since E (θi|mi,n) < E (θj |mj,n) ,

his choice between mj,n and mj,n+1 matters only against mi,n+1. Therefore, his (interior) partition

point aj,n, 1 ≤ n < Nj , satisfies

11



aj,n =
E (θi|mi,n+1)− bj

cj
. (3)

Since agent i is allocated the give-up option, we can then apply (2) and (3) recursively to solve

for the difference equations that define the communication equilibria. In particular, for interior

partition points (the meaning of interior will be made precise later),

agent i : (ai,n+1 − ai,n) = (ai,n − ai,n−1) + 4 (cicj − 1) ai,n + 4 (bj + cjbi) , (4)

agent j : (aj,n+1 − aj,n) = (aj,n − aj,n−1) + 4 (cicj − 1) aj,n + 4 (bi + cibj) . (5)

As in CS, the interior elements of the partition thus grow in size to counter the agents’incentives to

push for their own alternative. The differences to the standard CS solution are two-fold. First, the

rate at which the intervals of each agent grow depend on the bias of both agents. The reason is that

if agent j becomes more biased, E (θj |mj,k) will decrease because he starts to push more aggressively

for his alternative. But since E (θj |mj,k) decreases, that will lower the cost of exaggeration for agent

i as well, lowering E (θi|mi,k). Second, the boundary elements do not follow (4) or (5). For agent

i, who has the give-up option, the first partition point ai,1 satisfies

ai,1 =
aj,1 − 2bi

2ci
.

Similarly, for the agent with the sure option, his largest interior partition point satisfies

If agent i has the sure option: ai,Ni−1 =

(
aj,Nj−1 + 1

)
− 2bi

2ci
,

If agent j has the sure option : aj,Nj−1 =
(ai,Ni−1 + 1)− 2bj

2cj
.

Now we clarify the interior elements of the partition that satisfy (4) or (5). If agent i has the sure

option, then (4) holds for 2 ≤ n ≤ Ni− 2, and (5) holds for 1 ≤ n ≤ Nj − 1. If agent j has the sure

option, then (4) holds for 2 ≤ n ≤ Ni − 1, and (5) holds for 1 ≤ n ≤ Nj − 2.

Example 1 Suppose c1 = c2 = 1, b1 = 0.02, and b2 = 0.05. Figure 1 illustrates an equilibrium

with agent 1 having the give-up option and the agent 2 having the sure option, with each agent

having 3 distinct messages.

Agent 1

Agent 2

a10=0 a11=0.072 a12=0.396 a13=1

a20=0 a21=0.184 a22=0.648 a23=1

Figure 1: Asymmetric Equilibrium
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We conclude this section with three observations. First, for the agent with the sure option, his

highest message may be more precise than his second highest message. This is embodied in Example

1: the size of agent 2’s 3rd interval is 0.352, which is smaller than the size of his 2nd interval, 0.464.11

This observation differs from standard cheap talk models (where the precision of messages is always

decreasing in the direction of agents’biases) and arises because of the competitive nature of cheap

talk: for the highest marginal type of the agent with the sure option, the indifference condition

relates only to the size of the highest element of the other agent, not his own.

Second, Example 1 illustrates how the alternating ranking structure of the two agents’messages

implies that the agents’partition points have the following alternating or staggering feature: for

any interior partition points ai,n, it must be neighbored by the two partition points of the other

agent. That is, we either have ai,n ∈ (aj,n−1, aj,n) for all n, or we have ai,n ∈ (aj,n, aj,n+1). This

pattern holds generally. To see this, note that ai,1 < aj,1 since agent i has the give-up option. Now,

type aj,1 of agent j’s indifference condition (3) implies that aj,1 < ai,2. Applying the indifference

conditions (2) and (3) recursively, we have ... < aj,n−1 < ai,n < aj,n < ai,n+1 < ....

Third, there are four different ways of allocating the give-up and sure options among the two

agents, which lead then to four different types of equilibria. We call equilibria in which agent i

has both the give-up option and the sure option as iGiS equilibria, and equilibria in which agent

i has the give-up option and agent j has the sure option as iGjS equilibria. Given the alternating

ranking structure, in iGiS equilibria agent i has one more message than agent j, Ni = Nj + 1, and

the total number of messages is odd. In iGjS equilibria, the two agents have the same number of

messages, Ni = Nj , and the total number of messages is even. Sometimes we use the terminology

AiG equilibria, which includes both iGiS equilibria and iGjS equilibria, as in both cases agent i

has the give-up option. The following proposition summarizes the results we derived so far.

Proposition 2 There are four types of equilibria. In 1G1S equilibria, N1 = N2 + 1, and in 1G2S

equilibria, N1 = N2; and in both types of equilibria, two agents’ partitions have the following

staggering feature: a1,n ∈ (a2,n−1, a2,n) for all interior n, and a2,n ∈ (a1,n, a1,n+1) for all interior n.

In 2G1S equilibria, N1 = N2, and in 2G2S equilibria, N2 = N1 + 1; and in both types of equilibria,

two agents’partitions have the following staggering feature: a1,n ∈ (a2,n, a2,n+1) for all interior n,

and a2,n ∈ (a1,n−1, a1,n) for all interior n.

The key part of the analysis is then to consider which type of equilibrium maximizes the

principal’s expected payoff. But before considering the expected performance, we will introduce an

outcome-equivalent communication equilibrium that is easier to analyze in terms of the relevant

difference equations.

3.1 Quasi-symmetric equilibria

First, define quasi-symmetric (pure strategy) equilibria (QSE) as follows:

11 It can also be verified that this exception applies only to the highest message of the agent with the sure option.
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corresponding QSE

irreducible partition of agent 1

irreducible partition of agent 2

a1,1=0.072 a1,2=0.396

a2,1=0.184 a2,2=0.648

λ1,1=0 λ1,2=1 λ1,3=0 λ1,4=1 λ1,5=0

0 1m1 m2 m3 m4 m5

0 1

0 1

Figure 2: The equivalence between QSE and irreducible partitions.

Definition 3 QSE are equilibria with the following properties: two agents have the same partition
(hence the same set of messages) and the DM implements one of the projects with probability 1

whenever two agents send the same message.

These equilibria thus involve both agents having the same partition, and we let N ≥ 2 be the

number of elements in the partition and {an} be the partition points. In the case that both agents
send the same message mn (there is a tie), denote the probability that agent i’s project is adopted

as λi,n ∈ {0, 1}.
The relationship between QSE and regular equilibria with irreducible message sets (and how

to construct the QSE from irreducible messages) is illustrated in Figure 2 (Example 1). First, we

overlay the cutoffs of the irreducible partitions of the two agents. This leads to a new partition with

cutoffs [0, a1,1, a2,1, a1,2, ..., 1]. Second, we give each agent access to the full set of messages generated

by this new partition. For now, assume that the agents use the new message set truthfully. Then,

from the perspective of performance it is clear that the choice by the DM can be wrong only when

the agents send the same message.12

Third, we need to replicate the outcomes under the original irreducible messages. We do this

as follows. First, note that the lowest and the highest messages of the QSE are equivalent to the

regions over which the agents exercised their give-up and sure options of the irreducible message

set, and we thus set λi,n to match those outcomes. Second, for all the interior messages, the

QSE partition splits the original messages in two. In particular, agent i used to send message

mi,k for θi ∈ [ai,k−1, ai,k] , which then induced acceptance against θj ≤ aj,k−1 while leading to

rejection against θj > aj,k−1. Now, the agent will have two messages for the same region, with

mn ∈ [ai,k−1, aj,k−1] and mn+1 ∈ [aj,k−1, ai,k] . To replicate the outcome (and thus the incentive-

compatibility) of the original partition, we need to make the use of these two messages outcome-

equivalent to the original single message. We achieve this by setting λi,n = 1, so that in case of a

tie on the lower message, agent i′s alternative is chosen, while having λi,n+1 = 0, so that in case

of a tie on the higher message, agent j’s alternative is chosen. This procedure then replicates the
12 In particular, following the receipt of same messages, we have that E (θi|mi) = E (θj |mj), and so choosing either

alternative incurs an expected loss of E[max (θi, θj) |mi,mj ] − E (θi|mi) . Conversely, when mi 6= mj , it is known
with probability one which alternative is better.
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a1,1

a1,2

a2,1 a2,2

0
0

1

1

1

100
λi,1=0

λi,2=1

λi,3=0

λi,4=1

λi,5=0

a1

a2

a3

a4

a1 a2 a3 a4agent 2 agent 2

(i) equilibrium under irreducible messages (ii) outcome­equivalent QSE

agent 1's alternative chosen agent 2's alternative chosen

Figure 3: Outcome-equivalence between QSE and irreducible messages

original outcome of acceptance against θj ≤ aj,k−1 while rejection against θj > aj,k−1. Repeating

this procedure over all original messages, an outcome-equivalent QSE must exhibit alternatingly

favored tie-breaking rule: for any n, if λi,n = 0 then λi,n+1 = 1, and if λi,n = 1 then λi,n+1 = 0.13

This equivalence is further illustrated in Figure 3, which graphs the equilibrium outcome for all

state realizations under the equilibrium under irreducible messages and the corresponding QSE. In

panel (ii), the diagonal is highlighted to point out that it is only in these areas that the DM may

make the wrong choice, and how the alternating tie-breaking rule restores the original outcome.

Note that the alternatingly favored tie-breaking rule for QSE is parallel to the alternating

ranking structure for regular equilibria. For QSE, λi,1 = 0 means that agent i has the give-up

option, and λi,N = 1 means that agent i has the sure option. Thus we can classify QSE according

to which agent has the give-up option and which agent has the sure option, and we adopt the same

terminology, iGiS and iGjS, as those for the regular equilibria.

Suppose agent i has the give-up option. By the alternatingly favored tie-breaking rule, for

odd n, λi,n = 0, and for even n, λi,n = 1. Under these tie-breaking rules, note that for any odd

(interior) partition points, agent j’s indifference condition is always satisfied, while for any even

(interior) partition points agent i’s indifference condition is always satisfied. The intuition is quite

simple: with the tie-breaking rule, for odd n, agent j’s messages mn and mn+1 have the same

overall ranking and thus are outcome equivalent. And for even n, agent i’s messages mn and mn+1

have the same overall ranking and thus are outcome equivalent.

Now there are two sets of equilibrium conditions left: agent i’s indifference conditions at odd

(interior) partition points, and agent j’s indifference conditions at even (interior) partition points.

They can be explicitly written as

13Actually, it can be shown that in any QSE the tie-breaking rule must be alternatingly favored, as otherwise
agents’incentive compatibility conditions cannot be satisfied.
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For n odd (agent i binding): an =
E (θj |mn,mn+1)− bi

ci
, (6)

For n even (agent j binding): an =
E (θi|mn,mn+1)− bj

cj
.

The above conditions can be simplified as

For n odd (agent i binding): (an+1 − an)− (an − an−1) = 2 (ci − 1) an + 2bi, (7)

For n even (agent j binding): (an+1 − an)− (an − an−1) = 2 (cj − 1) an + 2bj .

As an example of the equivalence, consider an iGjS equilibrium with Ni = Nj = Ñ (as in the

figure). This equilibrium is then equivalent to an iGjS QSE with 2N − 1 messages. To see this,

consider the partition points a′ of the iGjS QSE. Combine all the outcome equivalent messages of

the QSE, and we get partition points (ai, aj), which consists of a regular iGjS equilibrium.14 This

is because the indifference conditions (2) and (3) for the asymmetric equilibrium are exactly the

same as (6) for QSE, after rearranging the numbering of messages.

To analyze the optimal allocation of the sure and give-up options among the two agents, we

need to solve for the DM’s expected payoffs under the different arrangements. Unfortunately, the

difference equation for the general case is not tractable, and we will thus illustrate the results for

two particular cases: (i) ci, cj > 1, bi = bj = 0 and (ii) ci = cj = 1, bi, bj > 0. We thus simplify the

analysis to consider the performance under pure multiplicative bias and pure additive bias.

