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Abstract

This paper studies how increased competition affects nonlinear pricing, in particular the va-

riety of contracts offered by firms. We present a model with both horizontally and vertically

differentiated products, with the set of consumers served in the market being endogenously de-

termined. Though firms are only able to sort consumers in the vertical dimension, horizontal

differentiation affects screening in the vertical dimension. We characterize the symmetric equi-

librium menu of contracts under different market structures. When the market structure moves

from monopoly to duopoly, we show that each firm offers more contracts (serving more types of

consumers) and quality distortions decrease. As the market structure becomes more competitive

(when the number of firms increases further), the effect of increasing competition exhibits some

non-monotonic features: when the initial competition is not too weak, a further increase in the

number of firms will lead to more contracts being offered and a reduction in quality distortions;

when the initial competition is weak, an increase in the number of firms will lead to fewer con-

tracts being offered, though the effect on quality distortions is not uniform. Our predictions are

largely consistent with some empirical studies.
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1 Introduction

As more Japanese car makers enter the US market, will GM or Ford offer more models targeting at

different types of consumers? As more competitors enter the cellular phone market, will Verizon or

Sprint offer more calling plans? A number of empirical studies suggest that as competition becomes

more intense, each firm often offers more variety of goods or services. For example, in the face of

increased competition, American Express introduced 12 to 15 new credit cards per year targeted at

different customer segments (Forbes, July 1, 1996, “The Battle of Credit Cards”). Similar effects of

competition on the variety of contracts/services is observed in the airline industry as well. Borenstein

and Rose (1994) find that on routes with more competition, each airline offers more variety of air

tickets. In the automotive industry, in response to the increased competition from foreign companies

in 1980s, GM and Ford began to offer more variety of car models.

All these cases suggest that increased competition leads to more contracts offered by each indi-

vidual firm. Since the work of Mussa and Rosen (1978) and Maskin and Riley (1984) on monopolistic

nonlinear pricing, there is a growing literature on nonlinear pricing in competitive settings, see, for

example, Spulber (1989), Champsaur and Rochet (1989), Wilson (1993), Stole (1995), Villas-Boas

and Schmidt-Mohr (1999), Armstrong and Vickers (2001), and Rochet and Stole (1997, 2002). How-

ever, much remains to be done in understanding how increased competition affects firms’ nonlinear

pricing strategies. In this paper, we focus on the effects of increased (horizontal) competition on the

number of (vertical) contracts offered by each firm.

Specifically, we consider a market with both vertically and horizontally differentiated products

and consumers’ preferences differ in two dimensions. In the horizontal dimension, consumers have

different tastes over different brands (firms); while in the vertical dimension consumers have different

marginal utilities over quality. Although neither type is observable to firms, in our model the single

crossing property is only satisfied in the vertical dimension. As a result firms can only offer contracts

to sort consumers with respect to their vertical types.1

Our paper is most closely related to Rochet and Stole (1997, 2002), who also consider both hor-

izontally and vertically differentiated products with continuous types of consumers. Their model is

presumably more general, as they consider general distributions of consumer types while for tractabil-

ity reason we focus on uniform distributions. In Rochet and Stole (2002), horizontal types are also

interpreted as outside opportunity costs, which gives rise to consumers’ random participation. By

1For this reason our paper does not belong to the multi-dimensional screening literature (e.g., Laffont, Maskin and

Rochet, 1987; McAfee and McMillan, 1988; Armstrong, 1996; and Rochet and Chone, 1998).
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taking random participation into account, they show that in the monopoly case there is either bunch-

ing or no quality distortion at the bottom. In the duopoly case, they show that under full market

coverage quality distortions disappear and the equilibrium is characterized by the cost-plus-fee pric-

ing feature (a similar result obtained in Armstrong and Vickers (2001)).2 Both results are in stark

contrast with the received wisdom in nonlinear pricing literature (e.g., Mussa and Rosen, 1978).

It is worth noting that Rochet and Stole’s analysis focuses on the case where the lowest (vertical)

type of consumers (θ) is always served in the market. In particular, all their main results are derived

under the condition θ/θ ≥ 1/2, where θ is the maximal vertical type. In this paper, we focus on the
case where the lowest vertical type of consumers will typically be excluded from the market. More

specifically, we assume that the vertical types of consumers are distributed uniformly over [0, 1]. This

is a case not covered in Rochet and Stole, since the condition θ/θ ≥ 1/2 is clearly violated. A direct
consequence is that in our analysis, the minimal (vertical) type of consumers being served in the

market is endogenously determined in equilibrium.

Interestingly, our findings are quite different from those in Rochet and Stole. In all the cases we

analyze, the equilibrium exhibits perfect sorting (bunching never occurs), and the quality distortion

is maximal for the lowest type (we postpone a detailed discussion on our differences from Rochet

and Stole to Section 3). In fact, our results are more in line with those obtained in Mussa and Rosen

(1978), and Maskin and Riley (1984). More importantly, focusing on the case where the lowest

type of consumers being served is endogenously determined allows us to study the effect of varying

horizontal differentiation (competition) on the market coverage, and hence the variety of contracts

offered, which is the main motivation of this paper. Our analysis in this paper is thus complementary

to that in Rochet and Stole.

The key of our analysis comes from the interaction between horizontal differentiation (compe-

tition) and screening on the vertical dimension. Although horizontal differentiation does not have

direct impact on the incentive compatibility (IC) conditions in the vertical dimension, it affects the

IC conditions through the rent provisions to consumers.3 This interaction in turn affects the menu

of contracts offered by each brand (firm). It is through this interaction that we identify the effect of

increased (horizontal) competition on the menu of contracts offered by each firm.

