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Abstract

This paper studies a cheap talk model in which two senders having partial and non-
overlapping private information simultaneously communicate with an uninformed receiver.
The sensitivity of the receiver’s ideal action to one sender’s private information depends on
the other sender’s private information. When senders have type-independent biases, their
information transmissions exhibit strategic complementarity: more information transmitted
by one sender leads to more information being transmitted by the other sender. When
senders have type-dependent biases, their information transmissions can exhibit strategic
substitutability. We also study delegation when senders have type-independent biases. When
the two senders have like-biases, it is always optimal for the receiver to delegate decision rights
to the sender with the smaller bias. When the senders have opposing biases, simultaneous
communication is more likely to dominate delegation.
JEL Classification: D23, D72, D83, L23
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1 Introduction

Decision makers often seek advice from multiple experts. Specifically, consider a firm with two

functional divisions: a marketing division and a production division. The firm’s CEO must

choose the size of a new factory to produce a new product. The optimal size of the new factory

depends on the profitability of the new product, which further depends on the demand for and

cost of production of the new product. Due to functional specialization, the marketing division

manager knows only the demand for the product while the production division manager knows

only the production cost. Thus the CEO must consult both managers regarding his decision, but

the managers’interests may not be perfectly aligned with the CEO’s interests. In particular, a
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manager might prefer a smaller or a bigger factory relative to the CEO’s ideal size. Alternatively,

a manager may wish to choose the factory size to maximize the performance of his own division

rather than the firm’s overall performance.

The above example has three distinguishing features: (i) a decision maker consults two

experts regarding relevant information before making a decision; (ii) the experts’interests are

not perfectly aligned with the decision maker’s; and (iii) the experts observe different aspects

of the information that is relevant for the decision (i.e., the experts observe non-overlapping

information). The purpose of the paper is to study communication or information transmission

in the above setting, with communication modeled as cheap talk (Crawford and Sobel, 1982, CS

hereafter). While the first two features are standard in cheap talk models, the third feature–

which is unique to this paper– is understudied in the literature despite its obvious relevance

in the real world. That different experts observe non-overlapping information occurs in many

situations as a result of specialization. In organizations such as firms and governments, different

divisions specialize in different functional areas. At the individual-level, experts often specialize

and only have expertise in one field.

Real world situations sharing the above three features abound. For instance, a president

deciding on a bailout plan for banks must determine the optimal size of the bailout, which

depends on how deep the banking crisis is and the constraints of the federal budget. The

president consults a banking expert who knows only how serious the banking crisis is and

a budget expert from OMB who knows only the availability of bailout funds. Alternatively,

a military leader who must decide how many troops to send into combat consults with an

intelligence expert and a field commander. The optimal number of troops depends on both the

strength of the enemy and the strength of his own army. While the intelligence expert may only

know the strength of the enemy, the field commander may only know the strength of his own

forces. Finally, a dean must decide how much to invest in a new interdisciplinary center involving

both economics and psychology, the optimal size of which depends on the local conditions in the

economics and psychology departments. The dean consults with the chairs of both departments

who only know the conditions of their own departments.

We develop a cheap talk model that captures all three of the above features. To model

senders (experts) having partial and non-overlapping private information, we assume that the

state of the world has two dimensions, θ1 and θ2. Each expert i perfectly observes the realized

state in dimension i (θi) but does not observe the realized state in dimension j (θj). The receiver

(decision maker) takes a single action and observes neither θ1 nor θ2. The receiver’s ideal action

is a function of the realized states, y∗(θ1, θ2). We focus on the case in which the marginal impact
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of information in dimension i on the ideal decision depends on the realized state in dimension

j (i.e., ∂2y∗(θ1, θ2)/∂θ1∂θ2 6= 0). In our leading example, y∗(θ1, θ2) = θ1θ2. This formulation

has an intuitive interpretation: the larger the realized state in one dimension, the more sensitive

the ideal action is to the information in the other dimension.1 Consider the CEO example in

which θ1 is the demand size and θ2 is the effi ciency of production. In our leading example, the

optimal factory size is more sensitive to production effi ciency when the market size is larger and

vice versa.2 In the Appendix, we show that under monopoly pricing the optimal factory size

(and, hence, output level) can indeed be expressed as θ1θ2.

Given multiple senders and multi-dimensional states, there are several ways to model experts’

biases. In the basic model we study type-independent biases, in which each expert’s ideal action

differs from the receiver’s ideal action by a constant independent of realized states. Of course,

two experts can have different biases. Adopting terminology from Krishna and Morgan (2001a,

KM hereafter), we say that two experts have opposing biases when one expert wants to pull the

decision to the left and the other to the right. Alternatively, two experts can have like biases if

both want to pull the decision in the same direction, but possibly to different degrees. Type-

independent biases are realistic in situations where biases are generated by different ideologies:

both experts agree with the receiver about how the optimal action depends on realized states,

but the experts prefer different actions due to their different ideologies. In the bailout example,

for instance, a Republican expert who believes in limited government may always prefer a smaller

bailout plan than a Democratic expert. In the troop deployment example, a dovish expert may

always prefer to deploy fewer troops than an hawkish expert.

We also study the case in which the experts’biases are type-dependent. In particular, expert

i’s ideal action may only depend on his own information θi. These preferences are realistic in

multidivisional organizations. In the CEO example, for instance, each division manager may

only care about the performance of his own division and thus prefer an action suited to his

division’s local conditions only. In the dean example, each department chair may only care

about the welfare of his own department.

We first study the basic model with independent biases in which the two experts send mes-

sages simultaneously. Equilibria are shown to be partition equilibrium in which each sender

indicates only to which interval the realized state that he observes belongs as in standard CS

cheap talk models. We focus on the most informative equilibrium. Interestingly, the two senders’
1 If ∂2y∗(θ1, θ2)/∂θ1∂θ2 = 0, say y∗(θ1, θ2) = θ1+θ2, then the cheap talk game with two-senders is qualitatively

similar to standard cheap talk game with one sender. See Section 3.2 for a more detailed discussion.
2 In the military example, let θ1 be the weakness of one’s own army and θ2 be the strength of the enemy. In

our leading example, the weaker one’s own army is, the more sensitive is the optimal number of troops to the
strength of the enemy and vice versa.
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information transmissions exhibit strategic complementarity: the more information that one

sender transmits, the less the incentive the other sender has to distort his report in the direction

of his bias, and, hence, the more information he will transmit. As a result, a reduction in one

sender’s bias leads not only to more information being transmitted by himself but also induces

the other agent to transmit more information. The underlying reason for strategic complemen-

tarity is a “variance” effect. Intuitively, since the ideal action is multiplicative in states, in

higher states of θ2 the receiver’s action is more sensitive to sender 1’s report and sender 1’s in-

formation distortion will be amplified more. Thus, relative to sender 1’s ideal action, in general

there is over-distortion of information in higher states and under-distortion in lower states of

θ2. As sender 2 transmits more information the sensitivity of the receiver’s action to sender 1’s

report will vary more, and the same amount of information distortion by sender 1 now leads to

bigger over-distortion in higher states of θ2 and bigger under-distortion in lower states of θ2. By

reducing the amount of distortion a little bit, sender 1 can reduce the amount of over-distortion

in higher states significantly without increasing the amount of under-distortion in lower states

of θ2 by much. Therefore, sender 1 will have an incentive to reduce his amount of information

distortion when sender 2 transmits more information. We also show that the equilibrium infor-

mation transmissions depend only on the absolute value of the senders’biases, implying that

whether the experts have like biases or opposing biases does not matter.

We then study simultaneous communication with type-dependent biases. It turns out that

the information transmissions of the two senders can exhibit strategic substitutability: the more

information that one sender transmits, the more the incentive the other sender has to distort

his report and, hence, the less information he will transmit. That said, it can also be the case

that the information transmissions of the two senders exhibit strategic complementarity when

little information is transmitted, but the senders’ information transmissions become strategic

substitutes when a lot of information is transmitted. Which case applies depends on whether

one sender has an incentive to under-report or over-report when the other sender transmits no

information. The general pattern is that when sender i transmits more information, sender j

will tend to under-report more (or over-report less). The underlying force behind those results

is again the variance effect.

We next study the possibility of delegation in the basic model with type-independent biases.

Specifically, the receiver delegates his decision rights to one of the senders. The agent to whom

the decision rights are delegated first consults the other sender regarding his private information

and then makes a decision. We show that it is always better for the receiver to delegate decision

rights to the expert with a smaller bias in absolute value. The underlying reason for this result
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is that the effectiveness of communication between the two senders does not depend on which

expert has the decision rights. Therefore, the decision rights should be delegated to the expert

with the smaller bias to minimize the loss of control experienced by the receiver.

Finally, we compare delegation to simultaneous communication. Interestingly, whether del-

egation is optimal for the receiver depends on whether the experts have like biases or opposing

biases. When the experts have like biases and communication is informative under simultaneous

communication, delegation dominates simultaneous communication for the receiver. This result

still holds when the experts have opposing biases and the absolute value of the smaller bias is

small enough. On the other hand, simultaneous communication dominates delegation if the two

experts have opposing biases and the absolute value of the smaller bias is big enough. Intuitively,

when the experts have like (opposing) biases the communication between the experts is more

(less) informative than that between experts and the receiver because the effective bias between

two experts is smaller (bigger) than that between the experts and the receiver. These results

imply that we are more likely to observe delegation when the experts are biased in the same

direction relative to the principal. In a political context, delegation is more likely when either

both experts are more liberal or both experts are more conservative than the principal.

The rest of the paper is organized as follows. The next subsection discusses related literature.

Section 2 lays out the basic model with type-independent biases. The equilibrium of this model

with simultaneous communication is characterized and the robustness of the results is examined

in Section 3. In Section 4 we study type-dependent biases and summarize the strategic interac-

tions between the experts’information transmissions under different conditions. In Section 5 we

consider delegation and compare it to simultaneous communication. Section 6 offers conclusions

and discussions. All of the missing proofs in the text can be found in the Appendix.

1.1 Related Literature

Following the original work of CS on cheap talk, there is a growing literature on cheap talk

with multiple senders. Gilligan and Krehbiel (1989) study a model in which two experts with

symmetric opposing biases simultaneously communicate by submitting bills to a decision-making

legislature. They show that the restrictive “closed rule,” in which amendments to bills are not

permitted, is informationally superior to the “open rule” in which bills are freely amendable.

Krishna and Morgan (2001b) reexamine the model and derive different results. Epstein (1998)

generalizes the model of Gilligan and Krehbiel to the case where two experts have asymmetric

opposing biases. KM study a more general model in which the two experts, who can have like

or opposing biases, communicate sequentially. Gick (2009) considers the model of KM with like
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biases by adding the twist that the receiver is able to commit to not best responding to the

second sender. A common feature of these models is that the state space is one dimensional

and both senders perfectly observe the same realized state. In contrast, in our model the two

senders have partial and non-overlapping private information.3

Battaglini (2002) studies a multidimensional cheap talk model with multiple senders. He

concludes that– in contrast to one-dimensional cheap talk models with one sender– generically

information can be fully revealed in equilibrium communication, and Ambrus and Takahashi

(2008) provide further conditions under which fully revealing equilibria are possible in this

setting. Our model differs from these multidimensional cheap talk models in two regards. First,

in our model each sender only observes the realized state in his own dimension, while in their

models each sender observes the realized states in all dimensions. Second, in our model the

decision is a one-dimensional variable while in theirs the decision is a two-dimensional vector.

Based on these differences, fully revealing equilibria are impossible in our model.

Austen-Smith (1993) considers a two-sender model with two experts imperfectly informed

about the state. In his model each expert receives a noisy (binary) signal about the state, which

is also binary. Morgan and Stocken (2008) model information aggregation in polls as a cheap

talk game with multiple senders, with senders (who are polled) receiving imperfect, conditionally

independent, binary signals regarding the state. The differences between our model and their

models will be further discussed in Section 3.4

Our paper is also related to Alonso et. al (2008, ADM hereafter), who study strategic com-

munication between a CEO and two division managers. Each manager has private information

regarding the local conditions of his own division, and a decision needs to be made for each divi-

sion. Furthermore, the decisions of the two divisions need to be coordinated, and each manager

has a bias toward maximizing the profit of his own division. They compare two communication

modes: vertical communication (centralization) versus horizontal communication (decentraliza-

tion).5 Our study differs from theirs in that in our model there is only one decision to make

instead of two. Furthermore, the need to communicate in their model results from the need to

coordinate two decisions, while the need to communicate arises in our model because the optimal

decision for the receiver depends on the private information of both experts. These differences

3For cheap talk models with one sender and multiple receivers, see Farrell and Gibbons (1989) and Goltsman
and Pavlov (2009).

4Li (2007) studies a model in which two experts perfectly observe the realized state, but each expert’s bias is
his own private information. Again in his model the number of states and signals is finite.