3.2 Multiplicative bias

We will first consider the case of pure multiplicative bias. The key element in this case is that

as θi goes to 0, agent i’s own-project bias in absolute terms (or private benefit) (ci − 1)θi goes

to 0 as well. As a result, agent i is willing to tell the truth when θi approaches 0, and thus the

give-up option has no bite. This also implies that in the most informative equilibrium the number

of distinct messages is infinite (will be verified later). Due to this feature, it is more convenient

to arrange the partition points in a decreasing order. Specifically, let ai = {ai,n} be a sequence of
partition points of agent i, and ai,n is strictly decreasing in n, with ai,0 = 1 and ai,Ni = 0. Suppose

agent i has the sure option. By (4) or (5), the indifference conditions for the partition points can

14 In the other direction, if we combine all interior points of ai and aj in the asymmetric equilibrium and rearrange
them into an increasing sequence, then we arrive at the partition points a′ for the QSE.
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be written as

(aj,n−1 − aj,n)− (aj,n − aj,n+1) = 4(cjci − 1)aj,n for n ≥ 1, (8)

(ai,n−1 − ai,n)− (ai,n − ai,n+1) = 4(cjci − 1)ai,n for n ≥ 2,

ai,1 =
1 + aj,1

2ci
.

The difference equation of (8) has a similar form as in Alonso et al. (2008) and Rantakari

(2008). The most informative equilibrium, which will be our focus, has a countably infinite number

of partition elements. Let ϕ ≡ 1
cjci−1 and α (ϕ) = ϕ

(1+
√

1+ϕ)
2 . The solutions to the above difference

equations can be computed as:

aj,n = [α (ϕ)]n, (9)

ai,n =
[α (ϕ)]n−1[1 + α (ϕ)]

2ci
.

The key observation is that the main determinant behind the precision of communication by both

agents is the relative conflict between them, cjci. Indeed, for the agent without the sure option, it

is the lone determinant, while for the agent with the sure option there is an additional direct effect

of his bias, ci. As cjci → 1, communication becomes perfect, while as cjci → ∞, communication
becomes fully uninformative.

Let a superscript iS denote agent i having the sure option. The principal’s expected payoff can

then be derived as follows.

E(U iSP ) =
∞∑
n=1

Pr(mn
j ){Pr(θi ≥ ai,n)E (θi|θi ≥ ai,n) + Pr(θi < ai,n)E

(
θj |mn

j

)
}

=

∞∑
n=1

Pr(mn
j )

[
1

2
+

1

4ci

[
1− 1

2ci

]
[α (ϕ)]2(n−1) (1 + α (ϕ))2

]
= 1 +

cjci
4cjci − 1

[
2ci − 1

c2
i

]
(10)

By (10), it can be readily seen that E(U iSP ) > E(U jSP ) if and only if ci < cj . It follows that the sure

option should be given to the less biased agent. The following proposition summarizes the above

analysis.

Proposition 3 With pure multiplicative biases, to maximize the principal’s expected equilibrium
payoff, the agent with a smaller bias should have the sure option.

To understand the intuition behind Proposition 3, first observe that, no matter who has the

sure option, the equilibrium partition for the agent without the sure option is always the same,

because the precision of communication depended only on the relative conflict, cicj . On the other
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hand, when the less biased agent has the sure option, his equilibrium partition points are higher

than the more biased agent’s equilibrium partition points when the more biased agent has the sure

option,15 since the less biased agent has a smaller incentive to exaggerate for a given precision

of communication by the other agent. Thus, the first case leads to a more even partition as the

elements of the partition grow with the state, and so the principal gets a higher expected payoff

when the less biased agent has the sure option.

3.3 Additive bias

We assume that b1 < b2, so that agent 1 is less biased. In contrast to the multiplicative

bias, the case of additive bias has no point of congruence and thus no fully revealing messages.

In particular, the allocation of the give-up option will now be meaningful as it will influence the

recursion that results from the first partition element. To solve for the DM’s expected payoff,

we invoke the equivalence between regular equilibria and QSE: an iGjS equilibrium with N + 1

messages is equivalent to an iGjS QSE with N messages, and an iGiS equilibrium with N + 1

messages is equivalent to an iGiS QSE with N messages.

Suppose agent i is allocated the give-up option. With pure additive biases, the difference

equations (7) that characterize QSE can be simplified as

For n odd (agent i binding): (an+1 − an)− (an − an−1) = 2bi, (11)

For n even (agent j binding): (an+1 − an)− (an − an−1) = 2bj .

Denote N
iGiS

and N
iGjS

as the maximum numbers of messages for iGiS QSE and iGjS QSE,

respectively. And let N
AiG

be the maximum number of messages for AiG QSE. That is, N
AiG

=

max{N iGiS
, N

iGjS}. Denote the equilibrium expected payoff of the DM as E(Up(N)), where N is

the number of messages in QSE. In the appendix we solve the difference equations (11), and the

expected payoffs can be computed as

E(U iGiSp (N)) =
2

3
− 1

6N2
−

(bi+bj)
2

4 N2 − (bi + bj)
2 + 3b2i

6
, N even, (12)

E(U iGjSp (N)) =
2

3
−

(1 + (bi − bj))
[
b2i + b2j

]
− 4bibj

12
(13)

−1− (bi − bj)
24

[
(2 + (bi − bj))2

N2
+ (bi + bj)

2N2], N odd.

To understand the expressions of (12) and (13), note that the first term of E(Up), 2/3, is the

expectation of the first order statistic of two random variables that are uniformly distributed on

15Again see the expression of ai,n in (9).
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[0, 1]. That is, 2/3 is the expected payoff the DM can get if both agents fully reveal their private

information. The last two terms reflect the payoff loss or ineffi ciency when two agents do not

fully reveal information. Under asymmetric equilibria, the effi ciency loss arises because two agents’

adjacent intervals overlap: when two agents send two adjacent messages, the project with a lower

return might get implemented. QSE, by partitioning the adjacent elements under the asymmetric

equilibria more finely, highlights that the effi ciency loss under QSE occurs only when the agents

send the same message: if the agents send different messages, then the alternative with a higher

return is implemented with probability one. However, when the agents send the same message,

given that the principal will implement one given project with probability one, the project with a

lower actual return might be implemented.

From the expressions of (12) and (13), it is easy to verify that the equilibrium expected payoff of

the DM is increasing in N (for N < N
AiG
), and decreasing in both bi and bj . Intuitively, when the

partition becomes finer, the probability that two agents send the same message decreases, which

decreases the probability that the wrong project is implemented. If the bias bi or bj decreases but

the number of intervals remain the same, the intervals will be of more even size. A more even

partition will reduce effi ciency loss, since the probability that two agents send the same message is

not only increasing, but also convex in the length of the intervals.16

Our focus will be on the most informative equilibrium that maximizes the DM’s expected payoff.

The next lemma compares different types of equilibria.

Lemma 2 (i) Giving the less biased agent, agent 1, the give-up option leads to weakly more equi-
librium partitions: N

1G1S ≥ N
2G2S

, N
1G2S ≥ N

2G1S
, and N

A2G ≤ N
A1G ≤ N

A2G
+ 1. (ii) For

equilibria with the same number of partitions, an 1G1S equilibrium is more informative than a

2G2S equilibrium. (iii) For equilibria with the same number of partitions, a 2G1S equilibrium is

more informative than an 1G2S equilibrium. (iv) If a 2G1S equilibrium with 2N + 1 elements does

not exist but an 1G2S equilibrium with 2N + 1 elements exists, then an 1G1S equilibrium with 2N

elements is more informative than an 1G2S equilibrium with 2N + 1 elements.

To understand the intuition behind Lemma 2, we compare the patterns of the equilibrium

partition points between the two types of equilibria. Specifically, let {an} and {a′n} be the sequences
of partition points, and let the size of nth element be a1 + ∆n and a′1 + ∆′n (∆1 = ∆′1 = 0), for

A1G QSE and A2G QSE, respectively. The term ∆n can be interpreted as the incremental size of

the nth partition element relative to the size of the first element. By the difference equations (11),

for A1G QSE ∆n follows the following pattern: 0, 2b1, 2b1 + 2b2, 4b1 + 2b2, 4b1 + 4b2 ..., while for

A2G QSE ∆′n follows the following pattern: 0, 2b2, 2b1 + 2b2, 2b1 + 4b2, 4b1 + 4b2 .... From these

patterns we can see that, in A1G QSE b1 enters into the incremental step size more often than b2,

while in A2G QSE it is the opposite. This implies that, compared to A2G QSE, in A1G QSE the

partition sizes increase more slowly, which potentially allows more elements. These patterns also

imply that, for odd n we have ∆n = ∆′n, and for even n we have ∆′n −∆n = 2(b2 − b1) > 0.

16 In a two-partition example, let the partition point be a1 ∈ (0, 1/2). The overall probability of tying is (1−a1)2+
a21, which decreases when a1 increases (when two partitions become more even).
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Now compare an 1G1S QSE and a 2G2S QSE with the same number of elements (N is even).

By the fact that the total length of all intervals must be 1, we have N(a1−a′1)+
N∑
n=1

(∆n−∆′n) = 0.

Since N is even, the equation implies that a1 − a′1 = b2 − b1 > 0. For 1 < n < N , we have

an − a′n = n(a1 − a′1) +
n∑
j=1

(∆j −∆′j). (14)

Using the fact that a1 − a′1 = b2 − b1 and the cyclical pattern of ∆j − ∆′j , we conclude that, for

n odd an > a′n, and for n even an = a′n. Given this pattern, on average 1G1S QSE leads to a

relatively more even partition, and a more even partition is less likely to lead to a wrong choice.

Therefore, the 1G1S QSE results in a higher expected payoff for the DM than the 2G2S QSE.

Example 2 Suppose b1 = 0.06, and b2 = 0.08. The most informative 1G1S QSE and 2G2S QSE

are illustrated in Figure 4. Both equilibria have 4 elements. The partition points a2 are the same

under two equilibria, but a1 and a3 are bigger under the 1G1S QSE than those under the 2G2S

QSE. Therefore, overall the partition under the 1G1S QSE is more even.

1G1S QSE

a0=0 a2=0.22 a3=0.55 a4=1a1=0.05

a0=0 a2=0.22 a3=0.53 a4=1a1=0.03

2G2S QSE

Figure 4: 1G1S QSE Have More Even Partitions

Next consider an 1G2S QSE and a 2G1S QSE with the same odd number, N , of elements. Since

N is odd, a1 − a′1 = (b2 − b1)(N − 1)/N . By (14), we have:

n odd: an − a′n = n
N − 1

N
(b2 − b1)− (n− 1)(b2 − b1) > 0,

n even : an − a′n = n
N − 1

N
(b2 − b1)− n(b2 − b1) < 0.

The above inequalities indicate the following pattern. For two adjacent elements starting with an

odd element, the elements under the 1G2S QSE are more even. However, for two adjacent elements

starting with an even element, the elements under the 2G1S QSE are more even. Since the total

number of elements is odd, the last two elements under the 2G1S QSE are more even. And since

the elements are increasing in size and the effi ciency loss is increasing and convex in size, making

larger elements more even is more important. Therefore, the 2G1S QSE leads to a lower effi ciency

loss and is more informative overall than the 1G2S QSE.
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Example 3 Suppose b1 = 0.1, and b2 = 0.16. The most informative 1G2S QSE and 2G1S QSE

are illustrated in Figure 5. Both equilibria have 3 elements. Compared to the 1G2S QSE, for the

2G1S QSE, though the first element size is smaller, the sizes of the second and third elements are

closer, which leads to more even elements overall. In particular, E(U2G1S
p ) = 0.627 which is greater

than E(U1G2S
p ) = 0.624.

