
RAND Journal of Economics
Vol. 39, No. 2, Summer 2008
pp. 547–564

Search with learning: understanding
asymmetric price adjustments

Huanxing Yang

and

Lixin Ye∗

In many retail markets, prices rise faster than they fall. We develop a model of search with
learning to explain this phenomenon of asymmetric price adjustments. By extending our static
game analysis to the dynamic setting, we demonstrate that asymmetric price adjustments arise
naturally. When a positive cost shock occurs, all the searchers immediately learn the true state;
the search intensity, and hence the prices, fully adjust in the next period. When a negative cost
shock occurs, it takes longer for nonsearchers to learn the true state, and the search intensity
increases gradually, leading to slow falling of prices.

1. Introduction

� Firms are quick to raise prices in response to their cost increases, but not so keen to
reduce prices when their costs fall. This widespread phenomenon is known as asymmetric price
adjustment, or the rockets and feathers. This pattern of asymmetric price adjustment has been
reported in a broad range of product markets. In fact, a growing empirical literature documents
asymmetric price adjustment in various markets, including gasoline (Bacon, 1991; Karrenbrock,
1991; Duffy-Deno, 1996; Borenstein et al., 1997; Eckert, 2002; Deltas, 2004), fruit and vegetables
(Pick et al., 1991; Ward, 1982), beef and pork (Boyd and Brorsen, 1988; Goodwin and Holt, 1999;
Goodwin and Harper, 2000), and banking (Hannan and Berger, 1991; Neumark and Sharpe, 1992;
O’Brien, 2000).1 According to Peltzman (2000), asymmetric price adjustment is found in more
than two of every three markets examined in a large sample with 77 consumer goods and 165
producer goods.

Despite these extensive empirical studies confirming the general pattern of asymmetric price
adjustment, there is little theoretical work examining this phenomenon. In fact, asymmetric price
adjustment first appeared to be inconsistent with conventional microeconomic theory, which
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1 It is found that deposit rates respond more quickly to an increase than to a decrease of money market rates.
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usually suggests that an increase or decrease of input prices should affect marginal costs, and
hence move prices up or down in a symmetric, rather than asymmetric, way. As Peltzman (2000)
puts it, the “stylized fact” of asymmetric price adjustment “poses a challenge to theory.” This
article attempts to help bridge such a gap in the literature.

More specifically, we develop a model of search with learning in a dynamic framework.
We start with a description of the static game. There are a continuum of consumers and a
continuum of firms with capacity constraints. Firms have a common unit production cost (either
high or low). Although known to the firms, the cost is unknown to the consumers. There are
three types of consumers: the low search cost consumers who always search, the high search
cost consumers who never search, and critical consumers whose search cost is intermediate. The
decision for a critical consumer to search or not depends on whether the expected benefit of
searching outweighs her search cost, so the percentage of consumers who search (the search
intensity) will be endogenously determined. We adopt the protocol of nonsequential search, that
is, consumers who search observe the prices charged by all firms, so searchers always shop at
firms with the lowest price available (unless they are rationed due to firms’ capacity constraint,
in which case they will shop at the firms with the next lowest price, and so forth). On the other
hand, nonsearchers shop randomly and only observe one price.

In the static game, we show that there is a unique equilibrium. Critical consumers hold
heterogeneous beliefs regarding the firms’ production cost (the state), and the equilibrium search
intensity only depends on critical consumers’ distribution of initial beliefs. As more consumers’
initial beliefs about the high-cost state lie below some cutoff level, the equilibrium search intensity
increases. This is because prices are more dispersed when the cost is low due to competition among
firms, leading to a higher expected gain from search. The equilibrium price distribution depends
on the search intensity and the actual cost state. Specifically, the equilibrium prices are increasing
in the actual cost, and are decreasing in search intensity, because each firm’s demand becomes
more elastic as more consumers search. Thus, the full adjustment of equilibrium prices requires
the adjustment of search intensity, which solely depends on the critical consumers’ belief-updating
process.

We then extend our static game analysis to a dynamic setting where the cost evolves
according to a Markov process with positive persistence. Because consumers never observe the
cost realizations, each consumer updates her belief based on the history of prices she observed.
Thus consumers have heterogeneous beliefs. In equilibrium, searchers and nonsearchers have
different belief-updating processes. Searchers always correctly learn the true state, because they
always observe the lowest price that fully reveals the true state. But nonsearchers do not always
learn the true state.

Asymmetric price adjustment thus arises naturally. In the event of positive cost shocks, all
the searchers among the critical consumers immediately learn the true state and stop searching.
In the following period, no critical consumers search and the search intensity is the lowest
possible. Thus, the search intensity and hence the prices fully adjust within two periods. In
the event of negative cost shocks, it takes longer for critical consumers who do not search
originally to learn the true state and start searching, thus the search intensity increases gradually,
leading to slow falling of prices. To sum up, asymmetric price adjustment is caused by learning
asymmetry between searchers and nonsearchers, which is closely related to the evolution of search
intensity.

More formally, we show that given the evolution of the underlying cost states, there
is a unique equilibrium in the dynamic game, with the evolution of the distribution of
beliefs, the search intensity, and the prices uniquely determined. We demonstrate that as
long as the cost shocks are persistent, the pattern of asymmetric price adjustments emerges
in statistical sense on the equilibrium path of the dynamic game. Moreover, as the cost
shocks become more persistent, the pattern of asymmetric price adjustments becomes more
prominent, because the downward price adjustment on average spreads over longer periods of
time.
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Several recent papers (Lewis, 2005; Tappata, 2006; Cabral and Fishman, 2006) also attempt
to explain asymmetric price adjustment based on search models.2 Lewis (2005) develops a
reference price search model in which the expected distribution of prices is exogenously given,
rather than endogenously determined; consumers have adaptive expectations and thus are not
rational. On the other hand, consumers are rational in our model, because they form expectations
of prices based on all the information available.

Cabral and Fishman (2006) develop a search model in which the cost changes are positively
but not perfectly correlated across firms.3 They show that consumers have a greater incentive to
search in the case of large price increases or small price decreases, but little incentive to search
when prices increase a little or decrease by a lot. This implies that firms are reluctant to change
prices when costs decrease by a little bit or increase by a lot, but quick to change prices as
costs increase by a little bit or decrease by a lot. In other words, when the cost change is small,
the price adjustment exhibits downward rigidity and upward flexibility; when the cost change is
big, the asymmetry is reversed: prices exhibit downward flexibility and upward rigidity. These
implications are quite different from ours.

The paper that is most closely related to ours is Tappata (2006). Our article differs from
Tappata in an important aspect in terms of modelling. That is, although Tappata assumes that the
firms’ past costs are known to the consumers, we do not impose this assumption in our analysis.
Because consumers know past costs, there is no learning in Tappata. In contrast, the learning
asymmetry between searchers and nonsearchers about the underlying cost is the driving force in
our analysis. This modelling difference leads to very different empirical implications. In Tappata’s
setting, because there is no learning, it takes exactly two periods for prices to fully adjust to both
the positive and negative cost shocks. Moreover, in Tappata, the asymmetry in price adjustments
is only present in the first period after a cost shock occurs: the magnitude of price adjustment
in the first period is bigger in the case of positive cost shocks than in the case of negative cost
shocks. In contrast, by endogenizing the time periods that are needed for prices to fully adjust to
cost shocks, we are able to show that asymmetric price adjustment goes beyond the first period
after a cost shock occurs: although it takes two periods for prices to fully adjust to positive
cost shocks, it takes much longer periods for prices to fully adjust in response to negative cost
shocks.

Our article also contributes to the literature on consumer search, in that we develop a
dynamic search model with consumers, in a heterogeneous fashion, learning about the underlying
states based on the personal histories of prices they observed.4 Several previous papers have
studied equilibrium search with learning (Benabou and Gertner, 1993; Dana, 1994; Fishman,
1996). Benabou and Gertner (1993) study how the correlations among firms’ cost shocks affect
consumers’ incentive to search and the equilibrium prices. In a static model, Dana (1994) shows
that if consumers are uncertain about firms’ costs, then the response of prices to cost shocks will be
limited. In a dynamic framework, Fishman (1996) shows that cost shocks have different short-run
and long-run effects on prices.5 None of these papers study asymmetric price adjustments.