2Rochet and Stole (2002) focus on either competitive regime or monopoly regime (in terms of consumer coverage in

horizontal dimension). The mixed regime with both regimes present is analyzed in Rochet and Stole (1997).
3As is standard in the screening literature, any IC contract can be represented by a rent provision schedule, which

governs the utilities of consumers in equilibrium.
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Our base model includes both the monopoly and duopoly cases. In the duopoly case, there are

two horizontally differentiated brands owned and operated by two separate firms. In the monopoly

case, we assume that all the modeling elements are the same as in the duopoly case, except that the

two brands are owned and operated by a single firm, the monopolist. This particular way of modeling

provides a well-controlled benchmark, with which the difference in market structures becomes the

only difference between the duopoly case and the monopoly case. We focus on symmetric equilibria

in which each firm (brand) offers the same menu of contracts, and characterize the equilibrium menu

of contracts for both monopoly and duopoly. In either case, the equilibrium menu of contracts is

unique, and a positive measure of consumers are excluded from the market. Moreover, the equilibrium

contracts in both cases exhibit perfect sorting. Thus, the lowest type covered serves as a measure of

the number of contracts offered by each firm (brand): the lower the lowest type covered, the more

contracts are offered targeting more (vertical) types of consumers. As such in this paper we refer to

the variety of the underlying types of consumers being served as the contract variety.4

Compared to the monopoly benchmark, we show that under duopoly more contracts are offered,

and quality distortions decrease. This result is due to the interaction between horizontal competition

and vertical screening. Intuitively, the competition in duopoly increases the rent provisions for higher

type consumers, which relaxes the screening condition in the vertical dimension (informational rent

consideration becomes less important, as higher type consumers obtain higher rent anyway due to

competition). This leads to additional contracts offered to consumers who were previously excluded,

and a reduction in quality distortions.

Our comparison between monopoly and duopoly also has implications about which market struc-

ture offers more contracts over any given quality interval. We show that competition has the most

effect on the higher end of the quality range: while equally dense contracts are offered over the

lower quality range under both market structures, contracts offered over the higher quality range

become denser moving from monopoly to duopoly.5 Based on a very different model, Johnson and

Myatt (2003) show that an incumbent may respond to entry by either expanding (fighting brand) or

contracting (pruning) the product line (the quality range).6 In their model, introducing competition

4This is quite intuitive in the case with finite consumer types. In our current model with continuous types, this

notion of contract variety can be interpreted as arising from the limiting case when the number of types goes to infinity.
5 If more types of consumers are served over a quality interval, we say that the contracts offered over that quality

interval become denser.
6 Johnson and Myatt (2003) consider quantity competition between an incumbent and an entrant in a market with

vertically differentiated products. In Johnson and Myatt (2005), they extend similar analysis to the case with multiple
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only has an effect on the lower end of the quality range, which is quite different from our implication.

We also study how the degree of horizontal differentiation, or the intensity of competition, affects

the equilibrium menu of contracts. It turns out that the effects under the two market structures

are quite different. Under monopoly, as the two brands become less differentiated, each brand offers

fewer contracts, and quality distortions become larger. The effects in the duopoly case are subtle.

When the degree of horizontal differentiation (captured by transportation cost k) is smaller than

some cutoff value, a decrease in k results in more contracts offered and smaller quality distortions;

when k is larger than the cutoff value, a decrease in k results in fewer contracts offered, and the

effect on quality distortions is not uniform. Again these results are driven by the interplay between

the horizontal differentiation and screening on the vertical dimension.

Finally, we extend our analysis of the duopoly model to any finite n-firm case, and demonstrate

that the analysis can be translated into that of the duopoly model by proper normalization. We

show that an increase in the number of firms is equivalent to a decrease in k in the duopoly model.

We thus conclude that when the initial competition level is not too low (n is large), an increase in

the number of firms results in more contracts offered by each firm and smaller quality distortions;

while when the initial competition level is low (n is small), an increase in the number of firms results

in fewer contracts offered by each firm, though the effect on quality distortions is not uniform.

Our results are largely consistent with some existing empirical studies. In particular, the non-

monotonic relationship between the number of firms and the number of contracts offered is consistent

with a recent empirical study by Seim and Viard (2004), who test the effect of entry on the tariff

choices (the number of contracts) of incumbent firms in the US cellular industry. We postpone a

discussion of their study to the end of section 5.

As in our approach, a number of papers also study nonlinear pricing in competitive settings with

both horizontally and vertically differentiated products (e.g., Gilbert and Matutes, 1993; Stole, 1995;

Verboven, 1999; Villas-Boas and Schmidt-Mohr, 1999; and Ellison, 2005). However, these papers

assume that all consumer types in the vertical dimension are served in the market. This full market

coverage assumption does greatly simplify their analysis, but precludes the effect of competition

on the consumer coverage on vertical dimension, which is central to our analysis. Except for Stole

(1995), in all the other papers mentioned above firms are only able to produce two exogenously given

qualities.7

firms.
7 In Ellison (2005), there are only two types of vertically differentiated consumers. Stole (1995) assumes that
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The paper is organized as follows. Section 2 introduces the base model with two brands. Section

3 derives the optimal symmetric menu of contracts under monopoly. Section 4 characterizes the

symmetric equilibrium in the duopoly model, and investigates how the equilibrium menu of contracts

changes as the market structure moves from monopoly to duopoly. We extend our analysis to the

arbitrary n-firm case in Section 5. Section 6 concludes.

2 The Model

We consider a model in which consumers’ preferences differ both in the vertical and horizontal di-

mensions. Our basic model studies the two-brand case under both the duopoly and monopoly market

structures. Under duopoly, two firms own two distinct brands, brand 1 and brand 2, respectively.