1G2S QSE

a0=0 a2=0.387 a3=1a1=0.093

a0=0 a2=0.427 a3=1a1=0.053

2G1S QSE

Figure 5: 1G2S QSE and 2G1S QSE

Finally, compare an 1G1S QSE with 2N elements and an 1G2S QSE with 2N + 1 elements,

conditional on that a 2G1S QSE with 2N + 1 elements does not exist. Let {an} and {∆n} be the
partitions points and the incremental size of elements of the 1G1S QSE, and {a′n} and {∆′n} be
those of the 1G2S QSE. Now compare the size difference of the largest elements. By the pattern

of partition mentioned earlier, we have

∆2N −∆′2N+1 = (a1 − a′1)− 2b2 < 0.

The inequality holds because a1 < 2b2, since otherwise a 2G1S QSE with 2N + 1 elements would

have existed. Therefore, the largest element of the 1G1S QSE is smaller than the largest element

of the 1G2S QSE. Thus, although the 1G2S QSE has one more element (one more message), the

partition is relatively more even under the 1G1S QSE. Since the effi ciency loss is increasing and

convex in the size of element, the second effect dominates and 1G1S leads to a lower effi ciency loss

despite having one fewer message.

This feature is different from standard cheap talk models, in which more messages typically

mean a higher expected payoff to the DM. The underlying reason for this feature is that a change

from an 1G1S QSE with 2N elements to an 1G2S QSE with 2N + 1 elements causes a complete

reshuffl ing of the partition points, as the sure option is switched from agent 1 to agent 2 and agent

2 has a stronger incentive to excercise the sure option. On the other hand, a change from an 1G1S

QSE with 2N elements to a 2G1S QSE with 2N + 1 elements is smooth in the sense that the

partition points move continuously. This is because adding one additional message (the give-up

option) at the bottom will not change the remaining partitions points due to the recursive structure

of the partition elements. This suggests that who has the sure option is more critical than who has

the give-up option in affecting the DM’s payoff.

Example 4 Suppose b1 = 0.1, and b2 = 0.21. The most informative 1G1S QSE and 1G2S QSE are

illustrated in Figure 6. The 1G1S QSE has two elements, the 1G2S QSE has three elements, and
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the 2G1S QSE with three elements does not exist. Although the 1G2S QSE has one more element

(message), the size of the largest element under the 1G1S QSE (0.6) is smaller than that under the

1G2S QSE (0.68), which means that overall the elements are more even under the 1G1S QSE. In

particular, E(U1G1S
p (2)) = 0.62, which is greater than E(U1G2S

p (3)) = 0.6113.

1G1S QSE

a0=0 a2=1a1=0.4

a0=0 a2=0.32 a3=1a1=0.06

1G2S QSE

Figure 6: 1G1S QSE and 1G2S QSE

The following proposition shows that in the most informative equilibrium agent 1 always has

the sure option.

Proposition 4 (i) If N1G1S
> N

2G1S
, then the most informative equilibrium is an 1G1S equilib-

rium. (ii) If N
1G1S

< N
2G1S

, then the most informative equilibrium is a 2G1S equilibrium. (iii)

The most informative equilibrium will never be a 2G2S or an 1G2S equilibrium.

Proposition 4 implies the following features in the most informative equilibrium. First, relative

to the agent with a bigger bias, the agent with a smaller bias has weakly more messages.17 Second,

the agent with a smaller bias always has the sure option. Third, the give-up option could be

allocated to either agent. And finally, the most informative equilibrium might not be the equilibrium

that has the maximum number of messages.

The intuition for Proposition 4 is as follows. The principal would like to allocate both options to

the less biased agent. By giving the give-up option to the less biased agent, the principal not only

maximizes the use of the first message, as the less biased agent will be more willing to admit that

his project should not be implemented, but also (indeed, because of it) maximizes the number of

equilibrium messages. Conversely, by giving the sure option to the less biased agent, the principal

maximizes the precision of the highest message, as the less biased agent has the least interest to

guarantee the acceptance of his project. But since fixed biases imply a finite number of informative

messages, sometimes giving the less biased agent both options entails the reduction of the number

of messages by one, and in the equilibria that have the maximum number of messages it is infeasible

for the less biased agent to have both options. That is, allocating the give-up option to agent 1 may

lead to allocating the sure option to agent 2, and vice versa. Now the principal faces a tradeoff.

The resolution of this tradeoff is that the less biased agent should always have the sure option,

even if sometimes it means that the number of messages will be reduced by one. This is because

17However, in the most informative equilibrium the agent with a smaller bias could transmit less amount of
information than the other agent. When the most informative equilibrium is an 2G1S equilibrium, agent 2’s partitions
are more even and hence he transmits more information than agent 1 (Example 1).
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Figure 7: The Most Informative Equilibrium and the Biases

making the sure option more precise is more important in determining the overall informativeness

of communication, as the effi ciency loss is increasing and convex in the size of partition elements.

Given that agent 1 has the sure option, who has the give-up option depends on which allocation

maximizes the number of equilibrium messages.

In Figure 7, we illustrate the frequency of each type of equilibrium being the most informative

equilibrium. Specifically, the yellow (red) areas are the combinations of the biases such that an

1G1S equilibrium (2G1S equilibrium) is the most informative equilibrium. Consider decreasing the

biases of the two agents. The first informative equilibrium that exists is 1G1S by maximizing the

number of messages. As the biases decrease, 1G2S with one more message starts to exist, but the

most informative equilibrium is still 1G1S. As the biases decrease further, 1G1S is able to add a

message and becomes the 2G1S equilibrium, which becomes the most informative one, and the

cycle begins again.

The most informative equilibrium might not be Pareto dominant: while it is clear that the DM

always prefers the most informative equilibrium, the two agents might prefer different equilibria as

they also take into account the probabilities that their own projects will be implemented. The ex

ante probabilities that each project will be implemented in different equilibria are characterized in

the following proposition.

Proposition 5 In any informative equilibrium, the agent with (without) the sure option has an
ex ante probability strictly greater (less) than 1/2 of having his own project implemented. In the

most informative equilibrium, project 1 (2) will be implemented with an ex ante probability strictly

greater (less) than 1/2.
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The intuition for Proposition 5 is that having the sure option allows the agent to implement

his project whenever he prefers his project over the other project, thus maximizing his expected

payoff. Since in the most informative equilibrium the less biased agent always has the sure option,

from the ex ante sense the project of the less biased agent is more likely to be implemented than

the project of the more biased agent. Therefore, the less biased agent is always rewarded with

advantage (more likely to reap private benefit) while the more biased agent is punished (less likely

to reap private benefit).

3.4 Discussion

Since the most informative equilibrium might not be Pareto dominant, we cannot invoke Pareto

dominance to select the most informative equilibrium. However, we argue that more informative

equilibria are the more reasonable ones, based on equilibrium refinement by introducing out of

equilibrium messages. The details of the equilibrium refinement can be found in the Appendix.

Among the four types of equilibria, is the DM able to implement a particular type of equilibria?

The answer is yes. For example, suppose the DM wants agent 1 to have the give-up option. To

achieve that, the DM can do following: if both agents send the lowest messages, then project 2

will be implemented. Knowing this, agent 1’s incentive to send the lowest message is reduced (for

a smaller range of θi) since sending this message means giving up his own project, while agent

2’s incentive to send the lowest message is enhanced (for a wider range of θj). And this leads to

E(θ1|m1,1) < E(θ2|m2,1), which means that it is optimal for the DM to implement project 2 when

both agents send the lowest messages. Similarly, the DM can allocate the sure option to either

agent as he wishes.

A particular feature of the equilibria described above has been that the DM always chooses

one alternative over the other with probability one. In addition to these equilibria, there exists a

continuum of another type of equilibria, which we label as quasi-symmetric mixed strategy equilibria

(QSMSE). In these equilibria, the two agents continue to have the same partitions. However, when

two agents send the same message, instead of always choosing one alternative over the other as in

QSE, the DM will randomize between the alternatives.

While the detailed analsis can be found in the Appendix, here we report two main results.

First, 1G1S QSE yields a higher expected payoff to the DM than any QSMSE with the same (even)

number of partition elements. Second, 2G1S QSE dominates any QSMSE with the same (odd)

number of elements if the two agents’biases are close enough. However, if the two agents’biases

are too far apart, then QSMSE generates a higher expected payoff to the DM than 2G1S QSE. This

implies that sometimes it is beneficial to give the more biased agent some authority/veto power

through randomization.

3.5 Comparative Statics

Corollary 1 The DM’s expected payoff in the most informative equilibrium is decreasing (i) in ci
in the case of multiplicative bias, and (ii) in bi in the case of additive bias.
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A result stronger than Corollary 1 holds: both agents will transmit more information in the most

informative equilibrium if one agent’s bias decreases. Thus in some sense two agents’information

transmissions are strategic complements.18 This feature is also present in the two-sender cheap

talk model of McGee and Yang (2013), but for a different reason. The reason for this property to

arise in the current model is again due to the competitive nature of cheap talk. Intuitively, one

agent will exaggerate less and transmit more information if he has a smaller bias. But this increases

the cost of exaggeration for the other agent, thus allowing him to also transmit more meaningful

information.

In the rest of this subsection we study the following question: fixing the combined bias of two

agents, does the DM prefer two agents having relatively equal biases or relatively unequal biases?

Proposition 6 In the case of multiplicative bias, suppose c1 < c2. Fixing c1c2, in the most in-

formative equilibrium the DM’s expected payoff increases as c1 and c2 becomes further apart (c1

decreases and c2 increases).

The proof of Proposition 6 is straightforward. By previous results, in the most informative

equilibrium agent 1 always has the sure option. Observing (10), it can be easily verified that EU1S
p

increases when c1c2 remains the same but c1 decreases. Proposition 6 indicates that, in the case

of multiplicative bias the DM prefers two agents having unequal biases. To understand this result,

note that agent 2’s (without the sure option) equilibrium partitions only depends on the combined

bias c1c2. However, agent 1’s (who has the sure option) equilibrium partitions become more even

as he becomes less biased.

In the case of additive bias, we fix b1 + b2 = 2b, and let b2 − b1 = 2d be the difference of

the biases, 0 ≤ d ≤ b. Note that b2 = b + d and b1 = b − d. As d increases, two agents’biases
become further apart. We are interested in how the DM’s expected payoff in the most informative

equilibrium will change as d changes.

Proposition 7 Suppose two agents’biases become further apart, or d increases. (i) The maximum
number of partition elements in A1G equilibria either stays the same or increases by 1; the maximum

number of partition elements in A2G equilibria either stays the same or decreases by 1. (ii) If

initially the most informative equilibrium is an 1G1S equilibrium, then the DM is better off in

the most informative equilibrium. (iii) If initially the most informative equilibrium is a 2G1S

equilibrium, then the DM can be either better off or worse off in the most informative equilibrium.

To understand the intuition of part (i) of Proposition 7, first consider A1G QSE. Recall that

the incremental partition size ∆n follows the following pattern: 0, 2b1, 2b1 +2b2, 4b1 +2b2, 4b1 +4b2

.... We can see that, as the two agents’ biases become further apart (d increases), while the

incremental partition sizes of odd number of partitions do not change, those of even number of

18The technical reason is that, as mentioned earlier, the incremental step size of the interior partitions for agent i
is, 4(cicj − 1)ai,n in the multiplicative case, and 4b1 + 4b2 in the additive case. This implies that, when one agent’s
bias decreases, then in the most informative equilibrium the other agent’s number of partitions will weakly increase
and his partitions will become more even.
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Figure 8: DM’s Payoff as Biases Become More Unequal

partitions decreases since b1 decreases. Therefore, the maximum number of partitions will either

stay the same or increase by 1. Now consider A2G QSE. Recall that the incremental partition size

∆n follows the following pattern: 0, 2b2, 2b1 + 2b2, 2b1 + 4b2, 4b1 + 4b2 .... We can see that, as d

increases, while the incremental partition sizes of even number of partitions do not change, those of

odd number of partitions increase since b2 increases. Therefore, the maximum number of partitions

will either stay the same or decrease by 1.