The article is organized as follows. Section 2 presents the static game and characterizes the
unique static game equilibrium. In Section 3, we extend the static game analysis to the dynamic
setting and show that asymmetric price adjustment arises naturally on the equilibrium path. In

2 Borenstein et al. (1997) propose an explanation for asymmetric price adjustments based on Rotemberg and
Saloner’s (1986) model of tacit collusion with stochastic shocks.

3 More specifically, they consider two firms. The costs of the firms either both increase or both decrease, although
the magnitude of the changes might be different.

4 For models based on nonsequential search, see, for example, Salop and Stiglitz (1977); Braverman (1980); and
Varian (1980). For models based on sequential search, see, for example, Burdett and Judd (1983); Rob (1985); and Stahl
(1989).

5 More specifically, Fishman shows that in the case of a general cost (common to all firms) increase, consumers
search too much so as to limit the extent to which prices increase in the short run; however, in the case of an idiosyncratic
cost (specific to only one firm) increase, consumers search too little, leading to price overshooting.
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Section 4, we discuss the restrictions of our key assumptions and the robustness of our results.
Section 5 concludes.

2. Static game

� The model. We consider a market with a continuum of firms producing a homogeneous
good. The total measure of firms is normalized to be 1. All the firms have the same cost c in
producing each unit of the good (firms have common cost shocks). Ex ante, c (i.e., the state of
the world) can take value either c H or cL , where cL < c H . At the beginning of the period, firms
observe the realization of the cost and then compete in prices. We also assume that each firm has
a capacity constraint k (finite), that is, no firm can sell more than k units of the good.6

There is a continuum of consumers with total measure β > 1. The parameter β can also be
interpreted as the number of consumers per firm in the market. Each consumer has a unit demand
with a choke price of v > c H . We assume that β < k, that is, the number of consumers per firm in
the market is less than each firm’s capacity constraint.7 Consumers do not observe the realization
of c. Instead, consumers hold beliefs about the cost realization, which might be heterogeneous
among consumers. Let α denote a consumer’s belief if she believes that the probability of c = c H

is α. The distribution of beliefs among consumers will be specified later. Before observing prices,
consumers make decisions regarding whether to search (become informed) or not to search (stay
uninformed). We adopt the protocol of nonsequential search. Informed consumers observe all
the realized prices and purchase from the firms (stores) with the lowest price available.8 Each
uninformed consumer shops randomly at a firm (store) and only observes that firm’s price.

Each consumer’s type is characterized by her search cost. The first type of consumer (with
proportion λ1) each has search cost s L = 0. These consumers are also called shoppers, who can
be interpreted as those who have obtained price information without incurring nontrivial search
cost (e.g., from TV or internet advertisements, etc.). This type of consumer always searches in
equilibrium regardless of their beliefs about the underlying state. The second type of consumer
(with proportion λ2) each has search cost s H . We assume that s H > v so that this type of consumer
never searches (regardless of their beliefs about the underlying state). The rest of the consumers
(with proportion 1 − λ1 − λ2) each have intermediate search cost s M ∈ (s L , s H ) and they may
or may not search depending on their beliefs about the underlying state. Because beliefs about
the underlying state only matter for this type of consumer, they are henceforth referred to as the
critical consumers. Let F(α) denote the cumulative distribution function of the beliefs among the
critical consumers. In other words, F(α) is the fraction of the critical consumers whose beliefs
are lower than α.

Because there is a capacity constraint for each firm, rationing may occur: for a low-price
firm, the number of consumers shopping at this firm may be bigger than k. We adopt the
proportional rationing rule: if rationing occurs at a firm, each consumer (nonsearcher or searcher)
who shops at that firm will be able to purchase a unit of the good with the same probability. If a
nonsearcher is rationed, she shops randomly at other firms without incurring any cost. If a searcher
is rationed, she goes to the firm with the lowest price among the remaining firms. Should rationing
also occur there, the same search procedure applies until the searcher purchases a unit of the
good.

6 In the dynamic setting, this assumption implies that no firm can sell more than k units of the good per period.
We believe that capacity constraint is prevalent in many product markets. For example, sales of perishable goods such
as fruit, vegetables, beef, or pork are often constrained by the storage space for a given period; even the supply capacity
of gasoline stations within a given period can be limited by things such as petroleum pipeline systems, which are often
operating at their full capacities. This being said, we impose the capacity constraint mainly for tractability of equilibrium
analysis, which is further discussed in Section 4.

7 As will become clear, this assumption makes competition among firms nontrivial.
8 The assumption that searchers observe all the realized prices follows Varian (1980). In Burdett and Judd (1983),

searchers are only able to observe a subset of realized prices. This alternative setting is further discussed in Section 4.
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The timeline of the game is as follows. First, the production cost (the state of the world) is
realized and all the firms observe the common state. The firms then simultaneously set prices.
Finally, consumers decide whether to search and make purchases accordingly.9

As is standard in the search literature, we focus on symmetric equilibria in which all firms
employ the same pricing strategies. Let G be the price distribution and μ be the proportion
of informed consumers, or the search intensity, which is endogenously determined in our model
(μ ≥ λ1). Given the distribution of critical consumers’ beliefs F(α), a symmetric perfect Bayesian
equilibrium is characterized by a pair (μ∗, G∗ (· | c)), with the following properties: given the
equilibrium search intensity μ∗, firms’ optimal pricing strategies yield the equilibrium price
distribution G∗ (· | c); given G∗ (· | c) and F(α), consumers’ optimal search decisions give rise to
the equilibrium search intensity μ∗.

� Analysis with fixed search intensity. We first derive the equilibrium price distribution given
the search intensity μ and the production cost c (the state). Let p

¯
be the lowest price charged in

equilibrium, and let the proportion of the firms that charge p
¯

be η(p
¯
). Note that a p

¯
firm’s sales are

min

{
μβ

η(p
¯
)

+ (1 − μ)β, k

}
.

The first term in the bracket is the demand for a p
¯

firm: it attracts (1 − μ)β nonsearchers, and gets
μβ

η(p
¯
)

searchers. The quantity a p
¯

firm sells is simply the minimum of its demand and capacity.

Lemma 1. In any equilibrium, a firm that charges p
¯

must sell k units of the good.

Proof. Suppose in negation, a firm charging p
¯

sells strictly less than k units in equilibrium. Then
by undercutting p

¯
by an arbitrarily small amount ε, this firm can attract a positive measure of

searchers, thus increasing its sales to k without affecting the profit margin, which destroys the
proposed equilibrium. This implies that in any equilibrium, μβ

η(p
¯
)
+ (1 − μ)β ≥ k.

Lemma 2. There is no equilibrium in which prices are continuously distributed on [p
¯
, p̄], for any

p̄ such that p
¯

< p̄ ≤ v.

Proof. Consider a candidate equilibrium in which prices are continuously distributed on [p
¯
, p̄]

for some p̄ such that p
¯

< p̄ ≤ v. A necessary condition for this to be an equilibrium is that
consumers should be rationed at any p ∈ (p

¯
, p̄): if consumers are not rationed at such a p, then

there is no point to charge p + ε, because a firm can only attract nonsearchers in that case and its
demand is given by (1 − μ)β, which is strictly dominated by charging v. But given that consumers
are rationed at any p ∈ (p

¯
, p̄), which means that each firm charging any p ∈ (p

¯
, p̄) sells k, a p

¯firm can increase its profit margin without affecting its sales by deviating to p ∈ (p
¯
, p̄). This

destroys the proposed equilibrium.

Lemma 3. In any equilibrium, consumers shopping at any p
¯

firm are not rationed. That is,
μβ

η(p
¯
)
+ (1 − μ)β ≤ k.

Proof. Suppose in negation, μβ

η(p
¯
)
+ (1 − μ)β > k. In this case, a positive measure of consumers

(hence searchers) are rationed at p
¯

firms. By Lemma 2, there is a positive number ε such that
no firm charges at any price p ∈ (p

¯
, p

¯
+ ε). Then a firm who charges p

¯
can deviate to some

price p′ ∈ (p
¯
, p

¯
+ ε). Under this deviation, this firm can still attract enough searchers (because

a positive measure of searchers are rationed at p
¯

firms), and thus sell k units with an increased
profit margin. This destroys the proposed equilibrium.