Each firm (brand) offers a variety of vertically differentiated products, that is, goods of different

qualities, which are indexed by q, q ∈ R+. Quality q is both observable and contractible.

There are a continuum of consumers in the market, whose preferences differ on two dimensions:

the “taste” dimension over the brands and the “quality” dimension. We model the taste dimension

as the horizontal “location” of a consumer on a unit circle representing the ideal brand for that

consumer.8 As depicted in Figure 1 below, the locations of brand 1 and brand 2 evenly split the unit

circle. Let di be the distance between a consumer’s location and brand i’s location, then di is this

consumer’s horizontal type, i = 1, 2. Because d1 + d2 = 1/2, either d1 or d2 alone fully captures a

consumer’s preference over two brands.

either the consumers’ horizontal types or the consumers’ vertical types are observable. Thus the impacts of horizontal

differentiation on screening in the vertical dimension in his model are very different from those in our model.
8For two brands, it would be sufficient to use a unit interval. We work with a unit circle since doing so will make it

easier to extend our model to the arbitrary n-brand or n-firm case later.

6



Brand 1

Brand 2

Consumer  

1( , )d θ 2( , )d θ

1d

2d

Figure 1: A Two-Brand Base Model

Consumers’ varying preferences over the quality dimension are captured by θ, θ ∈ [0, 1], which we
call a consumer’s vertical type. A consumer is thus characterized by a two-dimensional type (di, θ)

(either i = 1 or i = 2). Neither θ or di is observable to either firm. We assume that consumers

are uniformly located along the unit circle, and the vertical types of consumers at each location

are distributed uniformly over the unit interval: θ ∼ U [0, 1]. A consumer’s horizontal location and

vertical type are independent.

Each consumer demands at most one unit of a good. If a type-(di, θ) consumer purchases one

unit of the brand-i product with quality q at price t, her utility is given by

u(q, t, di, θ) = θq − t− kdi (1)

where k, k > 0, can be interpreted as the per unit “transportation” cost. Note that the smaller the

k, the less horizontally differentiated the two brands are. If a consumer purchases no product, her

reservation utility is normalized to be 0.

We assume that the two brands (firms) have the same production technology. Specifically, to

produce a unit of quality q product a firm incurs a cost c(q) = q2/2.9 Thus, each firm (brand) has a

per-customer profit function given by

π(t, q) = t− q2/2. (2)

9The quadratic functional form assumed here is not crucial. What is needed in our analysis is that the cost function

should be convex.
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Each firm offers a menu of contracts, which is a collection of all the quality and price pairs. Given

the menus of contracts offered by both firms (brands), consumers decide whether to make a purchase,

and if they do, which brand to choose and which contract to accept. It is well known that in the

environment of competitive nonlinear pricing, it is no longer without loss of generality to restrict

attention to direct contracts.10 To sidestep this problem, as in Rochet and Stole (2002) we restrict

attention to deterministic contracts.11 Since the preferences of a consumer with vertical type θ over

the available price-quality pairs conditional on purchasing from a firm (brand) are independent of

her horizontal type di, in what follows it is without loss of generality to consider direct contracts

of the form {q(θ), t(θ)}θ∈[0,1]. For brevity of exposition, from now on we will often refer to vertical

types as the types, especially when there is no confusion in the context.

Our solution concept is Bertrand-Nash equilibrium: given the other firm’s menu of contracts,

each firm maximizes its expected total profit by choosing its menu of contracts.

This basically completes a description of the duopoly model. For the monopoly model, our main

goal is to lay down a benchmark with which we can identify the effect of competition on the menu of

contracts. As such in the monopoly model we need to control for all but the market structure. We

thus assume that in the monopoly case, all the modeling elements are the same as in the duopoly

model, except that the two brands are now owned and operated by the same firm, which is the

monopolist.12 The monopolist’s objective is to maximize the joint profits from the two brands by

choosing the menu of contracts for each brand.

As an analytical benchmark, given (1) and (2), the first-best (efficient) quality provision is q∗(θ) =

θ. We can thus define θ − q(θ) as the quality distortion for type θ given quality schedule q(·).

10As demonstrated in a series of examples in Martimort and Stole (1997) and Peck (1997), equilibrium outcomes

in indirect mechanisms may not be supported when sellers are restricted to using direct mechanisms where buyers

report only their private types. Moreover, as demonstrated by Martimort and Stole (1997), an equilibrium in such

direct mechanisms may not be robust to the possibility that sellers might deviate to more complicated mechanisms.

The reason for such failures, as pointed out by McAfee (1993) and Katz (1991), is that in competition with nonlinear

pricing the offers made by other firms may also be private information of the consumers when they make their purchase

decisions, which means that this private information can also potentially be used when firms set up their revelation

mechanisms.
11See Rochet and Stole (2002) for a discussion on the restrictions resulted from focusing on deterministic contracts.

More general approaches in restoring the “without loss of generality” implication of the revelation principle in the

environment of competitive nonlinear pricing have been proposed and developed by, for example, Epstein and Peters

(1999), Peters (2001), and Page and Monteiro (2003).
12So our benchmark is a multi-product monopoly, which has an alternative interpretation as being collusive duopoly.
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Incentive Compatible Contracts

Let Ui(θ̂, θ, di) be the utility obtained by a consumer of type (θ, di) who reports θ̂ and purchases a

unit of brand i product. Then

Ui(θ̂, θ, di) = θqi(θ̂)− ti(θ̂)− kdi (3)

Incentive compatibility requires

∀(θ, θ̂) ∈ [0, 1]2, Ui(θ, θ, di) ≥ Ui(θ̂, θ, di) for i = 1, 2 (4)

Since (3) satisfies the single crossing property in (θ, qi), we can show the following “constraint sim-

plification” lemma.

