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entry and exit based on firms' learning about their relative cost positions. Each
firm's marginal cost of production is its own private information, thereby facing ex ante uncertainty about its
cost position. The (inelastic) market demand can accommodate only a fraction of firms to operate, and thus
only firms with relatively lower costs are viable in the long run. Some firms in the market will exit if
excessive entry (or overshooting) occurs. We derive the unique symmetric sequential equilibrium. The
equilibrium properties are consistent with empirical observations: (i) entry occurs gradually over time with
lower cost firms entering earlier than higher cost firms, (ii) exiting firms are among the ones that entered
later (indeed in the last period). Moreover, equilibrium overshooting probability is shown to always be
positive and decreasing over time.
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1. Introduction

Empirical evidence suggests the following three features of industry
dynamics: (1) entry occurs over time or in waves; (2) mass-exit or
“shakeout” follows mass-entry; (3) during the shakeout firms that
entered just before shakeout aremore likely to exit than earlier entrants.
This pattern has been documented, for example, by Jovanovic and
MacDonald (1994) and Klepper and Simons (2000) for the US tire
industry, by Klepper and Simons (1997) for the US automobile industry,
and byHorvath et al. (2001) for theUSbeer brewing industry.Moreover,
among the42 industries that are studied byGort andKlepper (1982), the
evolution ofmost industries also exhibits the abovementioned patterns.

This paper aims to account for the aforementioned three features of
industry dynamics based on firms' learning about their cost positions,
which are uncertain ex ante. Specifically, at the beginning a newmarket
opens up, and it is known to be able to accommodate exactly N firms.
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There are N+L potential entrants, and entry involves some amount of
sunk cost. Though the sunk cost of entry is the same among all firms,
their marginal costs of production are different. Before entry each firm's
marginal cost is its own private information, but it becomes public
informationafter entry. The timehorizon is infinite. In eachperiod, upon
observing the history of entry, the remaining firms simultaneously
decidewhether to enter. If there are strictlymore thanN incumbents in a
period, all the incumbent firms simultaneously decide whether to exit.

The dynamic game goes through the following three phases in order:
an entry phase in which there are strictly less than N incumbents, a
possible exit phase in which there are strictly more than N firms in the
market, and a long run state in which there are exactly N incumbents.
We show that their is a unique symmetric equilibrium in the dynamic
game, which is characterized by a strictly increasing sequence of cost
cutoffs, with lower cost firms entering earlier than higher cost firms.
Though the evolution of the equilibrium cost cutoffs depends on the
realized history, they can be traced recursively. The reason behind the
cutoff strategy is that higher cost firms have stronger incentive to wait
than lower cost firms. Intuitively, when a firmmakes the entry decision
it faces the following trade-off. Waiting entails that the firm forgoes the
potential profit in the current period, which we call the cost of waiting.
On the other hand, by waiting one more period, the firm may avoid
wrong entry in case that the firm is not among the N lowest cost firms,
whichwe call the benefit of waiting. The cost of waiting is decreasing in
marginal cost, since the current period profit forgone is lower for a
higher costfirm.On theotherhand, thebenefit ofwaiting is increasing in
marginal cost. This is because lower cost firms are more likely to be
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1 Abbring and Campbell (2007) study the entry and exit dynamics in oligopolistic
markets with sunk costs and demand uncertainty. They assume the feature of last-in
first-out: an entrant expects to produce no longer than any incumbent. Our paper
provides a theoretical foundation for this feature in their model.

2 See also Vettas (1997). Vettas (2000b) studies the entry dynamics when the initial
demand is unknown and demand is an increasing function of past sales.

3 In essence, in their model delay in entry and mass entry before shakeout result
from learning the profitability of entry. And the implication that later entrants are
more likely to exit in shakeout is due to the fact later entrants have the mean cost in
expectation, while incumbents have lower cost than the mean since earlier entrants
that have higher costs would have exited before already.
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among the N lowest cost firms, thus the probability of wrong entry is
smaller. Combining these two effects, lower cost firms have less
incentive to wait than higher cost firms.

Under the cutoff strategy entry occurs gradually over time, with
the length of the entry phase being uncertain. The key is that firms are
uncertain regarding their relative cost positions since the marginal
costs are private information ex ante. If firms' relative cost positions
were common knowledge, then entry would always be completed in
the first period, with only the N lowest cost firms entering
immediately, and no subsequent exit would occur. In equilibrium, as
the cost cutoff increases over time, the uncertainty regarding the
relative cost positions for the remaining firms is gradually resolved.
However, the remaining firms still face the uncertainty regarding the
relative cost positions among themselves as long as they are in the
entry phase, which implies that the probability of overshooting (when
strictly more than N firms have entered) is always strictly positive.

If there is excessive entry in a period, leading to strictly more than
N incumbents, exit will follow. Naturally, more entries in a period lead
to more exits in the following period. Since lower cost firms enter
earlier than higher cost firms, exit occurs only among the firms
entering in the last period of the entry phase. This is because some of
those firms are not among the N lowest cost firms, while firms
entering earlier are among the N lowest cost firms. This explains the
empirical pattern that firms that entered later are more likely to exit.

In the entry phase, both the expected number of entry and the
probability of overshooting are shown to decrease over time (robust
for any continuous distribution of marginal cost). This is due to the
equilibrium feature that higher cost firms have stronger incentive to
wait, hence they enter more cautiously. In later periods of the entry
phase, the remaining firms have higher costs. As a result, the
probability of entry for each remaining firm decreases over time,
which reduces the expected number of entry and lowers the
probability of overshooting. This prediction is consistent with some
empirical evidence. Klepper and Graddy (1990) and Klepper and
Miller (1995) found that industries that have a longer entry phase are
less likely to experience a severe shakeout.

In terms of comparative statics, we show that, fixing a history of
entry, an increase in the discount factor, a decrease in the sunk cost, an
increase in the market size N, or a decrease in the number of extra
firms L, all lead to more aggressive entry among the remaining firms.
However, no definite comparative statics results can be shown over
the whole equilibrium path, since different parameter values in
general lead to different histories. We do provide examples showing
that the actual length of the entry phase is nonmonotonic in any
parameter values. We also study a limiting case in which the length of
each period approaches zero. In the limiting case, entry still occurs
gradually over time while the possibility of overshooting vanishes.

In an extension to the basic model we consider the setting inwhich
the market price in a period is a decreasing function of the number of
active firms in the market. We spell out howwe construct the on-path
cutoffs analogous to the ones in the basicmodel, which confirms that a
symmetric cutoff strategy equilibrium exists in this setting, with lower
cost firms entering earlier than higher cost firms. The new feature is
that the number of firms in the long run is uncertain, and it depends
on the realized marginal cost profile.

The rest of the paper is organized as follows. The next subsection
reviews the related literature. Section 2 sets up the model. The
symmetric equilibrium in the dynamic game is characterized in
Section 3, and Section 4 presents equilibrium properties. Section 5
extends the basic model and Section 6 concludes. All the technical
proofs are contained in the Appendix.

1.1. Related literature

A strand of literature (e.g., Klepper and Graddy, 1990; Jovanovic
and MacDonald, 1994; Klepper, 1996a; Klepper and Simons, 2000)
focuses on technology innovation or improvement as the driving force
behind industry dynamics. In contrast, our paper focuses on
informational learning as the driving force for industry dynamics.
The papers mentioned above typically cannot explain why later
entrants are more likely to exit during shakeout. For example, in
Klepper (1996a) and Klepper and Simons (2000) initially both
innovators and imitators enter. Later on as market price decreases
due to output expansion, only innovators enter. When shakeout
occurs, later entrants (innovators) and early imitators are more likely
to exit. But it is not clear whether later entrants are more likely to exit
than early entrants as a whole.

Jovanovic and Lach (1989) study industry dynamics with learning-
by-doing. Later entrants have lower costs of production than earlier
entrants due to the spillover from learning-by-doing. However, their
model implies that old firms are more likely to exit than new entrants
when shakeout occurs. Cabral (1993) incorporates experience
advantage in studying entry dynamics. Specifically, earlier entrants'
production costs gradually decrease as they gain more experience by
operating in themarket. In both papers, firms are homogenous ex ante
and the informational aspect is absent. In contrast, in our model firms
are heterogenous and informational learning plays a key role in
driving industry dynamics. Jovanovic (1982) builds a model of
selection to explain firm dynamics. Firms learn their “true” production
costs over time: the efficient grow and survive while the inefficient
decline and exit. While in his model firms learn their production costs,
in our model firms know their production costs but learn their relative
cost positions among all potential entrants. His model is able to
explain why young firms have higher and more variable growth rates.
However, since all the firms enter in the first period, his model does
not account for entry dynamics and later entrants are more likely to
exit during shakeout. On the other hand, our focus in on how firms
wait for the right time to enter and the possibility of shakeout.1

Rob (1991) studies entry dynamics in a setting where firms learn
the market size over time.2 In particular, the size of the market is
revealed only if the total capacity of the industry overshoots it. Entry is
shown to occur over time and exit follows when overshooting occurs.
Firms that entered in different times are equally likely to exit,
however, since firms are homogenous in his model. Horvath et al.
(2001) present a model in which firms learn the profitability of entry
over time. Specifically, the post-entry performance of incumbents
provides data fromwhich firms learn the profitability of entry, and ex
ante identical firms draw different production costs upon entry. Using
numerical simulations, they provide an example that generates the
empirical patterns (1)-(3) mentioned above for some parameter
values.3 To sum up, both papers focus on learning about a common
value as the driving force behind the entry dynamics, while we stress
learning about individual values (relative cost positions). One
empirical implication differentiates our model from the above two
papers: in our model more efficient firms enter earlier, while in their
models the average efficiency of entrants is invariant over time since
firms are ex ante identical.

Levin and Peck (2003) consider a two-firm dynamic entry game
with each firm's entry cost being heterogenous and private
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information, and both firms have the same cost of production.4 The
eventual market structure can either be monopoly, or duopoly in
which each firm's gross profit is lower than that in monopoly. In
equilibrium, entry occurs over time with lower cost firms entering
earlier. Firms' entry decisions balance the following trade-off: en-
tering earlier increases the chance of being the monopolist but also
increases the chance of simultaneously entry (coordination failure). In
contrast, in our model firms have the same fixed cost, but marginal
costs are heterogenous and private information, so entering early has
a different tradeoff: earning profits early versus the risk of wrong
entry. A more important difference is that they do not consider the
possibility of exit. Also, their model only considers the case with two
firms, while we consider a more general case with finite number of
firms.5

Among all the papers mentioned above, only Cabral (1993) and
Horvath et al. (2001) are able to simultaneously account for the
empirical patterns (1)–(3) mentioned before.6 Besides empirical
patterns (1)–(3), our model also generates a prediction that is con-
sistent with empirical evidence, for which other extant papers are not
able to explain: industries that have a longer entry phase are less likely
to experience a severe shakeout.

Bulow and Klemperer (1999) analyze a generalized war of attrition
with firms' winning prizes being private information. In equilibrium,
firms with lower winning prizes exit earlier. Our model differs from
theirs in that we consider both entry and exit. The option value of
waiting in the entry phase of our model resembles that in Chamley
and Gale (1994). In their model waiting can lead to more accurate
information about a common investment return, while in our model
waiting can potentially avoid wrong entry. To some extent, our model
is also related to Bulow and Klemperer (1994), which studies a
dynamic auction game with N items being auctioned off to N buyers
among N+L potential buyers. Generally, buyers with higher values
bid earlier. As information regarding higher value bidders gradually
revealed, the bidding behavior of the remaining agents are affected
accordingly.