Therefore, μβ

η(p
¯
)
+ (1 − μ)β ≤ k in equilibrium, if there is any. This implies that searchers

are not rationed at p
¯

firms.

9 Because the first and the second type consumers either always or never search, only the critical consumers have
nontrivial decisions to make.
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Lemma 1 and Lemma 3 jointly imply that in equilibrium, we must have μβ

η(p
¯
)
+ (1 − μ)β = k.

That is, no rationing occurs at firms charging the lowest price. Next we will establish that any
equilibrium must have a two-point price distribution.

Lemma 4. Given μ and c, in any candidate equilibrium each firm must charge either p = v or
p = p

¯
∈ (c, v)(p

¯
is to be determined).

Proof. Suppose there is an equilibrium price strictly between p
¯

and v. Then a firm that charges
this price can increase its profit by deviating to charging v. This deviation leads to a higher profit
margin per unit of sales, with the demand unchanged (only the lowest price can attract informed
consumers, given that they are not rationed at the lowest price by Lemma 3). So the only possible
equilibrium is either all firms charging the same price, or a two-price distribution on p

¯
and v.

First consider the candidate equilibrium in which firms charge the same price p = p
¯

> c.
The equilibrium demand for each firm is β. But then a firm can undercut p a little bit and sell
k > β without affecting the profit margin per unit of sales. Thus, this type of equilibrium cannot
exist. All firms charging p = c cannot be an equilibrium either, because by deviating to p = v a
firm can get a positive profit by selling to uninformed consumers (s H > v means that a measure
of λ2β consumers are always uninformed).

Now the only candidate equilibrium left is that firms charge either v or p
¯
. Clearly, p

¯
< v.

What remains to be shown is that p
¯

> c. Because charging v yields a positive profit, charging p
¯should also yield a positive profit, which implies p

¯
> c.

By the above lemmas, there is only one possible equilibrium, with equilibrium prices
characterized by a two-point distribution. Denote π (v) and π (p

¯
) as the profits of a firm that

charges v and p
¯
, respectively. Explicitly,

π (v) = (1 − μ)β(v − c)
π (p

¯
) = k(p

¯
− c).

By Lemma 3, a firm charging v can only attract nonsearchers. Thus its demand and sales are (1 −
μ)β, and its profit margin is v − c.10 By Lemma 1, a firm charging p

¯
sells k, with a profit margin

p
¯
− c. The equilibrium is characterized by the following two conditions:

π (v) = π (p
¯
) (1)

μβ

η(p
¯
)

+ (1 − μ)β = k. (2)

Condition (1) says that a firm should be indifferent between charging v and p
¯
, and condition (2)

says that the demand for a p
¯

firm exactly equals its capacity k.

Proposition 1. Given μ and c, there is a unique equilibrium: a proportion of 1 − η(p
¯
) firms charge

price v, and a proportion of η(p
¯
) firms charge price p

¯
∈ (c, v), where η(p

¯
) and p

¯
are determined

by conditions (1) and (2). More explicitly,

η(p
¯
) = μβ

k − β + μβ
(3)

p
¯

= c + (1 − μ)β

k
(v − c). (4)

Proof. We only need to show the price distribution specified above is an equilibrium. Note that
from condition (2), searchers are not rationed at p

¯
. We show that firms have no incentive to deviate.

First consider a firm charging v. Deviating to any p ∈ (p
¯
, v) would lead to a lower profit margin

without increasing the sales (because searchers are not rationed at p
¯
), hence such a deviation is

10 Note that (1 − μ)β < k because β < k.
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not profitable. Deviating to p
¯

yields the same profit by condition (1). Deviating to p < p
¯

is strictly
dominated by charging p

¯
, because a firm cannot sell more than k. Thus a firm charging v has

no incentive to deviate. Next consider a firm charging p
¯
. By a similar argument, the firm has no

incentive to deviate to p < p
¯
. If the firm deviates to p ∈ (p

¯
, v], it only attracts nonsearchers and

hence sells (1 − μ)β only, because searchers are not rationed at p
¯
.11 Thus the most profitable

deviation is to set the price at v, which, by condition (1) yields the same profit as no deviation.
Thus, a firm charging p

¯
has no incentive to deviate either. Solving (1) and (2) yields expressions

(3) and (4).
Note that in this unique equilibrium, no consumer is rationed: the demand for a p

¯
firm exactly

equals its capacity k, and the demand for a v firm is strictly less than k. From (3), we can see that
η(p

¯
) is increasing in the search intensity μ. Intuitively, as μ increases the demand becomes more

elastic, and more firms charge lower price. Moreover, η(p
¯
) does not depend on c directly. By (4),

p
¯

is increasing in c and decreasing in μ. As demand becomes more elastic (μ increases), charging
the lower price becomes relatively more profitable, other things equal. To restore the indifference
condition, the lower price must decrease to reduce the profit margin for the lower-price firms.
Note that the presence of the capacity constraint keeps the profit margin of p

¯
firms positive, by

restricting the competition among p
¯

firms.

� Equilibrium with endogenously determined search intensity. Now we analyze the
equilibrium of the game, with search intensity μ endogenously determined. We assume that
firms know the distribution of beliefs F(α), while consumers may not know F(α).12 Recall that
the cost c can only take two possible values c H and cL , which is the same among all the firms.
Proposition 1 characterizes firms’ equilibrium price distribution given any search intensity μ.
The remaining task is to derive the equilibrium search intensity μ∗. We first compute the expected
gain from searching given the equilibrium price distribution, μ, and a consumer’s belief, α:

E[p − p
¯

| α] = α[(1 − η(p
¯ H

))v + η(p
¯ H

)p
¯ H

− p
¯ H

] + (1 − α)[(1 − η(p
¯ L

))v + η(p
¯ L

)p
¯ L

− p
¯ L

]

= (1 − η(p
¯ i

))[α(v − p
¯ H

) + (1 − α)(v − p
¯ L

)]

= k − β

k
{v − [αcH + (1 − α)cL]} , (5)

where p
¯ H

denotes p
¯
(cH ) and p

¯ L
denotes p

¯
(cL). Note that by (4), p

¯ H
> p

¯ L
given μ.

From (5) we can see that E[p − p
¯

| α] does not depend on μ. Thus, search does not exhibit
complementarity. This is because an increase in μ has two countervailing effects. The first effect
is that p

¯
decreases as μ increases, which increases the return of search. On the other hand, an

increase in μ causes more firms to charge p
¯
(η(p

¯
) increases), which reduces the average price and

raises the payoff of a nonsearcher. These two effects exactly offset each other, as shown by (5).
From (5), we see that the expected gain from search is decreasing in α for critical consumers.

Thus, there is a cutoff belief α̂ such that all critical consumers with beliefs below α̂ search and
those above α̂ do not search. If sM ≥ k−β

k
(v − cL), then even the consumer with the most optimistic

belief (α = 0) cannot afford the search, so α̂ = 0; on the other hand, if sM ≤ k−β

k
(v − cH ), then

even the consumer with the most pessimistic belief (α = 1) can afford the search, so α̂ = 1. In
what follows we will focus on the most interesting case in which

11 A single firm deviation would not affect the total measure of the firms who set price p
¯

(due to our assumption of
continuum of firms). Thus, condition (2) implies that the following condition continues to hold even after one single firm
deviates:

μβ

Measure of firms setting p
¯

+ (1 − μ)β = k,

which in turn implies that searchers will not be rationed, even though one single firm deviates by setting a higher price
(all before consumers move, as specified in our timeline).