5Under centralization, each manager communicates with the CEO simultaneously, and then the CEO makes
decisions for each division. Under decentralization, the two managers simultaneously communicate with each
other and then each manager makes the decision for his own division. They show that even when the need for
coordination is large, decentralization can be superior to centralization from the CEO’s perspective.
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affect the experts’incentives to communicate. Another paper related to ours is Martimort and

Semenov (2008). They study an informational lobbying game in which two interest groups influ-

ence the legislature by communicating private information regarding their preferences. Instead

of modeling communication as cheap talk, they consider the situation in which the legislature is

able to commit to a decision rule and use the mechanism design approach.

With respect to delegation our paper is related to Dessein (2002), who compares delegation

and cheap talk in a one-sender model as in CS. Alonso and Matouschek (2007) endogenize the

commitment power of the principal by developing an infinitely repeated delegation game. Our

paper differs from these studies in that we compare delegation with cheap talk to a cheap talk

model with two senders (see Section 5 for more details). Harris and Raviv (2005), McGee (2008)

and Chen (2009) study cheap talk models when both the receiver and sender have private

information, and the possibility of delegation is considered in Harris and Raviv (2005) and

McGee (2008). In all of these models, however, there is only one sender.

Since the work of CS, it is well-known that cheap talk models have multiple equilibria. There

have been efforts made on equilibrium refinement (Matthews et. al, 1991; Chen et. al, 2008).

We will follow a common practice in cheap talk models: whenever there are multiple equilibria,

we will focus on the most informative equilibrium because it is usually ex ante Pareto dominant.

2 The Basic Model

To formalize the examples in the introduction, we provide a stylized model that can be applied

to a broad range of institutional settings. Consider a decision maker (DM) who consults two

experts i = 1, 2. Both experts and the DM are expected utility maximizers. The DM takes an

action y ∈ R, and his utility depends on some underlying states of nature θ1 and θ2. Each θi is
distributed on [0, Ai] with density f(θi), and θ1 and θ2 are independent from each other. The

DM does not observe the realization of either θ1 or θ2, and expert i observes only the realized

value of θi. This captures the fact that each expert is knowledgeable only in his own field. Note

that both experts have private information, yet this private information is not overlapping in

the sense that θ1 and θ2 are independent.

Expert i offers advice to the DM by sending messagemi. Unless stated otherwise, we focus on

the case of simultaneous communication in which the two experts send messages simultaneously.

After receiving messages m1 and m2, the DM takes an action y(m1,m2).

Given realized states θ1 and θ2, the ideal action for the DM is y∗(θ1, θ2). The utility function
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for the DM is

UP (y, θ1, θ2) = −(y − y∗(θ1, θ2))2.

In the basic model we assume that expert i’s ideal action is y∗(θ1, θ2) + bi, where the constant

bi is expert i’s bias relative to the DM. Bias bi, which can be positive or negative, measures the

degree to which the DM’s and expert i’s interests are aligned. Specifically, the utility function

for expert i is

UAi(y, θ1, θ2, bi) = −[y − (y∗(θ1, θ2) + bi)]
2.

The biases are common knowledge. When b1 and b2 have the same sign, we say that the experts

have like biases; otherwise, we say that they have opposing biases. Note that in the current

setup the difference between agent i’s ideal action and the DM’s ideal action, bi, is independent

of the realized states θ1 and θ2. We call this the case of type-independent biases. As mentioned

in the introduction, type-independent biases are realistic in situations where biases result from

differences in ideologies. In a majority of the papers mentioned in the literature review studying

cheap talk with multiple senders, the senders’biases are type-independent.

Under simultaneous communication, a strategy for expert i specifies a message mi for each

θi, which is denoted by the communication rule µi(mi|θi). A strategy for the DM specifies an

action y for each message pair (m1,m2), which is denoted by the decision rule y(m1,m2). Let

the belief function g(θ1, θ2|m1,m2) be the DM’s posterior beliefs on θ1 and θ2 after hearing

messages m1 and m2. Since θ1 and θ2 are independent and expert i observes only θi, the belief

function can be decomposed into distinct belief functions g1(θ1|m1) and g2(θ2|m2).

Our solution concept is Perfect Bayesian Equilibrium (PBE), which requires:

(i) Given the DM’s decision rule y(m1,m2) and expert j’s communication rule µj(mj |θj),
for each i, expert i’s communication rule µi(mi|θi) is optimal.

(ii) The DM’s decision rule y(m1,m2) is optimal given beliefs g1(θ1|m1) and g2(θ2|m2).

(iii) The belief functions gi(θi|mi) are derived from the agents’communication rules µi(mi|θi)
according to Bayes rule whenever possible.

We first derive the DM’s optimal decision rule y(m1,m2). Given m1 and m2, y(m1,m2)

maximizes −E[(y − y∗(θ1, θ2))2|m1,m2]. Thus, y(m1,m2) = E[y∗(θ1, θ2)|m1,m2]. Denote the

partial derivative of y∗ with respect to θ1 as y∗1 (other partial derivatives are denoted accordingly).

The following lemma specifies a set of suffi cient conditions under which all PBE are interval

equilibria. That is, the state space [0, Ai] is partitioned into intervals and expert i only reveals

to which interval θi belongs.
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Lemma 1 Suppose the following assumptions hold: (i) y∗1 > 0 (or < 0), y∗2 > 0 (or < 0) for all

(θ1, θ2); and (ii) both |y∗11/y∗1| and |y∗22/y∗2| are small enough for all (θ1, θ2). Then all PBE in

the communication game must be interval equilibria.

Define mi as the posterior of state θi given message mi; that is, E[θi|mi] ≡ mi. Before we

proceed, we first prove a useful result.

Claim 1 E[θimi] = E[m2
i ].

Proof. Note that mi = E[θi|mi] and mi is coarser than θi. Therefore,

E[θimi] = E[θiE[θi|mi]] = E{E[θiE[θi|mi]]|mi} = E{E[θi|mi]E[θi|mi]} = E[m2
i ].

3 Simultaneous Communication with Type-independent Biases

To facilitate analysis, for most of the paper we will focus on a specific functional form of the

DM’s ideal action: y∗(θ1, θ2) = θ1θ2.6 The robustness of our results with more general functional

forms will be discussed later. Note that ∂2y∗(θ1,θ2)
∂θ1∂θ2

> 0. As mentioned in the introduction, this

condition implies that the marginal impact of state θi on the ideal action depends on the realized

state θj . This relationship leads to strategic interactions between the experts’ information

transmissions as we show later. For simplicity, we assume that each θi is uniformly distributed

on [0, Ai] with density 1/Ai. It can be readily seen that Lemma 1 applies to the current setup.

Therefore, all PBE must be interval equilibria.

3.1 Equilibrium and equilibrium properties

Because θ1 and θ2 are independent and θ1|m1 and θ2|m2 are independent, the DM’s optimal

action is given by

y(m1,m2) = E[θ1|m1]E[θ2|m2] = m1m2. (1)

Having established that all PBE must be interval equilibria, we now characterize them. Let

Ni be the number of partition elements in the partition (or the size of the partition) of agent

i’s information space, and (ai,0, ai,1, ..., ai,n, ..., ai,Ni) ≡ ai be the partition points with ai,0 = 0

and ai,Ni = Ai. Define mi,n as the receiver’s posterior of θi after receiving a message mi,n ∈
(ai,n−1, ai,n). It follows that mi,n = (ai,n−1 + ai,n)/2. In state θ1 = a1,n, agent 1 should be

6The same formulation is adopted in McGee (2008).
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indifferent between sending a message that induces a posterior m1,n and a posterior m1,n+1,

that is, Eθ2 [U
A1 |m1,n, a1,n] = Eθ2 [U

A1 |m1,n+1, a1,n].

More explicitly, the indifference condition can be written as

Eθ2 [{m2
a1,n + a1,n−1

2
− (θ2a1,n + b1)}2] = Eθ2 [{m2

a1,n + a1,n+1
2

− (θ2a1,n + b1)}2].

Using the fact that E[θimi] = E[m2
i ], we can simplify the above indifference condition further

as

(a1,n+1 − a1,n)− (a1,n − a1,n−1) =
E(θ2)

E(m2
2)

4b1. (2)

Similarly, the cutoff points a2,n characterizing agent 2’s partition equilibrium satisfy the

indifference condition:

(a2,n+1 − a2,n)− (a2,n − a2,n−1) =
E(θ1)

E(m2
1)

4b2. (3)

Inspecting indifference conditions (2) and (3), we see that there is strategic interaction be-

tween the senders’information transmissions in equilibrium as the term E(θj)

E(m2
j )
appears in the

condition that determines sender i’s cutoff points. In the quadratic-uniform case of CS’s one-

sender model, the indifference condition for cutoff points implies that the difference between the

lengths of any two adjacent intervals, the incremental step size, is always 4b. Conditions (2) and

(3) show that the strategic interaction between the two senders changes the incremental step

sizes: the effective incremental step size is E(θj)

E(m2
j )

4bi. Note that

E(m2
j ) = (E(mj))

2 + var(mj) = (E(θj))
2 + var(mj).

That is, E(m2
j ) is a constant plus the variance of posterior mean. Since a higher variance

of posterior mean implies that more information is transmitted,7 a bigger E(m2
j ) means more

information is transmitted by sender j. As one agent transmits more information, however, the

effective incremental step size for the other agent decreases, which leads to more information

being transmitted by the other agent. Therefore, the agents’information transmissions exhibit

strategic complementarity.

An equilibrium is characterized by two sequences of partition points, (a1, a2), that satisfy

the indifference conditions (2) and (3) and the boundary conditions ai,0 = 0 and ai,Ni = Ai. Let

7 If no information is transmitted by sender j, then the variance of the posterior mean is 0. If information is
fully transmitted by sender j, then the variance of the posterior mean reaches its maximum, the variance of θi.
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E(θi)
E(m2

i )
≡ xi. Given Ni and xj and using the boundary conditions ai,0 = 0 and a1,Ni = Ai, we

can solve for the solutions for difference equations (2) and (3):

ai,n = Ai
n

Ni
+ 2bixjn(n−Ni). (4)

In equilibrium, the following inequality should be satisfied:

2|bi|xjNi(Ni − 1) < Ai. (5)

That is, the total length of the partition for each agent 2|bi|xjNi(Ni − 1) should be less than

the length of the support of θi, Ai.

Lemma 2 (i) E(m2
i ) =

A2i
3 −

A2i
12N2

i
− b2i x

2
j (N

2
i −1)
3 ; (ii) E(m2

i ) is strictly increasing in Ni, strictly

decreasing in xj and bi, and strictly increasing in E(m2
j ); (iii)

A2i
4 ≤ E(m2

i ) ≤
A2i
3 .

Intuition Lemma 2 formally shows that the agents’ equilibrium information transmissions

exhibit strategic complementarity: E(m2
i ) is increasing in E(m2

j ) and vice versa. This result

comes from the fact that the DM’s ideal decision, θ1θ2, is multiplicative in two states. To

understand the intuition for this result, consider the incentives of agent 1 to misrepresent his

information. For this purpose, suppose that agent 1 can credibly misrepresent his information

by reporting θ̂1 and that agent 2 sends a message according to µ2(m2|θ2).8 Then the optimal
report of agent 1, θ̂1, minimizes

Eθ2{[θ̂1Eθ2(θ2|m2)− θ1θ2 − b1]2}.

The optimal “message distortion,”which is measured by θ̂1 − θ1, is given by

θ̂1 − θ1 =
E(θ2)b1

E[E(θ2|m2)2]
=

E(θ2)b1
(E(θ2))2 + var[m2]

. (6)

From (6), we see that agent 1’s incentive to distort information depends on var[m2], or the

informativeness of agent 2’s communication. In particular, as agent 2 transmits more information

(i.e., var[m2] increases), according to (6) agent 1’s incentive to distort information, measured

by θ̂1 − θ1, decreases.9

To understand the result, note that agent 1 always wants to distort the DM’s decision

(relative to the DM’s ideal action) by b1. Agent 1, however, can only distort his own report

8ADM perform a similar exercise to study agents’incentives to misrepresent their information.
9When agent 2 transmits no information, the RHS of (6) becomes b1/E(θ2). When agent 2 transmits full

information, the RHS of (6) becomes E(θ2)b1/E(θ22), which is less than b1/E(θ2).
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to achieve this end. Given that the ideal decision is multiplicative, the impact of agent 1’s

distortion on the DM’s action depends on agent 2’s report. In particular, if agent 1 expects a

higher (lower) average θ2, then the DM’s expected action becomes more (less) sensitive to the

report concerning θ1, and any given distortion by agent 1 will be amplified (dampened). As a

result, agent 1 will have an incentive to reduce (increase) his information distortion.