The underlying reason for part (ii) of Proposition 7 is that an increase in d improves 1G1S

equilibria. Recall that the DM’s expected payoff increases if the two largest partitions become

more even. When the total number of partitions is even, the difference between the sizes of the two

largest partitions is 2b1. This means that an increase in d leads to overall more even partitions.

However, an increase in d may improve or worsen 2G1S equilibria (fixing the number of elements).

Proposition 7 implies that in the most informative equilibrium making the two agents’biases

more unequal does not always improve or reduce the DM’s expected payoff: sometimes it is better for

two agents to have relatively equal biases and sometimes it is the opposite. Figure 8 (b1+b2 = 0.196)

illustrates the pattern. As d increases from 0 to 0.043, the most informative equilibrium is a 2G1S

equilibrium, and the DM’s payoff first increases then decreases. For d bigger than 0.043, the most

informative equilibrium is an 1G1S equilibrium, and the DM’s payoff increases with d.

Although in most cases the DM’s expected payoff in the most informative equilibrium decreases

with a larger total bias, it is possible that the DM’s expected payoff could increase as the total bias

increases, if the distribution of biases change as well. This is illustrated in the following example.

Example 5 Suppose b1 = 0.151 and b2 = 0.175. The most informative equilibrium is the 1G2S
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QSE with 3 elements (the 2G1S QSE with 3 elements does not exist), and E(Up) = 0.612. Suppose

b1 = 0.154 and b2 = 0.173. Note that, compared to the former case, b1 increases, b2 decreases, and

the total bias increases. The most informative equilibrium is the 2G1S QSE with 3 elements (the

1G2S QSE with 3 elements still exists), and E(Up) = 0.613. That is, the DM’s expected payoff

increases.

4 Sequential Communication and Delegation

A specific feature of the solution derived under simultaneous communication is that the equi-

librium constitutes an ex post equilibrium: neither agent wants to change their choice of message

even after they learn the choice of the other agent. In this section, we will illustrate how the equi-

librium outcome under simultaneous communication is equivalent to that under both sequential

communication and delegation.

4.1 Sequential communication

Consider first the situation in which the two agents communicate sequentially to the DM, with

the message of the first agent observed by the second agent before his choice of message. Denote

agent i as the agent who moves first and agent j as the agent who moves second. A strategy for

agent i specifies a message mi for each θi, which is denoted as the communication rule µi(mi|θi). A
strategy for agent j specifies a messagemj for each pair of θj andmi, which is denoted µj(mj |θj ,mi).

A strategy for the DM specifies an action d for each message pair (mi,mj), which is denoted as

decision rule d(mi,mj). The DM’s posterior beliefs on θi and θj after hearing messages are denoted

as belief functions gi(θi|mi) and gj(θj |mj ,mi).

A Perfect Bayesian Equilibrium (PBE) requires:

(i) Given the DM’s decision rule d(m1,m2) and agent j’s communication rule µj(mj |θj ,mi),

agent i’s communication rule µi(mi|θi) is optimal.
(ii) Given the DM’s decision rule d(m1,m2), agent i’s communication rule µi(mi|θi), and agent

i message mi, agent j’s communication rule µj(mj |θj ,mi) is optimal.

(iii) The DM’s decision rule d(m1,m2) is optimal given beliefs gi(θi|mi) and gj(θj |mj ,mi).

(iv) The belief functions gi(θi|mi) and gj(θj |mj ,mi) are derived from the agents’communication

rules µi(mi|θi) and gj(θj |mj ,mi) according to Bayes rule whenever possible.

Lemma 3 In PBE the following properties hold. (i) Given any message of agent i, mi, agent j,

who moves second, has at most two irreducible messages. (ii) Agent i, who moves first, has an

equilibrium strategy of interval form.

Lemma 3 indicates that given any message sent by agent i, agent j will have at most two

irreducible messages, which are equivalent to recommending his project for implementation and

recommending the first project for implementation. Agent i’s equilibrium strategy is still of interval

form because the single-crossing condition is satisfied. In particular, compared to a lower type, a
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higher type of agent i will send a weakly higher message (induce a higher posterior) since with a

higher type project i is more likely to be the better project.

Proposition 8 For any equilibrium under simultaneous talk, there exists an outcome-equivalent

equilibrium under sequential talk, and vice versa.

We present the proof of Proposition 8 below. Let {ai,n} be the partition points of agent i,
and he sends message mi,n if θi ∈ [ai,n−1, ai,n]. Suppose that agent i has sent a message mi,n,

inducing a posterior belief E (θi|mi,n) . Recall that agent j has at most two irreducible messages:

recommending his own project or recommending project i. Note that agent j’s message choice

is outcome-relevant only if the DM listens to him. Suppose this is the case (this point will be

discussed in more details later). Now, agent j will recommend his own alternative if

cjθj + bj ≥ E (θi|mi,n)⇔ θj ≥ aj,n =
E (θi|mi,n)− bj

cj
, (15)

and recommend project i otherwise, where aj,n is the cutoff type of agent j who is indifferent

between recommending two projects. Of course, if aj,n ≤ 0, then agent j essentially only has one

message, which recommends project j. Similarly, if agent i sends message mi,n+1, then agent j

recommends his own project if and only if θj ≥ aj,n+1. Actually, as agent i’s message mi,n varies,

{ai,n} induces a sequence of partition points aj,n, which we label as {aj,n}. Note that {aj,n} can
be interpreted as unconditional partition points of agent j before agent i’s choice of messages.

Next, consider agent i’s incentive. Suppose agent i’s type is a marginal type ai,n. Knowing

agent j’s cutoff strategy, agent i anticipates that if he sends the message mi,n, then agent j will

induce the acceptance of project j if and only if θj ≥ aj,n, whereas if he sends the message mi,n+1,

then agent j will induce the acceptance of project j if and only if θj ≥ aj,n+1. Thus, type ai,n’s

indifference condition is given by

Pr(θj ≥ aj,n+1)E (θj |θj ≥ aj,n+1) + Pr(θj < aj,n+1) (ciai,n + bi)

= Pr(θj ≥ aj,n)E (θj |θj ≥ aj,n) + Pr(θj < aj,n) (ciai,n + bi) ,

which then immediately simplifies to

(ciai,n + bi) = E (θj |aj,n+1 > θj ≥ aj,n)⇔ ai,n =
E (θj |aj,n+1 > θj ≥ aj,n)− bi

ci
. (16)

Finally, given that agent j adopts cutoff strategies conditional agent i’s message,

E (θj |aj,n+1 > θj ≥ aj,n) is equivalent to E (θj |mj,n+1) in the case of simultaneous communica-

tion.19 Thus, the indifference conditions of the sequential talk case, (2) and (3), are identical to

the simultaneous talk case, (15) and (16), and thus we have outcome-equivalence.

19That is, for θj ∈ [aj,n, θj,n+1], which is the range for which agent j cares whether agent i sends mi,n or mi,n+1,
agent j can simply send a message mj,n ex ante under simultaneous talk that induces the desired outcome under
sequential talk.
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The difference between simultaneous talk and sequential talk is that, under sequential talk the

agent who talks second can condition his message on the first agent’s message, and thus only has at

most two irreducible messages given the first agent’s message. However, the unconditional messages

of the second agent, j, under simultaneous talk, are equivalent to his conditional messages under

sequential talk. Specifically, if agent i sends message mi,n, then all messages of agent j under

simultaneous talk mj,k (k ≤ n) are combined to an irreducible message (recommends project i),

and all messages mj,k (k > n) are combined to another irreducible message (recommends project

j). This point is illustrated in the following example, which uses the same parameter values as

Example 1.

Example 6 Figure 9 illustrates an equilibrium under sequential talk (agent 1 talks first) that is

equivalent to the equilibrium under simultaneous talk described in Figure 1. The dotted line indicates

the posterior of θ1 given agent 1’s messages. When agent 1 sends the highest message, agent 2’s

cutoff is a22 and he recommends project 2 if and only if θ2 ≥ a22. When agent 1 sends the

second highest message, agent 2’s cutoff is a21. In total, agent 2 has three unconditional messages

(partitions). When agent 1 sends the highest message, agent 2’s two lower unconditional messages

are combined to a single conditional message inducing rejection of project 2. When agent 1 sends

the second highest message, agent 2’s two higher unconditional messages are combined to a single

conditional message inducing acceptance.

Agent 1

Agent 2

a10=0 a11=0.072 a12=0.396 a13=1

a20=0 a21=0.184 a22=0.648 a23=1

b2 b2

Figure 9: The Equivalence between Sequential Talk and Simultaneous Talk

The equivalence between simultaneous talk and sequential talk under competitive cheap talk

is new and surprising. In other cheap talk models with multiple senders, simultaneous talk and

sequential talk usually lead to different outcomes.20

Why the second agent’s ability, under sequential talk, to condition his message on the first

agent’s message does not change the equilibrium outcome? The underlying reason is that, since

only the comparison of two projects matters, even under simultaneous talk the agents are able to

forecast when their messages will be pivotal and they thus anticipate that and choose messages

accordingly. In particular, under simultaneous talk one agent’s choice of two adjacent messages

matters only if the other agent’s message has an overall ranking lying between his two messages. In

20For example, in Krishna and Morgan (2001b) where two agents have symmetric opposing biases and communicate
simultaneously (corresponding to open rules with heterogenous committee), full information revelation is achievable
in equilibrium. However, in Krishna and Morgan (2001a) where two agents have opposing biases and communicate
sequentially, full information revelation is not achievable. In a model in which agents’biases are private information,
Li (2010) shows that sequential talk is superior to simultaneous communication.
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other words, when one agent decides which message to send after observing his own state, he has

already implicitly conditioned on that the other agent’s message is pivotal or has an intermediate

overall ranking between his two messages. This implies that, under sequential talk, the second

agent’s ability to directly condition his message on the first agent’s message does not matter.

Indeed, the key feature of the equilibrium under simultaneous talk is that, conditional on the

information revealed through the messages, each agent prefers the outcome induced over any other

alternative, except when they both send the their highest messages. Because the agents can forecast

the outcome, it does not matter whether they talk simultaneously or sequentially. The only source

of conflict arises when both agents send their strongest recommendation in favor of their projects,

and the allocation of the sure option determines which agent will have their way.

We conclude with the following observations. First, the give-up option could be allocated to

either agent. Specifically, if bj ≤ E (θi|mi,1), then agent j has the give-up option. Otherwise,

agent i, the first mover has the give-up option. Second, for any interior message of agent i,

mi,n, 2 ≤ n ≤ N − 1, agent j must have two messages and the DM always follow agent j’s

recommendation. To see this, suppose for message mi,2 agent j only has one message which always

leads to the acceptance of project j. Given that E(θi|mi,2) > E(θi|mi,1), equilibrium requires that

for mi,1 agent j only has one message as well, which always leads to the acceptance of project j.

But now for agent i, messages mi,1 and mi,2 are outcome equivalent and can be combined to one

single irreducible message. Third, if for the highest message sent by agent i, mi,N , agent j has two

messages, then agent j has the sure option.21 Therefore, agents would like to talk second, as that

gives them a higher likelihood of having their project chosen and thus a higher expected payoff.

Note that organizationally, this setting is equivalent to a hierarchy. The first agent talks to the

second agent, who then recommends to the principal which alternative to implement. Finally, note

that while intuitively attractive, this is not the only feasible equilibrium outcome, an observation

that highlights how delicately the content of communication can depend on its interpretation.