12 These properties will be justified in the dynamic model.
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k − β

k
(v − cH ) < sM <

k − β

k
(v − cL). (6)

In this case, α̂ lies in (0,1), which is determined by the following indifference condition:

sM = E[p − p
¯

| α̂] = k − β

k
{v − [̂αcH + (1 − α̂)cL]} . (7)

Solving (7) we have

α̂ = (v − cL)(k − β) − ksM

(cH − cL)(k − β)
. (8)

Then the equilibrium search intensity μ∗ can be computed as follows:

μ∗ = λ1 + (1 − λ1 − λ2)F (̂α). (9)

Note that condition (7) pins down a unique α̂ ∈ (0, 1), and hence μ∗ is also unique. Moreover,
(8) shows that α̂ is independent of all the endogenous variables, and thus is common knowledge.
It is easily seen that, given F(α), μ∗ and G∗ (· | μ∗, c) described by (3) and (4) constitute
the unique equilibrium of the static game. Given F(α) and G∗ (· | μ∗, c), the optimal decision
rules about search give rise to μ∗. Because firms know F(α), they can correctly anticipate
μ∗ by (9). And given μ∗, the firms’ optimal pricing strategies result in the equilibrium price
distribution G∗ (· | μ∗, c). Note that rationing does not occur in equilibrium. This is the case
for two reasons. First, firms can correctly anticipate the equilibrium search intensity μ∗. Second,
although p

¯ H
> p

¯ L
, η(p

¯ H
) = η(p

¯ L
), that is, the proportion of the firms charging the lower price

does not depend on the cost realization.
The equilibrium price distribution is determined by the cost realization and consumers’

beliefs F(α). The average price is lower under state cL than under state c H . Moreover, the price
distribution is more dispersed under state cL (the gap between the average price and the lowest
price is larger), which leads to a higher expected return to search. Thus, as more consumers’
beliefs lie below α̂ (or F (̂α) increases), the equilibrium search intensity μ∗ increases. As a result,
both p

¯ H
and p

¯ L
are decreasing in F (̂α), and η(p

¯ H
) = η(p

¯ L
) are increasing in F (̂α). Define the

average equilibrium price as p̄(ci , μ
∗):

p̄(ci , μ
∗) = η(p

¯ i
)p
¯ i

+ [1 − η(p
¯ i

)]v

= μ∗β

k − β + μ∗β

[
c + (1 − μ∗)β

k
(v − c)

]
+ k − β

k − β + μ∗β
v. (10)

It is easily seen from (10) that p̄(ci , μ
∗) is increasing in ci and decreasing in μ∗. Thus, the average

price is also decreasing in F (̂α). The following proposition summarizes these results.

Proposition 2. There is a unique equilibrium with the equilibrium search intensity given by (8)
and (9). Moreover, μ∗ is increasing in F (̂α); both p

¯ H
and p

¯ L
are decreasing in F (̂α), and both

η(p
¯ H

) and η(p
¯ L

) are increasing in F (̂α); p̄(ci , μ
∗) is decreasing in μ∗ and F (̂α).

According to the previous analysis, changes in equilibrium price distribution can be
decomposed into two components. The first component is the change resulting from changes
in cost realization, and the second component is the change resulting from changes in consumers’
search intensity, which is governed by the distribution of consumers’ beliefs.

3. Dynamic model

� We now extend our analysis to the dynamic setting, and endogenize critical consumers’
beliefs. Time t is discrete and t = 1, 2, . . . . In each period the static game is played. We assume
that the common cost evolves according to a Markov process, with ρ being the persistence
parameter. That is,
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Pr(ct+1 = cH |ct = cH ) = Pr(ct+1 = cL |ct = cL) = ρ,

where ρ > 1/2. At t = 1, the two cost states are equally likely. This Markov structure of cost
evolution is common knowledge. Although firms always observe the cost state of the current
period, consumers never observe past or current cost realizations. Instead, each consumer updates
her belief about the cost based on the price history she observes. Tappata (2006) assumes that
last period cost realization is observable to consumers, and thus prices adjust fully to cost shocks
in two periods.13

From the static model, we see that the equilibrium price distribution in a particular period
depends on consumers’ beliefs and the cost realization. The key in our dynamic game analysis is
to trace the belief-updating process among critical consumers. From the static model, the lower
price p

¯
is responsive to cost realizations: p

¯ H
> p

¯ L
for any given μ. To simplify our analysis, we

make assumptions about the parameter values such that the lower bound of p
¯ H

(under the highest
possible μ) is greater than the upper bound of p

¯ L
(under the lowest possible μ). Note that the

highest possible μ is 1 − λ2 (all critical consumers search), and the lowest possible μ is λ1 (no
critical consumers searches). So in effect, we assume

cH − cL

v − cL

>
β(1 − λ1 − λ2)

k − βλ2

, (11)

which implies p
¯ H

(μ = 1 − λ2) > p
¯ L

(μ = λ1), that is, there is no overlap between the supports of
p
¯ H

and p
¯ L

in equilibria of the dynamic game (hence (11) can also be termed the nonoverlapping
condition).

Given this nonoverlapping condition, a consumer who observes p
¯

can correctly infer the true
cost of that period. As a result, her initial belief next period is either ρ or 1 − ρ. On the other
hand, the high price (v) is not responsive to cost realizations. Thus, if a consumer observes a price
v, her belief about the true cost in the current period (α p

t , superscript p denotes the posterior) is
updated as follows (suppose her initial belief is that Pr(ct = cH ) = αt ):

α p
t = αt (1 − η(p

¯ H
))

αt (1 − η(p
¯ H

)) + (1 − αt )(1 − η(p
¯ L

))
= αt ,

because by (3), η(p
¯ H

) = η(p
¯ L

) in any period. Hence, the consumer’s belief is not updated at all.
As a result, her initial belief about the cost for the next period will be

αt+1 = ραt + (1 − ρ)(1 − αt ). (12)

Note that a consumer’s initial belief has an upper bound ρ and a lower bound 1 − ρ. Moreover, if
a critical consumer with initial belief ρ observes v in all the subsequent n periods, then by (12)
her initial belief converges to 1/2 from above. To further facilitate our analysis, in what follows
we will assume that s M has bounds tighter than those given in (6). That is,

k − β

k

[
(v − cL) − 1

2
(cH − cL)

]
< sM <

k − β

k
[(v − cL) − (1 − ρ)(cH − cL)] . (13)

Under this assumption, it can be verified that α̂ ∈ (1 − ρ, 1/2). The property that α̂ > 1 − ρ

ensures that critical consumers search under the most optimistic belief; otherwise, they will not
search regardless of their beliefs. The property that α̂ < 1/2 ensures that critical consumers with
initial belief ρ who observe v in all the subsequent periods will not search. Although not affecting
the robustness of our result, assumption (13) simplifies our analysis because we do not need to
trace the beliefs of those consumers who do not search.

From the above discussion, we can see that searchers and nonsearchers have different belief-
updating processes. Because a searcher always observes the low price, she can infer the true cost
state correctly. However, a nonsearcher only observes one price, and this price may be the high

13 Because the past cost history is assumed to be known to the consumers, there is no learning in Tappata’s model.
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price v. In this case, her posterior is not updated. If she observes the lower price, she updates her
posterior correctly. As we will see, the difference in belief-updating processes between searchers
and nonsearchers is the key to understanding asymmetric price adjustments.

� Equilibrium. By equation (8), α̂ does not depend on μ∗
t (the equilibrium search intensity

in period t) or the cost state in period t. Therefore, the distribution of beliefs in period t can be
summarized by Ft (̂α). Hence in each period, the state of the economy can be summarized by
Ft (̂α) and ct , and the equilibrium in the dynamic game can be characterized by the sequence of
{ct , Ft (̂α), μ∗

t , G∗(· | μ∗
t , ct )}.

Proposition 3. The equilibrium in the dynamic game exists and is unique for any evolution of
{ct}.

Proof. Suppose firms correctly anticipate Ft (̂α). Then the equilibrium μ∗
t is determined by

μ∗
t = λ1 + (1 − λ1 − λ2)Ft (̂α). (14)

From the analysis of the static game, the equilibrium price distribution in period t, G∗ (· | μ∗
t ,

ct ), is uniquely determined. The existence of equilibrium in the dynamic game boils down to the
following condition: firms are able to anticipate Ft (̂α) correctly. The uniqueness of equilibrium
is guaranteed if the evolution of Ft (̂α) is unique given {ct}. Below we will show that these two
properties hold.