Lemma 1 The IC conditions (4) are satisfied if and only if the following two conditions hold:

(1) Ui(θ, θ, di) =

Z θ

θ∗i

qi(τ)dτ − kdi for all θ ≥ θ∗i and i = 1, 2, where θ∗i ∈ [0, 1).

(2) qi(θ) is increasing in θ

where θ∗i is the lowest type that purchases from brand i.

Lemma 1 is a standard result in the one-dimensional screening literature. This also applies to

our model because consumers’ utility functions are separable in q and di. Here θ∗i can be regarded

as a separate choice variable for brand i: any consumer whose type is below θ∗i is excluded from the

market for brand i. Alternatively, one can interpret that brand i offers a null contract (qi = 0 and

ti = 0) to all consumers whose types are below θ∗i . Define

yi(θ) =

Z θ

θ∗i

qi(τ)dτ, i = 1, 2. (5)

Then by Lemma 1 yi(θ) is the rent provision to the type (θ, 0) consumer specified by the menu of IC

contracts offered by brand i. The equilibrium utility enjoyed by a consumer of type (θ, di) can now

be written as yi(θ)− kdi. Moreover, the quality and the price specified in the original contract can

be recovered from yi(θ) as follows:

qi(θ) = y
0
i(θ) and ti(θ) = θqi(θ)− yi(θ).

Thus any menu of IC contracts can be characterized by rent provision schedules (yi(·), i = 1, 2).
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Individual Rationality and Market Shares

Given rent provision schedules {yi(θ)}, i = 1, 2, each consumer decides whether to make a purchase,
and if they do, what product (brand and quality) to purchase. If a consumer of type (θ, di) chooses

to purchase a product from brand i, then we must have

yi(θ)− kdi ≥ max{0, y−i(θ)− k(1/2− di)}

Alternatively, we have

di ≤ min
½
yi(θ)

k
,
1

4
+
1

2k
(yi(θ)− y−i(θ))

¾
=:si(θ) (6)

2si(θ) is the total measure of type-θ consumers who purchase brand i products. Figure 2 below

illustrates one half of the market share for each brand (the other half not shown is symmetric).

0 1/2

1

1/4

θ̂

θ

Firm 1’s market 
coverage

Firm 2’s market 
coverage

*
1θ

*
2θ

1( ) /y kθ

1 21/ 4 ( ( ) ( )) / 2y y kθ θ+ −

Figure 2: An Illustration of Market Shares and Market Coverage

From Figure 2, we can see that there is a cutoff type θ̂ above which the market is fully covered

(consumers are served regardless of their horizontal locations), and below which the market is not

fully covered. This is because yi(θ) is increasing in θ by (5). Under duopoly, the full coverage range

[θ̂, 1] can also be called the competition range since the two firms are competing for customers over

this range, and the partial coverage range [θ∗i , θ̂) can also be called the local monopoly range. Note

that θ̂ is endogenously determined by the following condition:

y1(θ̂) + y2(θ̂) =
k

2
(7)
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Given y−i(·), brand i’s total expected profit is twice the following:

Z 1

θ∗i

[ti(θ)−
1

2
q2i (θ)]si(θ)dθ =

Z 1

θ∗i

∙
θqi(θ)− yi(θ)−

1

2
q2i (θ)

¸
si(θ)dθ (8)

By separating the partial coverage range from the full coverage range, we can rewrite (8) into the

sum of two integrations:

Z θ̂

θ∗i

∙
θqi(θ)− yi(θ)−

1

2
q2i (θ)

¸
yi(θ)

k
dθ

+

Z 1

θ̂

∙
θqi(θ)− yi(θ)−

1

2
q2i (θ)

¸
·
∙
1

4
+
1

2k
(yi(θ)− y−i(θ))

¸
dθ (9)

The maximization of (9) subject to the transition equation y0i(θ) = qi(θ) and the corresponding

endpoint conditions can be viewed as an optimal control problem with two potential phases.13 What

makes it different from the ordinary single-phase optimal control is that now we also need to solve

for the optimal switching “time” θ̂, at which the first phase switches to the second phase.

3 Monopoly

Under monopoly, the two brands are owned by a single firm. The monopolist’s objective is to

maximize the joint profits from the two brands. Since consumers are uniformly distributed along the

horizontal dimension and the two brands’ production technologies are symmetric, we focus on the

symmetric solution in which each brand offers the same menu of contracts and the resulting market

shares are symmetric.14 We can thus drop the subscripts to write yi(θ) = y(θ), i = 1, 2. Simplifying

(6), the market share becomes si(θ) = s(θ) = min {y(θ)/k, 1/4} .
The monopolist’s problem can be formulated as follows:

13An early application of two-phase optimal control technique can be found in Amit (1986), who considers a petroleum

recovery process that has two potential phases with different technologies yielding different extraction rates.
14We focus on the symmetric solution here for ease of comparison with the duopoly case, where we will focus on

symmetric equilibrium in which each firm offers the same menu of contracts. While a formal proof is not attempted

here, we conjecture that symmetric solution is optimal for the monopolist.
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max

Z θ̂

θ∗

∙
θq(θ)− y(θ)− 1

2
q2(θ)

¸
y(θ)

k
dθ +

Z 1

θ̂

∙
θq(θ)− y(θ)− 1

2
q2(θ)

¸
1

4
dθ

s.t. y0(θ) = q(θ)

q0(θ) ≥ 0

y(θ̂) = k/4

y(θ∗) = 0

where θ∗ is the lowest type of consumers served, that is, y(θ∗) = 0,15 and θ̂ is the unique solution to

y(θ)/k = 1/4.

