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Abstract

We study several pre-communication protocols in a coordination game with incom-

plete information. Under decentralized decision making, we show that informative

communication can be sustained in equilibrium, yet miscoordination arises with posi-

tive probabilities. Moreover, the equilibrium takes a partitional structure and messages

are rank ordered, with higher messages becoming increasingly imprecise. Compared to

centralized decision making (a mediator without commitment), decentralization leads

to more informative communication when the miscoordination cost is high, and decen-

tralization performs better when the miscoordination cost is neither too low nor too

high. We also stduy the case in which the mediator is able to commit to a decision

rule beforehand.
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I Introduction

This paper studies a simple two-player game with both players having private information.

The game is a variant of the battle of the sexes. Speci�cally, both players simultaneously

choose between two actions, say A and B. Each player has his own favored action: while

player 1 favors action A, player 2 favors the other action B (each player gets an intrinsic

payo¤ when he chooses his preferred action). How much a player prefers his own favored

action relative to the other action is his own private information. Moreover, other things

equal, both players would like to coordinate their actions by choosing the same action: if

they choose di¤erent actions, then both of them su¤er a cost of miscoordination. Unlike the

battle of the sexes, in our game the two miscoordination outcomes are asymmetric. In the

"positive" miscoordination (outcome AB) where each agent chooses his own favored action,

each agent gets his intrinsic payo¤ by playing his preferred action in addition to su¤ering

the miscoordination loss. On the other hand, in the "negative" miscoordination (outcome

BA) where each agent chooses an action favored by the other player, each agent does not

get any intrinsic payo¤ but only su¤ers the miscoordination loss.

Many real world examples �t the game we just described. The classical example is the

battle of the sexes. A couple would rather spend the night together than apart, but the wife

prefers going to an opera concert while the husband would rather go to a boxing match.

But how much the wife prefers the opera and how much the husband prefers the boxing

match are private information. In another example, two �rms simultaneously choose tech-

nology standards. Each �rm prefers choosing their own current technology as the technology

standard, but the intensity of its own-standard preference is each �rm�s private information.

On the other hand, if two �rms end up with di¤erent technology standards then both of

them will su¤er a miscoordination loss. As a �nal example, consider two divisions of a U.S.

multinational company independently decide to open new o¢ ces in Europe. Each division

has two choices, locating its own new o¢ ce in either London or Paris. The two divisions

prefer di¤erent locations (one favors London and the other favors Paris), but both of them

su¤er a miscoordination loss if they choose di¤erent locations.

Because players su¤er from miscoordination, they have incentives to coordinate their
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actions. This means that they want to communicate with each other before playing the

game. However, since each player prefers to coordinate on the action that he favors, each

player would �exaggerate�the degree to which he prefers his own action (type). The main

goal of this paper is to study how pre-communication will take place and how it will af-

fect the outcome of the game. Speci�cally, we model pre-communication as �cheap talk,�

which means that the messages are costless, nonbinding and nonveri�able. Moreover, each

player�s message is regarding his own type. Our research questions are as follows. Can pre-

communication be informative, and how informative it can be? Does pre-communication

help players obtain higher expected payo¤s? How does the magnitude of the miscoordina-

tion loss a¤ect the informativeness of the equilibrium pre-communication? Will introducing

a mediator improve players�payo¤s?

Due to the coordination nature of the game, there are multiple equilibria even in the

basic game, and adding pre-communication signi�cantly expands the set of equilibria. We

thus focus on a class of plausible equilibria, which we call symmetric partition equilibria

(simply equilibria hereafter). Speci�cally, two players play symmetric strategies and have

the same set of messages; moreover, the type space is partitioned into connected intervals,

with a higher type sending a weakly higher message. The messages are rank ordered. In

particular, if two players send di¤erent messages, then both players play (coordinate on) the

action that is favored by the player who sends the higher message. If two players send the

same message, then they play a symmetric Bayesian equilibrium in the continuation game:

each player plays his favored action if his type is higher than a cuto¤ and plays the other

action otherwise.1

We show that there exist a class of informative equilibria with di¤erent numbers of

messages/partition elements. In the most informative equilibrium, the number of messages

is in�nite. In particular, the partition becomes very �ne when a player�s type approaches

zero. Moreover, the size of the partition element increases as a player�s type becomes higher,

or communication becomes noisier when players claim to be higher types. This is because,

given that messages are rank ordered, each type of agent has an incentive to send higher

1The justi�cation of this class of equilibria is provided in Section 4.

2



messages. To counter this tendency of exaggeration, the probabilities of miscoordination

when both agents sending the same message (serving as punishments) must be higher when

the message becomes higher, which implies that the sizes of partition elements get larger for

higher messages (or higher messages are noisier). Informative pre-communication improves

players�ex ante expected payo¤, and this bene�t is increasing in the number of partition

elements. However, the marginal gain in payo¤by adding an additional message is decreasing

in the number of messages. Even in the most informative equilibrium, miscoordination arises

with positive probabilities.

As the miscoordination cost increases, the size of the partition elements in the most

informative equilibrium becomes more even. However, this improved communication is out-

weighed by the direct negative impact of the increase in the miscoordination cost. As a

result, players�expected payo¤ decreases in the miscoordination cost. We also found that,

as the miscoordination cost increases, players bene�t more from pre-communication in the

following sense. When the miscoordination cost is low (high), players�expected payo¤ in a

two-partition or three-partition equilibrium is already very close to (still far away from) that

under the most information equilibrium, which means that adding more messages almost

does not help (helps a lot).

We then introduce a mediator, whose objective is to maximize two agents�joint payo¤s.

We �rst study the case that the mediator is not able to commit to a decision rule before-

hand. This case corresponds to centralized decision making in an organization, while the

baseline model (without mediator) can be interpreted as decentralized decision making. We

establish that, under centralization in equilibrium each agent has at most two messages. In

particular, when the miscoordination cost is high, only babbling equilibrium exists. There-

fore, the number of messages can be sustained under centralization is a lot less than under

decentralization. The main reason is that the presence of a mediator plus no commitment

means that ine¢ cient miscoordination will never occur, which implies that no credible and

rich punishments can be created to sustain more than two messages under centralization.

Decentralized communication is more informative than centralized communication when

the miscoordination cost is high. However, when the miscoordination cost is low, the com-
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parison is subtler. Even though a lot more messages are sustained under decentralization, the

two-message communication under centralization is relatively more informative. These re-

sults are quite di¤erent from those in Alonso, et al. (2008) (ADM, thereafter) and Rantakari

(2008), where centralized communication is always more informative than decentralized com-

munication. In terms of agents�expected payo¤, centralization performs relatively better

when the miscoordination cost is either su¢ cient small or su¢ ciently high, and decentraliza-

tion outperforms centralization when the miscoordination cost is intermediate. This result

also di¤ers from those in ADM and Rantakari (2008), where decentralization performs better

if and only if the cost of miscoordination is su¢ ciently low.

Finally, we consider the case that the mediator is able to commit to a decision rule

beforehand. For simplicity, we focus on two-partition symmetric equilibrium in which each

agent only has two messages. In the optimal mechanism, we show that the mediator punishes

the agents only by choosing the positive miscoordination outcome AB, and she does so only

when both agents send the high message and the cost of miscoordination is su¢ ciently small.

Our results indicate that, the lack of creditable punishment instead of centralization itself is

the key to explain the collapse of informative communication under centralization.

Related literature Our paper is related to several strands of literature. The �rst strand

studies how pre-communication works in coordination games. Farrell (1987) pioneers this line

of research.2 In his model, two �rms �rst announce their intentions to enter or not (cheap

talk) and then proceed to play in a battle-of-the-sexes type entry game. He shows that

adding pre-communication increases the frequency of coordination and hence leads to higher

ex ante payo¤s for both �rms.3 Our model di¤ers from that of Farrell in two main aspects.

First, he deals with a complete information coordination game, but we study an incomplete

information one. Second, Farrell�s model is more tailored to study �rms�entry behavior,

by contrast our model covers a more general coordination game, which potentially has more

extensive applications in the real world. Following Farrell, Banks and Calvert (1992) analyze

2An extensive discussion of the informativeness of cheap talk in coordination and other games alike can
be found in Farrell and Rabin (1996).

3Cooper et al. (1989) and Cooper et al. (1992) provide experimental evidence on the role of preplay
cheap talk in several versions of bilateral coordination games including that of Farrell.
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pre-communication in a classic battle-of-the-sexes game with asymmetric information, which

is closely related to our paper.4 The main di¤erence between their model and ours is that in

their model the agents have two discrete types while in our model the types of the agents are

continuous. With continuous types, the construction of cheap talk equilibria in our model

is more aligned with Crawford and Sobel�s (1982) classical cheap talk model, and it is more

involved than the communication equilibria in Banks and Calvert�s two-type model.5

The second strand is the literature on communication within organizations and delegation

(Melumad and Shibano, 1991; Dessein 2002; Harris and Raviv, 2005; Goltsman et al., 2009).

In this literature, the most closely related papers to ours are ADM and Rantakari (2008).

For instance, in ADM there are two divisional managers, each of whom has private informa-

tion regarding the local condition of his own division. Under centralization, both managers

communicate simultaneously to the CEO of the �rm and then the CEO makes decisions for

both divisions. Alternatively, under decentralization the two managers �rst communicate

with each other and then each of them makes decision for his own division. Our baseline

model corresponds to decentralization in ADM, while the scenario of a mediator without

commitment in our model corresponds to centralization in ADM. However, there are two

important di¤erences. First, in ADM each agent�s decision is continuous, while in our model

each agent�s action is binary. Second, in ADM agents have quadratic loss payo¤ functions,

while in our model an agent�s payo¤ is additive in his own intrinsic preference and the mis-

coordination loss. These di¤erences lead to di¤erent incentives to communicate and di¤erent

values of communication, which are re�ected in the following qualitatively di¤erent results

across two models. First, the constructions of cheap talk equilibria are di¤erent. Second, in

our setting decentralization could lead to more informative communication than centraliza-

tion, while never arises in ADM. Third, the comparison of the relative performance between

4Matthews and Postlewaite (1989) and Farrell and Gibbons (1989) both study pre-communication in
two-person double auctions. Baliga and Morris (2002) analyze the role of cheap-talk in two player games
with one-sided private information. The games analyzed in their paper have both features of coordination
and spillovers.

5Another di¤erence is that, in their setting with a mediator, they can use the Revelation Principle
to fully characterize all incentive compatible mechanisms. However, with types being continuous in our
model, though the Revelation Principle applies, it is impossible to fully characterize all incentive compatible
mechanisms.
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centralization and decentralization is also di¤erent across two papers. These di¤erences will

be elaborated in later sections.