First, we show that firms can infer F1(̂α). In period t = 1 all critical consumers hold the
same initial belief 1/2 (because there is no prior history of prices). Given α̂ < 1/2, F1(̂α) = 0,
and no critical consumers search in period t = 1. Because it is common knowledge that all
critical consumers hold the same initial belief 1/2 in period 1, firms can correctly infer that
F1(̂α) = 0.

Second, we show that a critical consumer’s belief will never be in (̂α, 1/2). To see this, first
note that each critical consumer’s initial belief in period 1 is 1/2. If a critical consumer observes
a sequence of higher prices v, her initial belief remains 1/2 by (12). Her belief will be different
only if she observes the lower price in the last period. In that case, her initial belief will either be
ρ or 1 − ρ. If her belief is 1 − ρ, then she will search and observe the lower price, and her next
period belief will be either ρ or 1 − ρ. If her belief is ρ hence she does not search, then it will
either converge to 1/2 from above if she keeps observing the high price, or be revised to ρ or 1
− ρ if she happens to observe the lower price in some period. Therefore, in all cases a critical
consumer’s belief is outside the range of (̂α, 1/2).

Third, we show that if the firms know Ft (̂α), then combining this with the information about
ct , they can correctly infer Ft+1(̂α). We discuss two cases in order.

In the first case, suppose ct = c H . For critical consumers whose αt ≤ α̂, they will search in
period t and learn the true state ct = c H ; hence their initial belief in period t + 1 is ρ. For critical
consumers whose αt ∈ [1/2, ρ], they will not search in period t. Among those consumers, an
ηt (p

¯ H
) portion observe p

¯ H
and learn the true state c H . Thus their initial belief in period t + 1

becomes ρ. The remaining 1 − ηt (p
¯ H

) portion of consumers observe v hence no belief updating
occurs. Their initial beliefs in period t + 1 remain within [1/2, ρ]. Aggregating over all the
critical consumers, we can see that Ft+1(̂α) = 0. Thus, we have the following transition equation
for the distribution of beliefs:

if ct = cH :Ft+1(̂α) = 0 given any Ft (̂α) . (15)

In the second case, suppose ct = cL . For critical consumers whose αt ≤ α̂, they will search
in period t and learn the true state ct = cL ; hence their initial belief in period t + 1 is 1 − ρ. For
critical consumers whose αt ∈ [1/2, ρ], they will not search in period t. Among those consumers,
an ηt (p

¯ L
) portion observe p

¯ L
and learn the true state cL . Thus their initial belief in period t + 1

becomes 1 − ρ. The remaining 1 − ηt (p
¯ H

) portion of consumers observe v with no information
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updated. Their initial beliefs in period t + 1 remain in [1/2, ρ]. Aggregating over all the critical
consumers, we obtain another transition equation for the distribution of beliefs,

if ct = cL :Ft+1(̂α) = Ft (̂α) + [1 − Ft (̂α)]ηt (p
¯ L

)

= Ft (̂α) + μ∗
t β

k − β + μ∗
t β

[1 − Ft (̂α)]. (16)

From (15) and (16), we can see that given ct and Ft (̂α), Ft+1(̂α) is uniquely determined.
Moreover, firms can correctly anticipate Ft+1(̂α) based on their information about ct , Ft (̂α), and
μ∗

t .
Therefore, given the evolution of {ct}, there is a unique equilibrium characterized by the

sequence of {ct , Ft (̂α), μ∗
t , G∗(· | μ∗

t , ct )} in the dynamic game.

Note that except for period 1, critical consumers’ beliefs are heterogeneous due to the
different price histories they experienced. Also note that we do not need to trace the evolution of
the exact distribution of beliefs F t (α), which would be cumbersome to describe. Instead, we only
need to trace the evolution of Ft (̂α) to determine the equilibrium search intensity μ∗

t . Another
interesting property is that, whereas firms can correctly infer Ft (̂α), μ∗

t , and G∗ (· | μ∗
t , ct ),

consumers in period t do not need to hold correct beliefs about Ft (̂α), μ∗
t , and G∗ (· | μ∗

t , ct ). The
main reason is that consumers do not observe the history {ct}; instead, they update their beliefs
about {ct} and G∗ (· | μ∗

t , ct ) based on their personal histories of the prices they encountered.

� Asymmetric price adjustments. According to the analysis of the static game, changes in
equilibrium price distribution can be decomposed into two components, one due to the change
in cost realization and the other due to the change in consumers’ search intensity. In the dynamic
game, the highest average price across periods (and the highest possible lower price across
periods) arises when ct = c H and μ∗

t = μ = λ1 (no critical consumers search). Note that this
corresponds to the case where ct = c H and consumers have full information about ct . On the
other hand, the lowest possible average price (and the lowest possible lower price) arises when c
= cL and μ∗

t = μ̄ = 1 − λ2 (all critical consumers search). Similarly, this corresponds to the case
where c = cL and consumers have full information about ct . Therefore, in state c H we say price is
fully adjusted if μ∗ = μ = λ1, and in state cL we say price is fully adjusted if μ∗ = μ̄ = 1 − λ2.

In the dynamic game, because consumers do not observe past cost realizations, their beliefs,
hence the search intensity μ∗, do not adjust as quickly as the underlying cost state changes.
More importantly, the speed of adjustments for the beliefs and search intensity is different under
positive cost shocks and negative cost shocks. Because the average price and the lower price move
in the same direction, for brevity of exposition in what follows they are often simply referred to
as the prices. The following propositions identify the asymmetry in price adjustments if the cost
state persists after a shock occurs.

Proposition 4. Suppose a positive cost shock occurs in period t + 1. Then regardless of
Ft+1(̂α), Ft+2(̂α) = 0 and μ∗

t+2 = μ = λ1. Regardless of previous history, if cost states LHH are
realized in periods t, t + 1, and t + 2, then the prices fully adjust to the highest level in period
t + 2.

Proof. Suppose L and H are the realized cost states for periods t and t + 1, respectively. Then
by the transition equation (14), Ft+2(̂α) = 0 irrespective of Ft+1(̂α). By (15), μ∗

t+2 = λ1 = μ.
Therefore, if ct+2 = c H , the prices reach the highest level, and hence are fully adjusted in period
t + 2.

Proposition 4 implies that state H is the absorbing state in terms of critical consumers’ search
behavior: regardless of the previous history, if a positive shock occurs in the current period, the
search intensity will fully adjust downward in the next period. Another implication of Proposition 4
is that the prices fully adjust upward in two periods when a positive cost shock occurs and the high
cost persists in the next period. More specifically, in the first period a positive shock occurs, prices
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only adjust upward partially because the search intensity is not fully adjusted. However, in the
second period the search intensity is fully adjusted downward, leading to full upward adjustment
of prices.

The key to this result is that, when a positive shock occurs, the critical consumers who
search in the current period immediately learn the cost state has switched to H , and thus they stop
searching in the next period. For the nonsearchers, they either observe the lower price, learn the
true state H and do not search in the next period, or observe the high price, do not update their
beliefs, and remain nonsearchers in the next period.

Proposition 5. Suppose a negative cost shock occurs in period t + 1. Then

Ft+2(̂α) = μβ

k − β + μβ
< 1 and μ∗

t+2 < μ̄.

Suppose the L state persists in the subsequent n periods after period t + 1. Then Ft+1+n (̂α)
increases in n, and converges to 1 as n goes to infinity. Hence the prices are not fully adjusted
downward in period t + 2. Instead, the prices decrease gradually and converge to the lowest
possible price as n goes to infinity.

Proof. Suppose H and L are the realized cost states for periods t and t + 1, respectively.
According to Proposition 4, Ft+1(̂α) = 0 and μ∗

t+1 = λ1 = μ. By the transition equation (16),

Ft+2(̂α) = μβ

k−β+μβ
, which is clearly less than 1. If the L state persists in the subsequent n periods,

by the transition equation (16), Ft+1+n (̂α) will be strictly increasing in n, and eventually converges
to 1 as n approaches infinity. Accordingly, the search intensity will gradually adjust upward and
the prices will gradually adjust downward. The adjustment process will be completed only when
n goes to infinity.