2. Model setup

A newmarket just opened up, or the existingmarket size increased
with new consumers born. The demand (or demand increase) can
accommodate N≥1 firms. There are N+L potential entrants to meet
the market demand, with L≥1. Each entrant incurs a sunk cost K upon
entry, which is common for all firms. For simplicity, we assume that
each incumbent firm produces a single unit of output in each period.
This assumption can be interpreted as there being a unique efficient
size of the firm, which might arise from pure technological reasons.
Themarket size N is known at the beginning and fixed over time. Time
is discrete, which is indexed by t=1,2,…, and the horizon is infinite.
All firms share the same discount factor δa(0,1).
4 Dixit and Shapiro (1986) study a dynamic entry game with homogenous cost and
complete information. The symmetric equilibrium in their model involves mixed
strategy. See also Vettas (2000a) for the features of the symmetric equilibrium in the
model of Dixit and Shapiro. Bolton and Farrell (1990) introduce private information
about entry costs. In their model there are only two firms, and they focus on the
comparison between centralized and decentralized coordination. All these papers
share the feature that firms have the same cost of production.

5 In an extension they do consider a general model with n firms. However, with the
assumption by which the game always ends immediately after a firm enters, the entry
dynamics mainly exhibit similar properties to those in the two-firm model.

6 Another difference between Cabral’s and our model lies in the on-path equilibrium
patterns of entry-exit dynamics. Specifically, the typical process of entry, overshooting,
and shakeout may not be clearly identified for some equilibrium paths in his model.
This is because firms play mixed strategies in his model. When “overshooting” occurs,
firms that have least experience randomize between staying and exiting. If too many
firms exit, firms that have just exited randomize between entering and staying out. It is
thus possible that some firms alternate between entering and exiting over finite but
long periods.
Firmsareheterogeneous inmarginal costs ofproduction. Specifically,
each firm's marginal cost ci is an independent and random draw from a
distribution function F(c) on [cP,c

P], with cPbc
P
b1. We assume that F(c) is

common knowledge and it is continuously increasing on its support
without any mass points. A firm's ci is its own private information
before it enters. However, after a firm enters the market, its ci becomes
public information. We adopt this assumption mainly for tractability.7

We think this assumption is not unrealistic. Before entry, though all
potential entrants have an incentive to learn each other's marginal
costs so as to infer its cost position, there is very limited source to learn
such information. When a firm enters, however, it needs to choose a
specific production technology or process, and these are (at least
partially) observable to other firms and provide good information
about the entering firm's marginal cost.8 Moreover, an entering firm
needs to hire employees, who could leak some information about the
firm's cost, say, with bribery by other firms. To sum up, we believe that
entry transforms a potential entrant into a real/physical existence, and
as a result other firms have more sources to learn that firm's marginal
cost.

We assume the following (reduced form) market price that only
depends on the number of operating firms in the market: (i) if there
are less than or equal to N firms, then the market price is 1 (after
normalization). (ii) if there are more than N firms, then due to over
capacity, the market price in that period will be driven down to the
(N+1)th lowest marginal cost among the operating firms. To
justify this particular pricing behavior, one can think of a market
with N homogenous consumers, each of whom has a unit demand
with reservation value 1. If the number of operating firms is less
than N, each firm can charge a price up to the reservation value
without worrying about finding consumers. On the other hand, if
the number of operating firms is greater than N, (Bertrand)
competition drives down the market price to the marginal cost of
the marginally efficient firm (the (N+1)th lowest).

Note that a firm with marginal cost c can at most earn a gross
lifetime return (1−c) / (1−δ) upon entry, where 1−c is the highest
period payoff that the firm can earn. To ensure entry is profitable, we
assume that

1− c
1− δ

N K: ð1Þ

Thus entry is potentially profitable even for the firm with the
highest possible marginal cost. Assumption (1) ensures that there are
N+L potentially viable entrants.

In each period, entry and exit occur according to the timing
specified below. We assume that exit involves no cost. The history of
entering and exiting up to the previous period is perfectly observable
to all firms. The timing of events in a period is summarized in Fig. 1.

At the beginning of a period, each remaining entrant makes the
entry decision simultaneously. The marginal costs of the newly
entered firms then become public information. All the firms in the
market (including those having just entered) then decide simulta-
neously whether to exit. Finally, the firms staying in the market
produce goods and set prices.

Given the structure of the game, in the long run only the N or N+1
lowest cost firms will operate in the industry. To simplify matters, we
assume that each firm has to pay a very small amount ε to maintain its
machines even if it does not produce any goods in a period.
Consequently, the number of operating firms (in equilibrium) must
7 If firms' cost were private information after entry, then in the exiting phase
following overshooting incumbent firms will play a war of attrition game with
incomplete information about costs. This will significantly complicates the analysis for
the entry phase, as firms' value functions will become very complicated.

8 In addition, after entry a firm is usually required to provide some tax documents
annually to the government, which would reveal information about its cost structure.



11 If it is certain that afirmwith ci is not among theN lowest costfirmsgivenHt,VtI(ci|Ht)=0
since this firmwill optimally exit.
12 Firm i’s belief at an off-the-equilibrium-path information set must indeed be such
that the remaining entrants have followed the equilibrium strategy so far, as the
following argument shows. First, recall that off-the-equilibrium-path beliefs in a
sequential equilibrium need to be consistent in the sense that they are the limit of the
beliefs derived from a completely mixed strategy profile converging to the equilibrium
strategy profile. In our model, an off-the-equilibrium-path information set of firm i at t
describes either of the following two situations (or the intersection of both); (i) firm i

Fig. 1. Timing.
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be N in the long-run, since the (N+1)th lowest cost firm will lose
money if it stays in the market.9

The dynamic game can thus be divided into three phases
corresponding to the number of firms in the market. In the first
phase, there are strictly less than N firms in the market, thus further
entry will occur in the future. We call this phase the entry or expansion
phase. In the second phase, there are strictly more than N firms in the
market, and some firms have to exit eventually. This phase is thus
termed as the exit or shakeout phase. Finally, in the third phase exactly
N firms are operating in the market, and we call this the long-run state.
Note that, if exactly N firms in total have entered in the entry phase,
the long-run state directly follows and the exit phase does not arise.10

The key factor for the entry dynamics is the uncertainty regrading
the relative cost positions. If each firm's marginal cost were publicly
known from the very beginning, efficient entry would have been
completed in the first period: the N lowest cost firms would enter, and
there will be no exit and the long-run state is reached immediately.
However, given cost uncertainty each firm is unsure whether and
when to enter. Naturally, in this scenario entry occurs through time,
with firms learning their relative cost positions along the way.

3. Symmetric equilibrium

Each firm's strategy has two components: an entry decision for
remaining entrants and an exit decision for incumbents. In a
symmetric equilibrium each incumbent's optimal exit decision is
straightforward. When there are strictly more than N firms in the
market, the incumbent firms that are not among the N lowest cost
firms will exit immediately, otherwise those firms will incur a loss.
This implies that on the equilibrium path the market price is always 1,
since there are always N or fewer incumbent firms in the competition
stage in each period.

We thus focus on the entry phase of the dynamic game. Naturally,
one would think that a lower cost firmwill enter earlier than a higher
cost firm does, and each firm thus adopts a cutoff strategy: each
potential entrant enters in period t if and only if its cost is below the
cutoff cost, for each history at period t. The underlying reason is that if
a firm with cost c earns a positive expected return by entering at
period t, a firm with cost c′bc earns more by entering at the same
period. To see this, we only need to compare the expected life-time
gross returns since both firms have the same entry cost K. Conditional
on both firms surviving in the long-run state (i.e., both are among the
N lowest cost firms), the firm with c′ has a higher gross return, since
its per period profit after entry is higher. Moreover, the firm with c′ is
more likely to survive in the long-run state than the other firm does.
The lower cost firm therefore has a higher expected return. Given the
9 Allowing immediate exit of newly entered firms and introducing ε cost of
maintaining machines simplify the computation. The qualitative results of this paper
do not depend on these two assumptions. The avoidable fixed cost ε needs not being
small. But a negligible ε can simplify the algebra.
10 Conceivably, a firm could wait until a shakeout phase or long-run state arises, and
afterwards it would enter given that this firm is among the N lowest cost firms. We
ignore this case since it would never arise in equilibrium.
possibility of waiting, however, not every potential entrant with a
positive expected return in the current period will enter. To justify the
cutoff strategy, we need to show that a lower cost firm gains less by
waiting than a higher cost firm does, which will be shown later.

Formally, a potential entrant's (behavioral) strategy is a mapping
from its cost ci and the history of previous entry to whether or not to
enter in period t. Let ht denote the cost realizations of entrants entering
in period t (Ø if no firm enters in period t). Let Ht=(h1,…, ht−1) denote
a history of previous entry at the beginning of period t. A pure strategy
of a potential entrant is therefore a mapping from ci×Ht↦ {enter,wait}.

We focus on symmetric pure strategy sequential equilibria (SE). A
symmetric equilibrium can be defined by the following system of
value functions and a corresponding belief system. Let Vt

I (ci|Ht) de-
note the expected life-time payoff of an incumbent i with cost ci
(evaluated at the beginning of period t) given history Ht.11 Similarly,
let Vt(ci|Ht) denote the value of a new entrant i with ci that enters in
period t, and Wt(ci|Ht) the value of a potential entrant with ci that
waits in period t. The value functions are written as follows:

VI
t ci jHtð Þ = Eh− i

t
πt ci jHt × h−i

t

� �
+ δVI

t + 1 ci jHt × h−i
t

� �h i
;

Vt ci jHtð Þ = Eh− i
t

πt ci jHt × ci;h
−i
t

� �� �
+ δVI

t + 1 ci jHt × ci;h
−i
t

� �� �h i
− K;

Wt ci jHtð Þ = δEh− i
t

max Wt + 1 ci jHt × h−i
t

� �
;Vt + 1 ci jHt × h−i

t

� �n oh i
:

In the above expressions, πt(·|·) is the gross payoff in period t. In
particular,

πt ci jHt × h−i
t

� �
=

if there areN − 1or fewer firms in themarket
1− ci whose cost are less than ci; givenHt × h−i

t ;
0 otherwise:

8<
:

The equilibrium strategy is to enter if and only if Vt(ci|Ht)≥Wt(ci|
Ht). History ht

− i is a realized cost profile of entrants (excluding firm i)
at period t. The expectation is taken over ht− i, which arises according to
each remaining entrant's equilibrium strategy and to firm i's belief
about the remaining entrants' cost types.12
itself has deviated before (waiting too long), or (ii) firm i has ever observed a firm
entering too early or too late. Neither situation has to do with the type profile of the
remaining entrants other than i that have never entered until t. Recall that firm i’s
belief at t is about the other remaining entrants’ cost types. Possibly, firm i might
suspect that some of the remaining entrants have waited too long. However, the
consistency requirement rules out this possibility, since the probability attached to
waiting too long in a remaining entrant’s completely mixed strategy must vanish in the
limiting argument.
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3.1. Cutoff strategy equilibrium

We first construct a cutoff strategy equilibrium, and then show that
it is indeed a unique symmetric SE. A cutoff strategy is defined as
follows: for any history Ht, there is αt+1(Ht) such that a firm enters in
period t if and only if its cost c≤αt+1(Ht). Thus a candidate
equilibrium is characterized by a sequence of cutoffs αt(Ht−1). To
abuse notation, we write αt(Ht−1) as αt when there is no confusion.