Finally, our paper is also related to a recent small literature on cheap talk in the setting

of project choice (Rantakari, 2014; Rantakari, 2016; Li et al., 2016; Li, 2016). The common

features of these papers are that there are multiple senders, who have non-overlapping private

information, and the receiver�s decision is binary (which project to implement).6 While the

feature of binary action is also shared by the current model, the di¤erence is that in the

current model there are two actions to take (one for each agent), while in other models there

is only a single decision to make.

The rest of the paper is organized as follows. Section II describes the model. In Section

III, we study two benchmarks: the �rst best outcome and the coordination game without

preplay communication. Section IV studies the augmented game with pre-communication.

In Section V we introduce a mediator without commitment. Section VI considers the case

in which the mediator is able to commit to a decision rule beforehand. Finally, we conclude

in Section VII.

II The model

Two agents, 1 and 2, simultaneously decide their own actions. Each agent has two available

actions: A and B. Agent 1 intrinsically prefers action A, while agent 2 intrinsically prefers

action B. In particular, if agent i chooses his preferred action, then he gets a bene�t �i. We

assume that �i is uniformly distributed on [0; 1].7 Moreover, �1 and �2 are independent from

each other. We further assume that the realization of �i is agent i�s private information.

Two agents also bene�t from coordination (or su¤er from miscoordination). Speci�cally, if

two agents choose di¤erent actions, then both of them su¤er a miscoordination loss c > 0.

The payo¤ matrix is described below.

6McGee and Yang (2013) also study a setting with multiple senders who have non-overlapping private
information, but the receiver�s decision is continuous.

7The assumption of uniform distribution is standard in the literature of cheap talk with multiple senders,
e.g. ADM.

6



Agent 1n Agent 2 A B
A (�1; 0) (�1 � c; �2 � c)
B (�c;�c) (0; �2)

Finally, we assume that, other than the realizations of �1 and �2, all the aspects of the game

are common knowledge.

This is a coordination game with private information. It actually resembles the game

of the battle of the sexes (e.g., Gibbons, 1992; p11). Speci�cally, agent 1 is the wife and

agent 2 is the husband, while actions A and B are opera and boxing, respectively.8 As we

mentioned earlier in the Introduction, many other real world situations correspond to our

game.

We want to point out that our game di¤ers from the standard game of the battle of the

sexes in two ways. First, rather than a game of complete information, in our game how

much the wife prefers opera and how much the husband prefers boxing are uncertain and

private information. Second, while in the standard game of the battle of sexes both agents

su¤er equally from either case of miscoordination,9 in our game both agents get di¤erent

payo¤s in two di¤erent scenarios of miscoordination. In particular, in the case of �positive�

miscoordination where each agent chooses his/her own preferred action (outcome (A;B), or

both agents �stick�), on top of su¤ering the miscoordination loss c each agent i gets �i. Note

that this �positive�miscoordination might lead to a higher joint payo¤ than the perfectly

coordinated outcomes (A;A) or (B;B) (if minf�1; �2g � 2c), as both agents get the bene�t
from choosing their own preferred actions. On the other hand, in the case of �negative�

miscoordination where each agent chooses his/her less preferred action (outcome (B;A), or

both agents �yield�), each agent�s payo¤ is just �c, the miscoordination loss. Note that if
�i � c (c < 1), then choosing his own favored action is agent i�s dominant strategy.
To justify the second feature of our game, one can think of �i as agent i�s intrinsic payo¤

by playing his/her preferred action, regardless of whether actions are coordinated between

the two agents. In the context of the battle of the sexes, the wife always gets a payo¤ �1
8If we add c to all the payo¤s in the payo¤ matrix, then the payo¤s look more like those in the game

of the battle of the sexes (c becomes the coordination bene�t enjoyed by both agents when they choose the
same action). But this is just a normalization, which would not qualitatively a¤ect our results.

9Translating into our setting, it means that both agents get �c whenever miscoordination occurs.
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if she chooses opera, and the husband always gets a payo¤ �2 by choosing boxing. In the

example of adopting the industrial standard, �rm i�s always gets a payo¤ �i if his preferred

(or his own) standard is adopted as the industrial standard.

In this game, we are interested in whether allowing pre-play communication in the form

of cheap talk would help. The timing of the game thus goes as follows. First, �1 and �2

are realized and learned privately by agent 1 and agent 2, respectively. Then two agents

play a two-stage game. In the �rst stage, the two agents simultaneously send messages to

each other regarding their own private information. In the second stage, the two agents

simultaneously choose actions.

III Two Benchmarks

We �rst study two benchmarks: the �rst-best outcome and the Bayesian Nash equilibrium

(BNE) for the second stage game without pre-communication in the �rst stage.

III(i) The �rst best outcome

Suppose there is a social planner/mediator, who has full information about �1 and �2. The

mediator chooses the outcome to maximize the social surplus. The joint �rst-best ex ante

social surplus can be computed as:

E�fb(c) = E�1;�2 [maxf�1; �2; �1 + �2 � 2cg]:

Note that, when 0 < c < 1
2
, the outcome of �positive�miscoordination, AB, can be socially

optimal (if both �1 and �2 are bigger than 2c). Thus, the joint �rst-best social surplus is

E�fb(c) = 2

Z 2c

0

Z 1

�1

�2d�2d�1 + 2

Z 1

2c

Z 1

2c

(�2 � c) d�2d�1

= 2c+ (2c� 1)2 � 8
3
c3:

On the other hand, when c � 1
2
the outcome of �positive�miscoordination, AB, can

never be socially optimal.10 Thus, we have

10More precisely, maxf�1; �2g � 1 � 2c when c � 1=2.
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E�fb(c) = 2

Z 1

0

Z 1

�1

�2d�2d�1 =
2

3
:

Notice that, when c � 1
2
, the joint �rst-best social surplus is 2=3, which is the expected value

of the �rst-order statistic of two uniformly distributed variables.

III(ii) Equilibrium without Pre-Communication

Now we study the BNE for the second stage game without pre-communication. This equilib-

rium also corresponds to the equilibrium in the two-stage game where in the communication

stage both agents babble (transmit no information).

In this benchmark case, agent i�s strategy is an action rule di(�i): [0; 1] ! fA;Bg. We
�rst establish that in BNE both agents must adopt cuto¤ strategies. That is, agent i chooses

his preferred action if and only if �i � b�i, where b�i is the cuto¤ or threshold for agent i. To
see this, consider agent 1. Suppose agent 1 holds the belief that agent 2 will play B with

probability p2(B). Then, agent 1�s expected payo¤ by choosing A is

�1(A) = [1� p2(B)]�1 + p2(B) (�1 � c) = �1 � p2(B)c;

while the expected payo¤ by choosing B is

�1(B) = [1� p2(B)] (�c) + p2(B) (0) = [p2(B)� 1]c:

Comparing these two payo¤s, we have

(1) �1(A) � �1(B), �1 � [2p2(B)� 1]c � b�1:
Therefore, agent 1�s equilibrium strategy must be of cuto¤ form. Observing (1), we see that

agent 1�s cuto¤ depends on p2(B), the probability that agent 2 plays B. In particular, the

cuto¤ is increasing in P2(B). This result is quite intuitive: agent 1�s expected payo¤ by

playing his favored action, relative to that of playing the other action, is increasing in his

type �1.

In general, there could be multiple equilibria. To see this, suppose c > 1. It is straight-

forward to check that the following constitutes a BNE: agent 1�s cuto¤ is 1 (always play B),
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and agent 2�s cuto¤ is 0 (always play B). This is due to the coordination nature of the game:

if agent 2 always play B, then agent 1�s best response is to always play B as well if the cost

of miscoordination c is big enough. However, when c > 1 there is another BNE in which

both agents always choose A. Notice that neither these two equilibria (A;A) and (B;B)

is symmetric, as one agent is always favored over the other. Moreover, both agents�action

choices do not depend on their private information. One problem with adopting either of

the above equilibria is that both players still face the problem of which equilibrium to play

because the agents still di¤er in their preferences towards these asymmetric equilibria. Since

the agents are ex ante identical and the essence of the coordination problem is how identical

players achieve symmetrical coordinated outcomes (Farrell, 1987), in the following analysis

we will restrict our attention to symmetric equilibria, in which both agents adopt the same

strategy, or have the same cuto¤ b�.
Symmetry of equilibrium requires that p2(B) = 1� b�. Now (1) becomes

(1� 2b�)c = b� ) b� = c

2c+ 1
;

which is not only smaller than c, but also less than 1/2. The underlying reason for b� < 1=2
is that agent i intrinsically prefers his own favored action.11 The ex ante expected payo¤

(before agents learn their types) of each agent, E�D;�, can be computed as

E�D;�(c) = b�2 (�c) + �1� b�� b�1 + b�
2

+
�
1� b��2 1 + b�

2
� c
!

=
�4c3 � c2 + 2c+ 1

2 (2c+ 1)2
:

Note that in the symmetric BNE, from ex ante point of view both the �positive�miscoordi-

nation and the �negative�miscoordination will arise with positive probabilities.

11If b� � 1=2, meaning that the other agent yields with a probability more than 1=2, then agent i�s
indi¤erence type between sticking and yielding is strictly below 1=2.

10



IV Equilibrium with Pre-Communication (Decentral-
ization)

Now we go back to our main focus: the two stage game with pre-communication. Denote

M = R+ as each agent�s message space. Agent i�s strategy in this game includes a commu-

nication rule in the �rst stage and an action rule in the second stage. In particular, agent i�s

communication rule, denoted as �i (mij�i), speci�es the probability with which agent i sends
a message mi 2M given that his type is �i. Agent i�s action rule, denoted as di (mi;mj; �i),

speci�es the probability with which agent i plays his favored action given that his type is �i

and the messages sent in the �rst stage are (mi;mj). Given the notations, the payo¤ function

of agent i thus can be written as ui (di; dj; �i). Denote gi (�j j mj) as agent i�s updated belief

(in the beginning of the second stage) about �j given agent j�s message mj.12 Our solution

concept is Perfect Bayesian Equilibrium (PBE), which requires:

(i)Given agents�updated beliefs gi (�j j mj) and gj (�i j mi), the action rules di (mi;mj; �i)

and dj (mi;mj; �j) constitute a BNE in the second stage game.

(ii) Given the equilibrium action rules di (mi;mj; �i) and dj (mi;mj; �j) in the second

stage and agent j�s communication rule �j (mjj�j), for each i, agent i�s communication rule
�i (mij�i) is optimal.
(iii) The belief function of agent i; gi (�j j mj) is derived from agent j�communication

rules �j (mjj�j) according to Bayes rule whenever possible.
As in most cheap talk games, in our game there are multiple equilibria. For instance,

each agent babbling in the pre-communication stage and playing the symmetric equilibrium

in the second stage as in the benchmark case is always an equilibrium. In addition, when

c � 1 there is a simple asymmetric equilibrium. Speci�cally, in the very beginning (before
agents learn their types), a favored agent is randomly selected with probability 1=2, and in

the second stage both agents play the favored action of the favored agent. In this asymmetric

equilibrium, each agent gets an ex ante payo¤of 1=4. Essentially, this asymmetric equilibrium

completely avoids miscoordination, but at the same time it might end up choosing the

ine¢ cient outcome by completely ignoring agents�private information.