The above discussion describes a “mean”effect: when the mean of θ2 increases, agent 1 has

an incentive to reduce his own information distortion. This mean effect, however, is exogenous

in the sense that it does not depend on how much information is transmitted by agent 2 be-

cause the mean effect works through agent 1’s ex ante expectation about the DM’s posterior

regarding θ2, m2. No matter whether agent 2 constantly overstates or understates θ2, he cannot

successfully mislead the DM in shifting the mean, as the DM takes into account his incentive to

distort information. Therefore, the expectation about the DM’s posterior is always the uncon-

ditional mean, which is unbiased.10 As a result, the mean effect does not depend on the agents’

information transmission strategies.

Agent 2’s information transmission strategy, however, will in general affect the variance ofm2,

and this in turn affects agent 1’s incentive to distort information. To illustrate this “variance”

effect, compare the cases in which agent 2 transmits no information (i.e., sends only one message

m20) and in which agent 2 has two partition elements with two potential messages m21 and m22,

m21 < m22. Note that in both cases E(m2) = E(θ2), and m21 < m20 = E(θ2) < m22. In other

words, the m2 in the second case is a mean preserving spread of the m2 in the first case. In the

first case, agent 1’s optimal message distortion is b1/E(θ2). Now consider the second case, and

suppose agent 1 still distorts his message by b1/E(θ2). Because m21 < E(θ2) < m22, relative to

his ideal action (θ1m2j+b1) agent 1 under-distorts information when agent 2’s message ism21 and

over-distorts information when agent 2’s message is m22. Now overall agent 1 has an incentive to

reduce his information distortion slightly (by, say, ε > 0) from the initial amount b1/E(θ2). To

see this, note that such a reduction in information distortion brings the DM’s expected action

closer to agent 1’s ideal action when agent 2’s message is m22 but pulls the DM’s expected action

further away from his ideal action when agent 2’s message is m21. However, the benefit of the

first effect is bigger than the loss resulting from the second effect because, given m22 > m21,

the reduction in over-distortion (m22ε) is bigger than the increase in under-distortion (m21ε).11

To summarize, the distance between the DM’s action and agent 1’s ideal action in the second

10Formally, this is due to the law of iterative expectation: E[E(θ2|m2)] = E(θ2).
11To see that more formally, let α (1 − α) be the probability that agent 2 sends message m21 (m22). Since

E(m2) = E(θ2), we have α =
m22−E(θ2)
m22−m21

. Suppose agent 1 distorts his information by b1( 1
E(θ2)

− ε), with ε > 0
where ε is very small. That is, agent 1 reduces the amount of information distortion slightly. Now agent 1’s
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case is a mean preserving spread of that in the first case, leading to over-distortion in higher

states (of θ2) and under-distortion in lower states. Given that the DM’s expected action is more

sensitive to agent 1’s report at higher states of θ2, if agent 1 reduces the amount of information

distortion the reduction in over-distortion at higher states of θ2 will be bigger than the increase

in under-distortion at lower states of θ2, thus overall bringing the DM’s expected action closer

to agent 1’s ideal action. Therefore, agent 1 will distort his information by less in the second

case than in the first case.

Generally, as agent 2 transmits more information andm2 has a larger variance, the sensitivity

of the DM’s action to agent 1’s report will vary more. More precisely, the new m2 is a mean

preserving spread of the old m2. As a result, with the same amount of information distortion

by agent 1 the distance between the DM’s action and agent 1’s ideal action under the new

m2 is a mean preserving spread of that under the old m2, leading to bigger over-distortions

at higher states of θ2 and bigger under-distortions at lower states of θ2. Agent 1, however,

can exploit the bigger variance in the sensitivity of the DM’s action to his own report. By

reducing the amount of distortion a little bit, agent 1 can reduce the amount of over-distortion

in higher states significantly without increasing the amount of under-distortion in lower states

by as much. Therefore, agent 1 will have an incentive to reduce his information distortion when

agent 2 transmits more information.

We want to emphasize that– in contrast to the exogenous mean effect– the variance effect

is endogenous in the sense that it depends on how much information is transmitted by the

other agent as the other agent chooses how much information to transmit. Therefore it is the

variance effect that generates the strategic complementarity between the agents’ information

transmissions. Note that the assumption that the ideal decision is multiplicative in the states

is mainly driving this result. When the two states are additive (e.g., y∗(θ1, θ2) = θ1 + θ2) such

expected payoff (minus some constant) UA1(ε) can be written as:

UA1(ε) = −b21{α[1−
m21

E(θ2)
+m21ε]

2 + (1− α)[ m22

E(θ2)
−m22ε− 1]2}.

The derivative of UA1 with respect to ε evaluated at ε = 0 can be calculated as:

dUA1

dε
(ε = 0) ∼ α[1− m21

E(θ2)
](−m21) + (1− α)[

m22

E(θ2)
− 1]m22

= α[1− m21

E(θ2)
](m22 −m21) > 0,

where the last equality uses the fact that α = m22−E(θ2)
m22−m21

. Therefore, at the optimal amount of information
distortion in the first case, agent 1 will benefit from reducing his amount of information distortion in the second
case.
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that ∂2y∗(θ1,θ2)
∂θ1∂θ2

= 0, this strategic interaction between the agents is absent.12

Comparison to literature The property that the agents’ information transmissions are

strategic complements in our model is quite different from results in previous papers. In ADM,

the agents’information transmissions are strategically independent in the sense that the amount

of information one agent transmits does not depend on how much information the other agent

transmits. This is because the ideal decisions in their model are additive in the private signals

(the local conditions).

In Austen-Smith (1993), the two agents’information transmissions are strategic substitutes:

informative communication of one agent becomes more diffi cult when the other agent transmits

more information. Morgan and Stocken (2008) have the same feature that agents’ truthful

reports are strategic subsitututes: as the number of agents increases, each agent has less incentive

to report truthfully. Note that in both models the agents’biases are type-independent and thus

their results are in direct contrast to our result. The strategic substitutability of information

transmissions in their models is due to the fact that in both models the state of the world is

one dimensional and agents receive conditionally independent signals (i.e., the agents’private

information is overlapping). Under this information structure, as other agents transmit more

information the receiver’s decision becomes less sensitive to the report of any individual agent

(an information congestion effect), and thus individual agents have less incentive to transmit

information. In contrast, in our model agents have non-overlapping private information. Thus

the information congestion effect in their models is absent in our model. Instead, the strategic

interaction between the agents operates through the variance effect when the ideal decision is

multiplicative in the states.

For PBE of the overall communication game, a babbling equilibrium always exists in which

N1 = N2 = 1 and the DM ignores the messages. Thus we do not need to worry about the

existence of PBE. Straightforward calculation shows that the ex ante equilibrium payoffs for the

DM, UPST , and for agent i, U
Ai
ST (where the subscripts denote simultaneous talk), are given by:

UPST = −E[(m1m2 − θ1θ2)2] = −E(θ21)E(θ22) + E(m2
1)E(m2

2). (7)

UAiST = −E(θ21)E(θ22) + E(m2
1)E(m2

2)− b2i
12When y∗(θ1, θ2) = θ1 + θ2, the indifference condition for agent i’s partition points ai,n is given by

(ai,n+1 − ai,n)− (ai,n − ai,n−1) = 4bi.

It is clear that each agent’s information transmission is independent from the other’s, and the two-sender model
collapses to a one-sender model.
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By inspection, the most informative equilibrium on which we focus is also ex ante Pareto dom-

inant.

Proposition 1 (i) Any equilibrium is characterized by a pair of numbers of partition elements

(N1, N2) that satisfy

E(m2
1) =

E(θ1)

x1
⇔ A21

3
− A21

12N2
1

− b21x
2
2(N

2
1 − 1)

3
=

A1
2x1

, (8)

E(m2
2) =

E(θ2)

x2
⇔ A22

3
− A22

12N2
2

− b22x
2
1(N

2
2 − 1)

3
=

A2
2x2

; (9)

and the two inequalities

2|b1|x2N1(N1 − 1) < A1; 2|b2|x1N2(N2 − 1) < A2. (10)

(ii) Both N1 and N2 are finite. (iii) In the most informative equilibrium, the partition elements

(N∗1 , N
∗
2 ) are the largest N1 and N2 that satisfy (8), (9) and (10), and their lower and upper

bounds are given by

〈−1

2
+

1

2
(1 +

A1A2
|bi|

)1/2〉 ≤ N∗i ≤ 〈−
1

2
+

1

2
(1 +

4A1A2
3|bi|

)1/2〉 (11)

(iv) For (N1, N2) such that 1 ≤ N1 ≤ N∗1 and 1 ≤ N2 ≤ N∗2 , the existence of equilibrium is not

guaranteed. If there is an equilibrium with (N1, N2) and 1 < Ni ≤ 8 for both i = 1, 2, then an

equilibrium with (N1 − 1, N2 − 1) exists as well.

Proof. Part (i) follows immediately from previous analysis. In particular, given N1 and N2, x1

and x2 are determined from equations (8) and (9). If N1, N2, x1 and x2 satisfy the inequalities

(10), then there is an equilibrium associated with N1 and N2, with the partition elements being

characterized by (4). To show part (ii), note that by Lemma 2 xi has a lower bound 3
2Ai

> 0.

Now inspecting the inequalities (10), we can see that as Ni goes to infinity one of the inequalities

must be violated. Therefore, both N1 and N2 must be finite.

As to part (iii), we see that by (7) E(m2
1) and E(m2

2) should be maximized in the most

informative equilibrium. By part (ii) of Lemma 2, E(m2
i ) is increasing in Ni. Moreover, E(m2

i )

is decreasing in xj and xj is decreasing in E(m2
j ). Thus E(m2

i ) is increasing in Nj as well.

Therefore, N1 and N2 are maximized in the most informative equilibrium subject to condition

(10). The bounds of N∗i come from part (iii) of Lemma 2. In particular, (11) follows from the

fact that xi ∈ [ 3
2Ai

, 2Ai ].

Regarding part (iv), we see that the ratio of the upper bound of xi to its lower bound is 4/3.

On the other hand, the ratio of (Ni−1)(Ni−2)Ni(Ni−1) = (Ni − 2)/Ni, and this ratio is less than 3/4 if Ni
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is less than 8. Therefore, if conditions (10) are satisfied with (N1, N2) and 1 < Ni ≤ 8 for both

i = 1, 2, they must be satisfied with (N1−1, N2−1). Hence an equilibrium with (N1−1, N2−1)

exists.

In standard CS cheap talk models, if the number of partitions in the most informative

equilibrium is N∗, then for all N such that 1 ≤ N < N∗, there is a corresponding equilibrium.

Similar results do not hold in our model, as illustrated by part (iv) of Proposition 1.13 This

is due to the fact that in our model the two agents’ information transmissions are strategic

complements. If the number of partition elements in one agent’s partition is reduced and, hence,

less information is transmitted, the other agent will have less incentive to transmit information.

As a result, the original equilibrium number of partition elements for the second agent might no

longer be sustainable.14

Corollary 1 In the most informative equilibrium, a decrease in bi results in not only an increase

in E(m2
i ) but also an increase in E(m2

j ).

Proof. By Proposition 1, N∗1 and N
∗
2 are nonincreasing in bi. The rest follows Lemma 2.

Corollary 1 can potentially be empirically tested: when one agent is replaced by a new agent

whose interests are more aligned with those of the DM, more information will be transmitted

by the other agent. This is illustrated in the following example.

Example 1 Suppose A1 = 10 and A2 = 4. Agent 1 has bias b1 = 2, and agent 2 has bias

b2 = 1.15. Under simultaneous communication, N∗1 = 2, N∗2 = 2, E(m2
1) = 30.6009, and

E(m2
2) = 4.9646. When b2 decreases to 3

4 , N
∗
1 = 2, N∗2 = 3, E(m2

1) = 30.6456, and E(m2
2) =

5.1453. Note that E(m2
1) increases as b2 decreases.

Corollary 2 (i) The DM’s equilibrium payoff when consulting two agents is higher than that

when only one agent is consulted. (ii) Fix all the other parameter values but change bi to −bi.
Then (N∗1 , N

∗
2 ), E(m2

i ) and E(m2
2) remain the same, and each player’s ex ante equilibrium payoff

is unchanged.

13Specifically, if Ni > 8 for both i = 1, 2 then the following situation could arise: an equilibrium with (N1, N2)
exists while an equilibrium with (N1 − 1, N2 − 1) does not exist.
14For example, with (N∗1 − 1, N∗2 ) an equilibrium might not exist. When the number of elements in agent 1’s

partition is reduced to N∗1 −1, the amount of information transmitted by agent 1 decreases and thus x1 increases.
With this increase in the incremental step size for agent 2, the inequality of (10) for agent 2 might be violated
with N∗2 .
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Proof. Suppose the DM only consults one agent, say agent i. Then no information is transmit-

ted by agent j. E(m2
j ) reaches its lower bound

A2j
4 , and xj reaches its upper bound

2
Aj
. It follows

that the effective incremental step size for agent i is (weakly) bigger than when two agents are

consulted. By Lemma 2, this implies that both E(m2
i ) and E(m2

1)E(m2
2) are smaller when only

agent i is consulted. This proves part (i).