Proposition 5 implies that when a negative cost shock occurs and the low cost persists
afterward, the downward price adjustment is a gradual process and takes a long time to complete.
The underlying reason is that in our model, when a negative shock occurs, no critical consumer
searches initially (recall that H is an absorbing state). Thus only those consumers who happen
to observe the lower price learn the true state (L) and begin searching in the next period. For
consumers who observe the high price, they do not learn the true state L, and remain nonsearchers
in the next period. As a result, the prices do not fully adjust to the lowest level within two periods.
If the L cost state persists in the subsequent n periods, more and more nonsearchers observe the
lower price, learn the L state, and begin to search. Actually, the rate at which the measure of
nonsearchers decreases in period t is the proportion of firms that set the lower price, μ∗

t β

k−β+μ∗
t β

, by
the transition equation (16).

Comparing Propositions 4 and 5, we can see the pattern of asymmetric price adjustments
if the cost state persists after a shock occurs: when a positive cost shock occurs, prices fully
adjust upward in two periods, whereas when a negative cost shock occurs, it takes much longer
for prices to fully adjust downward. To see this asymmetry, we can evaluate the magnitude of
the adjustment in the search intensity within the first two periods after a negative cost occurs. By
Proposition 5, within two periods, F (̂α) is adjusted to

μβ

k−β+μβ
. Because μ is relatively small, this

amount of adjustment is small compared to the full adjustment level (which is 1). Therefore, the
adjustment of the search intensity in the first two periods is relatively small, which implies that
the adjustment of prices in the first two periods is also relatively small and a significant portion
of the price adjustment is completed in later periods.

Propositions 4 and 5 indicate that asymmetric price adjustments can arise if the cost shocks
are persistent. Next we demonstrate that the pattern of asymmetric price adjustments does emerge
on the equilibrium path of the dynamic game. Instead of following any arbitrary evolution path of
the underlying state, which is a daunting task, we will focus on the expected evolution path, which
is somewhat focused in a statistical sense. Given the persistence parameter ρ, in expectation each
given state (H or L) will persist for 1

1−ρ
≡ N consecutive periods before switching to the other
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state (N > 2 because ρ > 1/2). We thus consider the following expected evolution path of the
states: L ...LH ...HL...L .... That is, N periods of state L followed by N periods of state H , which
are in turn followed by N periods of state L, and so on.

Along this expected evolution path, the lowest prices will occur in the N th period of the L
state, and the highest prices emerge in the 2nd through the N th periods of the H state. The pattern
of asymmetric price adjustment is quite striking. When a positive cost shock occurs, the prices
adjust from the lowest (the N th period of the L state) to the highest within two periods (the 2nd
period of the H state), and then the prices stay at the same level until the N th period of the H
state. On the other hand, when a negative cost shock occurs, it takes N > 2 periods for the prices
to adjust from the highest (the N th period of the H state) to the lowest (the N th period of the
L state), before the state switches to H . During the N periods of the L state, the price decreases
gradually to the lowest level. We summarize the result below.

Proposition 6. Assume ρ > 1/2. Along an expected evolution path, price adjustments exhibit
an asymmetric pattern in equilibrium. Whereas the prices always fully adjust upward within two
periods after a positive cost shock occurs, it takes a longer time for the prices to fully adjust
downward after a negative cost shock occurs.

Given the random nature of the underlying state switches, the actual evolution path would
not exactly follow an expected evolution path, and the duration of a given state would also be
random. However, the expected evolution path can be regarded as the average overall possible
evolution paths. Thus, Proposition 6 implies that the pattern of asymmetric price adjustment can
emerge on the actual evolution path in a statistical sense.

The underlying reason for asymmetric adjustments lies in the asymmetric belief updating,
which results from consumers’ search behavior. Although searchers always learn the true cost state
immediately, nonsearchers do not learn the true cost state unless they happen to observe the lower
price. When there is a positive cost shock, the searchers among critical consumers immediately
learn that the cost has gone up. As a result, those consumers stop searching in the next period and
prices are fully adjusted upward. On the other hand, when the cost goes down, those consumers
who observe the high price do not learn the true state and remain as nonsearchers, whereas only
those who observe the lower price learn the true state and begin to search. As a result, the beliefs
of the consumers are gradually adjusted downward as more and more nonsearchers observe the
lower prices, which leads to gradual downward price adjustments.

� Comparative statics. In this subsection, we study how changes in some exogenous
parameters affect the pattern of price adjustments. First, we provide a measure to evaluate the
degree of asymmetry in price adjustments. Denote the magnitude of upward (downward) price
adjustment within two periods after a positive (negative) cost shock as MAP (MAN ), and we
define the adjustment ratio AR = MAN/MAP . AR measures the degree of asymmetry of price
adjustments: the smaller AR, the smaller the magnitude of downward price adjustment within
two periods relative to that of upward price adjustment within two periods, and hence the more
asymmetric the price adjustments.

We start with the changes in the persistence parameter ρ. Consider two Markov processes,
1 and 2, with ρ 2 > ρ 1 > 1/2. That is, Markov process 2 is more persistent than process 1. In the
previous analysis about the expected evolution path, we see that N increases as ρ increases. Thus
we have N 2 > N 1. Note that μ = λ1 does not depend on ρ. Hence the highest prices on the two
paths are the same. However, because N 2 > N 1, the lowest prices under process 2 (occurring in
period N 2 in state L) are lower than those under process 1 (occurring in period N 1 in state L). As
a result, MAP

1 < MAP
2 . On the other hand, MAN does not depend on ρ, which is evident from the

equation

Ft+2(̂α) = μβ

k − β + μβ
= λ1β

k − β + λ1β
. (17)
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Thus MAN
1 = MAN

2 . As a result, AR1 > AR2. That is, the asymmetric price adjustments are more
prominent when the cost evolution is more persistent.

So as the Markov process becomes more persistent, the magnitude of full price adjustments
becomes larger. In the case of positive shocks, this larger magnitude of upward price adjustment
is still completed within two periods. However, in the case of negative shocks, the downward
price adjustment spreads over longer periods. This makes the price adjustment more asymmetric.
The following proposition summarizes the result, which is also a testable implication.

Proposition 7. As the Markov process becomes more persistent (ρ increases), the asymmetric
pattern of price adjustments becomes more prominent.

Next we consider the impact of λ1 (the proportion of shoppers) on the pattern of price
adjustment. Let λ′

1 < λ1 . We show that the downward price adjustment in response to a negative
shock is slower under λ′

1 than under λ1.

Proposition 8. As the proportion of shoppers (λ1) decreases, the prices adjust downward more
slowly when a negative cost shock occurs.

Proof. Suppose a negative shock occurs in period t + 1, and the L state persists in the subsequent
periods. Our goal is to show that the prices in any period t + j ( j ≥ 2) are strictly lower under λ1

than under λ′
1. Because prices are decreasing in the search intensity, it is sufficient to show that

μ∗′
t+ j < μ∗

t+ j for all j ≥ 2 (superscript prime is used to distinguish variables under λ′
1 from those

under λ1). According to equation (17), F ′
t+2(̂α) < Ft+2(̂α). Now we proceed with induction. In

the first step we show that if F ′
t+ j (̂α) < Ft+ j (̂α), then μ∗′

t+ j < μ∗
t+ j for j ≥ 2 . In the second step

we prove that if F ′
t+ j (̂α) < Ft+ j (̂α) and μ∗′

t+ j < μ∗
t+ j , then F ′

t+ j+1(̂α) < Ft+ j+1(̂α).

Step 1. By equation (14),

μ∗
t+ j − μ∗′

t+ j = (λ1 − λ′
1) + (1 − λ1 − λ2)Ft+ j (̂α) − (1 − λ′

1 − λ2)F ′
t+ j (̂α)

= (λ1 − λ′
1)[1 − F ′

t+ j (̂α)] + (1 − λ1 − λ2)[Ft+ j (̂α) − F ′
t+ j (̂α)]

> 0.

Step 2. First, define

At+ j ≡ μ∗
t+ jβ

k − β + μ∗
t+ jβ

.

At+ j > A′
t+ j because μ∗

t+ j > μ∗′
t+ j , and both of them are strictly between 0 and 1. Now by the

transition equation (16),

Ft+ j+1(̂α) − F ′
t+ j+1(̂α) = [Ft+ j (̂α) − F ′

t+ j (̂α)] + At+ j [1 − Ft+ j (̂α)] − A′
t+ j [1 − Ft+ j (̂α)]

= (At+ j − A′
t+ j )[1 − Ft+ j (̂α)] + [Ft+ j (̂α) − F ′

t+ j (̂α)](1 − A
′
t+ j )

> 0.