12Recall that �1 and �2 are independent from each other.

11



However, in general it is hard to characterize the set of all possible PBE. The main

di¢ culty is that, due to the coordination nature of the game, the continuation game in the

second stage has multiple equilibria. In the following analysis, we will mainly focus on a

particular class of symmetric PBE, which we call symmetric partition PBE. Speci�cally, in

the �rst stage both agents adopt the same partition communication rule: the type space [0; 1]

is partitioned intoN connected intervals with a sequence of partition points fa1; a2; :::; aN�1g,
and each agent i sends message mn if and only if �i 2 [an�1; an]. In the second stage, if two
agents send di¤erent messages, then both agents adopt the action which is favored by the

agent who sends a higher message. If two agents send the same message mn, then they play

a symmetric BNE conditional on the updated belief: both agents�type are within [an�1; an].

We focus on this class of symmetric partition PBE for the following reasons. First,

partition equilibria has been typical in most cheap talk games, starting from Crawford and

Sobel (1982). Second, symmetric strategies are natural as the two agents are ex ante identical.

Third, the whole point of pre-communication is to indicate how much each agent prefers his

own favored action, thus miscoordination in actions could be avoided. Therefore, it is natural

that when two agents send di¤erent messages they coordinate on the action which is favored

by the agent who sends a higher message.13 At the end of this section, we will argue that

symmetric partition PBE are very likely the most e¢ cient PBE.

The next lemma demonstrates that we shall focus on partition equilibria where aN�1 < c,

or all the interior message cuto¤ points are strictly below c.

Lemma 1 There is no symmetric partition equilibrium with aN�1 � c.

The intuition behind Lemma 1 is as follows. If aN�1 � c, then the marginal type aN�1
of agent 1 has a dominant strategy in second stage game: he will always choose A. But this

means that he cannot be indi¤erent between sending message mN�1, and mN , as sending

the higher message can increase agent 2�s probability of choosing A.

Now we can rule out the fully revealing symmetric partition PBE; that is, each agent

fully reveals his type. To see this, �rst consider the case that c � 1 (no type of agents

13Note that under (mn;mn0), n > n0 (agent 1�s message is higher), the other BNE in which both agents
choose agent 2�s favored action B might still exist.
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has a dominant strategy in the second stage game). Note that, under the fully revealing

communication rule, with probability one two agents send di¤erent messages. As a result,

miscoordination will never arise in the candidate equilibrium. But then any type of agent

i (except for type 0) will have an incentive to claim to be the highest possible type, type

1, as it can increase the chance that his favored coordinated outcome will be implemented.

Therefore, the fully revealing equilibrium cannot be incentive compatible. A slightly modi�ed

argument also applies to the case when c < 1.

In order to characterize symmetric partition PBE, we �rst characterize the symmetric

BNE in the second stage continuation game when both agents send the same message mn+1.

Note that in this continuation game it is common knowledge that both agents�types are

uniformly distributed within [an; an+1]. As in the benchmark case, in symmetric BNE each

agent i plays his favored action if and only if his own state �i � xn+1, where xn+1 is the

cuto¤. To �nd the equilibrium cuto¤xn+1, consider agent 1 whose type is xn+1. His expected

payo¤ from choosing A is

xn+1 � an
an+1 � an

xn+1 +
an+1 � xn+1
an+1 � an

(xn+1 � c) = xn+1 �
an+1 � xn+1
an+1 � an

c:

On the other hand, if he chooses B then his expected payo¤ is

xn+1 � an
an+1 � an

(�c) :

Equating these two payo¤s, we thus obtain

(2) xn+1 =
an+1 + an

an+1 � an + 2c
c:

It is straightforward to check that both boundary conditions x1 = a1
a1+2c

c > 0 and xN =
1+aN�1

1�aN�1+2cc < 1 are satis�ed.

Equation (2) can be reformulated as

(3)
an+1 � xn+1
xn+1 � an

=
c+ xn+1
c� xn+1

> 1:

Equation (3) shows that xn+1 is closer to an than an+1. In other words, in the continuation

game when both agents send the same messagemn+1, each agent will stick with a probability

bigger than 1=2. This property arises because of agent i�s intrinsic payo¤ from choosing his

13



favored action: if the other agent sticks and yields with the same probability 1/2, then agent

i�s indi¤erence action type is strictly below (an+1 + an)=2.

Based on the above result, an equilibrium is characterized by the message cuto¤s fang
and the action cuto¤s fxng. Moreover, when both agents send the same message mn in

the �rst stage: each agent i chooses his favored action (stick) if �i 2 [xn; an], and yield

if �i 2 [an�1; xn]. Notice that xn < c for all n � N , as otherwise type xn would have

a dominant strategy in sticking. The equilibrium structure is illustrated in the following

�gure.

1na − nanx

nm 1nm +

1nx +0 0a = 1Na =1na +

Illustration of the Partition Equilibrium

We are now ready to characterize the message cuto¤s for the communication stage. In

particular, consider a marginal type of agent 1 with �1 = an. This type should be indi¤erent

between sending messages mn+1 and mn. His expected payo¤ for agent 1 when he sends

message mn is

�1(an;mn) = (an � an�1)
�
an � c

an � xn
an � an�1

�
+ anan�1

= (an � an�1)
�
�c an � xn
an � an�1

�
+ a2n:

With probability (an � an�1) agent 2 also sends message mn, and in this case agent 1 will

stick as his type an is higher than the action cuto¤ xn; thus agent 1 gets an � c an�xn
an�an�1 :

With probability an�1 agent 2 sends a message lower than mn and agent 1 gets an:With the

remaining probability, agent 2 sends a message higher than mn and agent 1 gets 0. Thus, if

he sends the lower message and it is matched, then the agent prefers to choose his preferred

action. Similarly, his expected payo¤ when sending message mn+1 is

�1(an;mn+1) = (an+1 � an)
�
�cxn+1 � an
an+1 � an

�
+ a2n:

With probability (an+1 � an) agent 2 sends message mn+1, and in this case agent 1 will

yield as his type an is below the action cuto¤ xn+1; thus agent 1 gets an expected payo¤
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of �cxn+1�an
an+1�an : With probability an agent 2 sends a message lower than mn+1 and agent 1

obtains an. With the remaining probability, agent 2 sends a message higher than mn+1 and

agent 1 gets 0. Thus, if he sends the higher message and it is matched, he will yield, which

pins down the payments. The indi¤erence condition yields

(4) xn+1 + xn = 2an; for all n = 1; 2; :::; N:

The above equation says that, in order to make the marginal type indi¤erent between sending

two adjacent messages, a message cuto¤ point must lie exactly in the middle of two adjacent

action cuto¤ points.

The intuition for this result is as follows. First, whether agent 1 sends message mn or

mn+1 matters only if agent 2�s message is mn or mn+1 (agent 1�s two messages will induce

the same outcome if either agent 2�s message is strictly lower than mn or is strictly higher

than mn+1). Second, given agent 2�s message, whether agent 1 sends message mn or mn+1

does not a¤ect agent 1�s action choice. For instance, when agent 2 sends message mn, type

an of agent 1 always chooses action A no matter whether he sends messagemn ormn+1. As a

result, whether agent 1 gets bene�t �1 = an does not depend on the message he sends. Third,

whether agent 1 sends message mn or mn+1 will a¤ect agent 2�s action choice, thus a¤ecting

the possibility of incurring the miscoordination loss. Speci�cally, if agent 1 sends message

mn, then miscoordination will occur if and only if agent 2�s type is within [xn; an] (agent 2

sends message mn as well and chooses action B, agent 1 chooses A, and the outcome is AB).

On the other hand, if agent 1 sends message mn+1, then miscoordination will occur if and

only if agent 2�s type is within [an; xn+1] (agent 2 sends message mn+1 as well and chooses

action A, agent 1 chooses B, and the outcome is BA). Thus, to make the marginal type of

agent 1 indi¤erent between sending messages mn and mn+1, the probability of incurring the

miscoordination loss when he sends message mn has to be the same as that when he sends

message mn+1. Therefore, an � xn = xn+1 � an, or an has to be the middle point between
xn and xn+1.

The message cuto¤s fang and the action cuto¤s fxng are recursively de�ned by equations
(3) and (4), with boundary conditions a0 = 0 and aN = 1. Before studying the properties

of this di¤erence equation system, we �rst prove that the proposed strategies along with the
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cuto¤s indeed constitute a symmetric equilibrium, by showing a single crossing property.

Lemma 2 The proposed strategies with the cuto¤s de�ned by equations (3) and (4) constitute

a symmetric equilibrium.

The underlying reason for Lemma 2 is that a higher type agent bene�ts more than a

lower type agent from sending a higher message relative to sending a low message. This

is because a higher type has a higher intrinsic payo¤ by choosing his own favored action.

Consequently a higher type agent has a (at least weakly) stronger incentive to send a higher

message.14

Now we shift our attention back to the equations that characterize the cuto¤s. Actually,

equations (3) and (4), with boundary conditions a0 = 0 and aN = 1, form a �rst-order

di¤erence equation systems with fang and fxng being the endogenous variables. Substituting
fxng by fang, we obtain the following nonlinear second-order di¤erence equation in fang

(5) a3n � a2n (an�1 + an+1) + an
�
�2c2 + can�1 � can+1 + an�1an+1

�
+ c2 (an�1 + an+1) = 0:

Unfortunately, there is no analytical solution to the above di¤erence equation (5). When

N = 2, after de�ning a1 � a the di¤erence equation becomes

(6) f(a) � �a3 + a2 + 2ac2 + ac� c2 = 0:

Observing (6), we see that f(a) is continuous in a. Moreover, f(0) = �c2 < 0 and f(c) =
c3 + c2 > 0. Therefore, there exists a cuto¤ a 2 (0; c) such that f(a) = 0. Furthermore,

f 0(a) = 2(c2 � a2) + a + c > 0 since a < c. Therefore, there is a unique a 2 (0; c) such that
f(a) = 0. In addition, since f(1

2
) = 1

4
+ c

2
> 0, it follows that a < 1

2
.