Observing (8) and (9), we see that, fixing Ni, E(m2
i ) remains the same when bi is replaced

by −bi. This means that E(m2
j ) remains the same as well. Also note that condition (10) remains

the same when the sign of bi changes. Therefore, N∗1 and N
∗
2 will not change either. This proves

part (ii).

As Corollary 2 indicates, in our model equilibrium information transmission does not depend

on whether the two agents have opposing or like biases, and it is always better for the DM to

consult two agents instead of one.15 Whether two agents have like or opposing biases does not

matter in our model because the interaction between the two agents’communication occurs only

through the terms E(m2
1) and E(m2

2). When bi changes sign, only the direction of the partition

of mi reverses; the same amount of information is transmitted in equilibrium. One may still

wonder whether two agents having like or opposing biases matters based on the following logic.

Suppose both agents initially have positive biases. One may think that the agents have less

incentive to overstate their information because each agent expects the other to overstate his

information so he needs to overstate his own information less to induce his ideal action. After

agent 1’s bias changes to −b1, one might think that agent 2 has a stronger incentive to overstate
his own information as he expects agent 1 to understate θ1. This is not, however, what occurs

in equilibrium. In equilibrium, the principal is not fooled, which means that neither agent can

successfully understate or overstate his information. Anticipating this, whether one agent has

an incentive to understate or overstate his information (as long as the absolute value of the bias

is the same) will not affect the other agent’s incentive to misrepresent his own information.

3.2 Robustness of the results

Negative Domain So far we have assumed that the support of θi is [0, Ai]. In the following

proposition we study what happens if the support of θi is extended into the negative domain.

15These results are different from those in KM, where equilibrium information transmission depends on whether
the two agents have opposing or like biases. Specifically, if the two agents have like biases, then there is no
strict benefit from consulting the second agent for the DM. The results in KM are mainly due to sequential
communication. In Krishna and Morgan (2001b) where communication is simultaneous, having a second expert
is always valuable because it allows the DM to achieve full information revelation.
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Proposition 2 Suppose y∗(θ1, θ2) = θ1θ2 and for i = 1, 2, θi is uniformly distributed on

[−Bi, Ai], with Ai > 0 and Bi > 0. If Bi = Ai and agent i’s communication is informa-

tive, then in the most informative equilibrium agent j reveals his information fully. If Bi 6= Ai,

then the results in Proposition 1 hold qualitatively, and any equilibrium involves finite partition

elements for agent j.

Proposition 2 shows that in a knife-edge case in which the support of an agent’s information

is symmetric with respect to zero, the other agent might reveal information fully in equilibrium.

This is because the exogenous mean effect is subtle when the support is extended to the negative

domain. To understand the intuition, suppose b1 > 0 and E(θ2) = 0. If agent 1 overstates his

information, he can potentially pull the DM’s decision to the right if the posterior regarding θ2

is positive, but the decision will be pulled to the left if the posterior regarding θ2 is negative.

When E(θ2) = 0, the posterior regarding θ2 is equally likely to be positive or negative, implying

that agent 1 can gain nothing by overstating or understating his information. As a result, he

has no incentive to distort his information and reveals his information fully in equilibrium.

General distributions Now we discuss how our results will change if we generalize the dis-

tribution of the underlying states. For i = 1, 2, suppose θi is distributed on [0, Ai] with density

function fi(θi) and cumulative distribution function Fi(θi), and fi(θi) > 0 holds everywhere on

the support [0, Ai]. By Lemma 1, all equilibria must be of partition form. Let the sequence

of partition points be ai,n, and mi,n be the DM’s posterior regarding θi after receiving a mes-

sage mi,n ∈ (ai,n−1, ai,n). Now mi,n =
∫ ai,n
ai,n−1

θifi(θi)dθi
Fi(ai,n)−Fi(ai,n−1) . The indifference condition that

characterizes a1,n now is written as:∫ a1,n

a1,n−1

θ1f1(θ1)dθ1
F1(a1,n)− F1(a1,n−1)

+

∫ a1,n+1

a1,n

θ1f1(θ1)dθ1
F1(a1,n+1)− F1(a1,n)

− 2a1,n =
E(θ2)

E(m2
2)

2b1. (12)

Inspecting (12), we see that the effective bias of agent 1, b′1 ≡
E(θ2)
E(m2

2)
2b1, decreases as E(m2

2)

increases or agent 2 transmits more information. To show that agent 1 transmits more in-

formation when his effective bias decreases under general distributions, we need to impose a

monotonicity condition on the solutions to the difference equation system (Assumption M in

Section 5 of CS), which roughly says that the solutions must all move up or down together.16

As long as this monotonicity condition holds, the agents’ information transmissions are still
16Formally, Assumption M is as follows. Let a1 and ã1 be two forward solutions (a1,n < a1,n+1) of the difference

equation system with N1 partition elements each. For a given bias of b′1, if a1,1 > ã1,1, then a1,n > ã1,n for any
2 ≤ n < N1. In Theorem 2 of CS, they provide a suffi cient condition for Assumption M to hold. The suffi cient
condition depends on the density function of the distribution.
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strategic complements under general distributions: as agent 2 transmits more information and

E(m2
2) increases, b

′
1 decreases and agent 1 transmits more information as well.

More general functions for the ideal decision It would be desirable to consider a gen-

eral function for the ideal decision y∗(θ1, θ2) that is monotonic insofar as y∗1(θ1, θ2) > 0 (or

y∗1(θ1, θ2) < 0) and y∗2(θ1, θ2) > 0 (or y∗2(θ1, θ2) < 0) and not purely additive (i.e., either

y∗12(θ1, θ2) > 0 or y∗12(θ1, θ2) < 0). It is, however, hard to derive analytical results without further

specifying the functional form of y∗(θ1, θ2). We focus on the case in which y∗(θ1, θ2) = s(θ1)t(θ2),

with both s(·) and t(·) being monotonic. In this case, the DM’s optimal action is given by
E[s(θ1)|m1]E[t(θ2)|m2]. We examine agent 1’s incentive to distort information. Suppose agent

2 sends a message according to µ2(m2), and the DM believes that agent 1 tells the truth. The

optimal report for agent 1, θ̂1, minimizes

Eθ2{[s(θ̂1)Eθ2(t(θ2)|m2)− s(θ1)t(θ2)− b1]2}.

The optimal “message distortion”is given by

s(θ̂1)− s(θ1) =
E[E(t(θ2)|m2)]b1
E[(E(t(θ2)|m2))2]

=
E(t(θ2))b1

[E(t(θ2))]2 + var[E(t(θ2)|m2)]
. (13)

Since s(·) is monotonic, the LHS of the above equation (13) measures agent 1’s incentive to
distort information (whether s is monotonically increasing or decreasing, a bigger s(θ̂1)− s(θ1)
implies a bigger θ̂1 − θ1). As the amount of information transmitted by agent 2 increases (i.e.,
var[E(t(θ2)|m2)] increases), the RHS of (13) decreases. In particular, var[E(t(θ2)|m2)] = 0

when agent 2 transmits no information, and var[E(t(θ2)|m2)] reaches its maximum var(t(θ2))

when agent 2 transmits full information. Equation (13) shows that agent 1’s incentive to dis-

tort information decreases when agent 2 transmits more information, and agent 1 will transmit

more information as well. Therefore, the agents’information transmissions are strategic com-

plements.17

Note that y∗(θ1, θ2) = (θ1)
k(θ2)

l, k 6= 0 and l 6= 0, is a special case of the case we studied.

To see how things work in more detail, consider the special case in which y∗(θ1, θ2) = θ1/θ2.

Now the agents’optimal message distortions are given by:

θ̂1 − θ1 =
E( 1θ2 )b1

[E( 1θ2 )]2 + var[E( 1θ2 |m2)]
;

1

θ̂2
− 1

θ2
=

E(θ1)b2
[E(θ1)]2 + var[E(θ1|m1)]

.

17Switching y∗(θ1, θ2) to −y∗(θ1, θ2) only changes the sign of each expert’s effective bias and would not change
the results qualitatively.
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For either agent, the optimal “message distortion” decreases when the other agent transmits

more information. When agent 2 reports a higher (lower) message, the DM’s posterior E( 1θ2 |m2)

is smaller (bigger), and agent 1’s distortion of information is dampened (amplified)– meaning

that the “mean effect”works in the opposite way that it does in our leading examply by making

the DM’s expected action less sensitive to agent 1’s report at high values of θ2. The variance

effect, however, still works in the same way. As agent 2 transmits more information, the new

E( 1θ2 |m2) becomes a mean-preserving spread of the old one. By reducing the amount of distortion

a little bit, agent 1 can reduce the amount of over-distortion in lower states of θ2 significantly

without increasing the amount of under-distortion in higher states by as much. Therefore,

agent 1 will have an incentive to reduce the amount of his information distortion when agent 2

transmits more information.

Although we are not able to derive analytical results for more general functional forms, we

expect our main intuition to more or less hold with type-independent biases. Essentially, the

driving force behind the result that the agents’information transmissions are strategic comple-

ments is that the sensitivity of the DM’s action to one agent’s report depends on the other agent’s

report. This feature of changing sensitivity will be present as long as ∂2y∗(θ1, θ2)/∂θ1∂θ2 6= 0.

When agent 2 transmits more information, the variance of the DM’s sensitivity to agent 1’s re-

port increases. This leads to the variance effect and makes the agents’information transmissions

strategic complements.

3.3 Optimal assignment of agents

In some environments, the DM may have the freedom to change the assignment of agents to

observe information in different dimensions. Suppose the two information dimensions have

different underlying uncertainty, and the agents have different biases. Without loss of generality,

suppose A1 > A2 and |b1| = r|b| and b2 = b with r > 1; that is, θ1 has a bigger variance (and

a bigger mean) and agent 1 has a bigger bias. The question naturally arises: to induce more

effective overall communication, should the DM assign the agent with the smaller or larger bias

to observe the dimension with more uncertainty (and a bigger mean)? We refer to assigning

agent 2 to observe θ1 and agent 1 to observe θ2 as positive assortative (PA) assignment and the

reverse assignment as negative assortative (NA) assignment.

Without the strategic interactions between the agents’information transmissions, compared

to NA assignment, PA assignment will lead to more information transmitted regarding θ1 (about

which there is more underlying uncertainty), but less information transmitted regarding θ2
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(about which there is less underlying uncertainty).18 Different assignments will also affect the

overall information transmission through the strategic complementarity between two agents’

information transmission. Thus it is not obvious which assignment will lead to more overall

information transmission. The following proposition identifies the conditions under which as-

signments do not matter.

Proposition 3 (i) If r is big enough such that agent 1’s communication is uninformative under

both assignments, then both assignments yield the same ex ante payoff for the principal. (ii) If

b → 0 but r|b| > 0, then both assignments yield the same ex ante payoff. (iii) Suppose both

agents’communications are informative under either assignment, and let N∗1 and N
∗
2 (N

∗′
1 and

N∗
′
2 ) be the equilibrium numbers of partitions under NA (PA) assignment. If N∗1 = N∗

′
2 and

N∗2 = N∗
′
1 , then both assignments yield the same ex ante payoff.

Parts (i) and (ii) of Proposition 3 show that assignment does not matter if one agent’s bias

is big enough such that his communication is always uninformative, or if one agent’s bias is

arbitrarily small such that his communication will be fully informative. Part (iii) considers

the scenario when communication is informative but not fully revealing in both dimensions. It

shows that assignments do not matter as long as the number of partitions just flips when we

change the assignments. Though the latter condition cannot be proved for all parameter values,

it holds for most cases. To see this, first note that by (11) the lower and upper bounds of N∗i
under the NA assignment are the same as those of N∗

′
j under PA assignment. Second, whenever

communication is informative for agent i, the equilibrium number of partitions for this agent

is very likely to reach the upper bound in (11). This is illustrated by the following numerical

example.

Example 2 Suppose A1 = 7 and A2 = 5 and that agent 1 has bias b1 = 1.91 and agent 2 has

bias b2 = 1.89. Under NA assignment, the lower and upper bounds for N∗1 are 1 and 2 (2.03433),

respectively, and those for N∗2 are 1 and 2 (2.02115), respectively. The equilibrium N∗1 and N
∗
2

are both 2, the upper bound. Note that the upper bound seems hard to achieve (2.03433 is only

slightly above 2): for N∗1 to be 2, E(m2
2) has to be very close to its upper bound (when the

message is fully revealing). The upper bound for N∗2 , however, is 2 as well. This means that

even with just two partitions, E(m2
2) is already very close to its upper bound. This is indeed the

18Due to the exogenous mean effect, other things being equal the agent assigned to θ1 tends to distort infor-
mation more than the agent assigned to θ2 because the mean of θ1 is bigger than that of θ2. In this sense, PA
assignment tends to equalize the effective biases between two agents compared to NA assignment.
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case. The lower and upper bound for E(m2
2) are 6.25 and 8.33 respectively, while E(m2

2) with

two partitions is 7.6159.