Thus we obtain the desired result.

Intuitively, when the proportion of shoppers is smaller, in the case of a negative cost shock
fewer consumers search initially. As a result, a smaller proportion of firms sets the lower price.
This reduces the speed of learning for the critical consumers, leading to slower adjustments of
the search intensity and the prices.

Although a smaller λ1 slows down the process of downward price adjustment, the upward
price adjustment is not affected: it is always completed within two periods. Thus a decrease in λ1

makes the pattern of asymmetric price adjustments more prominent.
By a similar argument, we can show that an increase in k/β leads to a slower downward

price adjustment. The intuition is that an increase in k/β, other things equal, results in fewer
firms setting the lower price. This slows down the critical consumers’ learning when a negative
cost shock occurs, leading to a slower downward price adjustment.
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4. Discussion

� Our model is stylized, because we make a number of simplifying assumptions to facilitate our
analysis. Here we discuss the restrictions of these assumptions, why we impose these assumptions,
and whether they affect the general insights of the article.

First, unlike the standard search literature which considers a finite number of firms, we
work with an infinite number of firms. This assumption is adopted for technical convenience.
Working with a finite number of firms would involve two technical difficulties. The first difficulty
is that the equilibrium of the static game (with endogenously determined search intensity) cannot
be analytically derived, as shown in Tappata (2006) with more than three firms.14 The second
difficulty is that the inference about the underlying state would be too complicated in the dynamic
setting. With a finite number of firms, each firm randomly chooses a price according to some
distribution (usually some continuous distribution over a compact support). Thus the Bayesian
updating based on different realized prices can easily get very involved. Moreover, assuming
a finite number of firms adds randomness in the realized prices in each period, which further
complicates the analysis of belief updating. With a continuum of firms (along with capacity
constraints) in our model, we pin down a simple two-point distribution in equilibrium.15 Moreover,
the evolution of consumers’ beliefs (hence equilibrium search intensity) is deterministic given the
evolution of the underlying states, although individual firms might play mixed strategy in setting
prices. This greatly simplifies the analysis and makes the Bayesian inferences tractable.

We believe that the general insights of our model carry over to the setting with a finite
number of firms. In the static game, consumers have stronger incentives to search when they
believe that the low-cost state is more likely, because in a low-cost state prices are more dispersed
due to competition among firms; in the dynamic setting, asymmetry in learning continues to be
present. Searchers observe all the prices set by the firms, whereas each nonsearcher only observes
one price and, consequently, the searchers learn the true state more quickly than nonsearchers.
All these features do not seem to be restricted to the setting with an infinite number of firms. Thus
our assumption of an infinite number of firms is mainly for technical convenience, which helps
simplify consumers’ Bayesian inferences and enables our equilibrium analysis to be tractable.16

Note that another crucial assumption for our equilibrium analysis is the capacity constraint,
without which price dispersion simply does not arise in our equilibrium.17 Although capacity
constraints are prevalent in many retail markets, our specific assumption that all firms have the
same capacity may appear restrictive. Again, we maintain this assumption mainly for technical
convenience, which should not affect the robustness of our main results. To see this, we consider
an alternative setting in which a proportion γ of firms each has capacity k2, and the rest of
the firms each have capacity k1, where k 2 > k 1 > β. We assume that γ k 2 < β, so that low-
capacity firms are viable. In this setting, the static equilibrium with fixed search intensity μ is still
characterized by a two-point distribution.18 Depending on parameter values, we may have two
types of equilibria. In the first-type equilibrium, firms with the bigger capacity k2 charge the low
price p

¯
with probability 1, and firms with the smaller capacity k1 mix between p

¯
and the choke

price v. Let η1(p
¯
)(η2(p

¯
)) denote the probability with which a firm with capacity k 1(k 2) charges p

¯
.

Then the equilibrium is determined by the following two equations that are similar to (1) and (2):

π1(v) = π1(p
¯
) ⇔ (1 − μ)β(v − c) = k1(p

¯
− c) (18)

14 The main reason is that the expected gain of search cannot be integrated out explicitly.
15 The two-point price distribution derived in our model is somewhat special; nevertheless, we believe that it captures

the essence of real-world product market price dispersions while enabling our analysis to be tractable.
16 Note that our approach is not without a cost—an undesirable feature of our equilibrium is that it lacks an

appropriate continuity (in the number of firms); in fact, our current equilibrium construction does not seem to work with
any finite number of firms.

17 Recall that the capacity constraint keeps the profit margin of p
¯

firms positive by restricting the competition among
(infinitely many) p

¯
firms.

18 The arguments are similar to Lemmas 1–4. Firms charging the lowest price have sales equal to their capacities.
Searchers are not rationed at the lowest price.
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μβ + (1 − μ)β[γ + (1 − γ )η1(p
¯
)] = k1(1 − γ )η1(p

¯
) + k2γ. (19)

Equation (18) says that a firm with capacity k1 is indifferent between charging v and charging
p
¯
, and equation (19) says that the total demand for the firms charging p

¯
equals the total capacity

of those firms. Note that firms with capacity k2 have no incentive to charge v, because π2(p
¯
) =

k2(p
¯
− c) > π1(p

¯
) = π1(v) = π2(v). This is the unique equilibrium if μβ + (1 − μ)βγ ≥ k 2γ

(the search intensity is big enough).
On the other hand, if μβ + (1 − μ)βγ < k 2γ , then the following (second-type) equilibrium

is unique: firms with capacity k2 mix between v and p
¯

with the probability of charging p
¯

being
η2(p

¯
), and firms with capacity k1 charge v with probability 1. Similarly to equations (18) and

(19), the equations characterizing the equilibrium are as follows:

π2(v) = π2(p
¯
) ⇔ (1 − μ)β(v − c) = k2(p

¯
− c)

μβ + (1 − μ)βγ η2(p
¯
) = k2γ η2(p

¯
).

Note that firms with capacity k1 have no incentive to charge v because firms with capacity k2 are
indifferent between charging v and charging p

¯
.

The rest of the analysis follows qualitatively as in our base model. With the equilibrium
prices being distributed according to a two-point distribution, we can endogenously determine
the search intensity given the distribution of beliefs among critical consumers. The heterogeneity
among firms does not qualitatively affect consumers’ learning asymmetry, although the dynamics
of price adjustment will be slightly modified.

We follow Varian (1980) to assume that searchers observe all the realized prices. Given that
we are working with a continuum of firms, this assumption effectively implies that searchers can
observe infinitely many prices. This “infinite observability” is somewhat strong, but again we
maintain this assumption for tractability purposes. To see this, we consider an alternative setting
in which searchers are only able to observe a finite number (n) of realized prices, as in Burdett
and Judd (1983). First of all, the equilibrium distribution of prices given μ, the fixed search
intensity, becomes nonatomic. Following similar derivations in Burdett and Judd, the equilibrium
price distribution (G(· | c, μ)) is determined by the following condition:

(1 − μ)β(v − c) = (p − c)
[
(1 − μ)β + μβn(1 − G(p | c, μ))n−1

]
,

which basically requires that each firm be indifferent between charging the choke price and
charging any other price over the support of randomization. Solving, we have the equilibrium
price distribution

G(p | c, μ) = 1 −
(

1 − μ

μn

v − p

p − c

)1/n−1

, p ∈ [p
¯
, v],

where the lower bound of the equilibrium support is determined by G(p
¯

| c, μ) = 0.
It turns out that given this nonatomic equilibrium price distribution, the static equilibrium

with endogenously determined search intensity cannot be derived analytically, because the
expected gain of search cannot be explicitly integrated out.19 By assuming that searchers observe
all the prices (so that they always receive the lowest price), we obtain a two-point price distribution
and effectively get around this technical difficulty with equilibrium characterization. Although a
full analysis is not attempted, we believe that our general insights of asymmetric price adjustment
carry over to the setting under the presumably more reasonable assumption of finite observability.
Given that searchers observe n realized prices and nonsearchers only observe one realized price,
searchers learn the true cost state quicker than nonsearchers. This learning asymmetry is the main
driving force for the asymmetric price adjustment: when a positive cost shock occurs, searchers
learn it quickly and stop searching, which leads to a rather quick upward price adjustment; when
a negative shock occurs, nonsearchers learn it slowly, which leads to a slow downward price

19 This can be verified by following similar calculations as in Tappata (2006).
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adjustment. Obviously, the asymmetry in price adjustment will be most prominent when the
searchers can observe all the prices. In this sense, our assumption can be regarded as the limiting
case when n goes to infinity.