To study the properties of the di¤erence equation, we go back to the original �rst-order

di¤erence equation system, and simplify the notation by de�ning

�xn+1 � xn+1 � an and �yn+1 � an+1 � xn+1:
14It is interesting to observe that, in equilibrium, not only the marginal type an is indi¤erent between

sending messages mn and mn+1, but all types within [xn; xn+1] are indi¤erent between sending messages mn

and mn+1. On the other hand, an agent type with �i 2 [xn+1; an+1] strictly prefers sending message mn+1

to message mn.
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Note that [an; an+1] (the message partition element n + 1) is now partitioned into �xn+1

(the left partition element) and �yn+1 (the right partition element) by xn+1. The di¤erence

equation system now can be reformulated as

�yn+1
�xn+1

=
c+ xn+1
c� xn+1

> 1;(7)

�xn+2 = �yn+1:(8)

The next lemma demonstrates that there exists a unique solution to the above di¤erence

equation system.

Lemma 3 For a given N and c, there exists a unique solution to the di¤erence equation

system de�ned by equations (3) and (4), with boundary conditions a0 = 0 and aN = 1.

From (7) and (8), three observations are in order. First, the ratio of the size of the

right partition element to that of the left partition element is increasing in xn+1, hence

in n. This is because a higher type agent has a stronger incentive to stick (hence get his

intrinsic payo¤ �i) in the continuation game when both agents send the same message. As

a result, not only the size of the message partition elements an+1 � an increases in n, but
also it increases at an increasing rate. Second, the above mentioned ratio converges to 1

when xn+1 approaches 0. Intuitively, a type 0 agent has no intrinsic payo¤ thus he does not

favor sticking over yielding; in other words, he has no incentive to exaggerate his type. This

property implies that the message partition elements an+1� an increases very slowly around
0, which further implies that the number of partition elements N could be in�nity. Finally,

the above mentioned ratio is decreasing in c, the cost of miscoordination. This is because, as

c increases miscoordination becomes more costly and the agents�incentive to stick decreases

in order to avoid miscoordination.

Another way to understand the equilibrium partition pattern is as follows. Given that

the messages are rank ordered, and the agent sending a relatively higher message will have

his favored coordinated outcome implemented, each agent has an incentive to exaggerate

his own type. In order to restore incentive compatibility, there must be costs of sending

higher messages, and these costs come from the possibility of miscoordination when both
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agents send the same message. Moreover, a higher type agent has a stronger incentive to

exaggerate, as his intrinsic payo¤ of playing his own favored action is higher. As a result,

full incentive compatibility requires that the costs of sending a higher message be higher. To

achieve this, miscoordination when both agents send the same message must become more

likely as the message becomes higher, which implies that for higher messages the sizes of

partition elements get larger (or higher messages are noisier). On the other hand, when an

agent�s type approaches zero, his incentive to exaggerate also approaches zero; as a result,

the corresponding low messages become in�nitely accurate.

By the same logic, as the cost of miscoordination increases, other things equal, the

punishment of miscoordination becomes more severe. This means that to provide the same

amount of punishment, now the probabilities of miscoordination when two agents send the

same message can be reduced, which implies that the sizes of equilibrium partition elements

now can be smaller, or communication becomes more informative.

The following proposition summarizes the results we have so far.

Proposition 1 Given c and the number of message partition elements N , in the game with

pre-communication there is a unique symmetric partition equilibrium, with message cuto¤s

fang and action cuto¤s fxng following equations (3) and (4). In the unique equilibrium,
the size of the partition element increases at an increasing rate. Moreover, as the cost of

miscoordination c increases, the rates at which the size of the partition element increases

decrease, or the size of the partition elements becomes more even.

For a given N and c, we denote the ex ante expected payo¤ of an agent with pre-

communication as E�D(N; c). It can be computed as follows.

E�D(N; c) = �
n=N
n=1

�
(xn � an�1)2 (�c) + (an � xn)2

�
an + xn
2

� c
�
+ (xn � an�1) (an � xn)

an + xn
2

�

+ �n=Nn=1 (an � an�1) an�1
an + an�1

2
:

(9)

In the above expression, the �rst term is the ex ante expected payo¤ if two agents are tied
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with sending the same message, and the second term is the ex ante expected payo¤ if the

agent in question sends a message higher than the other agent does.

Lemma 4 Given c, denote (a; x) and (a0; x0) as the cuto¤ points in a N-partition equilibrium

and a (N + 1)-partition equilibrium, respectively. Then we have: (i) a01 < a1 < a
0
2 < a2::: <

a0N�1 < aN�1 < a
0
N ; and (ii) �x

0
n+1 < �xn and �y

0
n+1 < �yn for all n � N .

Lemma 4 indicates that, as the number of partition elements N increases, not only

the range of meaningful communication expands (aN�1 increases), but also the partition

elements become more even. As a result, communication becomes more informative and the

probability of having socially ine¢ cient miscoordination decreases.15 Therefore, we have the

following proposition.16

Proposition 2 In the most informative equilibrium, the number of message partition ele-

ments N is in�nite. Moreover, the size of message partition element approaches zero when

an agent�s type approaches 0.

The equilibria in our model and those in ADM and Rantakari (2008) share some similar

features. For instance, equilibria are partitional and the most informative equilibrium has

an in�nite number of partition elements. This is because the con�ict between coordination

and choosing the actions favoring agents themselves are present both in our model and their

models. However, as mentioned earlier, a key di¤erence between our model and those of

ADM and Rantakari is that in their models actions are continuous, while in our model

they are binary. Moreover, agents�payo¤ functions are also di¤erent: in ADM the payo¤

functions are quadratic loss functions, while in our model an agent�s payo¤ is additive in

his own intrinsic preference and the miscoordination loss. Continuous actions plus quadratic

loss payo¤ functions in ADM imply that agents always su¤er from miscoordination loss, but

the magnitudes vary continuously with the di¤erence between the two actions. In our model,

15Both aN�1 and xN are smaller than c, thus any miscoordination is socially ine¢ cient.
16When N goes to1, the equilibrium partition must converge. To see this, de�ne aN�1(N) as the largest

message cuto¤ in the N -partition equilibrium. By Lemma 1, aN�1(N) � c for any N , and by Lemma 4
aN�1(N) is increasing in N . Therefore, aN�1(N) must converge as N goes to in�nity. This also implies that
all other message cuto¤s converge, as the di¤erence equation system holds for any N .

19



binary actions imply that agents either su¤er from miscoordination or do not su¤er at all.

These di¤erences lead to di¤erent equilibrium construction. Speci�cally, in our model agents�

messages are rank ordered: the agent sending a higher ranked message gets his way (has

his preferred coordinated outcome implemented), and agents su¤er from miscoordination

only when they send the same message, which serve as a punishment for exaggerating. This

rank-ordered feature of messages is not present in ADM, instead coordination loss of varying

degrees is always su¤ered regardless of the messages sent in the communication stage.17

In the symmetric partition equilibria, two agents play a symmetric BNE in the second

stage game whenever they send the same message. Since the symmetric BNE involves with

costly miscoordination, one might wonder whether introducing a public randomization device

could help. In particular, whenever two agents send the same message, a public random-

ization device randomly picks a favored agent with probability 1=2, and then two agents

play the coordinated outcome favored by the favored agent. This candidate equilibrium is

more ex post e¢ cient, as it gets rid of costly miscoordination. However, no informative

communication will occur in this kind of equilibrium (only babbling equilibrium exists), ex-

actly because the public randomization device gets rid of the possibility of miscoordination.

Without the possibility of costly miscoordination in any scenario, any type of agent has an

incentive to exaggerate his own type to the extreme by sending the highest message, as the

cost or the punishment of sending the highest message no longer exists.

We conjecture that the symmetric partition equilibria are very likely the most e¢ cient

equilibria among all possible PBE. The underlying logic can be best illustrated for the case

that c � 1, under which the socially e¢ cient outcome must be one of the two coordinated
outcomes, AA and BB. In any PBE with precommunication, for any message pair sent in

the 1st stage, in the continuation game there are at most three possible equilibria: AA, BB,

and a cuto¤ strategy equilibrium with higher type agents choosing his favored action. Note

that the cuto¤ strategy equilibrium is ine¢ cient as miscoordination occurs with positive

probabilities. Under symmetric partition equilibria agents�messages are rank ordered; when

two agents send di¤erent messages the socially e¢ cient outcome is implemented: both agents

17The di¤erence equations characterizing the equilibria are also di¤erent. In ADM the di¤erence equation
has analytical solutions, but the one in our model does not have analytical solutions.
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coordinate on the action favored by the agent whose type is higher. The ine¢ cient cuto¤

strategy equilibrium is chosen only when two agents send the same message, which serves as

necessary punishments to counter agents�incentives to exaggerate their types. In any other

PBE with di¤erent communication rules, for instance some low types and some high types

pooled together to send a message while some middle types send another di¤erent message,

the rank order of the messages becomes less precise about the rank order of agents�types.

As a result, the socially e¢ cient outcome -the coordinated outcome favored by the higher

type agent- will less likely to be implemented. Therefore, symmetric partition equilibria are

very likely more e¢ cient than other PBE.

To study the e¤ect of the number of partition elements N on the ex ante expected payo¤,

we resort to numerical analysis because there is no analytical solution for the di¤erence equa-

tion system. Table 1 compares each agent�s expected payo¤ across equilibria with di¤erent

N . Since the expected payo¤s are in�uenced by the miscoordination cost, we calculate the

percentage gain using the equilibrium payo¤ without precommunication (�D;�) as a bench-

mark. In particular, we compute the following ratio (�ND � �D;�)/(�D � �D;�), where �ND is
the expected payo¤with N partition elements and �D is the expected payo¤when N goes to

in�nity.18 Two observations are in order. First, although the expected payo¤ increases with

N , the marginal increase decreases quickly as N increases. Taking c = 1=2 as an example,

the marginal gain (in term of percentage) from the two-partition equilibrium to the three-

partition equilibrium is about 16%, but it decreases to 7% moving from the three-partition

equilibrium to the four-partition equilibrium. The intuition for this result is that, with more

partition elements the probability of miscoordination decreases, but the reduction in the

overall probability of miscoordination becomes smaller as N increases.19 Second, with a big-

ger miscoordination cost c, as N increases the marginal gain in payo¤ decreases more slowly.

For instance, when c = 1=5 the payo¤ di¤erence between the two-partition equilibrium and

ten-partition equilibrium is about 25%. In contrast, when c = 1 this di¤erence increases

to 36%. This observation indicates that the agents bene�t more from more informative

18Since the expected payo¤ converges quickly as the number of partition N increases, we use N = 20 to
approximate the converged payo¤.
19As N increases, the overall probability of miscoordination quickly converges to that of the most infor-

mative equilibrium.
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Nnc (%) 1/5 1/2 4/5 1
2 75:44 67:38 63:01 61:13
3 89:47 83:80 80:62 79:10
4 93:86 90:44 88:11 87:00
5 96:49 93:70 92:08 91:23
10 99:99 98:65 98:19 97:93

Table 1: Ex ante Payo¤ and the Number of Partition Elements

communication as the cost of miscoordination c increases. This is because more informative

communication can reduce the overall probability of miscoordination, which is more valu-

able under a bigger c. More precisely, under a bigger c the range of potential meaningful

communication is larger (recall that in equilibrium aN�1 < c). Moreover, a bigger c reduces

the rates at which the size of partition element increases, which means that an increase in

N becomes more valuable.