In a symmetric cutoff strategy equilibrium, an on-the-equilibrium-
path history Ht can be summarized by two state variables, nt and αt,
where nt denotes the number of incumbents at the beginning of
period t and αt is the cutoff cost in the previous period. This is
because, given the state variables, the continuation game is exactly the
same regardless of the cost realizations of the incumbent firms, as
the incumbents have lower costs than the remaining entrants and the
number and the cost distribution of remaining entrants are always the
same. Note that α1=cP and n1=0.

Information updating in a symmetric cutoff strategy equilibrium
works as a truncated operator. In particular, denote the belief about
the cost distribution of each remaining entrant at the beginning of
period t as Ft, which has the support [αt,c

P]. If all the remaining
entrants with cost within the interval (αt,αt+1] invest in period t,
firms' posterior belief about the cost distribution of each remaining
entrant, Ft+1, becomes

Ft + 1 cð Þ = Ft cð Þ− Ft αt + 1
� �

1− Ft αt + 1
� � =

F cð Þ− F αt + 1
� �

1− F αt + 1
� � with the support αt + 1; c

� �
:

The on-path cutoffs can be derived in a recursive manner. Consider
a system of the value functions associated with a cutoff strategy
equilibrium. The on-path cutoff αt+1, given ntbN and αt, must satisfy
the following indifference condition:

Vt αt + 1 jnt ;αt

� �
= Wt αt + 1 jnt ;αt

� �
: ð2Þ

That is, given nt and αt, a firmwith cost αt+1 should be indifferent
between entering and waiting in period t. Note that, in a symmetric
equilibrium, each firm expects that the other firms follow the strategy
with cutoff αt+1 in period t. Let Ai(c) denote the event that firm iwith
cost c is among the N lowest cost firms (the winning group). By
information updating, for cNαt, we have

Pr Ai cð Þjαt ;nt

h i
=

XN−nt −1

j=0

N − nt + L − 1
j

� 	
F cð Þ−F αtð Þ
1−F αtð Þ


 �j 1−F cð Þ
1−F αtð Þ


 �N + L−nt − j−1
:

The value functions for the on-path cutoff type αt+1 are

Vt αt + 1 jnt ;αt

� �
= Pr Ai αt + 1

� � jαt ;nt

h i1− αt + 1

1− δ
− K;

Wt αt + 1 jnt ;αt

� �
= δPr Ai αt + 1

� � jαt ;nt

h i 1− αt + 1

1− δ
− K


 �
:

Iffirm iwith costαt+1 enters inperiod t, with probability Pr[Ai(αt+1)
|αt,nt] it is among the winning group and it will earn a gross lifetime
return (1−αt+1) / (1−δ). If a firm with cost αt+1 waits in period t,
then, given that all the other firms follow cutoff strategy αt+1, it will
enter if and only if it is among the winning group.13 The indifference
condition (2) is then rewritten as

Pr Ai αt + 1
� � jαt ;nt

h i
=

K
1− αt + 1 + δK

: ð3Þ
13 All the uncertainty regarding whether a firmwith cost αt+1 should enter in period
t+1 is resolved. If strictly less than N−nt firms enter in period t, then the firm in
question is definitely among the winning group, thus should enter in period t+1.
Otherwise, it is definitely not in the winning group and should not enter later.
Note that the right hand side of (3) is between (0,1), following
assumption (1). Thus Eq. (3) is well defined.

Lemma 1. Given ntbN and αt, there is a unique αt+1a(αt,c
P) satisfying

(3).

Proof. The LHS of (3), the probability of being among the winning
group Pr[Ai(αt+1)|αt,nt], is strictly decreasing in αt+1. On the other
hand, the RHS of (3) is increasing in αt+1. Therefore, αt+1 must be
unique if it exists. Forαt+1=αt, the LHS of (3) equals 1,while the RHS of
(3) is strictly less than 1 by assumption (1), therefore LHSNRHS. For the
other extreme αt+1= c̄, the LHS of (3) equals 0, while the RHS of (3) is
strictlygreater than0, therefore LHSbRHS. Bycontinuity of the two sides
of (3), there is a unique αt+1(nt, αt) a(αt,c

P) that satisfies (3). □
By Lemma 1, condition (3) recursively defines a strictly increasing

sequence of on-path cutoffs {αt}. In the first period, the state variables are
n1=0 and α1=cP. The first period cutoff, α2, can thus be uniquely
calculated from (3). Depending on the realized n2 (suppose it is strictly
less than N), the second period cutoff α3(n2, α2) again can be uniquely
determined by (3). This procedure can be used recursively to pin down
the on-path cost cutoffs {αt}. Note that αt(t≥3) depends on the realized
history.

To completelydefinea symmetric cutoff strategyequilibrium,weneed
to specify off-the-equilibrium-path cutoffs and the associated beliefs. In
the sequential equilibrium of our model, indeed, each firm at any in-
formation set has the belief that all the other remaining entrants have
followed the equilibrium strategy so far (see footnote 12). The associated
beliefs for a cutoff strategy equilibrium are therefore straightforward.

There are two kinds of deviations characterizing the off-path
information sets: entering too early or entering too late. Entering too
early refers to the case that a firmwith cost cNαt+1 enters in period t or
before, and entering too late occurs if a firmwith cost ca(αt,αt+1)waits
inperiod t. Note that entering too late by afirm is detected byotherfirms
only after the deviating firm enters in a later period. Off-path strategies
related to entering too late are easy to define. For the very firm that has
been entering too late, its belief is that no remaining entrants have a
lower cost, and thus it should enter immediately. For a remainingentrant
that has ever observed entering too late by another firm, the situation is
just the same as in the on-path history given nt and αt, and thus the
cutoff strategy is defined by the indifference condition (3) accordingly.

On the other hand, entering too early is immediately detected. This
implies that some of the remaining entrantsmight have lower costs than
the deviator while others have higher costs, and thus each remaining
entrant's cutoff depends on its cost, inprinciple. For instance, consider the
case that all the other remaining entrants adopt a cutoffαt in period t−1,
but that afirmwith cost c′Nαtentered inperiod t−1. Suppose in addition
that the total number of firms in the market is nt′≤N. Let Ht′ denote
this particular history. Importantly, among the remaining firms,
firms with different costs view the intensity of competing for
remaining slots in different ways. Specifically, for firms with cost ca
(αt,c′) there are N−nt′+1 slots available in the market, since these
firmshave lower costs than thedeviator. On theotherhand, forfirmswith
cost cNc′ there are onlyN−nt′+1 slots available. For ca(αt, c′), therefore,
theassociated indifference conditionneeds tobemodified from(3); there
areN−nt′+1 available slots sought after byN+L−nt′ firms.14 The cutoff
derived from this associated indifference condition for ca(αt,c′), denoted
byα′t+1, is higher than αt+1(n′t, αt). This is because more slots available
implies more aggressive entry for remaining entrants. Now the actual
cutoff αt+1(H′t) is defined as follows:

αt + 1 H′tð Þ =
α′t + 1 if α′t + 1b c′

c′ if αt + 1 n ′t ;αtð Þb c′ V α ′t + 1:
αt + 1 n′t ;αtð Þ if αt + 1 n ′t ;αtð Þ≥ c′

8<
:

14 Recall that condition (3) is associated with N− nt available slots sought after by
N+ L− nt firms.



15 Among the 16 products (industries) studied by Klepper and Miller (1995), 9
experienced shakeouts and 7 did not have conspicuous shakeouts.
16 This feature is absent in Rob (1991), since in his model firms are homogenous, thus
the identity of exiting firms can not be determined.
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In the top case, the associated indifference condition holds forα′t+1

a (αt,c′). In the bottom case, condition (3) holds for αt+1(n′t, αt)≥c′. In
the middle case, neither indifference condition holds, and the actual
cutoff is c′.

It is straightforward to specify the cutoffs for other off-path
histories associated with entering too early. Given the previous
period's cutoff αt, type distribution Ft−1, and the observed deviation
(s), we can define the cutoff αt+1, accordingly.

Proposition 1. There is a unique symmetric equilibrium in cutoff
strategies, with the evolution of on-the-equilibrium cutoffs {αt} governed
by (3).

Proof. See Appendix A. □
The intuition behind the cutoff strategy equilibrium is that higher

cost firms have stronger incentives to wait. Intuitively, waiting one
more period has both a cost and a benefit. The cost is that a firm
forgoes its profit in period t if it is indeed among the N lowest cost
firms (correct entry). The benefit is that it avoids paying the entry cost
K if it is not among the N lowest cost firms (wrong entry). The cost of
waiting is decreasing in c for two reasons. First, the profit forgone in
period t is higher for a lower cost firm. The second reason is that the
probability that a firm is among the N lowest cost firms is higher for a
lower cost firm. On the other hand, the benefit of waiting is increasing
in c, since a higher cost firm is less likely among the N lowest cost
firms and thus wrong entry is more likely. Therefore, firms with lower
costs have less incentives to wait. The equilibrium cutoff αt+1 defined
in indifference condition (3) balances the cost and benefit of waiting.

Indeed, the equilibrium identified in Proposition 1 is the unique
symmetric equilibrium, which is shown in the following proposition.

Proposition 2. There is no symmetric equilibrium with non-cutoff
strategies.

Proof. See Appendix B. □
The intuition behind Proposition 2 is similar to that behind

Proposition 1. If there were a non-cutoff strategy equilibrium, in some
history a higher cost type enters whereas a lower cost type waits. Since
the cost andbenefit ofwaiting aremonotonic in type asdiscussed above,
such an entry decision cannot be supported in any sequential
equilibrium. Therefore, we can conclude that a unique symmetric
equilibrium exists and consists of cutoff strategies.

The on-path equilibrium behavior in the entry phase exhibits
several features. First, unlike the complete information setting in
which efficient entry is completed in the first period, entry occurs over
time and it may take a long time to reach the long-run state. Second,
lower cost firms enter (weakly) earlier than higher cost firms do.
Higher cost firms enter when the uncertainty regarding the number of
lower cost firms gradually resolves over time.

3.2. A numerical example

Consider the case where F(c) is uniform on [0.3, 0.8] with density
2. N=3, L=3, δ=0.9, and K=1. For each nt=0, 1, 2 Eq. (3) can be
explicitly written as

X2−nt

j=0

5− nt
j

� 	
2αt + 1−2αt

1−2 αt− :3ð Þ

 �j

1− 2αt + 1−2αt

1−2 at− :3ð Þ

 �5−nt − j

=
1

1− αt + 1 + :9
:

Note that the above equation is highly nonlinear, and thus it is quite
hard to generate the closed-form solution for αt+1(nt,αt). Therefore, we
use numerical methods to compute αt+1(nt,αt). First, sinceα1=0.3 and
n1=0,we haveα2=0.49189. Cutoffα3 depends onn2, whichwe denote
asα3(n2).We numerically obtain the period 2 cutoffs:α3(0)=.59897,α3

(1)=.56676, α3(2)=.52305. The cutoff in period 3 α4 implicitly
depends on n2 and n3, which we denote as α4(n2,n3). Our calculation
shows that α4(0, 0)=.66341, α4(0, 1)=.64227, α4(0, 2)=.61509, α4(1,
1)=.61909, α4(1, 2)=.58700, and α4(2, 2)=.54945. The equilibrium
cutoffs in later periods can be computed accordingly.

4. Equilibrium properties

4.1. The identity of exiting firms

Since in equilibrium lower cost firms enter earlier than higher cost
firms, once nt reaches or overshoots N in period t, the long-run state is
reached. All the remaining entrants have higher costs than the
incumbents, thus entry and exit will not occur after period t. Note that
the exit phase is reached if and only if nt overshoots N in some period.
This might not occur if nt exactly reaches N in some period.15

However, in the entry phase the probability of overshooting is always
positive, which is shown in the following lemma.