Finally, in the dynamic game, we make the nonoverlapping assumption (11) such that the
equilibrium ranges of p

¯ H
and p

¯ L
do not overlap. As a result, whenever a nonsearcher observes the

lower price, she learns the true cost state immediately. In a more general model, we should allow
for the case that p

¯ H
and p

¯ L
may overlap in equilibrium. Under such a setting, we believe that the

general insight of the article still holds. To see this, note that searchers can always infer the true
cost state immediately. They have two pieces of information, the lower price p

¯
and the proportion

of firms charging the lower price η(p
¯
). Thus, from two equations (3) and (4), the searchers can

correctly infer the two unknowns, μ and c. However, the belief updating for nonsearchers would
be much more involved. If a nonsearcher observes a lower price which lies in the overlapping
range, she cannot immediately infer the true state. Although it is difficult to pin down the exact
belief-updating process in this case,20 it is clear that nonsearchers’ belief updating is slower than
that of the searchers. Given this, asymmetric price adjustment will emerge as well.

5. Conclusion

� In this article, we build a simple search model with learning to demonstrate how asymmetric
price adjustments can arise as firms’ optimal responses to cost shocks. Although the upward
price adjustment is always completed within two periods after a positive cost shock occurs, the
downward price adjustment takes much longer to complete when a negative shock occurs.

The underlying reason for asymmetric price adjustments is that searchers and nonsearchers
have different belief-updating processes. Because searchers observe the whole spectrum of price
distribution whereas nonsearchers only observe one single price, searchers learn the true cost state
a lot quicker than nonsearchers do. This learning asymmetry naturally leads to asymmetric price
adjustments. When a positive cost shock occurs, searchers quickly learn the true state and stop
searching. Thus the quick downward adjustment of search intensity leads to the quick upward
price adjustment. On the other hand, when a negative cost shock occurs, it takes a much longer
period of time for nonsearchers to learn the true state and start searching. This slow upward
adjustment of search intensity leads to slow downward price adjustment.

Thus, our article provides an explanation for the widespread phenomenon of asymmetric
price adjustments. Although our model is simple, we believe that it captures the essence of
real-world product markets with imperfectly informed consumers. Our model also predicts that
asymmetric price adjustments are more prominent in markets where the cost shocks are more
persistent or where more critical consumers are present.

References

BACON, R.W. “Rockets AND Feathers: The Asymmetric Speed of Adjustment of UK Retail Gasoline Prices to Cost
Changes.” Energy Economics, Vol. 13 (1991), pp. 211–218.

BENABOU, R. AND GERTNER, R. “Search with Learning from Prices: Does Increased Inflationary Uncertainty Lead to
Higher Markups?” Review of Economic Studies, Vol. 60 (1993), pp. 69–93.

BORENSTEIN, S., CAMERON, A.C., AND GILBERT, R. “Do Gasoline Prices Respond Asymmetrically to Crude Oil Price
Changes?” Quarterly Journal of Economics, Vol. 112 (1997), pp. 305–339.

BOYD, M.S. AND BRORSEN, B.W. “Price Asymmetry in the U.S. Pork Marketing Channel.” North Central Journal of
Agricultural Economics, Vol. 10 (1988), pp. 103–110.

BRAVERMAN, A. “Consumer Search and Alternative Market Equilibria.” Review of Economic Studies, Vol. 47 (1980), pp.
487–502.

BURDETT, K. AND JUDD, K.L. “Equilibrium Price Dispersion.” Econometrica, Vol. 51 (1983), pp. 955–970.

20 We need to derive the distribution of the lower price in the dynamic game (which is a daunting job), and then
apply Bayesian rule to pin down the belief-updating process.

C© RAND 2008.



564 / THE RAND JOURNAL OF ECONOMICS

CABRAL, L. AND FISHMAN, A. “A Theory of Asymmetric Price Adjustment.” Department of Economics, Stem School of
Business, New York University, 2006.

DANA, J.D. “Learning in an Equilibrium Search Model.” International Economic Review, Vol. 35 (1994), pp. 745–771.
DELTAS, G. “Retail Gasoline Price Dynamics and Local Market Power.” Department of Economics, University of Illinois,

Urbana-Champaign, 2004.
DUFFY-DENO, K.T. “Retail Price Asymmetries in Local Gasoline Markets.” Energy Economics, Vol. 18 (1996), pp. 81–92.
ECKERT, A. “Retail Price Cycles and Response Asymmetry.” Canadian Journal of Economics, Vol. 35 (2002), pp. 52–77.
FISHMAN, A. “Search with Learning and Price Adjustment Dynamics.” Quarterly Journal of Economics, Vol. 111 (1996),

pp. 253–268.
GOODWIN, B. AND HARPER, D. “Price Transmission, Threshold Behavior, and Asymmetric Adjustment in the U.S. Pork

Sector.” Journal of Agricultural and Applied Economics, Vol. 32 (2000), pp. 543–553.
———, AND HOLT, M.T. “Price Transmission and Asymmetric Adjustment in the U.S. Beef Sector.” American Journal

of Agricultural Economics, Vol. 81 (1999), pp. 630–637.
HANNAN, T.H. AND BERGER, A.N. “The Rigidity of Prices: Evidence from the Banking Industry.” American Economic

Review, Vol. 84 (1991), pp. 938–945.
KARRENBROCK, J.D. “The Behavior of Retail Gasoline Prices: Symmetric or Not?” Federal Reserve Bank of St. Louis

Review, July/August (1991), pp. 19–29.
LEWIS, M. “Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market.”

Department of Economics, The Ohio State University, 2005.
NEUMARK, D. AND SHARPE, S.A. “Market Structure and the Nature of Price Rigidity: Evidence from the Market for

Consumer Deposits.” Quarterly Journal of Economics, Vol. 107 (1992), pp. 657–680.
O’BRIEN, J. “Estimating the Value and Interest Rate Risk of Interest-Bearing Transactions Deposits.” Finance and

Economics Discussion Paper no. 46, Board of Governors of the Federal Reserve System, 2000.
PELTZMAN, S. “Prices Rise Faster Than They Fall.” Journal of Political Economy, Vol. 108 (2000), pp. 466–502.
PICK, D.H., KARRENBROCK, J., AND CARMEN, H.F. “Price Asymmetry and Marketing Margin Behavior: An Example for

California-Arizona Citrus.” Agribusiness, Vol. 6 (1991), pp. 75–84.
ROB, R. “Equilibrium Price Distributions.” Review of Economic Studies, Vol. 52 (1985), pp. 487–504.
ROTEMBERG, J. AND SALONER, G. “A Supergame-Theoretical Model of Price Wars during Booms.” American Economic

Review, Vol. 76 (1986), pp. 390–407.
SALOP, S. AND STIGLITZ, J. “Bargains and Ripoffs: A Model of Monopolistically Competitive Price Dispersion.” Review

of Economic Studies, Vol. 44 (1977), pp. 493–510.
STAHL, D.O. “Oligopolistic Pricing with Sequential Consumer Search.” American Economic Review, Vol. 79 (1989), pp.

700–712.
TAPPATA, M. “Rockets and Feathers: Understanding Asymmetric Pricing.” Strategy and Business Economics Division,

Sauder School of Business, University of British Columbia. 2006.
VARIAN, H.R. “A Model of Sales.” American Economic Review, Vol. 70 (1980), pp. 651–659.
WARD, R.W. “Asymmetry in Retail, Wholesale and Shipping Point Pricing for Fresh Vegetables.” American Agricultural

Economics Association, Vol. 14 (1982), pp. 205–212.

C© RAND 2008.