We conclude this section by studying the e¤ects of the cost of miscoordination c on

each agent�s ex ante expected payo¤. The results are demonstrated in Figure 1. As it

reveals, the expected payo¤ under the most informative equilibrium decreases with the cost

of miscoordination c.20 Intuitively, as the cost of miscoordination increases, it directly hurts

the agents. However, it also makes the size of the partition elements more even, which

reduces the overall probability of miscoordination and thus indirectly bene�ts agents. Our

numerical simulation shows that overall the direct e¤ect dominates.21

20In the numerical simulation, we choose N = 100. This is because the expected payo¤ quickly converges
when N > 20.
21We want to point out that when the cost of miscoordination is relatively small (c < 1

5 ), even the
two-partition equilibrium can achieve a majority gain of the �rst-best social surplus, similar to a �nding
in Macfee (2002) in the context of assortative matching. In particular, when c = 1=10, the ratio of the
expected payo¤ under the two-partition equilibrium to the �rst-best payo¤ is 99%; and it is about 94%
when c = 1=5. However, the e¢ ciency of the two-partition equilibrium declines quickly as the cost of
miscoordination increases further.
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Figure 1: The Relatioship between Ex ante Payo¤ and c

V Mediator without Commitment (Centralization)

In this section we introduce a mediator/social planner, whose objective is to maximize the

ex ante social surplus (the joint payo¤ of the two agents), and study how it a¤ects pre-

communication and the equilibrium outcome. Moreover, the mediator is not able to commit

to a decision rule beforehand; that is, given any message pair (m1;m2), the mediator will

choose the outcome that maximizes the social surplus based on the information revealed

in the messages. This scenario corresponds to centralization in ADM. In particular, one

can think of the two agents as two divisional managers of a company and the mediator as

the CEO of the company, who cares about the joint payo¤ of the two divisions. To ease

exposition, we sometimes call this scenario centralization, and the scenario of the baseline

model decentralization.

V(i) A Benchmark

We �rst study a benchmark case, under which there is no pre-communication from the agents

to the mediator. We study this case because the introduction of a mediator (who has the
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�nal decision rights) can potentially get rid of the possibility of undesirable miscoordination.

Speci�cally, in this case the expected payo¤ for the mediator from choosing either outcome

AA or BB is 1
2
. On the other hand, the expected payo¤ of choosing outcome AB is 1� 2c.

Therefore, if c � 1
4
, then it is optimal for the mediator to choose outcome AB and the joint

social surplus is 1� 2c; if c > 1
4
, then it is optimal for the mediator to choose either AA or

BB (or randomizing between the two outcomes with any probability) and the joint social

surplus is 1
2
. Denote the expected payo¤ of each agent under mediation when there is no

pre-communication as E�C;�(c), we thus have

E�C;�(c) =

�
1
2
� c if c < 1=4
1
4

if c � 1=4 :

V(ii) Mediated Pre-Communication

As before, we focus on symmetric partitional equilibria. That is, two agents have the same

set of messages, and they follow the same communication rule which is partitional: send

message mn if and only if �i 2 [an�1; an]. In the mediator�s decision rule, he treats two

agents in a symmetric way.

We �rst characterize the mediator�s optimal decision rule. Denote mn as the mediator�s

posterior about �i after agent i sends message mi: mn � E[�ijmn] =
an�1+an

2
. Given a

message pair mn and mn0, n0 � n, the mediator chooses outcomes to maximize the joint

payo¤: maxfmn;mn0 ;mn +mn0 � 2cg, which correspond to AA;BB, and AB, respectively.
It is immediate that her optimal decision is as follows:

d�(m) =

8<:
pAB = 1; if mn � 2c

pAA = 1 (agent 1 sends mn0), pBB = 1 (agent 2 sends mn0); if mn < 2c and n 6= n0
pAA = pBB = 1=2; if n = n0

:

When c � 1=2, the above optimal decision rule implies that the outcome AB will never

be chosen (no potential punishment). As a result, each type of agent i will claim to be the

highest types or send the highest message mN . Therefore, in this case only the babbling

equilibrium exists, and the mediator chooses both AA and BB with probability 1=2.

Now consider the case that c < 1=2. In the following lemma we show that there exists

no equilibrium with three or more partition elements.
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Lemma 5 Suppose c < 1=2 and the mediator is not able to commit. Then the most infor-

mative symmetric partitional equilibrium can have at most two partition elements.

To understand the intuition for Lemma 5, we �rst note that the mediator will never

implement the socially undesirable (negative miscoordination) outcomeBA. Second, without

commitment the mediator�s optimal decision is not rich enough. In particular, essentially

there are only two types of outcomes: the mediator will choose the outcome AB if the

lower message�s posterior is bigger than 2c, and otherwise chooses one of the two perfectly

coordinated outcomes AA and BB. To sustain incentive compatibility, sending di¤erent

messages should lead to di¤erent types of outcomes. Thus the fact that in total there are

only two possible types of outcomes exactly means that at most two meaningful equilibrium

messages can be sustained.

Now we characterize the two-partition equilibrium when c < 1=2. Denote the messages

as m1 and m2, and the message cuto¤ type as a. By previous results, it must be the case

that m1 < 2c, m2 > 2c, or a < 4c and 1 + a > 4c. Given the mediator�s optimal decision

rule d�(m), consider the marginal type a of agent 1. His expected payo¤ of sending m1 and

m2 can be computed as follows:

a2 + (1� a)(a� c) = �1(a;m2) = �1(a;m1) =
1

2
a2

) f(a) � 1

2
a2 + (1� a)(a� c) = 0:(10)

By (10), we can see that a < c. It can be readily veri�ed from (10) that f(0) < 0, f(c) > 0,

and f 0(a) > 0. Thus there is a unique a 2 (0; c) satisfying (10). Finally, the equilibrium has

to satisfy 1 + a > 4c. Using (10), this condition is equivalent to c � bc = 3
4
�

p
3
4
' 0:317.

That is, if c � bc, then only babbling equilibrium exists.

We denote each agent�s ex ante expected payo¤ under mediation without commitment

as E�D(c). Based on the previous results, it can be computed as

E�D(c) =

(
a2
�
a
4

�
+ (1� a)2

�
1+a
2
� c
�
+ (1� a) a

�
1+a
2

�
if c � 3

4
�

p
3
4

1
4

if c > 3
4
�

p
3
4

;

where a is de�ned in equation (10). The results in this subsection are summarized in the

following proposition.
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Proposition 3 Suppose the mediator is not able to commit. If c > 3
4
�
p
3
4
, then only babbling

equilibrium exists. If c � 3
4
�

p
3
4
, then there is a unique two-partition equilibrium, with the

cuto¤ satisfying (10); moreover, equilibria with three or more partition elements do not exist.

Recall that in the baseline model without mediator (decentralization), there is an in�nite

number of messages in the most informative equilibrium. Thus more equilibrium messages

can be sustained under decentralization than under centralization. The reason that more

messages can be sustained under decentralization (despite the fact that there are only four

possible outcomes) but not under centralization is that, under decentralization miscoor-

dination occurs with positive probabilities whenever both agents send the same message

(regardless of which message), which serves as punishments for exaggerating one�s own type.

In contrast, under centralization miscoordination occurs only when it is socially desirable,

which limits the punishments for agents�exaggeration and as a result, at most two equilib-

rium messages can be sustained.

Based on the result of Proposition 3, we conclude that, when c > 3
4
�

p
3
4
' 0:317, ,

only babbling equilibrium exists under centralization. When c � 0:317, although only two
messages can be sustained under centralization while an in�nite number of messages can be

sustained under decentralization, the partition seems more even under centralization than

under centralization. For instance, when c = 0:3, under centralization the cuto¤ is 0:256,

while under decentralization with 30 messages the highest cuto¤ (a29) is 0:197.22 The reason

that the highest marginal type under decentralization is lower than the marginal type under

centralization is as follows. Under centralization, although the marginal type will su¤er

from miscoordination with a positive probability if he sends the high message, he will not

su¤er from miscoordination if he sends the low message. In contrast, under decentralization,

although the highest marginal type su¤ers from more damaging miscoordination compared

to that under centralization (recall that centralization gets rid of the damaging negative

miscoordination) if he sends the higher message (mN), he still su¤ers from the possibility

of miscoordination if he sends the lower message (mN�1) (but the probability is lower than

the case if he sends the higher message). Consequently, the di¤erence in the expected

22The other messages are very accruate, but the highest message is very noisy, with all types above 0:197
pooled together. The same pattern holds for c smalller than 0:3.
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miscoordination costs su¤ered between sending two adjacent messages is actually higher

under centralization than under decentralization, implying that the agents have a stronger

incentive to send the highest message under decentralization than under centralization.

We want to point out that the above result is quite di¤erent from that in ADM and

Rantakari (2008), where communication is always more informative under centralization

than under decentralization. Recall that in their models the agents�actions are continu-

ous. Consequently, under centralization the trade-o¤ between adaptation and coordination

always exists and the CEO�s optimal decisions varies with agents�messages continuously.

Centralized communication performs better than decentralized communication because the

agents�incentives are more aligned with the CEO than between themselves. In our model,

the agents�actions are binary, and communication is more informative under decentraliza-

tion than under centralization when the cost of miscoordination is high enough. Therefore,

our study demonstrates that the reason for communication and the value of communication

di¤er signi�cantly across binary action setting and continuous action setting.

In Figure 2, we compare the ex ante expected payo¤ for each agent under the most

informative equilibrium in the baseline model (�D) with that under centralization (�C).

From the �gure we see that, at c = 3
4
�

p
3
4
' 0:317, the expected payo¤ under cen-

tralization has a discontinuous jump. This is because, as mentioned earlier, a two-partition

equilibrium can be sustained when c � 3
4
�

p
3
4
, but only babbling equilibrium exists when

c > 3
4
�

p
3
4
, and agents su¤er a payo¤ loss when informative communication becomes infea-

sible.23

Comparing the payo¤s under decentralization and centralization, we observe the following

pattern. When the miscoordination cost c is su¢ ciently small (c � 0:317), centralization

performs slightly better than decentralization. When c is intermediate (0:317 < c < 0:48),

decentralization performs better than centralization. However, when c is large (c > 0:48),

then centralization is again better than decentralization.