Lemma 2. Given any on-the-equilibrium-path history nt and αt, with
ntbN, the equilibrium probability of capacity overshooting is always
strictly positive.

Proof. Suppose in the entry phase the overshooting probability is 0
given history nt and αt. Since the distribution of the number of new
entries in period t is binomial, we must have αt+1=αt. This means
that the LHS of (3) is 1. However, by Assumption (1) Kb1−αt+1+δK,
hence the RHS of (3) is strictly less than 1. A contradiction. Therefore,
the overshooting probability must be strictly positive. □

Actually, condition (3) means that in equilibrium the marginal
type αt+1 is balancing the expected loss from overshooting, in which
case it loses K, and the current period expected profits by entering.
Since waiting entails forgoing the current period's expected profit, to
make the marginal type indifferent the overshooting probability must
be strictly positive.

Lemma 2 shows that overshooting occurs with positive probability
in any period in the entry phase, which implies that the exit phase
arises with positive probability on the equilibrium path. Recall that in
equilibrium it is always the case that lower cost firms enter earlier
while higher cost firms enter later. Thus in the exit phase, it is always
the firms that entered later (actually entered in the last period of the
entry phase) will possibly exit, and the firms that entered earlier do
not exit. This result is summarized in the following proposition.

Proposition 3. Exit occurs with a positive probability on the equilibrium
path. When exit occurs, only firms that entered in the last period of the
entry phase will possibly exit. Firms that entered earlier than the last
period of the entry phase will not exit.

Proposition 3 implies that later entering firms are more likely to
exit than firms that entered earlier. This is due to the equilibrium
feature that firms that entered earlier have lower costs thus are more
efficient.16 This implication is consistent with some empirical
evidence. According to Horvath et al. (2001), the US beer brewing
industry experienced shakeout during 1880–1890. The sharp decline
in the total number of firms during this period is almost entirely
accounted for by the exit of firms that entered between 1874 and 1878.
A similar pattern is found in the automobile industry. Based on the
study of Horvath et al. (2001), the automobile industry experienced a
massive wave of entry in 1906–1907 and a shakeout period in 1909–
1912. Roughly 40% of the exits during the shakeout period are from
firms that entered between 1906 and 1907, the years just prior to
shakeout. Though a weaker pattern is found for the tire industry
(Klepper and Simons, 2000; Horvath et al., 2001), a large portion of



17 Note that this prediction is consistent with the empirical fact that shakeout usually
follows massive entry. Proposition 4 predicts that the expected number of entry
decreases over time. But the realized number of entry might not decrease over time.
Shakeout is triggered if the realized number of entry in one period is surprisingly high.
18 In Rob's model firms are homogenous, thus the intertemporal properties of entry
rates depends on the distribution function of the demand size.
19 Note that a mere decrease in expected entry is not enough to generate a decrease
in overshooting probability, since there are fewer slots available thus fewer entries are
needed to generate overshooting in later periods.
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the exiting firms during the shakeout period (1921–1930) come from
the cohorts that entered in 1919–1921.

4.2. Intertemporal properties

Define pt as the probability that each remaining entrant enters in
period t, and E[yt] as the expected number of new entries in period t,
conditional on period t being in the entry phase. We are interested in
how pt and E[yt] change over time along each equilibrium path.
Specifically,

pt =
F αt + 1
� �

− F αtð Þ
1− F αtð Þ ; ð4Þ

E yt½ � = N + L − ntð Þpt : ð5Þ

To simplify notation, we define

B j;N;pð Þ = N
j

� 	
pj 1−pð ÞN− j

:

Using Eq. (4) and B(j;N,p), indifference condition (3) can be re-
written as:

XN−nt −1

j=0

B j;N − nt + L − 1;ptð Þ = K
1− αt + 1 + δK

ð6Þ

To show the intertemporal properties of pt and E[yt], we first prove
a useful lemma.

Lemma 3. For any pa(0,1), and integers N1, N2 and L that satisfy
N1bN2 and L≥1,

XN1

j=0

B j;N1 + L;pð Þb
XN2

j=0

B j;N2 + L; pð Þ: ð7Þ

Proof. See Appendix C. □
In statistical terminology, Lemma 3 says that, given that each

experiment succeeds with the same independent probability p,
the probability of less than N successes out of N+ L trials is
increasing in N. Intuitively, adding one more slot and one more
trial will reduce the probability of shooting the upper bound of
successes.

Proposition 4. Both the probability of entry, pt, and the expected
number of entries, E[yt], are strictly decreasing in t.

Proof. First note that nt is (weakly) increasing in t. Now by (5), E[yt]
is strictly decreasing in t if pt is strictly decreasing in t. Thus it is
sufficient to show pt is strictly decreasing in t.

Let t′Nt. Hence nt′≥nt, and αt′+1Nαt+1. Suppose to the contrary, pt
′≥pt. Then

XN−nt −1

j=0

B j;N − nt + L − 1;ptð Þ≥
XN−nt −1

j=0

B j;N − nt + L − 1;pt′ð Þ

≥
XN−nt′ −1

j=0

B j;N − nt′ + L − 1; pt′ð Þ: ð8Þ

The first inequality is implied by pt′ ≥pt (the probability that less
than N−nt−1 firms enter decreases if each remaining firm enters
with a higher probability), while the second inequality follows Lemma
3 and the fact that nt≤nt′. On the other hand, since αt+1bαt′+1, the
RHS of Eq. (6) satisfies

K
1− αt + 1 + δK

b
K

1− αt′ + 1 + δK
:

Now by Eq. (6), the LHS must exhibits

XN−nt −1

j=0

B j;N − nt + L − 1;ptð Þb
XN−nt′ −1

j=0

B j;N − nt′ + L − 1;pt′ð Þ;

which contradicts inequality (8). Therefore, it must be the case that
pt′bpt. □

Proposition 4 indicates that expected entry decreases monotoni-
cally over time. Two effects are responsible for this intertemporal
pattern. First, since nt is increasing in t, less viable slots are available in
later periods. This makes remaining entrants enter more cautiously.
The second effect comes from the fact that higher cost firms have
stronger incentives to wait. As time goes by, the remaining entrants
are revealed to having higher costs, and their stronger incentives to
wait naturally lead to more cautious entry.17

Note that the above intertemporal pattern does not depend on the
distribution function of costs, F(c). In Rob (1991), in order to derive
intertemporal properties of entry, a certain property on the distribution
function of the demand size needs to be imposed.18 In our model, the
monotonic decreasing pattern of expected entry arises naturally: higher
cost firms entermore cautiously. Onemaywonder why in ourmodel the
monotonic pattern of expected entry holds for any F(c) that is strictly
increasing and continuous. This is because in setting the equilibrium
cutoff αt+1, the distribution function F(c) has been taken into account. If
the density fromαt toαt+1 is high (i.e.,manyof remaining entrants′ costs
are expected to lie in this range), then αt+1 will be low, and vice versa.
Thus pt is more or less the same regardless of the distribution function.

Let us get back to the uniform distribution example presented in
the last section. We can numerically compute the conditional
probability of entry given history. Denote pt(n2, n3,…, nt) as the
equilibrium probability of entry in period t conditional on history
(n2, n3, …,nt). Table 1 shows the evolution of pt(·) up to period 3. We
can clearly see that pt(·) is decreasing in t.

We are interested in how the probability of capacity overshooting
changes over time. Denote this probability as Pto, conditional on period
t being in the entry phase, i.e.,

Po
t = 1−

XN−nt

j=0

B j;N − nt + L;ptð Þ:

Proposition 5. The probability of capacity overshooting, Pt
o, is

decreasing in time period t.

Proof. See Appendix D. □
Proposition 5 implies that excessive entry or overshooting is more

likely to happen in the very beginning. As time goes by, if themarket is
still in the entry phase, then overshooting becomes less likely. This
intertemporal pattern arises because higher cost firms have stronger
incentive to wait; they are less willing to take the risk of overshooting.
Since the remaining entrants’ costs are higher as time goes by, the
equilibrium probability of overshooting decreases over time. This
result is stronger than Proposition 4 in the following sense: the ex-
pected entry not only decreases over time, but it decreases fast enough
such that the overshooting probability also decreases.19 Another
implication of Proposition 5 is that there is a trade-off between delay
and overshooting: a shorter entry phase implies less delay to reach



Table 2
The evolution of overshooting probabilities.

t=1 t=2 t=3

P1
o=.15754 P2

o(0)=.11477 P3
o(0,0)=.08799

P3
o(0,1)=.07042

P3
o(0,2)=.03458

P2
o(1)=.09627 P3

o(1,1)=.07834
P3
o(1,2)=.04012

P2
o(2)=.05341 P3

o(2,2)=.04784

Table 3
The length of the entry phase and the severity of net exit during shakeouts.

Product name Length of the entry
phase (Years)

Net decrease/peak
in the shakeout

Crystals, piezo 31 .38
DDT 9 .87
Electric blankets 51 .65
Electric shavers 8 .56
Engines, jet-propelled 21 .31
Fluorescent 2 .41
Freezers, home and farm 25 .62
Machinery, adding 38 .51
Motors, outboard 9 .38
Penicillin 7 .80
Photocopy machines 25 .53
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the long run state, but increases the probability and severity of
overshooting.

Denote Pt
o(n2, n3,…, nt) as the equilibrium probability of over-

shooting conditional on history (n2, n3,…,nt). Using the same specific
example as before, Table 2 shows the evolution of Pt

o(·) up to period 3.
We can clearly see that Pt

o(·) is decreasing in t.
Though no existing empirical studies directly tested this empirical

implication, some evidence is consistent with it. Specifically, it seems
that there is an inverse relationship between the severity of net exit
during shakeouts and the length of the actual entry phase. Table 3 is
constructed from Klepper and Graddy (1990) (combining their Table 3
and the corresponding industries in their Tables 1 and 2).

Based on the data in Table 3, we run a simple regression with the
severity of shakeout as the dependent variable and the length of entry
phase as the independent variable. It turns out that the severity of
shakeout and the length of entry phase is negatively correlated: the
coefficient is −0.056 and different from zero at a 95% significance
level. The absolute value of the t-statistics is bigger than 2, which
verifies that the relationship is statistically significant (the R2 of the
regression is 0.1844, indicating that there are other significant
unexplained variations). To sum up, the general pattern is that
products with a shorter entry phase experienced severe net exit
during the shakeout, while those with a longer entry phase have mild
net exit during the shakeout. Essentially, a longer entry phase means
that the ascent to the peak number of firms is more gradual, which
reduces the chance and severity of overshooting. Klepper and Miller
(1995) found empirical support for this pattern. For 16major products,
they calculated the fraction of total pre-peak entries in the seven years
immediately preceding the peak. For the 7 products that did not
experience a severe shakeout the average of this statistic is .39, in
contrast to .59 for the 9 products that experienced severe shakeouts.

4.3. Comparative statics

Now we study how changes in exogenous parameters affect the
speed of entry. Among others, it would be highly desirable to see how
the expected time needed to reach the long run state changes when
parameters vary. However, such results are hard to obtain, as we will
discuss later. Instead, we focus on the comparative static results that
can be derived holding history constant, which are shown in the
following proposition.

Proposition 6. (i) Holding other parameters constant and fixing the
history nt and αt, the probability of entry in the current period, pt, is
increasing in δ and decreasing in K. (ii) Fixing αt and other parameter
values, an increase in nt reduces the probability of entry pt. (iii) Holding
other parameters constant and fixing the history nt and αt, the probability
of entry pt is increasing in N and decreasing in L.