Suppose that we maintain the same sequential structure, where agent i talks first to agent j, who

then makes the final recommendation to the DM, but we allow for agent i access to a single message

that bypasses the chain of command and is taken by the DM to be suffi ciently good evidence to

implement agent i’s alternative, no questions asked. Now, that essentially allocates agent i the

sure option, as agent j can now have his alternative implemented only when agent i chooses not

to send the highest message (which in turn makes agent j send the highest message for a wider

range of parameters, thus leading to the case that E (θi|mi,Ni) > E
(
θj |mj,Nj

)
> E (θi|mi,Ni−1)),

while agent i’s incentives to send the highest message are curtailed by the fear of replacing an even

better alternative by agent j, exactly as in the simultaneous talk case. Thus, it is agent i who has

the sure option and the rest of the communication equilibrium adjusts accordingly. Therefore, it is

fundamentally the interpretation of the messages by the DM that determines the allocation of the

21The DM always follows agent j’s recommendation of project j if E(θi|mi,n) ≤ (cj − bj)/(2cj − 1). Recall that

agent j recommends his own project if and only if θj ≥ aj,n =
E(θi|mi,n)−bj

cj
. Now the DM’s posterior about θj

following mi,n and recommendation of agent j becomes (1 + aj,n)/2, which is bigger than E(θi|mi,n) if and only if
E(θi|mi,n) ≤ (cj − bj)/(2cj − 1).
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sure and give-up options, not the sequence of talk.

4.2 Delegation

We only consider the case of simple delegation (Aghion and Tirole, 1997; Dessein, 2002), where

the DM delegates the decision right to one of the agents, say agent j. Since agent j cares about

the quality of the project implemented, he first consults agent i regarding θi and then makes the

decision as to which project to implement. Considering this variant of the game, we get the following

proposition.

Proposition 9 The set of equilibria under delegation is a subset of the equilibria under sequential
talk. In particular, delegation to agent j is equivalent to the sequential talk equilibrium where agent

j talks second and has the sure option.

The logic behind this result is straightforward, and hinges on the binary nature of the final

choice. As discussed above, under sequential talk following the message of agent i there are only two

meaningful recommendations: either agent j recommends his alternative and that is implemented,

or agent j recommends against his alternative, in which case the other project is implemented. In

other words, because of the binary decision, following the recommendation of the agent is equivalent

to fully delegating authority to that agent. This result stands in contrast to the continuous-decision

setting, where the DM can continuously alter his response in relation to the preferred decision of

the agent.

The reason why delegation can implement only a subset of equilibria under sequential talk is

that the DM, through his interpretation of messages, can potentially lower the information revealed,

while an agent cannot ignore what he already knows. For example, a DM could assume that the

messages contain no information and thus choosing randomly between the two alternatives is an

equilibrium outcome. In contrast, while agent j can place no weight on the messages sent to

him, he cannot ignore his own private information. Thus, given authority, he will not be willing

to randomize and instead will choose his own alternative when θj ≥ E(θi|∅)−bj
cj

, where ∅ indicates
babbling, and vice versa. Most importantly, this plays a role in the allocation of the give-up option.

For example, the DM may allocate the give-up option to agent i simply through the interpretation

of the messages, resulting in E (θi|mi,1) < E (θj |mj,1). However, if E(θi|mi,1)−bi
ci

> 0, then for

θj ∈ [0,
E(θi|mi,1)−bi

ci
] agent j, if granted authority, will choose to reject his alternative in favor

of agent i’s alternative. But when searching for the equilibrium with the highest payoff to the

DM, this is irrelevant because the additional information revealed by agent j makes the delegation

solution strictly dominant (intuitively, since agent j is least likely of the three parties to admit

that his alternative is poor, all benefit from that revelation. Further, it helps to make rest of the

communication finer).

Combining with previous results, we conclude that simultaneous talk, sequential talk, and simple

delegation are essentially all equivalent, in terms of the most informative equilibrium. This result is

quite surprising, as in other cheap talk models cheap talk and simple delegation in general lead to
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different equilibrium outcomes.22 Moreover, the agent having the decision rights is always better off

relative to the other agent. Finally, previous results imply that the DM always prefers to delegate

the decision right (equivalent to giving the sure option) to the less biased agent.

5 More Than Two Agents

Now we go back to the setting of simultaneous communication, and study the situation where

there are more than two agents.

5.1 K+1≥ 2 symmetric agents

Suppose there are K + 1 ≥ 2 symmetric agents with preferences cθi + b (so that each agent

is playing against K other agents, just to simplify notation). We will focus on the symmetric

communication equilibrium where the agents use the same message set and where ties are broken

randomly and symmetrically among the agents. In particular, if there are k equal (and highest)

claims, the DM chooses one of the alternatives with probability 1/k. In this setting, we consider

how the number of agents affects the precision of communication, with the result that increased

competition increases the precision of information transmission. Thus, not only does the DM

benefit from getting an additional draw from the state distribution by introducing an additional

agent, but also gains in terms of the information revealed by the agents regarding the quality of

their alternatives.

To derive this result, let {an}, 0 ≤ n ≤ N , denote the cutoff points, and each agent i sends

message mn if θi ∈ [an−1, an]. Suppose one agent’s type is an. To construct the indifference

condition for the agent in question for the choice between messages mn and mn+1, note first

that the choice is again irrelevant if, among the messages sent by all other agents, there exists a

message that is above mn+1 (no chance of acceptance), or all messages are below mn (guaranteed

acceptance). Thus, we can write the indifference condition as

[E (θ|mn+1)− (can + b)]

K∑
k=1

K!

k!(K − k)!
[Pr(mn+1)]k[Pr(m < mn+1)]K−k

1

1 + k

= [(can + b)− E (θ|mn)]
K∑
k=1

K!

k!(K − k)!
[Pr (mn)]k[Pr (m < mn)]K−k

k

1 + k
. (17)

To understand this expression, the first line is the expected cost of sending the higher message

mn+1 (relative to sending the lower message mn) when at least one other agent sends the higher

message. In other words, by sending the lower message, the agent is guaranteed rejection, while

22For instance, Dessein (2002) shows that simple delegation is strictly better than cheap talk whenever informative
cheap talk is feasible. In a two-sender model, which is more comparable to the current model, McGee and Yang (2013)
shows that simple delegation is strictly better than simultaneous talk if two agents have like biases, and it can be
better or worse than simultaneous talk if two agents have opposing biases.
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sending the higher message carries a probability of 1
1+k being accepted (and thus replacing one

of the other better alternatives), given a total number k of the higher messages sent. Finally, to

compute the overall probability of such replacement (which is what the agent fundamentally cares

about), note that the probability of having a particular set of k agents with the higher message is

[Pr(mn+1)]k[Pr(m < mn)]K−k, then from the set of K agents we can draw the k agents in K!
k!(K−k)!

unique combinations, and finally adding over the possible k we get the expected probability.

Similarly, the second line captures the expected gain of sending the higher message when the

highest message sent by the other agents is mn. Now, sending the higher message guarantees accep-

tance, while sending the lower message runs the risk of acceptance of another (worse) alternative

with probability k
1+k , given a total number k of agents sending the lower message, and then adding

over the possible combinations, as with the first line.

Next, simplify the notation by letting Φ (K,mn+1) and Φ (K,mn) denote the expected proba-

bility of being pivotal, which allows us to write the indifference condition in a shorter form as

[E (θ|mn+1)− (can + b)]Φ (K,mn+1) = [(can + b)− E (θ|mn)]Φ (K,mn) .

Now we make the dependence of an on K explicit and write an as an (K). Then, note that

given an+1 (K) and an−1 (K) , an increase in an (K) implies more even partitions and thus more

informative communication.23 Then, from the indifference condition it follows immediately that

for two groups of agents, K and K ′, we have that

an (K) < an
(
K ′
)
⇔ Φ (K,mn)

Φ (K,mn+1)
>

Φ (K ′,mn)

Φ (K ′,mn+1)
.

In other words, an agent is more conservative in his recommendations in group K ′ when he

is relatively more likely to be pivotal when sending the higher message. Intuitively, the agent’s

incentives to exaggerate are curtailed by his fear of replacing an even better alternative. The more

likely such replacement becomes, relative to allowing a worse alternative being implemented, the

more conservative the agent becomes.

The final step is then to consider how this expression depends on the number of participants.

We can solve for the probabilities as

Φ (K,mn+1) =
Pr (m ≤ mn+1)

[
[Pr (m ≤ mn+1)]K − [Pr (m < mn+1)]K

]
−K Pr (mn+1) [Pr (m < mn+1)]K

Pr (mn+1) (K + 1)

Φ (K,mn) =
K Pr (mn) [Pr (m ≤ mn)]K − Pr (m < mn)

[
[Pr (m ≤ mn)]K − [Pr (m < mn)]K

]
Pr (mn) (K + 1)

.

23 In equilibrium, more even partitions implies a slower growth rate of their size and thus more even and potentially
more messages.
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Under the uniform distribution, these expressions further simplify to

Φ (K,mn+1) =
an+1

(
aKn+1 − aKn

)
−K (an+1 − an) aKn

(an+1 − an) (K + 1)

Φ (K,mn) =
K (an − an−1) aKn − an−1

(
aKn − aKn−1

)
(an − an−1) (K + 1)

. (18)

And a simple manipulation of the probabilities yields the following proposition:

Proposition 10 As the number of agents, K + 1, increases, in symmetric equilibrium the incre-

mental step size of partitions decreases.

The underlying reason for Proposition 10 is as follows. Recall that the indifference condition

balances the expected gain (when among the other agents the highest message is the lower message)

and the expected loss (when among the other agents the highest message is the higher message) of

sending the higher message (relative to sending the lower message). When the number of agents

increases, other things equal, if the agent in question sends the higher message, relative to the

probability of gaining (when among the other agents the highest message is the lower message),

the probability of incurring loss (when among the other agents the highest message is the higher

message) increases. Intuitively, more agents means it is more likely that some agents’projects are

better than your own project. Therefore, increasing the number of participants increases the cost

of exaggeration and thus improves the flow of information. In other words, adding an agent gives

the DM a double benefit. First, it offers an additional draw from the distribution. Second, it

encourages better transmission of information from the pre-existing agents.

Example 7 Suppose c = 0 and b = 0.4. When there are two agents, the most informative symmet-

ric equilibrium has two partitions, with partition point a1 = 0.1. When there are three agents, in the

two-partition equilibrium the partition point is a1 = 0.1572. Clearly, when there are three agents,

the incremental step size is smaller and the partitions are more even, and hence more information

is transmitted by each agent.

5.2 Asymmetric agents

Here we just briefly discuss the case of three asymmetric agents. All PBE still must be interval

equilibria. In the asymmetric equilibrium, all equilibrium messages of all three agents can be

ranked unambiguously according to the posteriors.24 To make the set of messages irreducible, two

messages having the consecutive overall rankings must belong to different agents. However, with

three agents the messages do not need to have an alternating ranking structure (unlike in the

two-agent case), whereby the overall rankings of three agents’messages have a cyclical pattern (for

24With three agents actively competing with each other, quasi-symmetric equilibrium defined in the two-agent
case no longer exists. This is because now, at any interior partition point it is impossible to make one agent’s IC
binding and the other two agents indifferent at the same time by manipulating the tie-breaking rule.
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example, the lowest message belongs to agent 1, the second lowest to agent 2, the third lowest

to agent 3, the fourth lowest to agent 1, and so on). There are many other possibilities, as long

as two messages having the consecutive overall rankings belong to different agents. For example,

agent 3 babbles (only has one message), and the messages of agent 1 and agent 2 basically have an

alternating ranking structure (excluding agent 3’s sole message). Essentially, only agent 1 and 2

are actively competing with each other, with agent 3’s project (with expected payoff 1/2) serving

as an outside option. Alternatively, one can think of complicated ranking structures in which three

agents’messages or partitions are intertwined. There are a few interesting questions to ask. What

kind of ranking structure will emerge in the most informative equilibrium? Is it better to have

only two agents competing actively or to have all three agents competing actively? To maximize

the DM’s payoff, should the agent who has the smallest bias continue to have the sure option? We

leave this topic for future research.