As is standard in the literature, we will solve the relaxed program by dropping the constraint

q0(θ) ≥ 0 (the monotonicity of q(θ) shall be verified later to justify this approach). Define the

Hamiltonian function of the two phases as follows:

H =

⎧⎨⎩ H1 =
£
θq − y − 1

2q
2
¤ y
k + λq : θ∗ ≤ θ < θ̂

H2 =
£
θq − y − 1

2q
2
¤
1
4 + λq : θ̂ < θ ≤ 1

It can be verified that Phase I (partial coverage range) is characterized by the following differential

equation.

3y − 1
2
y
02 − yy

00
= 0 (10)

Combining with the lower endpoint condition y(θ∗) = 0, it can be verified that the unique solution

to (10) is given by:16

y(θ) =
3

4
(θ − θ∗)2, q(θ) =

3

2
(θ − θ∗)

Similarly, in phase II (full coverage range) we can obtain the differential equation y00 = 2 .

Combined with the transversality condition λ(1) = 0, the solution to this system is given by:

y(θ) = θ2 − θ + β, q(θ) = 2θ − 1

15 If y(θ∗) > 0, then for some sufficiently small �, it can be verified that some type-(θ∗ − �) consumers would prefer

accepting contract y(θ∗) to staying out of the market, which contradicts the assumption that θ∗ is the lowest type

being served.
16The uniqueness is implied in Rochet and Stole (2002) (appendix, p. 304): if a convex solution to differential

equation (10) exists for a given set of boundary conditions, it is unique.
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where β is a parameter yet to be determined. Note that in both phases q(θ) is increasing in θ. Thus

the solutions to the relaxed program are also the solutions to the original program. Moreover, since

in both phases q(θ) is strictly increasing in θ, the optimal menu of contracts exhibits perfect sorting.

To determine θ̂, we apply smooth pasting: y(θ̂
−
) = y(θ̂

+
) and q(θ̂

−
) = q(θ̂

+
).17 We thus have

3

4
(θ̂ − θ∗)2 = θ̂

2 − θ̂ + β =
k

4
3

2
(θ̂ − θ∗) = 2θ̂ − 1

Given all these, we can solve θ̂, θ∗ and β as follows:

θ∗M =
1

2
− 1

12

√
3k (11)

θ̂
M
=
1

2
+
1

4

√
3k (12)

β =
1

4
+
1

16
k

It is easily verified that θ̂ has an interior solution only when k < 4
3 . If k >

4
3 , we would have the

corner solution θ̂ = 1. That is, if k > 4
3 phase II is never entered (no interaction between the two

brands). In that case we can use the transversality condition λ(1) = 0 to pin down θ∗M = 1
3 . The

above analysis is summarized below.

Proposition 1 In the monopoly model, the optimal symmetric menu of contracts is unique and

exhibits perfect sorting. Specifically, for k ∈ (0, 43),

y(θ) =

⎧⎨⎩ 3
4(θ − θ∗M)2 : θ∗M ≤ θ ≤ θ̂

M

θ2 − θ + 1
4 +

1
16k : θ̂

M
< θ ≤ 1

where θ∗M and θ̂
M
are given by (11) and (12), respectively. For k > 4

3 ,

y(θ) =
3

4

µ
θ − 1

3

¶2
, θ ∈

∙
1

3
, 1

¸
.

The optimal menu of contracts exhibits several salient features. First, there is always a positive

measure of types of consumers (regardless of horizontal location) who are excluded from the market

(θ∗M > 0). The underlying reason for the exclusion is the informational rent consideration. Offering

contracts to all types may increase the firm’s profit from those types in [0, θ∗M). However, doing so

necessarily increases the informational rent to all types above θ∗M due to the screening condition (5),

17A full justification of smooth pasting at θ̂ can be found in our previous working paper version Yang and Ye (2005).
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which reduces the firm’s profit from those types. The optimal θ∗M , which balances the above two

opposing effects, should thus be strictly above zero. Second, there is quality distortion for all but the

highest type consumers, i.e., q(θ) < θ for all θ ∈ [θ∗M , 1). This is again driven by the informational

rent consideration. Finally, the optimal contracts exhibit perfect sorting. That is, different types of

consumers choose different contracts. Our results thus imply that bunching does not occur and the

quality provision for the lowest type covered is always distorted downwards. These are very different

from the results obtained by Rochet and Stole (1997, 2002), who show that either bunching occurs

at a lower interval, or perfect sorting occurs with efficient quality provision for the lowest type.

This difference between our results and theirs first appears puzzling, given that the differential

equation (10) is a special case of the Euler equation derived in Rochet and Stole (who allow for more

general distributions). The key to solve the puzzle is to observe the difference in boundary conditions.