Proof. We start with changes in δ. Suppose δ′Nδ. To show the
probability of entry is higher under δ′ than under δ, it is sufficient to
show αt+1(δ′) Nαt+1(δ). Suppose the opposite is true, that is, αt+1

(δ′)≤αt+1(δ). Denote the RHS of Eq. (6) under δ as RHS (δ). By δ′Nδ
and αt+1(δ′)≤αt+1(δ), RHS(δ)NRHS(δ′). On the other hand, αt+1

(δ′)≤αt+1(δ) implies that pt(δ′)≤pt(δ). Thus the LHS of Eq. (6) is
greater under δ′, that is, LHS(δ′)≥LHS(δ). A contradiction. Therefore, it
Table 1
The evolution of entry probabilities.

t=1 t=2 t=3

p1=.38378 p2(0)=.34754 p3(0,0)=.32055
p3(0,1)=.21539
p3(0,2)=.08018

p2(1)=.24300 p3(1,1)=.22436
p3(1,2)=.08678

p2(2)=.10113 p3(2,2)=.09532
must be the case that αt+1(δ′)Nαt+1(δ). This implies that pt(δ′)Npt
(δ). By a similar argument, we can show that if K′NK, then pt(K′)≤pt(K).
This proves part (i).

Next, consider n′tbnt. Suppose to the contrary that, p′t≤pt. This
implies that α′t+1≤αt+1, since αt is fixed. Now the RHS of Eq. (6) is
greater for nt than the RHS for n′t. Consider the LHS of Eq. (6)

XN−nt −1

j=0

B j;N − nt + L − 1;ptð ÞV
XN−nt −1

j=0

B j;N − nt + L − 1; pt′ð Þ

b
XN−n′t −1

j=0

B j;N − n′t + L − 1;pt′
� �

;

where the first inequality follows from p′t≤pt and the second
inequality follows Lemma 3 and n′tbnt. Thus the LHS of Eq. (6) is
smaller for nt than the LHS for n′t. A contradiction. Therefore, we must
have α′t+1Nαt+1 and p′tNpt. This proves part (ii).

Part (iii) is implied by part (ii). Fixing other parameter values and
αt, an increase in N or a decrease in L is equivalent to a decrease in nt,
which increases the probability of pt. □

Intuitively, an increase in K leads to a higher benefit of waiting, since
bywaiting anentrant nowavoids a bigger loss in the case ofwrongentry.
Stronger incentives to wait naturally lead to a smaller probability of
entry. To see the effect of an increase in δ, we rewrite Eq. (6) as follows

1− αt + 1
� � XN−nt −1

j=0

B j;N − nt + L − 1; ptð Þ = K 1− δ
XN−nt −1

j=0

B j;N − nt + L − 1;ptð Þ
2
4

3
5:

ð9Þ
The LHS of Eq. (9) is the expected flow profit in period t from

entering, which represents the cost of waiting. The RHS of Eq. (9) is
Polariscopes 50 .38
Radio transmitters 40 .72
Records, phonograph 36 .61
Saccharin 12 .72
Shampoo 51 .04
Streptomycin 8 .85
Tanks, cryogenic 8 .35
Tires, automobile 26 .77
Tubes, cathode ray 37 .28
Windshield wipers 11 .59
Zippers 55 .18

Net decrease/peak is the ratio of the net number of exiting firms during the shakeout to
the total number of firms right before the shakeout.
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the saving in entry cost by waiting, which measures the benefit of
waiting. As δ increases, the cost of waiting remains the samewhile the
benefit of waiting decreases. Thus firms enter more aggressively.20 An
increase in N or a decrease in nt means that there are more slots
available, thus firms enter more aggressively. On the other hand, an
increase in L implies that the competition for slots becomes more
fierce, which naturally reduces the probability of entry for each firm.

Note that the comparative static results in Proposition 6 are
derived by fixing the previous history. In the dynamic game, changes
in parameter values would naturally lead to different histories. This
means that the comparative static results in Proposition 6 only hold in
the first period. Given different histories in later periods, it is very hard
to derive the comparative static results over the whole equilibrium
path, for example how an increase in K affects the expected time of
reaching the long run state. What we can show is that, for some
realizations of firms’ cost profiles, the actual time of reaching the long
run state is not monotonic in any parameter values.

For concreteness, consider two parameter values K′NKwith K′ being
veryclose toK. According to Proposition 6, in thefirst periodwehave the
cutoffsα′2 slightly less thanα2. Nowsuppose there is afirmwhose cost is
in between (α′2, α2). Then in the second period n2=n′2+1. If n2 were
equal to n′2, by continuity and the fact thatK andK′ are very close to each
other, α′3 should be slightly less than α3. However, given that n2=n′2
+1, by part (ii) of Proposition 6, α′3 will be (relatively significantly)
higher thanα3. For some realization of firms’ cost profiles, this results in
a shorter time to reach the long run state for K′ than for K. Since an
increase inKbasically discourages the remainingentrants fromentering,
fewer firms typically enter in the early periods for K′NK. This implies
that more slots are available in the later period, leading to more
aggressive entry by the remaining entrants. The actual time of reaching
the long run state can thus be shorter for K′ than for K.

The following example shows how the nonmonotonicity works.
Consider the previous numerical example with F(c) being uniform on
[0.3, 0.8], δ=0.9, N=3 and L=3. Suppose K′=1.001 instead of K=1.
Numerically, α′2=0.49183bα2. Cutoff α′3 depends on n′2. We numeri-
cally obtain

α′3 0;α′2
� �

= 0:59890;α′3 1;α′2
� �

= 0:56668;α′3 2;α′2
� �

= 0:52297:

Recall that for K=1, α2=0.49189 and

α3 0;α2ð Þ = 0:59897;α3 1;α2ð Þ = 0:56676;α3 2;α2ð Þ = 0:52305:

Now consider the following profile of realized costs. The lowest
cost firm has ca (0.49183, 0.49189), and the second and the third
lowest cost firms’ costs are within the interval (0.56676, 0.59890)
(within (α3(1, α2), α′3(0, α′2))). The lowest cost firm will enter in
period 1 under K but not under K′. Thus n2=1 but n′2=0. As a result,
under K′ the long run state is reached in the second period since there
are three firms whose costs are below α′3(0, α′2). However, the long
run state is not reached in the second period under K, since the next
two firms’ costs are above α3(1, α2)=0.56676.

The above discussion also implies that the actual time of reaching
the long run state is nonmonotonic in realized cost profile. It is not the
case that, say, reducing some firms' costs while keeping the others'
unchanged necessarily shortens the actual time of reaching the long
run state. It is true that (weakly) more firms enter in the first period
for the profile of lower cost realizations. However, more entry in the
first period will slow down the entry later, which might lead to a
longer entry phase for the profile of lower cost realizations.
20 One may think that an increase in δ would encourage waiting, as in Chamley and
Gale (1994). However, in our model an incumbent firm gets flow payoff in every
period, while in Chamley and Gale firms only get investment return once (in the end).
In our model, waiting cost is measured by the current period payoff 1 — c, which is
independent of the discount factor.
To see this, consider the same numerical example above with F(c)
being uniform on [0.3, 0.8], δ=0.9, N=3, L=3, and again K=1. In
the first profile of realized costs, suppose all six firms’ costs lie in the
interval (α3(1, α2), α3(0, α2))=(0.56676, 0.59897). In this case, at
period 1 all firms wait, and at period 2 all firms enter (actually
overshooting). Now consider the second profile of costs, with all the
costs of other five firms being the same as in the original profile, and
one firm’s cost is smaller than α2=0.49189. Now one firm enters at
period 1. The new threshold α3(1)=0.56676, which is below any cost
of remaining firms. Thus no firm enters in period 2. Therefore, the
entry phase will continue at least until period 3.21

5. A limiting case

Here we consider how the length of each period affects the
equilibrium entry behavior. Let the length of each period be ΔN0, and
δ=e− rΔ, with r being the interest rate. Holding r constant, as Δ
approaches zero, δ converges to 1. Let us reinterpret 1−c to be an
instantaneous profit of a firmwith cost c. For a fixedΔ, a firmwith cost
c thus earns per period profits of

1− cð Þ
Z Δ

0
e− rtdt = 1− cð Þ1− e− rΔ

r
= 1− cð Þ 1− δð Þ= r:

And hence the lifetime profit for a successful entrant after entry is
(1−c)/ r. The indifference condition (6), given nt and αt, is then
rewritten as

XN−nt −1

j=0

B j;N − nt + L − 1; ptð Þ = K
1− e− rΔ� �

1− αt + 1
� �

= r + e− rΔK
:ð10Þ

Holding r constant, as Δ→0, the RHS of Eq. (10) converges to 1,
and thus on the LHS of Eq. (10) pt must converge to zero. This implies
that αt+1 converges to αt as Δ→0.

Intuitively, as the period length Δ goes to 0, the cost of waiting one
more period (the expected profit forgone in one period) goes to zero.
As a result, the benefit of waiting also goes to zero, implying that the
information revealed in one period regarding remaining entrants’ cost
positions converges to zero as well (αt+1→αt).22

That the probability of entry pt converges to zero implies that the
probability of overshooting converges to zero as well. Thus the
possibility of overshooting, and hence the exit phase, disappears as
the period length goes to zero. Actually, as Δ goes to 0, the model
becomes a continuous time setup, and the remaining entrants choose
the optimal time (a continuous variable) to enter given the number of
incumbents. The period length Δ is usually interpreted as the time lag
to observe the actions of the other firms. The limiting case suggests
that overshooting and the exit phase are possible only if there is a
positive time lag to observe other firms' actions.

In the limit, though the possibility of overshooting disappears, the
inefficiency resulting from delay in entry remains. These results are in
contrast to those in Levin and Peck (2003). In their limiting case, as the
period length Δ goes to zero, the probability of entry in each period
still converges to a positive limit, and delay in entry disappears. The
differences come from the fact that, in their model, each firm
(regardless of entry costs) has the incentive to preempt the other
firm by entering earlier, since firms are equally efficient ex post (have
the same marginal cost). If the probability of entry becomes zero in
one period, then one firm can profitably deviate by entering in that
period. In our model, firms are different in efficiency both ex ante and
ex post, as they have different marginal costs. A (high cost) firm that
21 Related to this, in the setting of war of attrition, Bulow and Klemperer (1999) show
that the equilibrium time of ending the game is not monotonic in players' valuations.
22 In a previous exercise of comparative statics, we show that pt increases as δ
increases. There we hold the period length constant. In the current comparative statics,
we fix the underlying time preference r and vary the period length Δ.



23 If a firm can recover its marginal cost, then it will stay in the market, since the
entry cost K is sunk. This is the right condition since high cost firms will exit
immediately if the market price is below their marginal costs. Consider the case where
two firms entered in the current period and the market price P(nt+2) is below both
firms' marginal costs. Essentially these two firms will play a war of attrition game. To
simplify matters, we assume that the firm with the higher cost will exit immediately,
for the reason that it will lose more money if it plays a war of attraction game with the
other firm.
24 Note that it is impossible for all the firms that entered in period t to exit. To see
this, notice that occurs only if P(nt+1)−c1b0. But if this is the case, this c1 firmwould
have not entered in the first place, as it has a negative expected payoff in the best
scenario (it has the lowest cost among the remaining firms).
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enters in an early period will be driven out of the market later if there
are enough firms with lower costs.