The example above illustrates that even when an agent i’s equilibrium partition has only

two elements, the conditional variance of θi given mi is close to its upper bound. This implies

that the strategic complementarity in communication is already very strong and makes it very

likely that in equilibrium agent j’s communication will achieve the upper bound for the number

of partition elements N∗j . Given that these upper bounds on the number of partition elements

are very likely to be achieved, changing assignments will most likely just result in the number

of partition elements switching (in which case part (iii) of Proposition 2 applies). Therefore, we

conclude that in most cases assignments do not matter for overall information transmission.

4 Type-dependent Biases

In this section we consider an alternative model in which agents’biases are type dependent. In

particular, we assume that each agent cares only about his own state. That is, the agents’utility

functions are given by:

UA1 = −(y − θ1)2;UA2 = −(y − θ2)2.

On the other hand, the DM’s utility function is still given by

UP = −[y − y∗(θ1, θ2)]2.

Note that the difference between agent i’s ideal action and the DM’s is θi − y∗(θ1, θ2), which in
general depends on the realization of states. These preferences are realistic in multidivisional

organizations as each division manager may care only (or more) about the performance of his

own division. Similar biases appear in ADM and Martimort and Semenov (2008). In particular,

in ADM each division manager cares more about the performance of his own division than that

of the other division, while in Martimort and Semenov each interest group only cares about the

local conditions of its own group. Again, θi is assumed to be uniformly distributed on [0, Ai].

4.1 DM’s ideal action is additive in states

First consider the case in which y∗(θ1, θ2) = (θ1 + θ2)/2, or the DM’s ideal action is the average

of the two realized states.19 In this setup, the DM’s optimal action is 12(E[θ1|m1] + E[θ2|m2]).

19The same setting is studied in Martimort and Semenov (2008), though they use a mechanism design approach.
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Now we examine agent 1’s incentive to distort information. Suppose agent 2 sends message

according to µ2(m2), and the DM believes that agent 1 tells the truth. Then the optimal report

of agent 1, θ̂1, minimizes

Eθ2{[
1

2
(θ̂1 + E[θ2|m2])− θ1)]2}.

The optimal message distortion is given by:

θ̂1 − θ1 = θ1 − E(θ2).

Observing the above equation, we can see that agent 1’s incentive to distort information is

independent of agent 2’s reporting stratgey. Hence the agents’ information transmissions are

strategically independent.20

4.2 DM’s ideal action is multiplicative in states

Now consider the case in which y∗(θ1, θ2) = θ1θ2, our leading case. Note that the difference

between agent i’s ideal action and the DM’s is θi(1− θj). To ensure that the DM’s ideal action
and agent i’s ideal action coincide in expectation, we assume that for i = 1, 2 Ai = 2. Thus

E(θ1) = E(θ2) = 1. As in the basic model, the DM’s optimal action is E[θ1|m1]E[θ2|m2] or

m1m2.

By a similar proof to Lemma 1, we can show that all PBE must be interval equilibria.21

To formally characterize the equilibria, let Ni be the size of the partition of agent i, and

(ai,0, ai,1, ..., ai,n, ..., ai,Ni) ≡ ai be the partition points with ai,0 = 0 and ai,Ni = 2. When

the realized state happens to be any interior partition point a1,n, agent 1 should be indiffer-

ent between sending two adjacent messages. More explicitly, the indifference condition can be

written as

Eθ2 [{m2
a1,n + a1,n−1

2
− a1,n}2] = Eθ2 [{m2

a1,n + a1,n+1
2

− a1,n}2],

which can be simplified as

(a1,n+1 − a1,n)− (a1,n − a1,n−1) = [
E(θ2)

E(m2
2)
− 1]4a1,n. (14)

20The above setup is actually a special case of the model in ADM under centralization in which the need for
coordination goes to infinity and the own division bias is 1. The details of the equilibrium characterization can
be found in ADM.
21 In particular, let ν1 be the DM’s posterior belief regarding θ1. The expected utility of agent 1 given θ1 and

induced belief ν1 is given by
Eθ2 [U1|θ1, ν1] = −Eθ2 [(ν1m2 − θ1)2]

It can be easily verified that (∂2/∂2θ1)Eθ2 [U1|θ1, ν1] < 0 and (∂2/∂θ1∂ν1)Eθ2 [U1|θ1, ν1] > 0. These two conditions
ensure that all PBE must be interval equilibria.
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Similarly, the cutoff points a2,n characterizing agent 2’s partition equilibrium satisfy the indif-

ference condition:

(a2,n+1 − a2,n)− (a2,n − a2,n−1) = [
E(θ1)

E(m2
1)
− 1]4a2,n. (15)

Define bi ≡ E(θj)

E(m2
j )
− 1. Since [E(θj)]

2 ≤ E(m2
j ) ≤ E(θ2j ), E(m2

j ) ∈ [1, 43 ]. Thus, bi ∈ [−14 , 0].

We first treat bi as exogenous when we solve the difference equations (14) and (15). Specifically,

the solution to (14) and (15) has the following form: ai,n = Ki cos(θin + ωi), where Ki and ωi

are two constants, and θi satisfies

cos(θi) = 1 + 2bi or θi = arccos(1 + 2bi). (16)

By (16), θi is decreasing in bi and θi ∈ [0, π3 ] because bi ∈ [−14 , 0]. From the initial condition

ai,0 = 0, we get ωi = −π/2. From the ending condition ai,Ni = 2, we get Ki = 2/ sin(θiNi). Let

N i be the upper bound of Ni. Because ai,n is increasing in n, cos(θin− π
2 ) = sin(θin) must be

increasing in n, or θiNi ≤ π/2. Therefore, N i is determined by the following inequalities:

θiN i ≤ π/2 < θi(N i + 1). (17)

Note that N i is finite unless bi = 0. To summarize, the solution to (14) and (15) with Ni

partitions is

ai,n =
2

sin(θiNi)
sin(θin), (18)

where θi is given by (16) and the upper bound N i is given by (17).

The difference equations (14) and (15) are actually almost the same as those in ADM except

that bi is negative in our model but positive in theirs. Moreover, 0 is in the support of θi in both

models. However, the solution in our model is quite different from theirs. Specifically, in ADM

the number of partitions has no upper bound, while in our model generically the upper bound

is finite. This is because with a positive bi the incremental step size is increasing. Moreover, the

incremental step size goes to zero when θi is close to zero (the incremental step size is 4biθi).

Thus an infinity of partition elements is possible in their model with many fine partitions around

zero. In our model with a negative bi, however, the incremental step size is decreasing. As a

result, the partition including θi = 0 is coarser than other partitions, and in general the number

of partition elements is finite.

Lemma 3 (i)

E(m2
i ) =

4(1 + bi)

3 + 4bi
(1 +

bi
(sin(Niθi))2

), (19)

where θi = arccos(1 + 2bi); (ii) E(m2
i ) is increasing in Ni and decreasing in |bi|; (iii) E(m2

i ) is

decreasing in E(m2
j ).
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Intuition Lemma 3 shows that the agents’information transmissions are strategic substitutes:

when agent i transmits more information (E(m2
i ) increases), agent j will transmits less infor-

mation (E(m2
j ) decreases). To understand the intuition, again consider agent 1’s incentive to

distort information. Suppose agent 2 sends message according to µ2(m2), and the DM believes

that agent 1 tells the truth. Then agent 1’s optimal report, θ̂1, minimizes Eθ2 [(θ̂1m2 − θ1)2].
The optimal message distortion is given by:

θ̂1 − θ1 = [
E(θ2)

E(m2
2)
− 1]θ1 = [

E(θ2)

[E(θ2)]2 + var(m2)
− 1]θ1. (20)

Inspecting (20), we see that the term var(m2) is present. Recall that E(θ2) = 1. When

agent 2 transmits no information (var(m2) = 0), the RHS of (20) is 0. Thus agent 1 has no

incentive to distort information and (in the most informative equilibrium) his information will

be fully revealed. On the other hand, if agent 2 transmits some information (var(m2) > 0),

then the RHS of (20) is strictly less than 0. This implies that agent 1 has an incentive to under-

report and his information cannot be fully revealed. More generally, when agent 2 transmits

more information (var(m2) increases), the absolute value of
E(θ2)

[E(θ2)]2+var(m2)
− 1 increases or the

effective bias becomes more negative, and agent 1 has a stronger incentive to under-report and

less information will be transmitted by agent 1. Therefore, the agents’information transmissions

are strategic substitutes.

This result is the opposite of what we find when the agents’biases are type-independent,

where the agents’ information transmissions are strategic complements. The underlying intu-

ition, however, is very similar. To illustrate the idea, we again compare the cases in which agent

2 transmits no information (i.e., sends only one message m20) and in which agent 2 has two

partition elements with two potential messages m21 and m22 such that m21 < m22. Note that

in both cases E(m2) = E(θ2) = 1, m21 < m20 = 1 < m22, and the m2 in the second case is a

mean preserving spread of the m2 in the first case. In the first case, agent 1’s optimal message

distortion is 0 (report truthfully) since m20 = 1. Now consider the second case and suppose

agent 1 still reports truthfully. Because m21 < 1 < m22, relative to his ideal action (θ1) agent

1 under-reports information when agent 2’s message is m21 and over-reports information when

agent 2’s message is m22. We argue that agent 1 has an incentive to under-report slightly. This

is because the sensitivity of the DM’s expected action to agent 1’s report is higher when agent 2

sends the high message m22. If agent 1 under-reports a little bit, the reduction in over-reporting

when the high message m22 is sent will be bigger than the increase in under-reporting when the

low message m21 is sent, thus overall bringing the DM’s expected action closer to agent 1’s ideal
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action. Therefore, agent 1 will under-report in the second case relative to the first case.22

Generally, as agent 2 transmits more information (i.e.,m2 has a larger variance), the marginal

impact of agent 1’s report on the DM’s expected action will vary more. More precisely, the

new m2 is a mean preserving spread of the old m2. As a result, with the same information

transmission strategy by agent 1 the distance between the DM’s action and agent 1’s ideal

action under the new m2 is a mean-preserving spread of that under the old m2, leading to

bigger over-reporting in higher states of θ2 and bigger under-reporting in lower states of θ2. By

under-reporting a little bit more, agent 1 can reduce the amount of over-report in higher states

significantly without increasing the amount of under-report in lower states by much. Therefore,

agent 1 will have an incentive to under-report a little bit more when agent 2 transmits more

information.

The following proposition charaterizes the possible equilibria.

Proposition 4 Any equilibrium is characterized by a pair of numbers of partition elements

(N1, N2) such that

E(m2
i ) =

4(1 + bi)

3 + 4bi
(1 +

bi
(sin(Niθi))2

), bi ≡
1

E(m2
j )
− 1, and θi = arccos(1 + 2bi),

and the upper bound of Ni is given by (17).

We do not need to worry about the existence of equilibrium as the following (very asym-

metric) equilibrium always exists: one agent fully reveals his information and the other agent

reveals no information. To see that this is an equilibrium, note that when agent j transmits no

information, bi = 0 and agent i will fully reveal his information. On the other hand, given agent

i fully reveals his information, bj = −1/4 and θj = π/3, hence N j = 1 and agent j will reveal

no information. Therefore, it is an equilibrium.

22To see this more formally, let α (1 − α) be the probability that agent 2 sends message m21 (m22). Since
E(m2) = E(θ2) = 1, we have α = m22−1

m22−m21
. Suppose agent 1 under-reports his information by θ1ε, with ε > 0

where ε is very small. Agent 1’s expected payoff (minus some constant) UA1(ε) can be written as:

UA1(ε) = −θ21{α[1−m21 +m21ε]
2 + (1− α)[m22 −m22ε− 1]2}.