Note that in Rochet and Stole the ratio of the lowest type to the highest type γ = θ/θ is assumed

to be greater than 1/2. This implies that all the (vertical) types are covered. As a result, the state

variable y is free at the lowest type θ, which gives rise to the boundary condition λ(θ) = 0. This

boundary condition in turn implies efficient quality provision at θ if the monotonicity constraint on q

is satisfied (perfect sorting case). Note also that sorting can become quite costly for the monopolist

given the requirement of no quality distortion at θ, which explains why bunching may occur at a lower

interval starting from θ. On the other hand, in our model the lowest possible type θ is 0 (γ = 0), thus

not all types will be covered and the lowest type covered, θ∗, is endogenously determined. This leads

to a different set of boundary conditions: y(θ∗) = 0 and H(θ∗) = 0. Combined with the differential

equation (10), these conditions pin down a unique perfect sorting solution in which q(θ∗) = 0.18

Thus in a sense our analysis is complementary to that in Rochet and Stole: while they study the

case with full coverage of vertical types (γ is big), we analyze the case with endogenously determined

coverage of vertical types (γ is small). It is worth noting that two cases lead to qualitatively different

results. To better understand the link between our results and those of Rochet and Stole, let’s fix

the upper bound of the vertical type, θ, and gradually raise θ, starting from 0. When θ is 0, our

results apply: there is an endogenously determined lowest type covered, θ∗, with perfect sorting and

q (θ∗) = 0. This feature stays the same until θ is raised just above θ∗. When θ is just above θ∗, the

case of Rochet and Stole applies since all the vertical types are covered. If the monotonicity constraint

18 It can be easily verified that the quadratic functional form solution, which works in our case, does not satisfy the

differential equation system in Rochet and Stole, simply because it violates their boundary conditions.

14



does not bind, the boundary condition at θ requires efficient quality provision at θ .19 But continuity

implies that the optimal solution should not change drastically at θ = θ∗. Thus the monotonicity

must fail, leading to bunching at the lower end near θ. Intuitively, when θ is slightly above θ∗ (γ is

relatively small), efficient quality provision at θ is costly since it increases the informational rent for

all higher types, the measure of which is big since γ is relatively small. The optimality thus requires

bunching. As θ is further raised close to θ (γ becomes big enough), efficient quality provision at θ

becomes less costly since there are fewer higher types. As a result, the monotonicity constraint is

more likely to be satisfied even with efficient quality provision at θ. Therefore, perfect sorting is

more likely when γ is big. This, we believe, explains why in Rochet and Stole the solution involves

perfect sorting when γ is sufficiently large.

Given that the optimal contracts exhibit perfect sorting, there is a one-to-one mapping between

the number of contracts offered and the (vertical) types of consumers served. Thus the number of

contracts offered can be measured in terms of the (Lebesgue) measure of vertical types of consumers

covered in the market.20 As a direct consequence, the lowest type served in the market, θ∗M ,

becomes a measure for the variety of contracts offered. Specifically, as θ∗M decreases, more contracts

are offered targeting more types of consumers. On the other hand, as θ∗M increases, fewer contracts

are offered targeting fewer types of consumers. We are interested in how the degree of horizontal

differentiation, which is parameterized by k, affects the variety of contracts offered. Equation (11)

shows that for k ∈ (0, 4/3), θ∗M is decreasing in k, and for k > 4/3, θ∗M = 1/3 is independent of k.

Thus when two brands become more horizontally differentiated (a bigger k), the monopolist offers

more contracts. From the equilibrium quality schedules it can also be seen that quality distortions

become smaller in Phase I but are unaffected in Phase II. We summarize these results in the following

proposition.

Proposition 2 In the monopoly model, when two brands become more horizontally differentiated,

the monopolist offers more contracts, and quality distortions become smaller in the partial coverage

range and remain unaffected in the full coverage range.

To understand the intuition of this result, we first need to understand the effects on profit of

increasing the rent provision. Raising rent provisions (hence the total rent) to consumers has two

19This would imply that lim
θ→θ∗+

q(θ) = θ∗ while lim
θ→θ∗−

q(θ) = 0.

20 If there is a fixed cost of offering a contract, then the number of contracts offered in equilibrium is positively

correlated with the measure of vertical types being served. As this fixed cost goes to zero, the measure of contracts

offered in equilibrium coincides with the measure of vertical types being served.
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effects. The first is to reduce the firm’s profitability per consumer (which can be termed as the

marginal effect), and the second is to attract more consumers (which can be termed as the market

share effect). Thus profit maximization requires an optimal balance between these two opposing

effects. Note that with asymmetric information, the firm cannot freely vary the rent provision

for certain types of consumers without affecting the rent provisions to other types. That is, rent

provisions can only be adjusted subject to the screening condition, (5), which implies that changing

the rent provision for some type will affect the rent provisions for all the types above. Hence the

optimal rent provision schedule reflects an optimal trade-off between the marginal effect and market

share effect subject to the screening condition.

In view of this insight, it is now straightforward to think through the intuition behind Proposition

2. As k increases, by fixing the previous menu of contracts (holding y(·) fixed), θ̂ increases and y(θ)/k
decreases, which implies that the market shares in both the full and partial coverage ranges shrink.

To counter this effect, the monopolist has an incentive to increase y(θ) in an attempt to partially

restore the loss of the market shares. By the screening condition (5), this can be achieved by either

moving the schedule q(·) upward or pushing θ∗M downward, and both occur in equilibrium. Hence

Proposition 2 is driven by an interaction between horizontal differentiation and screening in the

vertical dimension, which occurs through the rent provision schedule y(θ).

4 Duopoly

In the duopoly model each firm’s objective is, given the other firm’s menu of contracts, to maximize

its own profit by choosing a menu of contracts. Since both firms are symmetric in terms of their

production technology and market positions, we focus on symmetric equilibrium, in which each firm

offers the same menu of contracts, hence the same rent provision schedule y∗(θ), θ ∈ [θ∗D, 1] (θ∗D is
the lowest type that is served in the market). Formally, the pair (y∗(θ), y∗(θ)) constitutes a Bertrand-

Nash equilibrium if given y−i(θ) = y∗(θ), θ ∈ [θ∗, 1], firm i’s best response is to choose yi(θ) = y∗(θ),

θ ∈ [θ∗, 1] as well.
Given the two firms’ rent provision schedules y1(θ) and y2(θ), the consumers’ type space is

demarcated into two ranges: the competition range (θ > θ̂), and the local monopoly range (θ < θ̂).