23When c = 3
4 �

p
3
4 , the mediator is indi¤erent between choosing AB and AA or BB when both agents

send the high message. However, in this case, only the following equilibrium exists: outcome AB is chosen
for sure when both agents send the high message. If the probability of choosing AB is strictly less than 1,
then the message cuto¤ a will decrease, and choosing AB is no longer optimal for the mediator (since m2

decreases with a), which destroys equilibrium.
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Figure 2: Payo¤ Comparision between Centralization and Decentralization

To understand this pattern, recall that on the one hand communication under decen-

tralization is di¤erent from that under centralization, which we call the �communication

e¤ect.�This e¤ect favors decentralization when the miscoordination cost is high (� 0:317),
but it favors centralization when the miscoordination cost is low (� 0:317). On the other

hand, the presence of the mediator can get rid of the damaging "negative" miscoordination

outcome, while miscoordination occurs with positive probabilities under decentralization.

We call this the �coordination e¤ect,�which always favors centralization. When the cost

of miscoordination is su¢ ciently low (� 0:317), the coordination e¤ect is insigni�cant. At

the same time, the communication e¤ect is insigni�cant as well, as communication is very

noisy in both scenarios since the cost of exaggerating is low. As a result, decentralization

and centralization almost achieve the same payo¤, though centralization performs slightly

better (both the coordination e¤ect and the communication e¤ect favor centralization). In

the other extreme, when the cost of miscoordination is su¢ ciently high, the coordination

e¤ect favors centralization while the communication e¤ect favors decentralization. However,

28



the coordination e¤ect dominates as miscoordination is very costly; and as a result, again

centralization, which completely ignores private information, performs better than decen-

tralization. The more interesting case is when the miscoordination cost is intermediate. In

this situation the coordination e¤ect is intermediate, while the communication e¤ect favor-

ing decentralization is strong, as only babbling equilibrium exists under centralization. And

thus decentralization performs better than centralization.

The above pattern di¤ers from the comparison of centralization and decentralization

in ADM and Rantakari (2008). For instance, ADM shows that decentralization is better

when coordination is not important but centralization performs better when coordination is

important.24 However, we show that centralization performs better only when coordination is

either su¢ ciently unimportant or su¢ ciently important in the current setting. This further

demonstrates that the incentive to communicate and the value of communication in our

model are di¤erent from those in a continuos actions setup such as ADM.

VI Mediator with Commitment (Mechanism Design)

In this section, we adopt a mechanism design approach to study the communication equi-

libria when the mediator is able to commit to a pre-announced decision rule. Speci�-

cally, the mediator �rst announces a decision rule d(m1;m2), which maps a message pair

(m1;m2) � m into a probability distribution over four possible outcomes: p(m) = (pAA(m);

pBB(m); pAB(m); pBA(m)). Then, the two agents simultaneously communicate to the media-

tor regarding their own types. And �nally, the mediator chooses the actions for both players

according to the pre-announced decision rule p(m).

Our purposes of studying mediated pre-communication with commitment are twofold.

First, we want to show that if the mediator can commit a decision rule beforehand, then

even a simple two-message equilibrium is able to deliver an outcome that dominates the

most informative decentralized solution; second and more important, we want to illustrate

the point that the collapse of communication under centralization is not due to central-

24Our model corresponds to the case that � = 1 in their model. That is, each agent only cares about his
own payo¤.

29



ization itself but due to the fact that under centralization the mediator cannot commit to

choosing miscoordinated outcomes to punish the agents, which eliminates their incentives to

communicate.

There is a literature on how mediated pre-communication can improve e¢ ciency in games

(e.g., Forges, 1990; Myerson, 1991; Banks and Calvert, 1992; Ben-Porath, 2003; Gerardi,

2004; Krishna, 2007; Bergemann and Morris, 2011; Vida and Forges, 2013). In those papers,

agents all have a �nite number of types. Moreover, the mediator usually only recommends

(either privately or publicly) actions for each agent, and the recommendations are not bind-

ing. As a result, an obedience constraint for each agent (has an incentive to follow the

mediator�s recommended action) needs to be added. Having a �nite number of types makes

those models tractable, as they can use the Revelation Principle to identify the set of incen-

tive compatible mechanisms. In our model, there are multiple agents and each agent�s type

is continuous. Although the Revelation Principle still applies, it is very hard to identify the

set of incentive compatible mechanisms in our setting.25

Due to this di¢ culty and for the purpose of our analysis, here we assume that the mediator

is able to choose the outcome of the game (hence drop the obedience constraints) and restrict

our attention to a simple class of (direct) mechanisms, which we call two-partition symmetric

mechanisms. In particular, each agent has two messages, h and l, and each agent plays the

same following strategy: sends message h if his own type is higher than a cuto¤ a, and sends

message l otherwise. If two agents send di¤erent messages, then the mediator chooses the

coordinated outcome favored by the agent who sends message h. If two agents send the same

message l (h), then the decision rule is pl (ph). Moreover, plAA = p
l
BB and p

h
AA = p

h
BB; that

is, the mediator treat two agents symmetrically if they send the same message. The decision

rule is summarized below.

p(m) =

8>><>>:
pAA = 1 if m1 = h;m2 = l
pBB = 1 if m1 = l;m2 = h

plAB; p
l
BA; p

l
AA = p

l
BB if m1 = m2 = l

phAB; p
h
BA; p

h
AA = p

h
BB if m1 = m2 = h

We will characterize the optimal two-partition symmetric mechanism that maximizes the

ex ante social surplus. In theory, we could also study N -partition symmetric mechanisms.
25To the best our knowledge, nobody has done that in the existing literature.
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But it turns out to be much more complicated, as there will be too many design variables.

Later on, we will show that the optimal two-partition mechanism can already achieve a

majority of the social surplus when the cost of miscoordination c is small, relative to the

�rst best outcome.

Given the symmetric requirement, the decision rule is characterized by four variables:

phAB, p
h
BA, p

l
AB, and p

l
BA, as p

h
AA = p

h
BB = (1� phAB � phBA)=2 and plAA = plBB = (1� plAB �

plBA)=2. Given this mechanism, the two agents play a Bayesian game in the communication

stage. We �rst characterize the marginal type of agents who is indi¤erent between sending

messages h and l. Suppose agent 2 sends message l with probability a, and consider type �1

of agent 1. His expected payo¤ by sending message h, �1(h; �1), is

�1(h; �1) = a (�1) + (1� a) [phAA�1 + phAB (�1 � c) + phBA (�c)];

while his expected payo¤ of sending message l, �1(l; �1), is

�1(l; �1) = a[p
l
AA�1 + p

l
AB (�1 � c) + plBA (�c)]:

Taking the di¤erence, we have

@[�1(h; �1)� �1(l; �1)]
@�1

> 0:

Thus in equilibrium agent 1 (and agent 2 as well by symmetry) will adopt a cuto¤ strategy.

To solve the equilibrium cuto¤ a, we equate �1(h; �1) and �1(l; �1) and impose symmetry

�1 = a, which yields the following equation

�
phBA + p

l
BA � phAB � plAB

2

�
a2+(11) �

1 + phAB � phBA
2

+ phABc+ p
h
BAc+ p

l
ABc+ p

l
BAc

�
a�

�
phAB + p

h
BA

�
c = 0

In the optimal two-partition symmetric mechanism, the mediator chooses plAB; p
l
BA; p

h
AB and

phBA to maximize the following social surplus, subject to (11):

f
�
plAB; p

l
BA; p

h
AB; p

h
BA

�
� 1 + plAB � plBA

2

a3

2
�
�
plAB + p

l
BA

�
ca2 +

a� a3
2

(12)

+
1 + phAB � phBA

2

(1 + a) (1� a)2

2
�
�
phAB + p

h
BA

�
c (1� a)2
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Lemma 6 In the optimal two-partition symmetric mechanism: (i) plBA = phBA = 0; (ii)

a < 2c; (iii) plAB = 0.

The intuition for Lemma 6 is as follows. As for part (i), recall that the reverse mis-

coordination outcome BA is very costly for both agents. On the other hand, the positive

miscoordination outcome AB is not that costly, since both agents get their intrinsic payo¤s.

As a result, to reduce agents�incentives to exaggerate their own types, it is more e¢ cient to

use outcome AB alone to provide the necessary punishments. By part(i), part (ii) follows

naturally. Since phBA = 0, the punishment for sending the high message is not that severe. As

a result, when an agent�s type is bigger than 2c, sending the high signal becomes a dominant

strategy. Thus, a < 2c. This further implies that the cuto¤ point a is decreasing in plAB

but increasing in phAB. These results are intuitive. As p
l
AB increases, the punishment for

sending the low signal increases, and thus the agents have a stronger incentive to exaggerate

or a decreases. On the other hand, as phAB increases, the punishment for sending the high

signal increases, and thus agents have a weaker incentive to exaggerate or a increases. Now

the intuition for part (iii) becomes clear. Given that each agent has a natural tendency

to exaggerate his own type, sending message l should be encouraged. To achieve this, the

punishment of sending message l (plAB) should be minimized. Moreover, this punishment of

miscoordination is costly for the social surplus. Therefore, in the optimal mechanism there

should be no punishment if both agents send the same message l.

Based on the results of Lemma 6, the programming problem is further reduced to

max
phAB ;a

a (1� a)
4

+
(1� a)2 (1 + a)

4
phAB � (1� a)

2 phABc+
1

4
;

where
�phAB
2

a2 +

�
1 + phAB
2

+ phABc

�
a� phABc = 0:(13)

Lemma 7 In the optimal two-partition symmetric mechanism, phAB = 1 if c <
1
2
, phAB = 0

if c > 1
2
, and any phAB 2 [0; 1] is optimal if c = 1

2
.

Lemma 7 indicates that, when c > 1=2, in the optimal mechanism both agents babble.

This is because in this case it is too costly for the mediator to choose the outcome AB.26

26Recall that it is socially ine¢ cient to implement outcome AB whenever 1 < 2c.
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On the other hand, when c < 1=2, it is not that socially costly to implement the outcome

AB. Moreover, since a < c < 1=2, a higher cuto¤ point a makes the two partition elements

more even, which increases the probability of choosing the socially e¢ cient outcome. As a

result, the optimal phAB is 1, which achieves the highest possible a. When c = 1=2, the direct

cost of implementing AB (which is socially ine¢ cient when both agents send message h),

exactly equals to the indirect bene�t of implementing AB (increases a such that information

transmission becomes more informative). As a result, any phAB between 0 and 1 is optimal.

We denote each agent�s ex ante expected payo¤under the optimal mechanism as E�M(c).

Based on the previous results, it can be computed as

E�M(c) =

�
a2
�
a
4

�
+ (1� a)2

�
1+a
2
� c
�
+ (1� a) a

�
1+a
2

�
if c < 1=2

1
4

if c � 1=2 ;

where a is de�ned in equation (13) with phAB = 1.

The following proposition summarizes the above results.

Proposition 4 In the optimal two-partition symmetric mechanism, plBA = p
l
AB = p

h
BA = 0;

phAB = 1 if c < 1
2
, phAB = 0 if c > 1

2
, and any phAB 2 [0; 1] is optimal if c = 1=2. In other

words, the mediator only uses the outcome AB to punish agents, and she will do so only

when both of agents send message h and the cost of miscoordination is su¢ ciently low.