The derivative of UA1 with respect to ε evaluated at ε = 0 can be calculated as:

dUA1

dε
(ε = 0) ∼ α[1−m21](−m21) + (1− α)[m22 − 1]m22

= α[1−m21](m22 −m21) > 0,

where the last equality uses the fact that α = m22−1
m22−m21

. Therefore, at the optimal amount of information distortion
in the first case, agent 1 will benefit from under-reporting in the second case.
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As in the basic model, the DM’s expected utility is still given by UPST = −E(θ21)E(θ22) +

E(m2
1)E(m2

2), which is strictly increasing in E(m2
1) and E(m2

2). Agent i’s expected uility now

is given by

UAiST = −E(θ2i ) + E(m2
i )[2E(θj)− E(m2

j )]. (21)

Inspecting (21), we see that UAiST is strictly increasing in E(m2
i ) since E(θj) = 1 and E(m2

j ) ≤
4/3. Moreover, agent i’s expected utility is decreasing in E(m2

j ). This implies two things. First,

unlike in the basic model with type-independent biases where the overall most informative equi-

librium in which E(m2
1)E(m2

2) is maximized is Pareto dominant, in the current setting the agents

and the DM have incentives to select different equilibria. Hence there is no Pareto dominant

equilibrium. Second, because the agents’information transmissions are strategic subsitututes,

by increasing E(m2
i ) agent i can decrease E(m2

j ), which will increase his utility indirectly. There-

fore, each agent has an incentive to choose the equilibrium involving the most informative com-

munication between himself and the DM. Due to strategic substitutability, there are multiple

equilibria ranging from very asymmetric information transmissions (the equilibrium mentioned

above is the extreme example in this regard) to rather symmetric ones. Because the agents have

similar incentives, symmetric equilibria with both agents transmitting similar, medium amounts

of information are more plausible than other equilibria.

4.3 Summary

One common feature under both the type-independent and type-dependent biases is that, when

agent 2 transmits more information, the sensitivity of the DM’s action to agent 1’s report will

vary more, and overall agent 1 has a stronger incentive to reduce the utility loss in higher states

of θ2. In the case of type-independent biases, agent 1 always wants to distort the DM’s action

by b1. Thus agent 1 will always distort his information in the direction of his own bias; the

question is by how much. When agent 2 transmits more information, any distortion in agent

1’s report in the direction of his bias will be amplified more in higher states of θ2 relative to the

case in which agent 2 transmits less information. As a result, overall agent 1 has an incentive

to reduce his information distortion. This implies that the agents’ information transmissions

are strategic complements. In the case of type-dependent biases, agent 1 wants to distort the

DM’s action by θ1(1 − θ2). Given that E(θ2) = 1, agent 1 will report truthfully when agent 2

transmits no information. When agent 2 transmits some information, relative to agent 1’s ideal

action this truthful reporting would result in over-reporting at higher states of θ2 and under-

reporting at lower states of θ2. When agent 2 transmits more information, the over-reporting

will be amplified more in higher states of θ2. As a result, overall agent 1 has an incentive to
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under-report a little bit more, implying that the agents’information transmissions are strategic

substitutes.

The above discussion indicates that in the case of type-dependent biases, when agent 2 trans-

mits more information agent 1 always has an incentive to under-report a little or reduce the

amount of his over-reporting a little. Therefore, whether the agents’information transmissions

are strategic substitutes or complements depends on the initial condition (whether agent 1 has

an incentive to under-report or over-report when agent 2 transmits no information) and the

ending condition (whether agent 1 has an incentive to under-report or over-report when agent 2

transmits full information). In the case we presented in which E(θ2) = 1, agent 1 has no incen-

tive to distort information when agent 2 transmits no information. When agent 2 transmits more

information, agent 1 will always under-report a little more. Thus the agents’information trans-

missions are strategic substitutes. However, if E(θ2) < 1, then agent 1 will over-report if agent 2

transmits no information. Now as agent 2 transmits more information, agent 1 has an incentive

to reduce the amount of over-reporting, leading to more information information being transmit-

ted by agent 1. Thus the agents’information transmissions can be strategic complements with

type-dependent biases. More precisely, if E(θ22) < E(θ2) < 1, then agent 1 still has an incentive

to over-report even when agent 2 transmits full information.23 Therefore, the agents’informa-

tion transmissions are always strategic complements. If E(θ2) < 1 and E(θ2) < E(θ22), however,

then agent 1 has an incentive to under-report even when agent 2 transmits full information. This

implies the following pattern. Initially agent 1’s incentive to over-report is reduced when agent 2

transmits more information. At some point as agent 2 transmits more information, agent 1 will

report truthfully. After this point as agent 2 transmits more information, agent 1’s incentive

to under-report continues to increase.24 Therefore, the agents’ information transmissions are

strategic complements when little information is being transmitted, but they become strategic

substitutes when a lot of information is being transmitted.

The following table summarizes and provides a taxomony for the cases we considered.

Table 1: Taxomony of the strategic interaction between the agents’information transmissions

23More formally, note that E(m2
2) ≤ E(θ22). If E(θ22) < E(θ2) < 1, then the RHS of (20) is always positive and

monotonically decreasing in var(m2).
24More formally, if E(θ2) < 1 and E(θ2) < E(θ22), then there is a cutoff var(m2) such that the RHS of (20)

is 0. When var(m2) is smaller than this cutoff, the RHS is positive and monotonically decreasing in var(m2).
When var(m2) is bigger than the cutoff, the RHS is negative and monotonically decreasing (the absolute value is
montonically increasing) in var(m2).
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DM’s ideal action
Biases Additive in states Multiplicative in states

Type-independent Independent Strategic complements
Type-dependent Independent Strategic substitues, strategic complements, or*

*: Strategic complements (substitutes) when a small (large) amount of information is

transmitted.

5 Delegation

Though the DM has formal authority to make the decision, he may find it optimal to delegate

decision rights to one of the agents. Given that there are two agents, two delegation arrangements

need to be considered: delegating decision rights to agent 1 (D1 delegation) or delegating decision

rights to agent 2 (D2 delegation). Under either delegation arrangement, the agent to whom

decision rights are delegated first consults the other agent and then makes the decision. In

the CEO example, if the marketing manager is given the decision rights, he first consults the

production manager regarding production effi ciency and then combines this information with his

own information on market demand to decide on the new plant size.25 We answer two questions

in this section. First, which delegation arrangement (D1 or D2 delegation) is optimal? Second,

when does the DM have an incentive to delegate his decision rights? We only consider the basic

model with type-independent biases.

5.1 Optimal delegation

First consider D1 delegation. In this case, agent 2 sends message m2 to agent 1, and then agent

1 makes the decision y(θ1,m2). Agent 1’s optimal decision rule is y(θ1,m2) = θ1m2 + b1. Now

the communication game between agent 2 and agent 1 is a one-sender cheap talk game with

the receiver having private information, the setting studied by McGee (2008). It can be shown

that all PBE are partition equilibria (see McGee for details). Let N2 be the number of partition

elements and {a2,0, ..., a2,n, ..., a2,N2} be the cutoff points. In particular, given y(θ1,m2), when

θ2 = a2,n agent 2 should be indifferent between sending a message immediately to the left of

a2,n and a message immediately to the right of a2,n. This indifference condition can be explicitly

written as:
25Here we consider full delegation to a single agent. Full delegation in general is not optimal. In a setting with

a single agent, Melumad and Shibano (1991) show that optimal delegation involves delegation with a restricted
action space. Alonso and Matouschek (2008) provide further generalizations.
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E[{θ1
a2,n + a2,n−1

2
+ b1 − (θ1a2,n + b2)}2] = E[{θ1

a2,n + a2,n+1
2

+ b1 − (θ1a2,n + b2)}2]

⇔ (a2,n+1 − a2,n)− (a2,n − a2,n−1) =
4E(θ1)

E(θ21)
(b1 − b2) =

3

2A1
4(b1 − b2)

In the most informative equilibrium, the (largest) number of partition elements is N∗2 =

〈−12 + 1
2(1 + 4A2A1

3|b1−b2|)
1/2〉, and

E(m2
2) =

A22
3
− A22

12N2
2

−
(b1 − b2)2( 3

2A1
)2(N2

2 − 1)

3
(22)

Note that under D1 delegation, the incremental step size of agent 2’s equilibrium partition and

hence N∗2 , E(m2
2) and the equilibrium information transmission depend only on the magnitude

of the difference in biases (|b1 − b2|). The principal’s equilibrium payoff under D1 delegation,

UPD1, is

UPD1 = −E[(θ1m2 + b1 − θ1θ2)2] = −E(θ21)E(θ22) + E(θ21)E(m2
2)− b21 (23)

Now consider D2 delegation. In this case, agent 1 first sends messagem1 to agent 2, and then

agent 2 makes the decision y(θ2,m1). Agent 2’s optimal decision rule is y(θ2,m1) = θ2m1 + b2.

Let N1 be the number of partition elements and {a1,0, ..., a1,n, ..., a1,N1} be the cutoff points of
agent 1’s equilibrium communication rule. In particular, a1,n is characterized by

(a1,n+1 − a1,n)− (a1,n − a1,n−1) =
4E(θ2)

E(θ22)
(b2 − b1) =

3

2A2
4(b2 − b1).

In the most informative equilibrium, N∗1 = 〈−12 + 1
2(1 + 4A2A1

3|b1−b2|)
1/2〉, and

E(m2
1) =

A21
3
− A21

12N2
1

−
(b1 − b2)2( 3

2A2
)2(N2

1 − 1)

3
(24)

Comparing the expressions for N∗1 and N
∗
2 , we see that the number of partition elements

is the same under D1 and D2 delegation. The principal’s equilibrium payoff UPD2 under D2

delegation is

UPD2 = −E[(θ2m1 + b2 − θ1θ2)2] = −E(θ21)E(θ22) + E(θ22)E(m2
1)− b22 (25)

Proposition 5 Between D1 and D2 delegation, it is always optimal for the DM to delegate

decision rights to the agent with the smaller bias in absolute value.
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Proof. Without loss of generality, suppose agent 1 has a smaller bias, |b1| < |b2|. We want to
show that D1 delegation is better for the DM. From previous derivations, it is clear that N∗1
under D2 delegation is the same as N∗2 under D1 delegation. Let N

∗ = N∗1 = N∗2 . From (23)

and (25),

UPD1 − UPD2 = E(θ21)E(m2
2)− E(θ22)E(m2

1) + (b22 − b21).

By (22) and (24),

UPD1 − UPD2 =
A21
3

[
A22
3
− A22

12N∗2
− 3(b1 − b2)2(N∗2 − 1)

4A21
]

−A
2
2

3
[
A21
3
− A21

12N∗2
− 3(b1 − b2)2(N∗2 − 1)

4A22
] + (b22 − b21)

= b22 − b21 > 0.

Therefore, D1 delegation yields a higher ex ante payoff.

Proposition 5 indicates that decision rights should be delegated to the agent with the smaller

bias. Note that this does not depend on which agent’s private information has more underly-

ing uncertainty. Intuitively, under either delegation arrangement the agent with the decision

rights ends up after communication with the same amount of information to utilize because the

equilibrium information transmission depends only on the difference between the biases |b1− b2|
(i.e., E(θ21)E(m2

2) under D1 delegation equals E(θ22)E(m2
1) under D2 delegation). Thus decision

rights should be delegated to the agent with the smaller bias to minimize the loss of control.

5.2 Comparison between delegation and simultaneous communication

Now without loss of generality, suppose agent 1 has a smaller bias, |b1| < |b2|. Between the
two delegation arrangements, D1 delegation is optimal. We are interested in identifying the

conditions under which the principal has an incentive to delegate instead of retaining decision

rights and engaging in simultaneous cheap talk with both agents.

Proposition 6 When two agents have like biases and informative communication is feasible

from agent 1 under simultaneous communication, then the DM prefers D1 delegation to simul-

taneous cheap talk.

Proposition 6 is related to Dessein (2002), who shows that in a one-sender cheap talk model

the principal prefers delegation whenever cheap talk is informative. In our two-sender setting, the

choice between delegation and communication becomes more complex. To understand Propo-

sition 6, consider the four effects of delegation relative to simultaneous communication, where
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the sign in parentheses indicates whether the effect makes delegation more or less attractive to

the DM.

(i) Delegation leads to a loss of control, measured by b21. (-)

(ii) Delegation always leads to more information being utilized in the dimension of θ1 because

E(θ21) ≥ E(m2
1). (+)

(iii) E(θ21) ≥ E(m2
1) means x2D ≤ x2. The strategic complementarity of the agents’informa-

tion transmissions will lead to more information being transmitted by agent 2 under delegation.

(+)

(iv) Agent 2’s effective bias changes from |b2| under simultaneous communication to |b2− b1|
under delegation, which affects agent 2’s equilibrium information transmission. (?)

The last three effects measure the potential informational gain under delegation relative to

simultaneous communication.26 While effects (ii) and (iii) always favor delegation, effect (iv)

depends on whether the two agents have like or opposing biases. When the two agents have like

biases, optimal delegation leads to a smaller effective bias in communication, |b2 − b1| < |b2|.
Thus both effects (iii) and (iv) work in the same direction: more information is transmitted

by agent 2 under delegation. This additional informational gain– absent in Dessein’s (2002)

one-sender cheap talk model– makes the overall informational gain under delegation even larger

when the agents have like biases. Thus delegation is preferred by the DM.