The switching point θ̂ is determined by yi(θ̂) = k/2− y−i(θ̂).

Suppose y−i(θ) = y∗(θ), θ ∈ [θ∗, 1], then firm i’s relaxed program (by ignoring the monotonicity
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of qi) is as follows:

max

Z θ̂

θ∗i

[θqi(θ)− yi(θ)− c(qi(θ))]
yi(θ)

k
dθ

+

Z 1

θ̂
[θqi(θ)− yi(θ)− c(qi(θ))] ·

∙
1

4
+
1

2k
(yi(θ)− y∗(θ))

¸
dθ

s.t. y
0
i(θ) = qi(θ) (13)

yi(θ
∗
i ) = 0, θ

∗
i free

yi(θ̂) =
k

2
− y∗(θ̂), θ̂ free

yi(1) free

We define the Hamiltonian function as follows:

H =

⎧⎨⎩ H1 =
£
θqi − yi − 1

2q
2
i

¤ yi
k + λqi : θ∗i ≤ θ < θ̂

H2 =
£
θqi − yi − 1

2q
2
i

¤
· [14 +

1
2k (yi(θ)− y∗(θ))] + λqi : θ̂ < θ ≤ 1

For phase I (θ < θ̂), we can follow exactly the same steps as in the monopoly model to obtain

y∗(θ) =
3

4
(θ − θ∗)2, q∗(θ) =

3

2
(θ − θ∗)

For phase II (θ > θ̂), the optimality condition and the co-state equation evaluated at yi = y∗ are

given by

0 = (θ − q∗)
1

4
+ λ

λ0 =
1

4
− 1

2k

∙
θq∗ − y∗ − 1

2
q∗2
¸

After eliminating λ from the above equations we obtain the following differential equation:

y∗00 = 2− 2
k

µ
θy∗0 − y∗ − 1

2
y∗02

¶
(14)

Letting yi = y−i = y∗, the switching point θ̂ is defined by y∗(θ̂) = k
4 . Applying smooth pasting

for both y∗(·) and q∗(·) at θ̂, we have θ̂ − θ∗ =
p
k/3. From the Phase I solution, we can obtain

y∗0(θ̂) = q∗(θ̂) =
√
3k/2. Finally λ(1) = 0 implies that y∗0(1) = q∗(1) = 1.

Now the existence of a symmetric equilibrium boils down to the existence of a θ̂ ∈ (0, 1] and
a convex function y∗(·) defined over [θ̂, 1],21 which satisfy the following equations (we drop the
superscripts to simplify notation):

21We need y
00
(θ) > 0 to ensure q0(θ) ≥ 0.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y00 = 2− 2

k

¡
θy0 − y − 1

2y
02¢

y(θ̂) = k/4

y0(θ̂) =
√
3k/2

y0(1) = 1

(15)

Proposition 3 For k ∈ (0, 4/3), there is a unique symmetric equilibrium in the duopoly model,

which exhibits perfect sorting and is given by

y(θ) =

⎧⎨⎩ 3
4(θ − θ∗D)2 : θ∗D ≤ θ ≤ θ̂

D

y∗(θ) : θ̂
D ≤ θ ≤ 1

where (θ̂
D
, y∗(θ)) is the unique solution to the system (15), and θ∗D = θ̂

D −
p
k/3 .

For k ≥ 4
3 ,

y(θ) =
3

4

µ
θ − 1

3

¶2
, θ ∈

∙
1

3
, 1

¸
.

Proof. See Appendix.

In the proof we show that given k ∈ (0, 4/3) the solution to the differential equation system (15)

exists and is unique. Moreover, y∗(θ) is strictly convex. (15) is not a standard ordinary differential

equation (ODE) system partly due to the fact that the boundary conditions involve an endogenously

determined endpoint (θ̂). Thus no existing ODE theorem can be directly applied to show the existence

and uniqueness. The proof is somewhat tedious and hence relegated to the appendix. It is clear

that system (15) has no closed-form solution. So the schedule of y∗(θ) can only be obtained from

numerical computations.

As in the monopoly model, the equilibrium menu of contracts exhibits perfect sorting. Thus θ∗D

also becomes a measure of the variety of contracts offered by each firm. Let qD(·) and qM(·) be
the equilibrium quality provision schedules in the duopoly model and monopoly model, respectively.

Despite the absence of the closed-form solution in the duopoly model, we are able to rank θ∗D and

θ∗M , and the schedules qD(·) and qM(·) unambiguously:

Proposition 4 Given k ∈
¡
0, 43

¢
, θ∗D < θ∗M , and qD(θ) > qM(θ) for θ ∈ [θ∗D, 1), which implies

that compared to the monopoly benchmark, in duopoly equilibrium each firm offers more contracts,

and quality distortions are smaller.
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Proof. See Appendix.

Proposition 4 is shown by comparing the two differential equation systems under two market

structures. Figure 3 is an illustration for the comparisons.

0
1/2

1

1/4

Monopoly

Duopoly

θ

*Dθ

*Mθ

Figure 3: Duoply vs. Monopoly

To see the intuition behind this comparison result, let’s start by assuming that in the duopoly

case each firm offers the optimal symmetric menu of contracts as offered in the monopoly case. As

a result the partial coverage and full coverage ranges are the same under both market structures.