6. An extension

In the basic model we have assumed that the number of firms that
can be accommodated by the market is fixed. Moreover, the market
price as a function of the number of active firms in the market takes a
special form: it is invariant to the number of firms in the market up to
some point, and then drops to themarginal cost of themarginal firm if
additional firms enter. In this section, we relax this assumption
regarding the discontinuity of the market price.

Specifically, we assume that there are NN1 potential entrants in
total. Let n be the number of active firms in a period. Then the market
price in that period is denoted as P(n), which is a strictly decreasing
function of n. That is, the market price decreases as more firms are
operating in the market. Except for assumption (1), all the other
assumptions are maintained as in the basic model.

Each firm’smarginal cost c is again distributed independently on [cP,c
P]

with distribution function F(c).Wemake the following two assumptions:

P 1ð Þ− c
1− δ

N K; ð11Þ

P Nð Þu~ca c
P
; c

� �
: ð12Þ

Assumption (11) implies that it is potentially profitable for a firm
with cost very close to c ̄ to enter. Assumption (12) means that exit is
possible: if there are too many firms in the market, then firms with
costs above c̃might exit since themarket price might not even recover
their marginal costs.

Unlike the basic model inwhich the number of firms in the long run
is always fixed, in this setting the number of firms in the long run is
uncertain. Another difference is that in the basicmodelfirms can always
make correct entry decisions if they know their ranking in terms of the
marginal costs. In this setting the information about the ranking is not
sufficient to ensure correct entry. This is because, without knowing the
costs offirmswhose costs are above thefirm in question, thatfirm is still
uncertain how many firms will enter and remain in the long run.

Despite those differences, the symmetric equilibrium in this setting
is still characterized bya sequence of strictly increasing cutoffs. Though
a formal proof is not attempted, as it is similar to that in the basic
model, we spell out the underlying intuition. By deciding to wait for
one more period, a firm faces the following trade-off. It forgoes the
current period payoff, but at the same time avoids wrong entry in case
that there aremany firms whose costs are lower than its own cost. The
forgone current period payoff is decreasing in c, while the benefit of
avoiding wrong entry is increasing in c since a lower cost firm has a
lower probability of wrong entry. As a result, lower cost firms have less
incentive to wait and thus enter earlier than higher cost firms.

We again denote {αt} as the cost cutoffs, with firms whose costs lie
between (αt, αt+1] entering in period t. Let ht be the cost realizations of
entrants entering in period t, and Ht be the history at the beginning of
period t. Denotemt as the number of new entry in period t, and nt as the
number of incumbents at the beginning of period t. Thus, nt+1=nt+mt,
and n1=0.

Unlike the basic model inwhich it is straightforward to showwhen
the entry phase ends, in the extended model it is a little more
complicated. In the followingwe specify when the entry phase ends. It
can end under two scenarios. In the first scenario, no exit occurs in the
current period t. However, in the next period the expected payoff of
entry even for the lowest cost firm (among the remaining entrants) is
negative. The condition can be written as

P nt + mt + 1ð Þ− αt + 1

1− δ
bK:
The above condition means that even in the best scenario (the
number of firms in the long run state is nt+mt+1), the lowest cost
firm among the remaining entrants has no incentive to enter.

In the second scenario, exit occurs in the current period t. Let cj be the
cost of the jth lowest cost firm that entered in period t. Of course, j≤mt by
the definition ofmt. Exit occurs for a firmwith cj if P(nt+j)−cjb0. This is
because thisfirmcannot recover itsmarginal cost.23 Byassumption (12), a
necessary condition for this to happen is that cjN c̃. Note that if a firmwith
cj exits, then all the firms with cNcj that have already entered exit as well.
This is because P(nt+j) is decreasing in j, and cj is increasing in j. To be
precise, no exit occurs in period t if P(nt+mt)−cmt

≥0 (even the highest
cost firm can recover its marginal cost). And exit occurs if P(nt+mt)−
cmt

b0. In this case, the total number of exits is mt−j⁎, where j⁎ is the
largest number that satisfies P(nt+j)−cj≥0.24 If exit occurs in period t,
the long run state is reached. This is because no further entrywill occur as
the potential entrants’ costs are higher than the exiting firm(s).

Nowwe characterize the evolution of the equilibrium cutoffs {αt} in
a symmetric equilibrium. Again, on-path histories at the beginning of
period t can be summarized by nt and αt. Let kt− i denote the number of
firms other than firm i that enter in period t, given that firms other
than i follow cutoff strategy αt+1. Denote the probability of kt− i as
Pr(kt− i). Given that other firms adopt the symmetric cutoff strategy,

Pr k−i
t

� �
=

N − nt − 1
k−i
t

� 	
F αt + 1
� �

−F αtð Þ
1−F αtð Þ


 �k− i
t 1−F αt + 1

� �
1−F αtð Þ


 �N−nt −1−k− i
t

:

The value functions of c=αt+1 can be expressed as:

Vt αt + 1 jnt ;αt

� �
=

XN−1−nt

k− i
t =0

Pr k−i
t

� �
max P nt + 1 + k−i

t

� �
− αt + 1;0

n o
− K

+ δ
XN−1−nt

k− i
t =0

Pr k−i
t

� �
VI
t + 1 αt + 1 jnt + 1 + k−i

t ;αt + 1

� �
;

ð13Þ

Wt αt + 1 jnt ;αt

� �
= δ

XN−1−nt

k− i
t =0

Pr k−i
t

� �
max 0;Vt + 1 αt + 1 jnt + k−i

t ;αt + 1

� �n o
;

ð14Þ

where on the equilibrium path for cNαt the value of Vt
I(c|nt,αt) is

VI
t c jnt ;αtð Þ = E max P nt + k− i

t

� �
− c;0

n o
jnt ;αt

h i
+ δEVI

t + 1 c jnt + k− i
t ;αt + 1

� �
:

In the above equation, k− i
t might be different from kt

− i because of
the possibility of exit.

Given history αt and nt, the marginal type or the cutoff αt+1 is
determined by the following indifference condition: V(αt+1|nt,αt)−
W(αt+1|nt, αt)=0. More explicitly, following Eqs. (13) and (14), the
condition can be expressed as:

XN−1−nt

k− i
t =0

Pr k−i
t

� �
max P nt + 1 + k−i

t

� �
− αt + 1;0

n o
+ δVI

t + 1 αt + 1 jnt + 1 + k−i
t ;αt + 1

� �h i
− K

−δ
XN−1−nt

k− i
t =0

Pr k−i
t

� �
max 0;Vt + 1 αt + 1 jnt + k−i

t ;αt + 1

� �n o
= 0:

ð15Þ



25 For instance, suppose the unknown demand size is either high or low, as examined
in Horvath et al. (2001). Firms must be cautious to enter in earlier periods for fear of
low demand, and thus the probability of entry must be lower. Once the number of
firms in the market exceeds that for a low demand without overshooting, firms
become more aggressive in entry. Thus massive entry is more likely in later periods.
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We can show that such anαt+1 exists, which satisfies Eq. (15) given
nt and αt. When αt+1=αt, Pr(kt− i=0)=1. By the fact that αt enters in
period t we have Vt(αt|nt+1, αt)−KN0. Note that Vt αt jnt + 1;αtð ÞV
P nt + 1ð Þ − αt

1 − δ since thenumberof activefirms inany later period is greater
than or equal to nt+1, therefore we have P(nt+1)−αtN(1−δ)K. Then
the LHS of Eq. (15) can be simplified as

P nt + 1ð Þ− αt − 1− δð ÞK + δ VI
t + 1 αt jnt + 1;αtð Þ− K − Vt + 1 αt jnt ;αtð Þ

h i

Note that this term is strictly positive since P(nt+1)−αtN(1−δ)
K, and

VI
t + 1 αt jnt + 1;αtð Þ− K − Vt + 1 αt jnt ;αtð Þ≥ 0

because entering one period early by type αt decreases the remaining
firms' probabilityand speedof entry on the equilibriumpath (thosefirms
havehigher costs thanαt). Therefore, the LHS is positive for Eq. (15)when
αt+1=αt. On the other hand, when αt+1=cP, Pr(kt− i=N−nt−1)=1.
By assumption (12), a firmwith cost cP cannot earn any flow profit in the
market given that all potential entrants enter in period t. The LHS of
Eq. (15) is hence just−K, the entry cost. Therefore, the LHS of Eq. (15) is
negative when αt+1=cP. Combining the above results, by the continuity
of the LHS there must be some αt+1a(αt,c

P] satisfying Eq. (15).
It would be desirable to establish the uniqueness of αt+1 given αt

and nt by showing that the LHS of Eq. (15) is strictly decreasing inαt+1.
It turns out that it is very hard to establish, though we conjecture it is
true. The difficulty lies in the fact that it is hard to compare the
magnitudes of changes in Vt+1

I (αt+1|nt+1+kt
− i, αt+1) and Vt+1

(αt+1|nt+kt
− i,αt+1) as αt+1 varies, since two value functions involve

with different histories. This means that we cannot rule out the
possibility of multiple equilibria among symmetric equilibria.

Similar to the non-monotonicity results in the basic model, here
the number of firms in the long run is not monotonic in firms' cost
realizations. Reducing one firm's cost realization might lead this firm
to enter early, thus discouraging remaining entrants from entering.
This effect in general tends to reduce the number of firms in the long
run.

7. Concluding remarks

This paper studies industry dynamics based on firms' learning
about their relative cost positions. The industry experiences three
phases in order: an entry phase with an uncertain length, a possible
exit phase which lasts for one period, and the long run state with no
entry or exit. In the unique symmetric equilibrium, lower cost firms
enter earlier than higher cost firms, which leads to gradual entry over
time. The exit phase due to overshooting arises with positive
probability on the equilibrium path, in which only firms that entered
immediately before will possibly exit. Both expected entry and the
probability of overshooting decreases in the length of the entry phase,
leading to a trade-off between delay and overshooting. These features
of industry dynamics are largely consistent with empirical evidence.

We have to admit that our model cannot capture all the stylized
facts of industry dynamics, as the evolution of technologies of a
specific industry certainly impacts the evolution of that industry.
However, we believe that our model captures an important aspect of
industry dynamics: how learning about relative cost positions affects
the dynamics of entry and exit.

Our model can also incorporate learning about an uncertain
demand size. Specifically, the demand size N can be distributed
according to some distribution G(N), and it can be learned only if total
entry overshoots it. The equilibrium will still have the feature that
lower cost firms enter earlier than higher cost firms. The difference is
that now learning about the demand size will play a role in
determining the equilibrium cost cutoffs. This implies that expected
massive entry might occur later in the entry phase if the demand size
has the “right” distribution.25 Moreover, overshooting and the exit
phase now will certainly occur on the equilibrium path.

Appendix A. Proof of Proposition 1

Proof. Wefirst show that on the equilibriumpath nofirm has incentive
to deviate from the above cutoff strategy. Consider a continuation game
on the equilibrium path (in the entry phase) with history nt and αt.
Given that the other firms follow the cutoff strategy αt+1, we need to
show that it is optimal for the firm in question to follow the cutoff
strategy αt+1, i.e., for any ca(αt,αt+1), Vt(c|nt,αt)−Wt(c|nt,αt)N0, and
for any cNαt+1,Vt(c|nt,αt)−Wt(c|nt,αt)b0.