Example 3 Suppose A1 = 5, A2 = 7, b1 = 1
8 and b2 = 1

2 . Under simultaneous communication,

N∗1 = 9, N∗2 = 4, E(m2
1) = 8.28759, and E(m2

2) = 15.9644. Under D1 delegation, the effective

bias is |b2 − b1| = 3/8. By the inequality N2D(N2D − 1) < A1A2
3|b2−b1| , N

∗
2D = 5. The difference

between the principal’s ex ante payoffs can be expressed as

UPD1 − UPST =

[
(
25

3
)(16.0688)− 1

64

]
− (8.28759)(15.9644) = 1.58446.

Delegation dominates simultaneous communication.

The agents need not have like biases for delegation to dominate simultaneous communication.

Even if the agents have opposing biases such that effect (iv) works against delegation, effects (ii)

and (iii) can still outweigh effect (iv), meaning that delegation leads to an informational gain.

The following example illustrates this.

26Dessein (2002) compares the information gain from the second effect to the loss of control in the first effect.
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Example 4 Suppose A1 = 5, A2 = 7, b1 = 1
8 and b2 = −14 . Under D1 delegation, the effective

bias is again |b2 − b1| = 3
8 . Because |b2 − b1| =

3
8 , U

P
D1 is the same as in the previous example.

Under simultaneous communication, N∗1 = 9, N∗2 = 4, E(m2
1) = 8.28805, and E(m2

2) = 16.1536.

UPD1 − UPST =

[
(
25

3
)(16.0688)− 1

64

]
− (8.28805)(16.1536) = 0.00904693.

Again delegation dominates simultaneous communication.

The proof of Proposition 6 indicates that as long as informative communication is feasible

for agent 1 under simultaneous communication and more information is transmitted by agent 2

under D1 delegation than under simultaneous communication (E(m2
2D) ≥ E(m2

2)), the principal

prefers delegation.27 Thus we have the following corollary.

Corollary 3 Suppose the agents have opposing biases. As long as |b1|/|b2| is small enough such
that E(m2

2D) ≥ E(m2
2) and informative communication is feasible for agent 1 under simultaneous

communication, D1 delegation leads to a higher ex ante payoff for the principal.

Of course, when the agents have opposing biases and |b1| is big enough, then effect (iv)
might outweigh effects (ii) and (iii), leading to a small information gain or even an information

loss under D1 delegation relative to simultaneous communication. In this case, simultaneous

communication dominates delegation. The following example illustrates this possibility.

Example 5 Suppose A1 = 5, A2 = 7, b1 = 1
8 and b2 = −12 . By Corollary 2, under simultaneous

communication the principal’s expected utility is the same as in example 4. Under D1 delegation,

it can be verified that N∗2D = 2. Because |b2 − b1| = 5
8 , E(m̄2

2D) = 15.7859. Thus

UPD1 − UPST =

[
(
25

3
)(15.7859)− 1

64

]
− (8.28759)(15.9644) = −0.772796.

Simultaneous communication dominates delegation.

27Proposition 6 specifies a suffi cient condition such that D1 delegation is optimal that might not be necessary. To
prove the analytical result, we need informative communication to be feasible under simultaneous communication
because only with this condition are we able to show unambiguously that the magnitude of the loss of control is
always smaller than that of the informational gain with delegation. If both senders have almost identical but very
large biases such that no information is revealed under simultaneous communication, delegation might dominate
simultaneous communication as a lot of information will be revealed from agent 2 to agent 1 under delegation.
No unambiguous results, however, can be derived because the loss of control will be very large as well due to the
very large biases.
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Given that our model has four parameter values, it is hard to provide general and clean

conditions under which simultaneous communication dominates delegation. So we focus on the

symmetric case.

Corollary 4 Suppose A1 = A2 = A, b1 = b, and b2 = −b with b > 0. If A2/36 < b < A2/24,

then simultaneous communication leads to a higher ex ante payoff for the principal than D1

delegation.

Proposition 6 and Corollaries 3 and 4 generate some interesting empirical implications. First,

between two functionally parallel agents (e.g., division managers), it is possible that decision

rights will be delegated to one of the two agents. In the example of a CEO choosing a plant

size, for instance, it is possible that the CEO will delegate decision rights to the production

manager if he has a smaller bias than the marketing manager. Second, we are more likely to

observe delegation when the agents’preferences are biased in the same direction relative to the

principal. In the context of politics, delegation is more likely to be observed when both experts

are either both more liberal than the DM or both more conservative than the DM. On the other

hand, delegation is less likely to be observed if one expert is more liberal and the other more

conservative than the DM. In the context of firm organization, if both division managers are

biased toward choosing a bigger factory size (e.g., empire building) relative to the CEO, then

delegation is more likely– again because the agent with the decision rights is able to extract

more information from communication with the other agent than the DM would be able to

through simultaneous communication.

6 Conclusion and Discussion

We study a two-sender cheap talk model in which two experts have partial and non-overlapping

information regarding the state of the world and communicate to the receiver simultaneously.

The receiver’s ideal action is multiplicative in the experts’private information, meaning that the

sensitivity of the receiver’s ideal action to one expert’s information depends on the other expert’s

private information. When the experts’biases are type-independent, we show that information

transmission displays strategic complementarities in that more informative communication from

one expert induces more informative communication from the other. Interestingly, the informa-

tiveness of communication from both experts in equilibrium does not depend on whether they

have like or opposing biases, but only depends on the magnitudes of these biases. When the

decision-maker can assign the experts to the different dimensions of the state space, we show
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that under a broad range of circumstances this assignment will not affect the decision-maker’s

expected utility.

When experts’biases are type-dependent, the information transmissions could be strategic

subsitutes in that more informative communication from one expert induces less informative

communication from the other. The information transmissions could also be strategic com-

plements with type-dependent biases, or the information transmissions could exihibit strategic

complementarity when little information is transmitted and strategic substitutability when a lot

of information is transmitted. The driving force behind the strategic interaction between the

experts’information transmissions is a variance effect.

We then study delegation when the decision rights are delegated to one of the two experts

when the biases are type-independent. We show that the decision-maker, if he ever delegates, al-

ways prefers to delegate decision rights to the expert with the smaller bias. Comparing delegation

to simultaneous communication, we demonstrate that when two experts have like biases, dele-

gation is always superior for the decision-maker whenever informative communication between

the decision-maker and the experts is possible. On the other hand, simultaneous communication

dominates delegation when the experts have opposing biases and the smaller bias is big enough.

Unlike previous models of strategic communication with multiple experts in which the ex-

perts observe basically the same realized state of the world, our model highlights how the

relationship between the experts’ private information influences their communication to the

decision-maker. We emphasize that there could be strategic interactions between the experts’

information transmissions insofar as how much information one expert transmits may depend

on how much information the other expert transmits.

There are several ways to extend our analysis. The first is to consider sequential com-

munication. Specifically, one expert sends a message first, and then the other expert sends a

message after observing the first expert’s message.28 A number of questions regarding sequential

communication suggest themselves. First, which agent should communicate first in sequential

communication to maximize the receiver’s payoff?29 Second, how does sequential communica-

tion compare to simultaneous communication and delegation in terms of the receiver’s payoff?

Another possible extension is to consider the case in which the two experts’pieces of private

information are correlated. In our paper, for simplicity, they are assumed to be independent.

With correlated private information, on top of the variance effect identified in this paper, there
28Under sequential communication, the second sender’s equilibrium strategy– a partition equilibrium as in CS–

is easy to derive, but characterizing the first sender’s equilibrium strategy is diffi cult. By changing his report, the
first sender can potentially induce different partitions from the second sender.
29Ottaviani and Sorensen (2001) show that in committee debate the order of speech affects information trans-

mission and thus matters.
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could be an information congestion effect as in Austen-Smith (1993) and Morgan and Stocken

(2008): when one expert transmits more information, the receiver’s action will be less sensitive

to the other expert’s report, and the other expert might then have a stronger incentive to distort

his information in the direction of his own bias. As long as the correlation is not too strong,

however, we expect the variance effect to continue to dominate and the strategic interaction

between the experts’information transmissions to exibit similar patterns to those in the current

paper. We leave the complete analysis for future research.
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Appendix

Examples in which the ideal action is multiplicative in two states.

Consider the CEO example in which θ1, observed only by the marketing manager, is the

demand size and θ2, observed only by the production manager, is the effi ciency of production.

Denote the output (size) of the new factory as Q, and suppose the firm is a monopoly. The

demand faced by the firm is Q = θ1(K −P ), where P is the price and K some known constant.

K−P can be interpreted as the demand curve for individual consumers, while θ1 is the number
of consumers or market size. The marginal cost of production is c. We define the the effi ciency

of production as θ2 ≡ (K − c)/2. In the current setup, the marginal revenue is given by

MR(Q) = K − 2Q/θ1. Setting the marginal revenue equal to the marginal cost, we derive the

optimal (profit maximizing) output Q∗ as follows: Q∗ = θ1(K−c)/2 = θ1θ2. That is, the CEO’s

ideal action is multiplicative in the two states.

In the previous example the individual demand curve is linear. Now consider demand curves

with constant elasticities. In particular, suppose Q = θ1P
−ε, where the elasticity parameter

ε (> 0) is common knowledge. We define the effi ciency of production as θ2 ≡ ( ε
ε−1)−εc−ε. In

this situation, the marginal revenue is given by MR(Q) = ε−1
ε θ

1/ε
1 Q−1/ε. The profit maximizing

output Q∗ satisfies Q∗ = ( ε
ε−1)−εc−εθ1 = θ1θ2. Again, the CEO’s ideal action is multiplicative

in the two states.

Proof of Lemma 1:

Proof. We first show that given any communication rule for agent 2, µ2(·), agent 1’s optimal
communication rule is of the interval form. Suppose the DM holds a posterior belief v1 regarding

θ1. Then agent 1’s expected utility is

Eθ2
[
UA1 |υ1, θ1

]
= −Eθ2

[
{y∗(υ1, E [θ2|µ2(·)])− y∗(θ1, θ2)− b1}2

]
. (26)

Given that y∗1 is monotonic, it can be readily seen that
∂2

∂θ1∂v1
Eθ2 [U

A1 |v1, θ1] > 0. Now consider

the second partial derivative

∂2

∂θ21
E
θ2

[
UA1 |υ1, θ1

]
= −Eθ2 [2y∗11(θ1, θ2){y∗(θ1, θ2)− y∗(υ1,m2) + b1}+ 2(y∗1(θ1, θ2))

2]. (27)

Observing (27), we can see that ∂2

∂θ21
E
θ2

[
UA1 |υ1, θ1

]
< 0 if |y∗11/y∗1| is small enough.

The fact that ∂2

∂θ1∂v1
Eθ2 [U

A1 |v1, θ1] > 0 and ∂2

∂θ21
Eθ2 [U

A1 |v1, θ1] < 0 imply that for any two

different posterior beliefs of the DM, say v1 < v1, there is at most one type of agent 1 that is

indifferent between both. Now suppose that contrary to interval equilibria, there are two states
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θ1 < θ1 such that Eθ2 [U
A1 |v1, θ1] ≥ Eθ2 [U

A1 |v1, θ1] and Eθ2 [U
A1 |v1, θ1] > Eθ2 [U

A1 |v1, θ1].
Then Eθ2 [U

A1 |v1, θ1] − Eθ2 [UA1 |v1, θ1] < Eθ2 [U
A1 |v1, θ1] − Eθ2 [UA1 |v1, θ1], which contradicts

∂2

∂θ1∂v1
[UA1 |v1, θ1] > 0.

The same argument can be applied to agent 2 given any communication rule µ1(·) for agent
1. Therefore, all PBE of the communication game must be interval equilibria.

Proof of Lemma 2.

Proof. We prove the results for E(m2
1). The results for E(m2

2) can be proved similarly. From

(4), we have

a1,n − a1,n−1 =
A1
N1

+ 2b1x2(2n−N − 1),

a1,n + a1,n−1 =
A1
N1

(2n− 1) + 2b1x2[2n
2 − (2n− 1)(N + 1)].

By definition,

E(m2
1) =

N1∑
n=1

∫ a1,n

a1,n−1

1

A1

(a1,n + a1,n−1)2

4
=

1

4A1

N1∑
n=1

(a1,n − a1,n−1)(a1,n + a1,n−1)
2

=
A21
3
− A21

12N2
1

− b21x
2
2(N

2
1 − 1)

3
.

This proves part (i). To show part (ii), consider the change in E(m2
1) when N1 decreases to

N1 − 1:

E(m2
1)(N1)− E(m2

1)(N1 − 1) =
A21
12

[
1

(N1 − 1)2
− 1

N2
1

]− b21x
2
2

3
[N2
1 − (N1 − 1)2]

∝ A21 − 4b21x
2
2N

2
1 (N1 − 1)2 > 0

The last inequality follows from a1,1 > 0, which implies that A1 > 2b1x2N1(N1 − 1). Thus

E(m2
1) is strictly increasing in N1. x2 affects E(m2

1) in two ways. First, a decrease in x2 directly

increases E(m2
1). Second, by (5) a decrease in x2 leads to a weakly larger N1, which increases

E(m2
1) as well. Therefore, E(m2

1) is strictly decreasing in x2. By similar logic, E(m2
1) is strictly

decreasing in b1. Since x2 is decreasing in E(m2
2), it follows that E(m2

1) is strictly increasing in

E(m2
2).