6 Conclusions and Discussions

This paper studies a competitive cheap talk model in which two agents, who each is responsible

for a single project, communicate with the DM before exactly one project is chosen. Both agents

and the DM share some common interests, but at the same time each agent has an own project

bias. We first fully characterize the equilibria under simultaneous communication. All equilibria

are shown to be partition equilibria, and the partitions of two agents’are intimately related: the

interior partition points of the two agents have an alternating structure and the equilibrium number

of distinct messages by the two agents are either the same or differ by one. Letting the agent with

the smaller bias to have the give-up option leads to more equilibrium messages while letting the

agent with the smaller bias to have the sure option optimizes the exercise of veto power at the

top. Thus, ideally, the principal would like to allocate both to the less biased agent. But when the

communication equilibrium has only a finite number of elements, in the equilibria having maximum

number of messages allocating the give-up option to one agent may necessitate allocating the sure

option to the other agent, and allocating both options to the less biased agent might reduce the

number of messages by one. Then, the tension is resolved as follows. The less biased agent should

always have the sure option since it is more important in determining the overall informativeness of

communication, and the give-up option could be allocated to either agent to maximize the number

of equilibrium messages. Suprisingly, sometimes the most informative equilibrium might not be the

one with the maximum number of messages. We also show that, fixing the total bias of two agents,

making the biases more unequal could increase or decrease the DM’s payoff in the most informative

equilibrium.

We then study sequential communication and delegation and illustrate how these versions of

the game are essentially outcome-equivalent to the simultaneous-talk case, in that all games have

the same most informative equilibrium. The equivalence between sequential communication and

delegation follows from the result that, due to the binary nature of the final decisions, there exists
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an equilibrium under sequential communication where the DM always follows the recommendation

of the second-mover, which is equivalent to delegation. The equivalence between simultaneous and

sequential talk follows from the result that even under simultaneous talk, the agents need to predict

when their messages will be pivotal and condition their strategy on that, which makes the ability to

see the other agent’s message worthless. We also show that when the number of agents increases,

the amount of information transmitted by each agent increases in the symmetric equilibrium.

Throughout the paper we have assumed that the return of each project is uniformly distributed.

With more general distributions, the difference equations will not have analytical solutions, which

would complicate the analysis. However, we think that majority of the results of our paper will

hold qualitatively under more general distributions. Recall that, due to technical diffi culty, we did

not explicitly solve the general case with hybrid biases. But we believe that the general case is

qualitatively similar to the case of additive bias, as in both cases there is no point of congruence

and thus the number of equilibrium messages is finite and the give-up option has bite. It is also

encouraging that the basic conclusions following from the additive and multiplicative cases are

qualitatively very similar.

In the paper we also assumed that exactly one project will be implemented. In some situations,

it is reasonable to think that there is an outside option under which neither project is implemented.

If the DM chooses the outside option, then neither agent gets private benefit. Depending on the

return to the outside option, an agent may either always prefer to implement his project over

the outside option, or prefer the outside option for suffi cently low values, which will influence the

information content of the lowest messages sent by each agent. Apart from the lowest message, if

either agent sends higher messages then the DM will definitely not adopt the outside option. In

other words, starting from the second lowest messages two agents are competing with each other

to have his own project implemented, which is essentially the same as the basic model. From this

discussion, we can see that adding an outside option would not qualitatively change the existing

results much. The main effect will be (if the acceptance constraint is binding under the original

equilibrium) to worsen the amount of information transmission by making the initial messages less

precise. Finally, it is also interesting to study the case in which two projects are asymmetric or

their returns have different distributions. We leave this for future research.
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Appendix

Proof of Proposition 1.
Proof. Consider any decision rule Pr(d = i|mi,n,mj,n′). Then, knowing the decision rule and

the communication strategy of the other agent j, agent i’s expected payoff, given his type θi and

message mi,n, can be written as

Eθj [Ui|θi,mi,n] = Pr(d = i|mi,n)(ciθi + bi) + Pr(d = j|mi,n)E (θj |d = j,mi,n) .

Order the messages so that n > n′ ⇔ Pr(d = i|mi,n) > Pr(d = i|mi,n′). That is, a higher message

of agent i means project i will be implemented with a higher probability. Then, we have that

d
(
Eθj [Ui|θi,mi,n]− Eθj [Ui|θi,mi,n′ ]

)
dθi

=
[
Pr(d = i|mi,n)− Pr(d = i|mi,n′)

]
ci > 0.

This implies that a higher type of θi has an incentive to send a higher message, or the single-crossing

condition is satisfied. Therefore, the only feasible equilibria are interval equilibria.

Characterization of QSE.
For iGiS QSE (note that the number of partitions N is even), solving the difference equations

of (11), we get

a1 =
1

N
− N

2
bi − (

N

2
− 1)bj .

Then N
iGiS

is the largest even integer N that satisfies the following inequality:

N2

2
bi +N(

N

2
− 1)bj < 1. (19)

Similarly, for iGjS QSE (note that N is odd) the difference equations of (11) yield

a1 =
2− (N − 1)(N + 1)bi − (N − 1)2bj

2N
. (20)

Then N
iGjS

is the largest odd integer N that satisfies the following inequality

(N − 1)(N + 1)

2
bi +

(N − 1)2

2
bj < 1. (21)

The equilibrium expected payoff of the DM, E(Up(N)), can be written as:

E(UAiGp (N)) =
1

2

N∑
n=1

[(an − an−1)an(an + an−1) + (an − an−1)(1− a2
n)],
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which can be explicitly calculated as (12) and (13).

Proof of Lemma 2.
Proof. We prove the results in terms of QSE, and let N be the number of partition elements.

Part (i). Inspecting (19), for the same even N we can see that the LHS of the inequality is

larger under an A2G QSE than under an A1G QSE, since b1 < b2. Thus, N
1G1S ≥ N

2G2S
. By

(21), the same pattern holds for odd N , and hence N
1G2S ≥ N

2G1S
. Therefore, we must have

N
A2G ≤ N

A1G
. To show that N

A1G ≤ N
A2G

+ 1, first consider the case that N is even. Note

that the LHS of (19) of an 1G1S equilibrium with N is larger than the LHS of (21) of a 2G1S

equilibrium with N − 1. Thus, N
1G1S ≤ N

2G1S
+ 1. When N is odd, it can be verified that the

LHS of (21) of an 1G2S equilibrium with N is larger than the LHS of (19) of a 2G2S equilibrium

with N − 1. Thus, N
1G2S ≤ N2G2S

+ 1. Combine the above results, we have N
A1G ≤ NA2G

+ 1.

Part (ii). Consider an 1G1S QSE and a 2G2S QSE with the same even N . By (12),

E(U1G1S
p (N))−E(U2G2S

p (N)) = (b22−b21) > 0. This implies that the 1G1S QSE is more informative

than the 2G2S QSE.

Part (iii). Consider an 1G2S QSE and a 2G1S QSE with the same odd N . By (13), we have

E(U1G2S
p (N))− E(U2G1S

p (N)) ∝ 2[(b32 − b31) + b1b2(b1 − b2)] +
(b1 − b2)3

N2
+ (b1 − b2)(b1 + b2)2N2

< 2(b32 − b31) + (b1 − b2)(b1 + b2)2N2 < 0,

where the last inequality uses the fact that N ≥ 3 (informative equilibrium). Therefore, the 2G1S

QSE is more informative than the 1G2S QSE.

Part (iv). First, consider the boundary case in which b1 and b2 are such that the size of the first

element, ∆1, in an 1G1S equilibrium with 2N elements, exactly equals to 2b2. This implies that a

2G1S equilibrium with 2N + 1 elements barely exists, in which ∆1 = 0. Note that in this boundary

case, the 1G1S equilibrium with 2N elements is equivalent to the 2G1S equilibrium with 2N + 1

elements. Moreover, by part (i) an 1G2S equilibrium with 2N + 1 elements exists. Following part

(iii), the 2G1S equilibrium with 2N + 1 elements is more informative than the 1G2S equilibrium

with 2N + 1 elements, we conclude that in this boundary case the 1G1S equilibrium with 2N

elements is more informative than the 1G2S equilibrium with 2N + 1 elements.

Second, we compute the difference in expected payoffs between an 1G1S equilibrium with 2N

elements and an 1G2S equilibrium with 2N + 1 elements. By (12) and (13), we have

E(U1G1S
p (2N))− E(U1G2S

p (2N + 1)) ∝

8N3 (N + 1)
(
b22 − b21

)
+N2b1 (2 (1 + 4N)− 8 (N + 1) b1 + 8 (N + 1) b2) (22)

+2N (1 +N) (1 + 4N) b2 − 4N − 1.

Our goal is to show (22) is always strictly positive. Recall that in the first step we have shown

that it holds for the boundary case. Now to show this also holds for generic case in which an 1G2S
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equilibrium with 2N + 1 elements exists but a 2G1S equilibrium with 2N + 1 elements does not, it

is suffi cient to show that (22) is increasing in b1 and b2.

It is obvious that (22) is increasing in b2. To show it is increasing in b1, we take the derivative

of (22) with respect to b1. The derivative is proportional to

(2 + 8N)− 16(N + 1)b1 + 8 (N + 1) b2 − 16N(N + 1)b1.

The above expression is greater than 0 if

2 + 8N − 8(N + 1)b1 − 16N(N + 1)b1 ≥ 0. (23)

The following condition is suffi cient for (23) to hold: 1 ≥ 2(N + 1)2b1. Note that, by the fact that

an 1G2S equilibrium with 2N + 1 elements exists, and b2 ≥ b1, 1 ≥ N(2N + 1)2b1. For N ≥ 2,

N(2N + 1) > 2(N + 1). Thus (23) holds for N ≥ 2. Now consider the case that N = 1. Now (23)

becomes: 10 − 48b1 ≥ 0. By the fact that an 1G2S equilibrium with 3 elements exists, 1 ≥ 6b1,

which implies that 10− 48b1 ≥ 0. Thus (23) holds for N = 1 as well.

Proof of Proposition 4.
Proof. Part (i). Given the condition N

1G1S
> N

2G1S
, 2G1S equilibria cannot be the most

informative equilibrium. By part (i) of Lemma 2, we have N
1G1S ≥ N

2G2S
. Following part (ii) of

Lemma 2, the most informative 1G1S equilibrium is more informative than the most informative

2G2S equilibrium. Since N
1G1S

+ 1 ≥ N1G2S
, by part (iv) of Lemma 2, the most informative 1G1S

equilibrium is more informative than the most informative 1G2S equilibrium. Therefore, the most

informative 1G1S equilibrium is the most informative equilibrium.

Part (ii). Given the condition N
2G1S

> N
1G1S

, 1G1S equilibria cannot be the most informative

equilibrium. This implies that 2G2S equilibria cannot be the the most informative equilibrium

either, as they are dominated by the most informative 1G1S equilibrium. Since N
2G1S

> N
1G1S

,

by part (i) of Lemma 2, we must have N
2G1S

= N
1G2S

. Now by part (iii) of Lemma 2, the

most informative 2G1S equilibrium is more informative than 1G2S equilibria. Therefore, the most

informative equilibrium is a 2G1S equilibrium.

Part (iii). Parts (i) and (ii) exhaust all the possibilities, hence the most informative equilibrium

cannot be a 2G2S or an 1G2S equilibrium.

Proof of Proposition 5.
Proof. Since the situations of the other two equilibria are similar, we only prove the claims for
1G1S and 1G2S equilibria.