First consider the case ca(αt,αt+1). Recall that, given the cutoff
strategy, all the uncertainty about whether this firm should enter is
resolved in period t. Hence,

Vt c jnt ;αtð Þ = Pr Ai cð Þ jαt ;nt

h i 1− c
1− δ

− K

Wt c jnt ;αtð Þ = δPr Ai cð Þ jαt ;nt

h i 1− c
1− δ

− K

 �

:

Then we have

Vt c jnt ;αtð Þ− Wt c jnt ;αtð Þ = Pr Ai cð Þ jαt ;nt

h i
1− cð Þ + δK½ �− K

= Pr Ai cð Þjαt ;nt

h i
1− cð Þ + δK½ �− K − Pr Ai αt + 1

� � jαt ;nt

h i
1− αt + 1
� �

+ δK
� �

− K
n o

= Pr Ai cð Þjαt ;nt

h i
1− cð Þ + δK½ �− Pr Ai αt + 1

� � jαt ;nt

h i
1− αt + 1
� �

+ δK
� �

N 0:

The second equality follows because Pr[Ai(αt+1)|αt,nt][(1−αt+1)+
δK]−K=0by Eq. (3), while the inequality holds since Pr[Ai(c)|αt,nt]NPr
[Ai(αt+1)|αt,nt], which follows from cbαt+1.

Next consider the case cNαt+1. Since the uncertainty regarding the
firmwith cost c is not completely resolved at the beginningof period t+1,
the value functions can only be written recursively. Let yt−i denote the
number of firms other than firm i entering inperiod t. The value functions
are

Vt c jnt ;αtð Þ = Pr y−i
t bN − nt jαt ;nt

h i
1− cð Þ + δEh− i

t
V I
t + 1 c j nt ;αtð Þ × c; h−i

t

� �� �
jy−i

t bN − nt

h ih i
−K;

Wt c jnt ;αtð Þ = Pr y−i
t bN − nt jαt ;nt

h i
× δEh− i

t
max Vt + 1 c j nt ;αtð Þ × h−i

t

� �
;Wt + 1 c j nt ;αtð Þ × h−i

t

� �n o
jy−i

t bN − nt

h i
:

The expressions follow since the firm with cost c earns no positive
flow profit from period t on in the event when yt

− i≥N−nt. With
these value functions, we have

Vt c jnt ;αtð Þ− Wt c jnt ;αtð Þ
= Pr y−i

t bN − nt jαt ;nt

h i
f 1− cð Þ + δEh− i

t
V I
t + 1 c j nt ;αtð Þ × c;h−i

t

� �� �
jy−i

t bN − nt

h i
−δEh− i

t
max Vt + 1 c j nt ;αtð Þ × h−i

t

� �
;Wt + 1 c j nt ;αtð Þ × h−i

t

� �n o
jy−i

t bN − nt

h i
g− K

VPr y−i
t bN − nt jαt ;nt

h i
f 1− cð Þ

+ δEh− i
t

V I
t + 1 c j nt ;αtð Þ × c;h−i

t
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− Vt + 1 c j nt ;αtð Þ × h−i

t

� �
jy−i

t bN − nt

h i
g− K
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To proceed, we show that the following important inequality holds

VI
t + 1 c j nt ;αtð Þ × c; h−i

t

� �� �
− Vt + 1 c j nt ;αtð Þ × h−i

t

� �
V K: ð17Þ

To see this, first note that in the event of Ai(c) (c is in the winning
group), Vt+1

I (c|·)−Vt+1(c|·)=K since the flow payoffs for both values
are the same. In the other event that c is not among the winning group,
the flow payoff is weakly lower for Vt+1

I . This is because knowing
cNαt+1 will induce other remaining firms with cost below c to enter
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earlier, thus the deviating firm gets flow payoffs for weakly fewer
periods. Therefore, the difference between the two values is less than K.

Now applying inequality (17) to (16), we have

Vt c jnt ;αtð Þ− Wt c jnt ;αtð ÞV Pr y−i
t bN − nt jαt ;nt

� �
1− cð Þ + δK½ �− K

= Pr y−i
t bN − nt jαt ;nt

� �
1− cð Þ + δK½ �− K − Vt αt + 1 jnt ;αt

� �
− Wt αt + 1 jnt ;αt

� �� �
= Pr y−i

t bN − nt jαt ;nt

� �
1− cð Þ + δK½ �− Pr y−i

t bN − nt jαt ;nt

� �
1− αt + 1
� �

+ δK
� �

= Pr y−i
t bN − nt jαt ;nt

� �
1− cð Þ− 1− αt + 1

� �� �
b0:

To see that the secondequalityholds, note that Pr(yt− ibN−nt|αt,nt)=
Pr[Ai(αt+1)|αt,nt].

We also need to show the optimality of the cutoff strategies
following any off the equilibrium path. Indeed the basic logic of the
proof is exactly the same, so the proof is omitted.

As to uniqueness, first, on the equilibrium path the cutoffs are
uniquely determined by Lemma 1. Also, we have seen that each off-
path belief is uniquely determined given the cutoff and the type
distribution in the previous period, so that there is no freedom in
varying the off-path cutoffs either. This shows the uniqueness of a
symmetric cutoff strategy equilibrium. □

Appendix B. Proof of Proposition 2

Proof. Suppose there is a symmetric equilibrium with non-cutoff
strategies. In particular, suppose that in a continuation game with
history Ht a firmwith cost c′ enters in period t, while firms with some
cost type(s) lower than c′ do not enter in period t. Let c̃ be the lowest
cost type that does not enter in period t.26 Clearly, c̃bc′.

Note that type c̃will enter at t+1 if period t+1 is still an entry phase,
since there is no other potential entrantwhose cost is less than c̃, and thus
waiting is unprofitable. The values at period t for c̃ can thus bewritten as

Vt
~c jHtð Þ = Eh− i

t
πt

~c jHt ×
~c;h−i

t

� �� �
+ δVI

t + 1
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~c; h−i
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Wt
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t
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~c jHt × h−i
t

� �n oh i
:

Since c′ enters and c̃ waits at t, we have

Vt c′ jHtð Þ− Wt c′ jHtð Þ≥ 0≥ Vt
~c jHtð Þ− Wt

~c jHtð Þ: ð18Þ

Note that, since Wt(c′|Ht×ht
− i) can never be negative,
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Then Eqs. (18) and (19) imply
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The LHS of Eq. (20) is negative since c′N c̃; the flow profit at each
period must be higher for a lower cost firm, and firm i with cost c̃ is
more likely to be among the N lowest cost firms.

Recall that Ai(c) denotes the event that firm i with cost c is
among the N lowest cost firms. Since the uncertainty regarding
whether Ai(c̃) occurs is completely resolved at the beginning of period
t+1, we have Eht− i[−Vt+1

I (c̃|Ht×(c′,ht− i))|Ai(c̃)c]=0,27 and Eht
− i[Vt+1

(c̃|Ht×ht
− i)−Vt+1

I (c̃|Ht×(c̃, ht− i))|Ai(c̃)]=−K. As a result,

Eh− i
t

max 0;Vt + 1
~c jHt × h−i

t

� �n o
− VI

t + 1
~c jHt ×

~c;h−i
t

� �� �h i
= Eh− i

t
Vt + 1

~c jHt × h−i
t

� �
− VI

t + 1
~c jHt ×

~c; h−i
t

� �� �
jAi ~cð Þ

h i
Pr Ai ~cð Þ
� �

= − KPr Ai ~cð Þ
� �

:

ð21Þ
26 If such c̃ does not exit, it would suffice to take an infinmum type to wait at t
instead, and use approximation arguments when necessary.
27 The expression Ai(c)c is the complement of Ai(c).
Moreover, since c′N c̃, Ai(c̃)c⊂Ai(c′)c. Thus we have

Eh− i
t

−VI
t + 1 c′ jHt × c′; h−i

t

� �� �
jAi ~cð Þc

h i
= 0: ð22Þ

Using the above equalities (21) and (22), the RHS of Eq. (20)
becomes

Eh− i
t

max 0;Vt + 1 c′ jHt × h−i
t

� �n o
− VI

t + 1 c′ jHt × c′;h−i
t

� �� �
jAi ~cð Þ

h i
Pr Ai ~cð Þ
� �

+ Eh− i
t

−VI
t + 1 c′ jHt × c′;h−i

t

� �� �
jAi ~cð Þc

h i
Pr Ai ~cð Þc
� �

−Eh− i
t

max 0;Vt + 1
~c jHt × h−i

t

� �n o
− VI

t + 1
~c jHt ×

~c;h−i
t

� �� �
jAi ~cð Þ

h i
Pr Ai ~cð Þ
� �

−Eh− i
t

−VI
t + 1

~c jHt ×
~c;h−i

t

� �� �
jAi ~cð Þc

h i
Pr Ai ~cð Þc
� �

= Eh− i
t

max 0;Vt + 1 c′ jHt × h−i
t

� �n o
− VI

t + 1 c′ jHt × c′;h−i
t

� �� �
jAi ~cð Þ

h i
Pr Ai ~cð Þ
� �

+ KPr Ai ~cð Þ
� �

≥Eh− i
t

Vt + 1 c′ jHt × h−i
t

� �
− VI

t + 1 c′ jHt × c′;h−i
t

� �� �
jAi ~cð Þ

h i
Pr Ai ~cð Þ
� �

+ KPr Ai ~cð Þ
� �

≥ − KPr Ai ~cð Þ
� �

+ KPr Ai ~cð Þ
� �

= 0:

The last inequality follows from the fact that Vt+1
I (c′|Ht×(c′, ht− i))−

Vt+1(c′|Ht×ht
− i)≤K, similar to inequality (17). This shows that 0NLHS

of Eq. (20)≥RHS of Eq. (20)≥0, a contradiction. Therefore, there is no
symmetric equilibrium in non-cutoff strategies. □

Appendix C. Proof of Lemma 3

Proof. To show that Eq. (7) holds, we only need to show that the
following one-step property holds:

XN1

j=0

B j;N1 + L;pð Þb
XN1 + 1

j=0

B j;N1 + L + 1; pð Þ: ð23Þ

We proceed with the following algebra:

XN1

j=0

B j;N1 + L; pð Þ = p + 1− pð Þ½ �
XN1

j=0

B j;N1 + L;pð Þ

= 1−pð ÞN1 + L + 1 +
XN1

j=1

N1 + L
j − 1

� 	
+ N1 + L

j

� 	
 �
pj 1−pð ÞN1 + L + 1− j

+ N1 + L
N1

� 	
pN1 + 1 1−pð ÞL = 1−pð ÞN1 + L + 1

+
XN1

j=1

N1 + L + 1
j

� 	
pj 1−pð ÞN1 + L + 1− j + N1 + L

N1

� 	
pN1 + 1 1−pð ÞL

b
N1 + L + 1

0

� 	
1−pð ÞN1 + L + 1 +

XN1

j=1

N1 + L + 1
j

� 	
pj 1−pð ÞN1 + L + 1− j

+ N1 + L + 1
N1 + 1

� 	
pN1 + 1 1−pð ÞL =

XN1 + 1

j=0

B j;N1 + L + 1; pð Þ

The inequality holds since N1 + L
N1

� 	
b

N1 + L + 1
N1 + 1

� 	
. Therefore,

Eq. (23) is valid. □

Appendix D. Proof of Proposition 4

Proof. For notational simplicity, denote

C k;N;pð Þu
Xk

j = 0
B j;N;pð Þ:

That is, Γ(k; N, p) is the cumulative probability. The probability of
overshooting is then Pt

o=1−Γ(N−nt; N+L−nt,pt).
Fix t and t′ such that t′N t. Note that nt≤nt′. Denote

N1 = N − nt + L − 1;N2 = N − nt′ + L − 1:

By the above definitions, N1≥N2. We wish to show Pt
oNPt′

o, or
equivalently

C N1 − L + 1;N1 + 1;ptð ÞbC N2 − L + 1;N2 + 1;pt′ð Þ ð24Þ

Recall that αt′+1Nαt+1 for t′N t. By Eq. (6), the following inequality
holds:

C N1 − L;N1;ptð ÞbC N2 − L;N2; pt′ð Þ ð25Þ



486 M. Hanazono, H. Yang / Int. J. Ind. Organ. 27 (2009) 474–487
We will use the following equality in later derivations:28
C N1 − L + 1;N1 + 1; ptð Þ = C N1 − L;N1; ptð Þ + 1− ptð ÞB N1 − L + 1;N1; ptð Þ: ð26Þ

We consider the following two mutually exclusive cases in turns.