To prove part (iii), note that E(m2
1) = (E(θ1))

2 + var[E(θ1|m1)]. Because the conditional

variance var[E(θ1|m1)] ∈ [0, var(θ1)], (E(θ1))
2 ≤ E(m2

1) ≤ E(θ21), and part (iii) immediately

follows.

Proof of Proposition 2:
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Proof. By modifying the proof of Lemma 1 slightly, we can show that all PBE must be interval

equilibria when the domain of state θi is extended to [−Bi, Ai]. With this new support, the

difference equations that characterize the partition points, (2) and (3), remain the same. The

starting boundary condition implies that ai0 = −Bi instead of 0, but otherwise the results do

not change qualitatively. If B2 = A2, then E(θ2) = 0. Now if agent 2’s communication is

informative (var(m2) > 0), the right hand side of (2), or the effective bias for agent 1, is 0. As a

result, in the most informative equilibrium, the number of partition elements N goes to infinity

and agent 1 reveals his information fully. If B2 6= A2, then E(θ2) 6= 0 and the right hand side of

(2) is not zero either. As a result, in the most informative equilibrium the number of partition

elements N is still finite.

Proof of Proposition 3:

Proof. (i) A suffi cient condition for agent 1’s communication to be uninformative under both

assignments is 6r|b| ≥ A1A2. To see this, consider NA assignment. N∗1 is the largest N1 such

that 2r|b|x2N1(N1 − 1) < A1. Given x2 ≥ 3
2A2
, 2r|b|x2N1(N1 − 1) ≥ 3r|b|N1(N1 − 1)/A2. Now

if N∗1 ≥ 2, then 3r|b|N1(N1 − 1)/A2 ≥ 6r|b|/A2, which by the condition 6r|b| ≥ A1A2 is bigger

than A1. This contradicts 2r|b|x2N∗1 (N∗1 − 1) < A1. Therefore, N∗1 = 1. By a similar argument,

one can show that under PA assignment N ′∗2 = 1.

Now consider NA assignment. Given N∗1 = 1, E(m2
1) =

A21
4 and x1 = 2

A1
. N∗2 is the largest

integer such that 4|b|N2(N2 − 1) < A1A2. Under PA assignment, N ′∗2 = 1, E(m′22 ) =
A22
4 ,

x′2 = 2
A2
. N ′∗1 is the largest integer such that 4|b|N ′1(N ′1 − 1) < A1A2. It can be readily seen

that N ′∗1 = N∗2 ≡ N∗. The difference between the ex ante payoffs from NA assignment and PA

assignment is

E(m2
1)E(m2

2)− E(m′21 )E(m′22 ) =
A21
4

[
A22
3
− A22

12N∗2
− 4b2(N∗2 − 1)

3A21
]

−A
2
2

4
[
A21
3
− A21

12N∗2
− 4b2(N∗2 − 1)

3A22
] = 0.

Therefore, both assignments lead to the same ex ante payoff.

(ii) When b → 0, under NA assignment E(m2
2) =

A22
3 and x1 = 3

2A2
. Moreover, N∗1 is the

largest integer such that 4r|b|N1(N1−1) < A1A2. Similarly, under PA assignment E(m′21 ) =
A21
3

and x′2 = 3
2A1
. Moreover, N ′∗2 is the largest integer such that 4r|b|N ′2(N ′2 − 1) < A1A2. It can

be readily seen that N ′∗2 = N∗1 ≡ N∗. The difference between the ex ante payoffs from NA
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assignment and PA assignment is

E(m2
1)E(m2

2)− E(m′21 )E(m′22 ) =
A22
3

[
A21
3
− A21

12N∗2
− 3r2b2(N∗2 − 1)

4A22
]

−A
2
1

3
[
A22
3
− A22

12N∗2
− 3r2b2(N∗2 − 1)

4A21
] = 0.

Thus both assignments lead to the same ex ante payoffs.

(iii) Define s ≡ x1x2 and t = x1/x2. Now x1 =
√
st and x2 =

√
s/t. Using s and t, under

NA assignment equations (8) and (9) can be rewritten as

A2
3
− A2

12N∗22
− b22st(N

∗2
2 − 1)

3A2
=
A1
3
t− A1

12N∗21
t− b21s(N

∗2
1 − 1)

3A1
=
√
t/s/2. (28)

From (28), we can solve for t as a function of s:

t =

A2
3 −

A2
12N∗22

+
b21s(N

∗2
1 −1)

3A1

A1
3 −

A1
12N∗21

+
b22s(N

∗2
2 −1)

3A2

.

Substituting the above expression for t into (28) and rearranging, we get an equation in s:

C −D =
1

2
√
s
×

√
C +D + (

1

3
− 1

N∗21
)
b21s(N

∗2
1 − 1)

3
+ (

1

3
− 1

N∗22
)
b22s(N

∗2
2 − 1)

3
, (29)

where C = A1A2(
1

3
− 1

N∗21
)(

1

3
− 1

N∗22
) and D =

b21b
2
2s
2(N∗21 − 1)(N∗22 − 1)

9A1A2
.

Under PA assignment, define s′ ≡ x′1x
′
2 and t

′ = x′1/x
′
2. Following the same procedure, we

can get an equation in s′ similar to (29). Given that N∗1 = N∗
′
2 and N∗2 = N∗

′
1 , the equation in

s′ is the same as that in s with the positions of b1 and b2 switched and the positions of N∗1 and

N∗2 switched. Inspecting (29), we see that the equation remains the same if we simply switch b1

and b2 and switch N∗1 and N
∗
2 . Therefore, both s and s

′ are defined by the same equation (29),

and we must have s = s′. Thus x1x2 = x′1x
′
2, which implies E(m2

1)E(m2
2) = E(m′21 )E(m′22 ).

Proof of Lemma 3:

Proof. Part (i).

E(m2
i ) =

1

2

Ni∑
k=1

∫ ai,k

ai,k−1

(
ai,k−1 + ai,k

2
)2dθi =

1

8

Ni∑
k=1

(ai,k − ai,k−1)(ai,k−1 + ai,k)
2.

Using the expression of ai,n in (18) and then simplifying, we get the desired expression (19).

Part (ii). Inspect the expression of (19). When Ni varies in the domain between 1 and N i,

sin(θiNi) is positive and increasing in Ni. Given that bi is negative, E(m2
i ) is increasing in Ni.
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Now to show that E(m2
i ) is increasing in bi we only need to show that E(m2

i ) is increasing in bi

when Ni is fixed, because N i is increasing in bi and we have shown that E(m2
i ) is increasing in

Ni. Specifically,

sgn{∂E(m2
i )

∂(bi)
} = sgn{−(1 + bi) + cos2(Niθi) + (1 + bi)

3 + 4bi√
−bi(1 + bi)

[1 + 2biNi
cos(Niθi)

sin(Niθi)
]}.

Using the above expression and given that Niθi ∈ [0, π/2], to show that ∂E(m
2
i )

∂(bi)
> 0 it is suffi cient

to show that 3+4bi >
√
−bi(1 + bi) = sin(θi). This indeed holds because bi ∈ [−14 , 0]. Therefore,

E(m2
i ) is increasing in bi or E(m2

i ) is decreasing in |bi|.
Part (iii). By bi ≡ E(θj)

E(m2
j )
− 1, |bi| is increasing in E(m2

j ). Thus, by part (ii), E(m2
i ) is

decreasing in E(m2
j ).

Proof of Proposition 6:

Proof. We first show that E(m2
2) under simultaneous communication is smaller than E(m2

2D)

under D1 delegation. From previous results, under simultaneous communication N∗2 is the

largest integer such that 2|b2| A1
2E(m2

1)
N2(N2 − 1) < A2. Under D1 delegation, N∗2D is the largest

integer such that 2|b2 − b1| A1
2E(θ21)

N2(N2 − 1) < A2. Since b1 and b2 have the same sign and

|b1| < |b2|, |b2−b1| < |b2|. Moreover, E(θ21) ≥ E(m2
1). Therefore, N

∗
2D ≥ N∗2 . Comparing E(m2

2)

and E(m2
2D),

E(m2
2) =

A22
3
− A22

12N∗22
− b22A

2
1(N

∗2
2 − 1)

12[E(m2
1)]

2
,

E(m2
2D) =

A22
3
− A22

12N∗22D
− (b2 − b1)2A21(N∗22D − 1)

12[E(θ21)]
2

,

E(m2
2D)− E(m2

2) ≥
b22A

2
1(N

∗2
2 − 1)

12[E(m2
1)]

2
− (b2 − b1)2A21(N∗22 − 1)

12[E(m2
1)]

2
≥ 0;

where the first inequality holds because E(m2
2D) is increasing in N∗2D and N∗2D ≥ N∗2 , and the

second inequality follows from the fact that |b2 − b1| < |b2| and E(θ21) ≥ E(m2
1).

The difference between the DM’s ex ante payoffs can be expressed as

UPD1 − UPST = E(θ21)E(m2
2D)− E(m2

1)E(m2
2)− b21

≥ E(m2
2)[E(θ21)−

b21
E(m2

2)
− E(m2

1)],

where the inequality is due to E(m2
2D) − E(m2

2) ≥ 0. Now UPD1 − UPST > 0 is equivalent to the

42



term in the bracket being strictly greater than 0. More explicitly,

E(θ21)−
b21

E(m2
2)
− E(m2

1) =
A21

12N∗21
+
b21A

2
2(N

∗2
1 − 1)

12[E(m2
2)]

2
− b21
E(m2

2)

>
b21A

2
2(N

∗2
1 − 1)

12[E(m2
2)]

2
− b21
E(m2

2)
≥ b21
E(m2

2)
(
N∗21 − 1

4
− 1),

where the second inequality follows from the fact that E(m2
2) ≤

A22
3 . From the above expression,

it is evident that UPD1 − UPST > 0 if N∗1 ≥ 3.

Now consider the case in which N∗1 = 2. Note that under simultaneous communication, the

partition a1,1 > 0 satisfies

a1,1 + a1,1 +
2b1A2
E(m2

2)
= A1.

Given that a1,1 > 0, we have 2|b1|A2
E(m2

2)
< A1 and

E(θ21)−
b21

E(m2
2)
− E(m2

1) =
A21
48

+
b21A

2
2

4[E(m2
2)]

2
− b21
E(m2

2)

>
A22b

2
1

12E(m2
2)

+
b21A

2
2

4[E(m2
2)]

2
− b21
E(m2

2)
=

b21A
2
2

3[E(m2
2)]

2
− b21
E(m2

2)
≥ b21
E(m2

2)
(1− 1) = 0,

where the first inequality follows from 2|b1|A2
E(m2

2)
< A1 and the second follows from the fact that

E(m2
2) ≤

A22
3 . Thus U

P
D1 − UPST > 0 if N∗1 = 2.

Proof of Corollary 4:

Proof. Recall that the inequalities in (11) identify the upper and lower bounds for the largest

possible number of partition elements. By (11), the condition b > A2/36 implies that the largest

partition element N∗ = 1 when the effective bias between the sender and the receiver is 2b. Thus

informative communication is not feasible under D1 delegation. Similarly, by (11), the condition

b < A2/24 implies that the largest partition element N∗ ≥ 2 when the effective bias between

the sender and the receiver is b. Thus informative communication is feasible under simultaneous

talk for both agents and the number of partition for each agent is at least 2. The DM’s payoff

difference between simultaneous talk and D1 delegation now can be expressed as

UPST − UPD1 = E(m2
1)E(m2

2) + b2 − E(θ21)[E(θ2)]
2 = E(m2

1)E(m2
2) + b2 − A4

12
.

Under simultaneous communication, for each agent i we pick an equilibrium with two partitions

with the largest possible xi, A/2 (recall xi =
E(θj)

E(m2
j )
≤ A

2 ). Under such an equilibrium, E(m2
i ) =

43



15
48A

2− 4b2

A2
. Note that the E(m2

i ) under the actual equilibrium with simultaneous communication

is bigger than that in the equilibrium we picked. Therefore,

UPST − UPD1 > [
15

48
A2 − 4b2

A2
]2 + b2 − A4

12

∼ 11

768
A4 +

16

A4
b4 − 3

2
b2 ≡ f(b).

It is easy to verify that for b ∈ (A
2

36 ,
A2

24 ), f(b) is decreasing in b, and f(b = A2

24 ) > 0. Therefore,

f(b) > 0 for all b ∈ (A
2

36 ,
A2

24 ), and simultaneous talk dominates D1 delegation.
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