1G1S equilibria. Consider an 1G1S QSE with an even number (say 2N) of partitions. Since

the returns of the two projects have the same distribution, the probability that θ1 lies in a higher

partition than θ2 is the same as the probability that θ2 lies in a higher partition than θ1. Therefore,

we only need to consider the situations that both θ1 and θ2 lie in the same partition (or ties). Recall
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that the alternating tie-breaking rule favors agent 2 for (2n − 1)th partition, and favors agent 1

for (2n)th partition. Given that in total there are 2N partitions, we can group all 2N partitions

into N pairs, with each pair containing two adjacent partitions: (2n − 1)th partition and (2n)th

partition. Since the partition sizes are increasing, ties for higher partitions are more likely. This

implies that for each pair of partitions, project 1 is more likely to be implemented than project 2.

Therefore, overall project 1 (2) will be implemented with a probability strictly greater (less) than

1/2.

1G2S equilibria. Consider an 1G2S QSE with an odd number (say 2N + 1) of partitions. The

proof is similar to that for 1G1S equilibria. The only difference is that we need to use different

grouping. Given that in total there are 2N + 1 partitions, we can group the 2N highest partitions

into N pairs, with each pair containing two adjacent partitions: (2n)th partition and (2n + 1)th

partition. Since the partition sizes are increasing, ties for higher partitions are more likely. This

implies that for each pair of partitions, project 2 is more likely to be implemented than project

1. Moreover, in the 1st partition project 2 is favored. Therefore, overall project 2 (1) will be

implemented with a probability strictly greater (less) than 1/2.

Proof of Corollary 1.
Proof. Part (i). Suppose c1 ≤ c2, or agent 1 is the less biased agent. By previous results, in the

most informative equilibrium agent 1 has the sure option. Observing (10), it can be easily verified

that EU1S
p increases as either c1 or c2 decreases.

Part (ii). Suppose b2 decreases to b′2 < b2. It is enough to show that the DM’s payoff in

the most informative 1G1S equilibrium and that in the most informative 2G1S equilibrium both

increase. Consider 1G1S equilibria first. Since b′2 < b2, by previous results N
1G1S ≤ N

′1G1S
. If

N
1G1S

< N
′1G1S

, then in the most informative equilibrium the DM’s payoff must be higher under

b′2. If N
1G1S

= N
′1G1S

, by (12), again in the most informative equilibrium the DM’s payoff is higher

under b′2. Similarly, one can show that the DM’s payoff in the most informative 2G1S equilibrium

is higher under b′2.

Proof of Proposition 7.
Proof. Let d′ > d. And we use superscript ′ to denote the endogenous variables under d′.

Part (i). Rearrange the inequalities regarding the number of partitions of A1G QSE, (19) and

(21), we get

(N2 −N)b−Nd < 1 for even N,

[(N − 1)2 + (N − 1)]b− (N − 1)d < 1 for odd N.

Since the LHS of the above inequalities is decreasing in d, it follows that N
A1G′ ≥ N

A1G
. Since

d ≤ b, N
A1G′ ≤ N

A1G
+ 1. Therefore, either N

A1G′
= N

A1G
, or N

A1G′
= N

A1G
+ 1. In a similar

fashion, we can show that, for A2G QSE, either N
A2G′

= N
A2G

or N
A2G′

= N
A2G − 1.

Part (ii). Since initially the most informative equilibrium is an 1G1S equilibrium, we have

N
1G1S

> N
2G1S

. By part (i), the following relationships hold: N
1G1S′ ≥ N

1G1S
> N

2G1S ≥
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N
2G1S′

. Therefore, the most informative equilibrium is still the most informative 1G1S equilibrium.

If N
1G1S′

> N
1G1S

, then it is obvious that E(U1G1S′
p ) > E(U1G1S

p ). If N
1G1S′

= N
1G1S

, then by

(12) the only term in E(U1G1S
p ) that depends on d is −(b− d)2/2, which is increasing in d. Thus,

E(U1G1S′
p ) > E(U1G1S

p ).

Part (iii). Since initially the most informative equilibrium is a 2G1S equilibrium, we have

N
1G1S

< N
2G1S

. By part (i), we have several cases to consider. In the first case, N
1G1S′

> N
2G1S

.

In this case under d′ the the most informative equilibrium is an 1G1S equilibrium, which improves

upon the initial most informative equilibrium. In the second case, N
2G1S

> N
1G1S′

= N
1G1S

>

N
2G1S′

. In this case under d′ the the most informative equilibrium is an 1G1S equilibrium, which is

worse than the initial most informative equilibrium. In the third case N
2G1S

= N
2G1S′

> N
1G1S′

=

N
1G1S

. In this case under d′ the the most informative equilibrium is a 2G1S equilibrium, with the

same number of elements as before. By (13) the only term in E(U2G1S
p ) that depends on d is as

follows:

E(UA2G(N)) ∝ d(2b2N2 − 3d− 2d2).

By the above expression, E(U2G1S
p ) increases in d if and only 2b2(N

2G1S
)2− 6d− 6d2 > 0. But the

sign of this inequality cannot be determined.

Equilibrium selection.
Consider the following equilibrium refinement. In an AiG equilibrium suppose ai,1 > 2bj (or

E(θi|mi,1) > bj). Note that in equilibrium, if agent i sends the lowest message mi,1 then project j is

implemented for sure. Now suppose the realized return of project j is very low: θj ∈ [0, ai,1− 2bj).

In this case, both agent j and the DM would prefer project i being implemented, given agent i

strategy. To achieve that, agent j could send an out of equilibrium message, say “θj is very low”

or “do not implement my project j,” and the DM would listen to it and implement project i.

This shows that an AiG equilibrium with ai,1 > 2bj is not stable or reasonable; and for an AiG

equilibrium to be stable it must be the case that ai,1 ≤ 2bj .

Lemma 4 (i) Suppose an 1G1S (1G2S, 2G1S, 2G2S) equilibrium is not the most informative 1G1S
(1G2S, 2G1S, 2G2S) equilibrium, then it is not stable. (ii) The most informative A1G equilibrium

must be stable.

Proof. Part (i). We only prove the case for 1G1S equilibria, since the proof for other equilibria
is similar. Consider an 1G1S QSE with N (even) partitions. Since it is not the most informative

1G1S QSE, an 1G1S QSE with N + 2 partitions exists. We want to show that a1,1(N) > 2b2.

Given that a QSE with N +2 partitions exists, by (21) we have (N+1)(N+3)
2 b1 + (N+1)2

2 b2 < 1. More

explicitly, by (20),

a1,1(N)− 2b2 ∝ 2− (N − 1)(N + 1)b1 − (N + 1)2b2 > 0,

where the inequality follows the previous one.
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Part (ii). Let N be the number of partitions in the most informative A1G QSE. We only

prove the case that N is odd. We need to show that a1,1(N) ≤ 2b2. Suppose to the contrary

a1,1(N) > 2b2. By (20), it implies that

2− (N − 1)(N + 1)b1 − (N + 1)2b2 > 0.

But given that b2 > b1, the above inequality implies that

2− (N − 1)(N + 1)b2 − (N + 1)2b1 > 0,

which, by (21), implies that an A1G QSE with N + 1 partitions exists. This contradicts the fact

that the most informative A1G QSE has N partitions.

The results of Lemma 4 are intuitive. If an equilibrium with more partitions exists, it implies

that the first partition in the equilibrium of fewer partitions is large relative to the biases, which

further means that the equilibrium with fewer partitions is not stable. Although Lemma 4 does

not establish that the most informative equilibrium must be stable and any equilibrium that is not

the most informative one is not stable, it suggests that only the more informative equilibria can be

potentially stable and thus are the more reasonable ones.

Quasi-symmetric mixed strategy equilibrium.
Here we study QSMSE in detail. In QSMSE, the two agents continue to have the same partitions

and so it continues to be the case that E (θi|mn) = E (θj |mn), where {mn} is the common message
set for two agents. And the DM will randomize between the alternatives, with λn ∈ (0, 1) as the

probability that the DM will choose agent 1’s alternative when two agents send the same message

mn. Such an equilibrium is characterized by N , {λn}, and {an}.
Note that under QSMSE, all the messages of each agent are irreducible, as they will induce

different acceptance probabilities. Thus, both agents’indifference conditions have to be satisfied at

each interior partition point. For {λn} and {an} to be an equilibrium, the indifference conditions
at an for agent 1 and agent 2 can be written as

λn+1 Pr(mn+1)[E(θ2|mn+1)− (c1an + b1)] = (1− λn) Pr(mn)[(c1an + b1)− E(θ2|mn)],(24)

(1− λn+1) Pr(mn+1)[E(θ1|mn+1)− (c2an + b2)] = λn Pr(mn)[(c2an + b2)− E(θ1|mn)]. (25)

To understand equations (24) and (25), observe that agent 1’s messages mn and mn+1 are

outcome-relevant only if agent 2’s messages are either mn or mn+1. The LHS of (24) is type an of

agent 1’s expected cost of sending the higher message mn+1, while the RHS is his expected benefit

of sending the higher message.

In total, we have 2N−1 endogenous variables (a1, ..., aN−1;λ1, ..., λN ), but we only have 2N−2

equations (2 equations for each an, 1 ≤ n ≤ N−1). Thus, there is one degree of freedom. The reason

for this degree of freedom arises from the fact that the indifference condition is influenced by the
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relative attractiveness of the higher and the lower message. In particular, for agent 1, (the inverse

of) the relative attractiveness of sending the higher message is λn+1
1−λn , which is the ratio between

the likelihood of replacing a more attractive alternative when tied at mn+1 versus the likelihood

of allowing the implementation of a worse alternative when tied at mn. Similarly, for agent 2,

the relative attractiveness of sending the higher message is related to 1−λn+1
λn

. To induce the same

posterior beliefs, if agent 2 has stronger incentives to exaggerate, we need to counter that by having

stronger consequences of exaggeration for agent 2. In other words, for E(θ2|mn) = E(θ1|mn) to

arise, we have that if (c2an + b2) > (c1an + b1), then 1−λn+1
λn

> λn+1
1−λn . The key, however, is that it is

the relative attractiveness of the two messages that matters. We can achieve this both by increasing

(1 − λn+1), i.e. the likelihood that we choose the alternative of the more biased agent when he

sends the higher message, and by decreasing λn, the likelihood that the lower message leads to the

implementation of the alternative of the less biased agent. As a result, there will be a continuum

of equilibria that can be sustained through the appropriate sequence of mixing probabilities.

The general case turns out to be too hard to solve, as the difference equations of (24) and (25)

are too complicated. From now on we restrict our attention to the additive case: c1 = c2 = 0,

0 < b1 < b2 < 1/2. Solving the difference equations of (24) and (25), we get the following

relationships between {λn} and the partitions

λn+1 =
(∆n + 2b1)(−∆n+1 + ∆n + 2b2)

2∆n+1(b2 − b1)
, (26)

λn =
(∆n+1 − 2b2)(∆n+1 −∆n − 2b1)

2∆n(b2 − b1)
, (27)

where ∆n+1 = (an+1 − an) is the length of the partition element. Now, using (26) and (27), we get

λn =
(∆n+1 − 2b2)(∆n+1 −∆n − 2b1)

2∆n(b2 − b1)
= λn =

(∆n−1 + 2b1)(−∆n + ∆n−1 + 2b2)

2∆n(b2 − b1)
,

which can be simplified as

∆n+1 = ∆n−1 + 2 (b1 + b2) . (28)

Equation (28) tells us that if the first two elements are determined, then all the later elements are

determined recursively as well.

Intuitively, any QSMSE is mixture of the A1G and A2G QSE with the same number of elements

N . As λ2k+1 increases and λ2k+2 decreases, QSMSE put more weights on A2G QSE (an puts more

weight on (24) and less weight on (25)). Notice that for a QSMSE to exist, the following condition

∆2 > 2b2 must hold. This is because for type a1 of agent 2 to be indifferent between sending

messages m1 and m2, if the size of the second element ∆2 were smaller than 2b2, then agent 2

will always send m2. This can be seen from the expression of (27), where ∆2 ≤ 2b2 implies that

λ1 ≤ 0. This implies that QSMSE only exists in the neighborhood of A2G QSE, which guranttees
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∆2 > 2b2, and QSMSE might not exist in the neighborhood of A1G QSE, which only guranttees

∆2 > 2b1.