Case A: B N1 − L + 1;N1; ptð ÞV B N2 − L + 1;N2; pt′ð Þ:

By Proposition 4, pt′bpt⇔1-pt′N1-pt, thereby

1− ptð ÞB N1 − L + 1;N1;ptð ÞV 1− pt′ð ÞB N2 − L + 1;N2; pt′ð Þ: ð27Þ

By Eqs. (25), (26) and, (27) we have

C N1 − L + 1;N1 + 1;ptð Þ = C N1 − L;N1;ptð Þ + 1− ptð ÞB N1 − L + 1;N1;ptð Þ
bC N2 − L;N2;pt′ð Þ + 1− pt′ð ÞB N2 − L + 1;N2; pt′ð Þ = C N2 − L + 1; N2 + 1;pt′ð Þ;

which is the desired result (Eq. (24)).

Case B: B N1 − L + 1;N1; ptð ÞN B N2 − L + 1;N2;pt′ð Þ:

In this case, we use the following condition:

C N1 − L + 1;N1; ptð ÞbC N2 − L + 1;N2;pt′ð Þ; ð28Þ

which is later verified from Eq. (25). Inequality Eq. (28) implies

C N2 − L;N2;pt′ð Þ− C N1 − L;N1; ptð ÞN B N1 − L + 1;N1; ptð Þ− B N2 − L + 1;N2; pt′ð Þ:

By 1N1−pt′N1−pt, we obtain

B N1 − L + 1;N1; ptð Þ− B N2 − L + 1;N2;pt′ð Þ
N 1− ptð ÞB N1 − L + 1;N1;ptð Þ− 1− pt′ð ÞB N2 − L + 1;N2;pt′ð Þ:

Therefore,

C N2 − L;N2;pt′ð Þ− C N1 − L;N1; ptð Þ
N 1− ptð ÞB N1 − L + 1;N1;ptð Þ− 1− pt′ð ÞB N2 − L + 1;N2;pt′ð Þ
fC N2 − L;N2; pt′ð Þ + 1− pt′ð ÞB N2 − L + 1;N2;pt′ð Þ
NC N1 − L;N1; ptð Þ + 1− ptð ÞB N1 − L + 1;N1; ptð Þ
fC N1 − L + 1;N1 + 1; ptð ÞbC N2 − L + 1;N2 + 1;pt′ð Þ:

This again yields the desired result (Eq. (24)). □
The rest of the proof is devoted to showing Eq. (28) holds given

Eq. (25). More explicitly, we want to show

C N1 − L;N1; ptð ÞbC N2 − L;N2;pt′ð ÞZC N1 − L + 1;N1;ptð ÞbC N2 − L + 1;N2; pt′ð Þ:
ð29Þ

By changing variables (N1-j= j′) and using the fact that N1
j

� 	
=

N1
N1− i

� 	
we have

C N1 − L;N1; ptð Þ = PN1 − L
j = 0

N1
j

� 	
pjt 1−ptð ÞN1 − j =

PL
j′ = N1

N1
N1 − j′

� 	
pN1 − j′
t 1−ptð Þj′

= 1− PL − 1
j′ = 0

N1
j′

� 	
pN1 − j′
t 1−ptð Þj′ = 1− Γ L − 1;N1;1− ptð Þ:

Then Eq. (29) can be further rewritten as

C L − 1;N1;1− ptð ÞN C L − 1;N2;1− pt′ð Þ
ZC L − 2;N1;1− ptð Þ N C L − 2;N2;1− p′t

� �
:

28 This is because, the event that at most N-nt entrants out of N+L-nt is the disjoint
union of {at most N-nt-1 entrants out of N+L-nt -1 firms} and {exactly N-nt entrants
out of N+L-nt-1 firms and the remaining firm waits}.
We first simplify notation further. Denote q1=1−pt, q2=1−pt′,
with q1bq2, and

B1 jð Þ = B j;N1; q1ð Þ;C1 jð Þ = P j
k = 0 B1 kð Þ;

B2 jð Þ = B j;N2; q2ð Þ;C2 jð Þ = P j
k = 0 B2 kð Þ:

By the above definitions, we have Γ1(N1)=1, Γ2(N2)=1, and both Γ1
(j) and Γ2(j) are strictly increasing in j. Under the simplified notations,
(Eq. (29)) becomes

C1 L − 1ð ÞN C2 L − 1ð ÞZC1 L − 2ð ÞN C2 L − 2ð Þ:

Thus it is sufficient to show that

C1 jð ÞN C2 jð ÞZC1 j − 1ð ÞN C2 j − 1ð Þ: ð30Þ

To proceed, consider the following likelihood ratio ζ( j)=ln{B1( j)/B2
( j)} for each j=0,…, N2. Then

f jð Þ = ln
N1!

j! N1 − jð Þ!
j! N2 − jð Þ!

N2!
qj1 1−q1ð ÞN1 − j

qj2 1−q2ð ÞN2− j

= ln
N1!
N2!

+ ln
N2 − jð Þ!
N1 − jð Þ! + j ln

q1 = 1− q1ð Þ
q2 = 1− q2ð Þ + ln

1−q1ð ÞN1

1−q2ð ÞN2

= − PN1 − j
l = N2 − j + 1 lnl + j ln

q1 = 1− q1ð Þ
q2 = 1− q2ð Þ + const;

where const is some constant. Thus,

f j + 1ð Þ− f jð Þ = ln
N1 − j
N2 − j

+ ln
q1 = 1− q1ð Þ
q2 = 1− q2ð Þ :

It is easy to see that ζ( j+1)−ζ( j) weakly increases in j (strictly
when N1NN2). This is because N1≥N2 implies that (N1− j)/(N2− j) is
weakly increasing in j (strictly, when N1NN2), and the other term
q1 = 1 − q1ð Þ
q2 = 1 − q2ð Þ is constant.

Lemma 4. (i) ζ( j) is either monotonic or U-shape (i.e., first decreasing
but then increasing); (ii) there is some j≤N2 such that ζ( j)b0.

Proof. First consider the case N1=N2. Then ζ( j+1)-ζ( j) is constant
and negative since by q1bq2

q1 = 1− q1ð Þ
q2 = 1− q2ð Þ b1Z ln

q1 = 1− q1ð Þ
q2 = 1− q2ð Þb0:

Thus we have ζ( j) being strictly decreasing.
Next consider the case that N1NN2. Note that in this case ζ( j+1)−

ζ( j) is strictly increasing in j. We consider two subcases. In the first
subcase, ζ(1)−ζ(0)≥0. Then we have ζ( j) being strictly increasing.
Next consider the other subcase, ζ(1)bζ(0). Then if ζ( j′)−ζ( j′−1)≥0
for some j′≥2, ζ( j) must be increasing for any j≥ j′. Therefore, either
ζ( j) must be decreasing for all j, or it is of U-shape. This proves part (i).

To show part (ii), suppose ζ( j)≥0, i.e., B1( j)≥B2( j) for all j≤N2.
First, q1bq2 implies that ζ( j)≠0 for some j. This means that B1( j)NB2
( j) for some j. Now summing up B1( j) and B2( j), we have Γ1(N2)NΓ2
(N2) . But by N2≤N1,

1 = C1 N1ð Þ≥ C1 N2ð ÞN C2 N2ð Þ = 1;

a contradiction. □
Lemma 4 implies that we only need to consider the following two

cases.

CASE I If ζ(0)≤0, either ζ( j) is always nonpositive, or crosses the
line of ζ=0 from below only once. Equivalently,29

B1 jð ÞV B2 jð Þ; for j = 0; N ; j ;

B1 jð Þ≥ B2 jð Þ; for j = j + 1; N ;N2; 0 V j V N2

� �
;

29 It is straightforward that an equality may hold only for j=0, j
P

, j
P

+1, or N2.
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CASE II If ζ(0)N0, ζ(j) must cross the line of ζ=0 from above (by
part (ii) of Lemma 4), and might cross it from below later at most
once. Equivalently,30

B1 jð ÞN B2 jð Þ; for j = 0; N ; j1;
B1 jð ÞV B2 jð Þ; for j = j1 + 1; N ; j2;
B1 jð Þ≥ B2 jð Þ; for j = j2 + 1; N ;N2: 0 V j1b j2 V N2ð Þ:

We consider Case I and Case II in turns.

Lemma 5. In CASE I, Γ1(j)≤Γ2(j) for j=0,….,N2.

Proof. Suppose on the contrary that, for some j′

C1 j′ð ÞN C2 j′ð Þ: ð31Þ

This j′ must be greater than j
P

since for j=0,..., j
P

, B1( j)≤B2( j),
implying Γ1( j)≤Γ2( j) for j=0,..., j

P

. Given j′N j
P

, we have B1( j)≥B2( j),
for j= j′+1,...,N2. This implies

XN2

j = j0 + 1
B1 jð Þ≥

XN2

j = j0 + 1
B2 jð Þ ð32Þ

Adding Eqs. (31) and (32), we get Γ1(N2)NΓ2(N2). But

1 = C1 N1ð Þ≥ C1 N2ð Þ N C2 N2ð Þ = 1;

a contradiction. □
The above lemma indicates that Case I is irrelevant, since it fails to

satisfy the presumption in Eq. (30). Thus we only need to consider
Case II.

Lemma 6. In CASE II, Γ1(j)NΓ2( j) for j=0,.., j⁎, and Γ1( j)≤Γ2( j) for
j=j⁎+1,...,N2, where j⁎ is between j1 and j2.

Proof. Recall that B1( j)NB2( j) for j=0,..., j1, thereby Γ1( j)NΓ2( j) for
j=0,..., j1.

Now we show that for j= j2,..,N2, Γ1( j)≤Γ2( j). Suppose there is j
′∈{ j2,..,N2} such that Γ1( j′)NΓ2( j′).Recall that B1( j)≥B2( j) for j= j2+
1,...,N2. Summing up we get Γ1(N2)NΓ2(N2). But this leads to a
contradiction that 1=Γ1(N1)≥Γ1(N2)NΓ2(N2)=1.

Next we show that the cutoff j⁎ where Γ1( j)-Γ2( j) changes sign
is between j1 and j2. Recall that B1( j)≤B2( j), for j= j1+1,..., j2.
Thus if Γ1( j′)≤Γ2( j′) for some j′∈{ j1+1,..., j2-1}, then the same
inequality must hold for j= j′+1,..., j2. Even if such j′ does not exist in
{ j1+1,..., j2-1}, we already know that the above inequality holds for
j= j2. This implies the cutoff j⁎ is within { j1+1,..., j2}. □
30 Similarly, an equality may hold only for j=0, j1, j1+1, j2, j2+1 or N2.
By the above lemma, Γ1( j)NΓ2( j) means that j∈{0,.., j⁎}. This
further implies that Γ1( j-1)NΓ2(j-1) since j-1b j⁎. Therefore, (30)
holds. This completes the whole proof.
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