The relative e¢ ciency of alternative equilibria and mechanisms in comparison with the

�rst-best outcome are depicted in Figure 3. It is not surprising to observe that the expected

payo¤ for an agent under the two-message mechanism (�M , mediator with commitment)

weakly dominates that under a mediator who cannot commit (�C). More speci�cally, when

c � 3
4
�

p
3
4
� 0:317 and c � 1

2
, the expected payo¤s under the two centralized arrangements

are exactly the same. However, when c 2 (3
4
�

p
3
4
; 1
2
); the agents achieve a higher expected

payo¤ under the two-message mechanism than under a mediator without commitment. This

is because in this range of c, while under a mediator without commitment communication

completely collapses, under a mediator with commitment communication is still sustainable,

and it is valuable. In addition, the two-message mechanism also dominates the most infor-

mative decentralized equilibrium (�M > �D) for all parameters, despite that there are only

two messages in the mechanism. In particular, when c < 1=2 communication under the
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Figure 3: Payo¤ Comparison among Alternative Communication Protocols

two-message mechanism is actually more informative than that under the most informative

decentralized equilibrium, despite the fact that the latter has an in�nite number of messages

(the comparison is similar to the comparison between two-partition equilibrium under cen-

tralization and the most informative decentralized equilibrium when c is small, which we

conducted in the previous section). Thus in this range of c both the communication e¤ect

and the coordination e¤ect favor the two-message mechanism. When c > 1=2, although there

is no communication under the two-message mechanism, high miscoordination cost implies

that for the mediator with commitment the gains from avoiding the damaging "negative"

miscoordination outcome outweight the loss from less informative communication.

To further illustrate the e¢ ciency of the two-message mechanism, we calculate the gains

in expected payo¤ under the two-message mechanism using the payo¤ from the mediator

without precommunication (�C;�) as a benchmark. It turns out that the two-message mech-

anism can achieve a majority of gain in social surplus when the cost of miscoordination c is

small. In particular, we calculate the following ratio (�M � �C;�)/(�fb � �C;�). This ratio
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is 97% when c = 1=10, it is about 71% when c = 1=5, and 45% when c = 1=3. However,

this ratio becomes 0 when c � 1=2. This is simply because as c increases, sustaining infor-
mative communication becomes more costly as it involves with a larger, socially ine¢ cient

miscoordination cost.

VII Conclusion

In this paper, we pose the research question of whether pre-communication helps agents to

coordinate in a coordination game with private information. We �nd that pre-communication

does improve the frequency of coordination among the agents and thus increase their ex-

pected payo¤s, but perfect coordination can never be achieved. The informativeness of cheap

talk is related to the ratio of agents�realized type to the cost of miscoordination. In particu-

lar, communication is more informative if an agent�s realized type is lower (weaker incentive

to stick to his favored action) or the cost of miscoordination is higher. However, although

higher cost of miscoordination leads to more informative communication, the expected payo¤

for each agent decreases with the cost of miscoordination. We also �nd that, when the cost

of miscoordination is low, equilibrium with a small number of messages already achieves a

high percentage of e¢ ciency gain resulting from informative communication.

We further study how an impartial mediator would structure the communication and

a¤ect coordination outcome. When the mediator is not able to commit beforehand (central-

ization), at most two messages can be sustained in any equilibrium. In particular, when the

miscoordination cost is high, centralized communication completely collapses and thus it is

less informative than decentralized communication, which stands in contrast to the result

in ADM. Moreover, the relative performance between centralization and decentralization in

our model is also di¤erent from that of ADM. When the mediator is able to commit to a

decision rule beforehand, in the optimal two-message mechanism we show that the agents

are punished only when both of them send the high message and the cost of miscoordination

is su¢ ciently small. Consequently, informative communication is restored for some range of

the miscoordination cost when the mediator is able to maintain creditable punishment.

In the baseline model we have only considered simultaneous communication. How se-
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quential communication and delegation will a¤ect equilibrium and agents�payo¤ (similar

questions are considered in Li et al. (2015))? The answer is that under either sequential

communication or simple delegation, no informative communication can be sustained. To

see this, �rst consider a simple delegation scheme in which agent 1 has the decision rights of

picking actions for both agents. Given his payo¤ function, unless his type is 0, agent 1 will

always pick his most-favored outcome AA, no matter what agent 2 reports about �2. That

is, agent 2�s information transmission does not a¤ect the �nal outcome, which is equivalent

to no meaningful information transmission. Similar results occur in the context of sequential

talk. Suppose agent 2 talks �rst and agent 1 second. Given agent 1�s payo¤ function, no

matter what agent 2�s message is, agent 1 will always claim his type is higher than agent 2�s,

in order to have his favored outcome AA implemented. Thus agent 1 babbles. Given this,

agent 2 who send message �rst, also has an incentive to always claim to be the highest pos-

sible type, in order to increase the probability that his most-favored outcome BB is chosen.

Therefore, in equilibrium both agents babble. The main reason for communication being

totally uninformative is that, under either sequential talk or delegation, two agents become

asymmetric. Given that the two agents�interests are always orthogonal ex post, each agent

has an incentive to exaggerate; but the asymmetric position of the two agents essentially get

rid of the possibility of punishment. On the other hand, under simultaneous communication

where two agents�positions are symmetric, the punishment of miscoordination is possible,

which disciplines agents�incentives to exaggerate.

There are several directions for future research. First, suppose the mediator adopts se-

quential communication: �rst communicates with one agent publicly and then communicates

with the other. Can sequential communication with a mediator improve the e¢ ciency relative

to simultaneous communication with a mediator? Second, will there be more information

revealed if the agents are engaged in multi-rounds of simultaneous communication? In par-

ticular, imagine the two agents repeatedly send out binary information "high" or "low," with

high indicating the end of the communication stage and the agents choosing their optimal

actions, and "low" meaning we will communicate again with new beliefs. Finally, as we

mentioned before, the mechanism design approach we take in this paper di¤ers a lot from
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the standard approach in the previous literature. A promising research avenue would be to

study whether there are other simple mechanisms that can achieve higher e¢ ciency than the

two-partition mechanism considered in our paper.
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Appendix

Proof of Lemma 1.

Proof. Suppose aN�1 � c, consider the marginal type of agent 1 with �1 = aN�1. Since
aN�1 � c, the marginal type a has a dominant strategy, which is always playing his favored
action A regardless of the messages in the �rst stage. We can compute the marginal type�s

expected payo¤s by sending message mN�1 and by sending message mN as follows:

�1(aN�1;mN) = (1� aN)(aN � c) + a2N ;

�1(aN�1;mN�1) = (1� xN�1)(aN � c) + xN�1aN�1:

It can be readily veri�ed that �1(aN�1;mN) > �1(aN�1;mN�1). Therefore, type aN�1 cannot

be indi¤erent between sending message mN�1 and sending message mN , and thus equilibria

with aN�1 � c do not exist.

Proof of Lemma 2

Proof.

1na − nanx θ

nm 1nm +

1nx + 1na +

Given that the marginal type an is indi¤erent between sending messages mn and mn+1, we

only need to establish the following single crossing property

@[�(mn+1; �)� �(mn; �)]

@�
� 0, for � 2 [an; an+1]:

That is, a higher type agent has a stronger (at least weakly stronger) incentive to send a

higher message. By symmetry, we shall prove the inequality holds for agent 1 without any

loss of generality.

Consider a type � of agent 1 with � 2 [an; an+1]. If � 2 [an; xn+1], when he sends message
mn+1, his expected payo¤ is

�(mn+1; �) = an� � (an+1 � an)
�
xn+1 � an
an+1 � an

c

�
:
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With probability an, agent 2 sends a message lower than mn+1 and both agents coordinate

on action A so that agent 1 gets �. With probability an+1 � an, both agents send message
mn+1 and agent 1 gets �c with probability xn+1�an

an+1�an :

If � 2 [xn+1; an+1] and agent 1 sends message mn+1; his expected payo¤ is

�(mn+1; �) = an� + (xn+1 � an)� + (an+1 � xn+1) (� � c)

= an+1� � (an+1 � xn+1) c:

With probability an, agent 2 sends a message lower than mn+1 and both agents coordinate

on action A so that agent 1 gets �. With probability an+1 � an, both agents send message
mn+1. When it happens, agent 1 gets � with probability

xn+1�an
an+1�an and � �c with probability

an+1�xn+1
an+1�an .

On the other hand, if � 2 [an; an+1] and agent 1 sends message mn, his expected payo¤

is

�(mn; �) = an�1� + (xn � an�1)� + (an � xn) (� � c)

= an� � (an � xn) c

With probability an�1, agent 2 sends a message lower than mn and both agents coordinate

on action A so that agent 1 gets �. With probability an � an�1, both agents send message
mn: When it happens, agent 1 gets � with probability

xn�an�1
an�an�1 and � � c with probability

an�xn
an�an�1 :

Combining the above results, we have,

@[�(mn+1; �)� �(mn; �)]

@�
= 0 for � 2 [an; xn+1];

@[�(mn+1; �)� �(mn; �)]

@�
= an+1 � an > 0 for � 2 [xn+1; an+1]:(14)

Thus, overall, we have shown that @[�(mn+1;�)��(mn;�)]
@�

� 0.
In addition, similarly we can show

(15)
@[�(mn+1; �)� �(mn; �)]

@�
= 0 for � 2 [xn; an]:

Equation (14) and Equation (15) together imply that all types within [xn; xn+1] are indi¤erent

between sending messages mn and mn+1.
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Proof of Lemma 3.

Proof. 1) (Existence) Note that the existence of equilibrium when N = 2 has been

proved in the main text. Here we show that, given c and N � 2, the di¤erence equation

system has a solution.

To that end, we �rst express all the message cuto¤s fang and the action cuto¤s fxng as
functions of a1 (and only a1 and c). Speci�cally, given a1, by (2) we can compute

x1 =
a1

a1 + 2c
c:

By equation (4), we have

x2 = x1 + 2 (a1 � x1) = a1
2a1 + 3c

a1 + 2c
:

By equation (2), we can solve for a2 as

a2 =
a1x2 � 2cx2 + a1c

x2 � c
=

a31 � 2c2a1
�c2 + ca1 + a21

:= f2(a1):

From the above expression, we can see that f2(�) is continuous in a1. Similarly, we can
use equations (2) and (4) recursively to express xn and an as a sole function of a1 and c.

Applying to aN , we denote aN = fN(a1). By the recursive structure, fN(�) is continuous in
a1.