The total number of partition elements is even. Lets first consider the case that the total

number of elements, 2N , is even. Given the recursive structure (28), we have

N(∆1 + ∆2) + 2N(N − 1)(b1 + b2) = 1.

Thus ∆1 + ∆2 does not depend on the mixing probabilities {λn}. By the recursive structure, it
means that ∆2n+1 + ∆2n+2, and hence a2k, do not depend on {λn} either. However, a2n+1 will

depend on the mixing probabilities. Given this feature, a bigger a2n+1 means that the partition is

more even, as ∆2n+2 is always bigger than ∆2n+1. More explicitly, the DM’s expected payoff can

be computed as

E(Up) =
2

3
−

2N∑
n=1

∆3
n

6
, (29)

where
∑2N

n=1
∆3
n

6 is the effi ciency loss. Since ∆2n+1 +∆2n+2 is fixed, by (29), reducing the difference

between ∆2n+1 and ∆2n+2 decreases the effi ciency loss.

Now consider a grouped partition ∆2n+1 + ∆2n+2 = a2k+2 − a2k. By (26), we have

2(b2 − b1)λ2n+1 =
(a2n+2 − 2a2n+1 + a2n − 2b1)(a2n+2 − a2n+1 − 2b2)

a2n+1 − a2n
. (30)

By (25), we have a2n+2 − a2n+1 − 2b2 > 0, which implies that a2n+2 − 2a2n+1 + a2n − 2b1 > 0 by

(30). Then it is obvious that the RHS of (30) is decreasing in a2n+1. Therefore, a2n+1 is decreasing

in λ2n+1. This means that a2n+1 is the biggest when λ2n+1 = 0 (which implies that λ2n+2 = 1), or

under 1G1S QSE. Thus, 1G1S QSE leads to the most even partition and a higher expected payoff

than any QSMSE.

Since a1 is decreasing in λ1, if a QSMSE with 2N elements exists then an 1G1S QSE with

2N elements (λ1 = 0) must exist. Therefore, any QSMSE with 2N elements is worse than an

1G1S QSE with 2N elements. It follows that, if N
1G1S

> N
1G2S

, then an 1G1S QSE with N
1G1S

elements yields a higher payoff to the DM than any QSMSE.

The total number of partition elements is odd. Now consider the case that the number of

partition elements 2N + 1 is odd. By the recursive structure (28), we have

(N + 1)∆1 +N∆2 + 2N2(b1 + b2) = 1. (31)
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Solving for ∆2 in (31) and using it in (27), we get

λ1 =
(∆2 − 2b2)(∆2 −∆1 − 2b1)

2∆1(b2 − b1)

=
(1−(N+1)∆1−2(b1+b2)N2

N − 2b2)(1−(N+1)∆1−2(b1+b2)N2

N −∆1 − 2b1)

2∆1(b2 − b1)
. (32)

It is easy to verify that the RHS of (32) is decreasing in ∆1. Therefore, ∆1 is decreasing in λ1.

Given the partition pattern, we conclude that as λ1 increases, the size of odd number elements,

∆2k+1 decreases, and the size of even number elements, ∆2k+2, increases.

Now we compute the effi ciency loss, EL, under QSMSE. By (29) and the recursive structure of

partition,

EL =
N+1∑
n=1

[∆1 + 2(n− 1)(b1 + b2)]3

6
+

N∑
n=1

[∆2 + 2(n− 1)(b1 + b2)]3

6
.

Taking the derivative of EL with respect to ∆1 and simplifying yield

∂EL

∂∆1
∝ 3∆2

1 − 3∆2
2 + 6N (b1 + b2) ∆1 − 6 (b1 + b2) (N − 1) ∆2 + 2 (4N − 1) (b1 + b2)2 . (33)

It can be readily seen from (33) that ∂EL∂∆1
is increasing in ∆1 (∆2 is decreasing in ∆1). Recall that

QSMSE is a mixture of 2G1S QSE and 1G2S QSE, and ∆1 is minimized in 2G1S QSE. Therefore,
∂EL
∂∆1

is always positive if (33) is positive evaluated at 2G1S QSE, which means that 2G1S QSE

yields a higher payoff than any QSMSE.

Lets evaluate (33) at 2G1S QSE:∆2 = ∆1+2b2 and, by (31), (2N+1)∆1+2Nb2+2N2(b1+b2) =

1. The algebra yields

∂EL

∂∆1
|2G1S = 6b2b1 + 3 (b1 − b2) +

[
2N2 + 2N − 1

]
(b1 + b2)2 . (34)

Inspecting the expression of (34), we can see that ∂EL
∂∆1
|2G1S ≥ 0 if |b1 − b2| is small enough, or two

agents’biases are not too far apart. Thus, we conclude that if two agents’biases are not too far

apart, then 2G1S QSE dominates any QSMSE with the same number of elements 2N + 1.

However, if two agents’biases are too far apart, then it is possible that ∂EL
∂∆1
|2G1S < 0. Since

2G1S QSE dominates 1G2S QSE, it means that QSMSE can improve upon QSE. This point is

illustrated in the following example.

Example 8 Suppose b1 = 0.04 and b2 = 0.2. The maximum number of partition elements is

3. In 2G1S QSE, ∆1 = 0.04, ∆2 = 0.44, and ∆3 = 0.52. The effi ciency loss under the QSE is

EL2G1S = 0.03764. In a QSMSE with λ1 = 0.3625 (λ2 = 0.029, λ3 = 0.855), ∆1 = 0.05, ∆2 = 0.42,

and ∆3 = 0.53. The effi ciency loss under the QSMSE is ELQSMSE = 0.03718 < EL2G1S. Thus the

QSMSE yields a higher payoff than the 2G1S QSE. The optimal QSMSE has λ1 → 0 (λ2 = 0.066,
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Figure 10: An example of the optimality of mixed equilibrium, with b2 = 2b1

λ3 = 0.722), ∆1 → 0.06, ∆2 → 0.4, and ∆3 → 0.54, which yields an effi ciency loss 0.03695.25

This result shows that sometimes randomization or giving the more biased agent some author-

ity/veto power (in the sense of the sure option) is beneficial. In the example, in the optimal QSMSE

agent 2 has the sure option with probability 0.278. To understand this result, note that compared

to QSMSE, in 2G1S QSE the size of the largest element (∆2N+1) is minimized, but the size of

the second largest element (∆2N ) is maximized. When b1 is significantly smaller than b2, ∆2N

(∆2n) is of similar size to ∆2N+1 (∆2n+1). Now consider increasing ∆1 by ε > 0 (reducing λ1 and

λ2N+1 from 1). By the recursive structure, it means that ∆2N+1 (∆2n+1) increases by ε, but ∆2N

(∆2n) decreases by N+1
N ε, which is more than ε (in the example with 3 elements, ∆2 decreases by

2ε). Given that ∆2N (∆2n) is of similar size to ∆2N+1 (∆2n+1), this change could reduce the total

effi ciency loss, which is increasing and convex in the element size. In short, when b1 is significantly

smaller than b2, in 2G1S QSE the even number elements are relatively large. In this case, intro-

ducing randomization would reduce the sizes of the even number elements, and make the partition

overall more even.

In the following figure, with b2 = 2b1, we illustrate the regions of b1 in which QSMSE is optimal.

Proof of Lemma 3.
Proof. Part (i). It is enough to rule out the case that agent j has three irreducible messages for
some mi, since the argument to rule out more than three irreducible messages is similar. Suppose,

given mi, agent j has three irreducible messages: l, m, and h. Let the probability that project j

is implemented given mj , j = l,m, h, be pj . Since the messages are irreducible, these probabilities

must be different. Without loss of generality, suppose pl < pm < ph. It follows that pm ∈ (0, 1).

Denote mi = E(θi|mi). Now consider agent j’s incentive. For all types of θj > (mi − bj)/cj , agent

25There is no QSMSE for ∆1 ∈ (0.06, 0.147), where in the 1G2S QSE ∆1 = 0.147.
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j strictly prefers sending message h; for all types of θj < (mi − bj)/cj , agent j strictly prefers

sending message l; for type θj = (mi − bj)/cj , agent j is indifferent among all three messages.

Thus, message m can only be sent by the type of (mi− bj)/cj of agent j. But, then from the DM’s

point of view, after hearing message m from agent j he should implement project i with probability

1. This contradicts the presumption that pm ∈ (0, 1). Therefore, agent j can have at most two

messages for any given mi.

Part (ii). This is similar to the proof of Proposition 1. Let mj(θj ,mi,n) be agent j’s com-

munication strategy, and DM’s decision rule be Pr(d = i|mi,n,mj(θj ,mi,n)). Correspondingly,

Pr(d = i|mi,n) and E (θj |d = j,mi,n) are modified as:

Pr(d = i|mi,n) =

∫ 1

0
Pr(d = i|mi,n,mj(θj ,mi,n))dθj ,

E (θj |d = j,mi,n) =

∫
{d=j|mi,n,mj(θj ,mi,n)}

θjdθj .

Agent i’s expected payoff, given his type θi and message mi,n, can still be written as

Eθj [Ui|θi,mi,n] = Pr(d = i|mi,n)(ciθi + bi) + Pr(d = j|mi,n)E (θj |d = j,mi,n) .

The rest of the proof is exactly the same as that of Proposition 1.

Proof of Proposition 10.
Proof. By previous analysis, we only need to show Φ(K−1,mn)

Φ(K−1,mn+1) >
Φ(K,mn)

Φ(K,mn+1) .

By (18), the above inequality is equivalent to (aKn − aKn+1)(an+1 − an−1)(aKn − aKn−1) + (an+1 −
an)(an−an−1)(aKn+1−aKn−1)aK−1

n K > 0. Given that an−1 < an < an+1, this inequality is equivalent

to

−(
K−1∑
i=0

aK−i−1
n+1 ain)(

K−1∑
i=0

aK−i−1
n ain−1) + (

K−1∑
i=0

aK−i−1
n+1 ain−1)aK−1

n K > 0. (35)

We show that inequality (35) holds by induction. Let AK ≡
∑K−1

i=0 aK−i−1
n+1 ain, BK ≡∑K−1

i=0 aK−i−1
n+1 ain−1 and Ck ≡ (

∑K−1
i=0 aK−i−1

n ain−1). For K = 2, inequality (35) becomes

(an+1 − an)(an − an−1) > 0, which obviously holds. Now suppose inequality (35) holds for

K, that is, AKCK < BKa
K−1
n K. We want to show inequality (35) holds for K + 1, that is,

AK+1CK+1 < BK+1a
K
n (K + 1). This inequality can be expanded as

anan+1(AKCK −BKaKn K) + aKn (−aKn−1K + anCK) + an+1(−BKaKn +AKa
K
n−1) < 0.

Given that AKCK < BKa
K−1
n K, it is enough to show that aKn (aKn−1K − anCK) + an+1(BKa

K
n −
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AKa
K
n−1) > 0. Specifically,

aKn (aKn−1K − anCK) + an+1(BKa
K
n −AKaKn−1)

=
K−1∑
i=0

{aKn ain−1(aK−in−1 − aK−in ) + ai+1
n+1(aKn a

K−i−1
n−1 − aK−i−1

n aKn−1)}

>

K−1∑
i=0

{aKn ain−1(aK−in−1 − aK−in ) + ai+1
n (aKn a

K−i−1
n−1 − aK−i−1

n aKn−1)}

=

K−1∑
i=0

aKn [−ain−1a
K−i
n + ai+1

n aK−i−1
n−1 ] = 0.
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