Now, de�ne

G(a1) � fN (a1)� 1:

Note that a1 is a solution to the di¤erence equation system if G(a1) = 0. Moreover, G(�) is
continuous in a1, since fN(�) is.
Suppose a1 = 0. Then it is immediate that x1 = 0 and a2 = 0. By the recursive structure,

an = 0 for any n � N . Therefore, we have

G(0) = fN(0)� 1 = �1 < 0:

Now suppose a1 = 1. By the recursive structure, it can be easily veri�ed that an > 1 for any

2 � n � N . Thus, we have
G(1) = fN(1)� 1 > 0:
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Given that G(0) < 0 and G(1) > 0, the continuity of G(�)means that there is a a1 2 (0; 1)
such that G(a1) = 0. That is, the di¤erence equation system has a solution.

2) (Uniqueness) To prove the uniqueness, �x N � 2. Suppose there are two di¤erent

solutions to the di¤erence equation system: (a; x) and (a0; x0). WLOG, suppose a0N�1 > aN�1.

By equation (2), a0N�1 > aN�1 implies that x0N > xN . Therefore, �y0N < �yN . By (7),

x0N > xN implies that
�y0N
�x0N

> �yN
�xN

. Since �y0N < �yN , it further implies that �x
0
N < �xN .

Now by (8), it means that �y0N�1 < �yN�1. Moreover, from the facts that a0N�1 > aN�1

and �y0N�1 < �yN�1, we get x
0
N�1 > xN�1.

Now suppose a0n > an and �y
0
n < �yn, and thus x

0
n > xn, we want to show a

0
n�1 > an�1

and �y0n�1 < �yn�1, and thus x
0
n�1 > xn�1. By (7), x

0
n > xn implies that

�y0n
�x0n

> �yn
�xn

. Since

�y0n < �yn, it further implies that �x
0
n < �xn. Now by (8), it means that �y

0
n�1 < �yn�1.

By the facts that x0n > xn and �x0n < �xn, we get a0n�1 > an�1. Finally, the facts that

�y0n < �yn and a
0
n�1 > an�1 imply that x

0
n�1 > xn�1.

Now by induction, we have �y01 < �y1, a
0
1 > a1, and x

0
1 > x1. By (7), x

0
1 > x1 implies

that �y01
�x01

> �y1
�x1
. Since �y01 < �y1, it implies that �x01 < �x1, which is equivalent to

x01 < x1. A contradiction.

Proof of Lemma 4.

Proof. Part (i). Fix N � 1. First, we show that a0N > aN�1. Suppose to the contrary,
a0N � aN�1. Then by the same logic as in the proof for Lemma 3 (the uniqueness), we

have �y1 � �y02, a1 � a02, and x1 � x02. By (7), x1 � x02 implies that
�y02
�x02

� �y1
�x1
. Since

�y1 � �y02, it implies that �x1 � �x02, which further implies that x1 < x02. A contradiction.
Therefore, a0N > aN�1.

By a similar logic, we can show that aN�1 > a0N�1. Following the induction as in the

proof for Lemma 3 (the uniqueness), we can show that :::a0n < an < a
0
n+1 < an+1:::.

Part (ii). The statement directly follows Part (i).

Proof of Lemma 6.
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Proof. Part (i). To see plBA = 0 in the optimal mechanism, by equation (11), we have

@a

@plBA
=

�
�
a2

2
+ ca

�
(phBA + p

l
BA) (a+ c) +

1+phAB�phBA
2

+
�
phAB + p

l
BA

�
(c� a)

< 0;

@a

@plAB
=

�
a
2
� c
�
a

(phBA + p
l
BA) (a+ c) +

1+phAB�phBA
2

+
�
phAB + p

l
BA

�
(c� a)

:

By the above equations,
@a

@plAB
=
c� a

2

c+ a
2

@a

@plBA
:

De�ne the objective function as F
�
plAB; p

l
BA

�
. Suppose plBA > 0. We construct

eplBA = plBA ��;eplAB = plAB + c� a
2

c+ a
2

�;

where � is a su¢ ciently small and positive number. By construction, a
�eplAB; eplBA� =

a
�
plAB; p

l
BA

�
: We thus have

F
�eplAB; eplBA�� F �plAB; plBA� / 3ca3

2
�
c+ a

2

� ;
which is positive. Therefore, in the optimal mechanism plBA cannot be positive.

Similarly, to see phBA = 0 in the optimal mechanism, by equation (11), we have

@a

@phAB
=
c� a

2

c+ a
2

@a

@phBA
:

De�ne the objective function as F
�
phAB; p

h
BA

�
. Suppose phBA > 0. We construct

ephBA = phBA ��;ephAB = phAB + c� a
2

c+ a
2

�;

where � is a su¢ ciently small and positive number. By construction, a
�ephAB; ephBA� =

a
�
phAB; p

h
BA

�
: We thus have

F
�ephAB; ephBA�� F �phAB; phBA� / 1 + a

4

2c

c+ a
2

�� c �a
c+ a

2

� /
�
3a+ 1

a+ 2c
(a� 1)2 c

�
;
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which is positive. Therefore, in the optimal mechanism phBA cannot be positive.

Part (ii). Suppose to the contrary that c � a
2
, which implies that a� c � a

2
> 0. For the

marginal type a agent, the expected payo¤ of sending the high message and that of sending

the low message are

�1(a;H) = a
2 + (1� a)

�
phAB (a� c) +

�
1� phAB

� a
2

�
;

�1(a; L) = a
�
plAB (a� c) +

�
1� plAB

� a
2

�
;

respectively (we have used the results in part (i) that both phBA = 0 and p
l
BA = 0). Notice

that in the parenthesis the payo¤s are linear combinations of a � c and a
2
. It follows that

the lower bound of �1(a;H) can be achieved at phAB = 0, while the upper bound of �1(a; L)

can be achieved at plAB = 1. Therefore,

�1(a;H)� �1(a; L)

� a2 + (1� a)
�a
2

�
� a (a� c)

= (1� a)
�a
2

�
+ ac > 0;

which contradicts the fact that a is the marginal type indi¤erent between sending the low

message and sending the high message.

Part (iii). We now show that plAB cannot be positive in equilibrium. To see this, by

equation (11), we have
@a

@phBA
=
(1� a)

�
c+ a

2

��
a
2
� c
�
a

@a

@plAB
:

De�ne the objective function as F
�
phBA; p

l
AB

�
. Suppose plAB > 0. We construct

eplAB = plAB ��;
ephBA = phBA + (1� a) �c+ a

2

��
a
2
� c
�
a

�;

where � is a su¢ ciently small and positive number. By construction, a
�ephAB; eplAB� =

a
�
plAB; p

l
BA

�
: We thus have

F
�ephBA; eplAB�� F �phAB; plAB�
/ a2

�
c� a

4

�
+

 
(1� a)

�
c+ a

2

��
c� a

2

�
a

!
(1� a)2

�
(1 + a)

4
+ c

�
> 0;
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since c > a
2
. Therefore, plAB cannot be positive in the optimal mechanism.

Proof of Lemma 7.

Proof. Now de�ne the LHS of (13) as G(a). It can be veri�ed that G0(a) > 0, G(0) < 0,

and G(c) > 0. Therefore, a 2 [0; c) for any phAB. By previous results, @a
@phAB

> 0, or a is

increasing in phAB.

By (13), choosing phAB is equivalent to choosing a. From (13), we can solve for phAB as

a function of a. Substituting phAB in the objective function and simplifying, we get a new

objective function F (a), with the restriction that a 2 [0; a), where a is the solution to (13)
when phAB = 1. Speci�cally,

(16) F (a) =
1

4
+
1� 2c
4

a(1� a)
2c� a :

Observing (16), we notice that a(1�a)
2c�a � 0 since 2c > a. It immediately follows that when

c > 1=2, the optimal a = 0, which means that the optimal phAB = 0. When c = 1=2, then

any a is optimal, or any phAB 2 [0; 1] is optimal. Now consider the case that c < 1=2. Since
a < c, it means that a < 1=2. For the term a(1�a)

2c�a , the numerator a(1 � a) is increasing in
a since a < 1=2; the denominator is decreasing in a. Therefore, a(1�a)

2c�a is increasing in a for

a 2 [0; a). As a result, the optimal a is the corner solution a = a, which implies that the

optimal phAB = 1.

Proof of Lemma 5

Proof. We only need to rule out the existence of three-partition equilibria. First consider

the case that m1 � 2c. Then by the monotonicity of mn in n, mn � 2c for all n = 1; 2; 3.

This means that the mediator will always choose the outcome AB for sure regardless of the

messages. As a result, all the messages are outcome equivalent and the equilibrium is a

babbling equilibrium. Second, consider the case that m3 � 2c. By a similar logic, in this

case the outcome AB is never chosen and either AA or BB is chosen. As a result, in this

case both agents will always send the highest message m3, or the equilibrium is a babbling

equilibrium.

Now consider the case that m1 < 2c and m3 > 2c. Suppose m2 < 2c. Then outcome

AB is chosen if and only if both agents send message m3. In this case all types of agent i
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with �i � a2 will have an incentive to send message m2, in order to increase the chance that

his favored coordinated outcome is chosen. That is, the two low messages are essentially

combined into a single message. Next suppose m2 > 2c. Then outcome AB is chosen if the

lower message is m2. In this case the two high messages are outcome equivalent and are

essentially combined into a single message.

Now the only case left is m1 < 2c, m3 > 2c, and m2 = 2c. This means that a2 > 2c and

a1 < 2c. To makem2 di¤erent fromm1 andm3, let p 2 (0; 1) be the probability that outcome
AB is chosen when both agents send m2 (AA and BB are chosen with the same probability

(1 � p)=2), and q 2 [0; 1] be probability that outcome AB is chosen when one agent sends

m3 and the other sends m2 (with probability 1� q the favored coordinated outcome of the
agent who sends m3 is chosen). Now consider the marginal type a2 of agent 1. If he sends

message m2, his expected payo¤ is

�1(a2;m2) = a1a2 + (a2 � a1)[p(a2 � c) +
1� p
2
a2] + (1� a2)q(a2 � c):

If he sends message m3, his expected payo¤ is

�1(a2;m3) = a1a2 + (a2 � a1)[q(a2 � c) + (1� q)a2] + (1� a2)(a2 � c):

Taking the di¤erence, we have

�1(a2;m3)� �1(a2;m2)

= (a2 � a1)[�(q � p)c+
1� p
2
a2] + (1� a2)(1� q)(a2 � c):

To show that �1(a2;m3)��1(a2;m2) > 0, it is su¢ cient to show that �(q� p)c+ 1�p
2
a2 > 0.

Since a2 > 2c, we have

�(q � p)c+ 1� p
2
a2 > �(q � p)c+ (1� p)c = (1� q)c � 0:

Therefore, �1(a2;m3)��1(a2;m2) > 0. But this contradicts to the fact that type a2 of agent

1 should be indi¤erent between sending message m2 and sending message m3.
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