Note that in the full coverage range (θ ∈ [θ̂M , 1]), the market share effect is absent under monopoly

since the market is fully covered and the “competition” between the two brands is internalized by the

monopolist; however, under duopoly the market share effect is present since each firm (brand) tries

to steal the other firm’s market share. Thus the market share effect is stronger under duopoly, and

each firm (brand) has an incentive to increase the rent provision. Therefore moving from monopoly

to duopoly, θ∗D < θ∗M , and qD(θ) > qM(θ) (by the screening condition (5)). Another way to see

this is that competition under duopoly increases rent provisions to higher-type consumers (served

in the full coverage range), which relaxes the screening condition in the vertical dimension: under

duopoly firms would worry less about providing additional (informational) rent for the higher-type

consumers, as the higher-type consumers are going to enjoy higher rent anyway due to competition.

Consequently those consumers not served under monopoly may be served under duopoly, and quality

distortions become smaller.

Our result has subtle implications about the distribution of consumers covered over the range of
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quality provisions. First note that in our analysis, the range of quality provisions is endogenously

determined in equilibrium, which is from 0 to 1 in both the monopoly and duopoly cases. Our

comparison indicates that moving from monopoly to duopoly denser contracts are offered (covering

more consumer types) over the higher quality range. This is illustrated by figure 4 below, where the

equilibrium schedules of quality provisions (qM(·) and qD(·)) are plotted against the consumer types
under both market structures:

θ

q

0

q̂

1q

2q
1

*Dθ *Mθ 1
Dθ 2

Dθ1
Mθ 2

Mθ

( )Dq θ

( )Mq θ

Figure 4: Consumer Coverage over Quality Range

By Proposition 4, duopoly induces smaller quality distortions, hence qD(θ) > qM(θ) except at

θ. For any given range of quality provisions, we compare the difference in consumer coverages (in

the vertical type dimension) under two market structures. This is equivalent to comparing the

difference of the intervals on the θ-axis projected from any quality interval. It is easily verified that

qM(θ̂
M
) = qD(θ̂

D
) =
√
3k/2. Let q̂ =

√
3k/2. Thus, as depicted in figure 4, under both market

structures the quality range is [0, q̂] in the partial coverage range and it is [q̂, 1] in the full coverage

range.

As can be seen from the figure, the effects of changing market structure on the consumer coverage

are different in these two ranges. In the range of [0, q̂], the quality provision schedules in both cases

are parallel to each other. As a result, the total measure of consumer coverage (the length of the

projected interval) remains the same, though the coverage shifts to the lower types as we move

from monopoly to duopoly. In the range of [q̂, 1], the slope of the quality schedule is steeper in the

monopoly. As a result, the projected interval of consumer coverage from any given quality interval
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becomes larger as we move from monopoly to duopoly: as illustrated, given any quality interval, say

[q1, q2], the projected intervals are [θM1 , θM2 ] in the monopoly case and [θ
D
1 , θ

D
2 ] in the duopoly case.

Thus for this range, not only the composition of consumer coverage changes, the total measure of

contracts offered also increases: competition leads to denser contracts offered for any quality interval

over this range.

In a very different model, Johnson and Myatt (2003) show that an incumbent may respond to

entry by either expanding (fighting brand) or contracting (pruning) the product line (the range of

qualities). In their model, introducing competition only has an effect on the lower end of quality

range, while in our model, moving frommonopoly to duopoly unambiguously leads to denser contracts

offered in the higher end of the quality range. This difference is obviously due to differences in

modeling and assumptions between our approach and theirs. For example, they assume that the

entrant cannot produce in some high quality range where the incumbent is able to produce. Thus as

entry occurs the incumbent may respond by ceding the market of low quality products to the entrant

while focusing on production in the high quality range (pruning). On the other hand, in our model

firms are assumed to be technologically equal and the competition for higher type consumers is most

intense. As a result, competition has the most effect over the higher end of the quality range.

As in the monopoly case, we are also interested in how changes in k affect the number of contracts

offered by each firm. For convenience of comparison, we show the schedules of both θ∗D and θ∗M

against k in Figure 5 below, where the schedule of θ∗D is plotted from numerical computation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

θ

* ( )M kθ

* ( )D kθ

Figure 5: Comparison of Participation Thresholds

21



As can be seen from the figure, θ∗M is always decreasing as k increases. But for the duopoly

model, there is a cutoff k∗ such that for k ∈ (0, k∗), θ∗D is increasing in k, and for k ∈ (k∗, 4/3),
θ∗D is decreasing in k (for k ≥ 4/3, θ∗D = θ∗M = 1/3 is independent of k). Our computation shows

that the turning point k∗ is approximately .91. Note that the decreasing trend of θ∗D in the range

of (k∗, 4/3) is not quantitatively significant; in this range of k, θ∗D is in the range of [0.33, 0.35]. On

the other hand, the increasing trend of θ∗D in the range of (0, k∗) is quantitatively significant; when

k = k∗, θ∗D equals to 0.35, while as k converges to 0, θ∗D converges to 0 as well. The following

comparative statics result is obtained from numerical computations:22

Proposition 5 In the duopoly case, when k ∈ (0, k∗), as k decreases each firm offers more contracts,
and quality distortions become smaller; when k ∈ (k∗, 4/3), as k decreases each firm offers fewer

contracts, and the effect on quality distortions is not uniform: there is a cutoff type, say eθ, such
that when θ ∈ [0, eθ), quality distortions become bigger, while when θ ∈ (eθ, 1), quality distortions
become smaller; when k > 4/3, both firms are local monopolists hence k does not affect the variety
of contracts or quality distortions.

Thus the effects of changing k on θ∗ and quality distortions in the duopoly case are dramatically

different from those in the monopoly benchmark. Again the intuitions spelled out previously continue

to help, with the details being a bit more subtle. Under duopoly, a lower k not only implies less

horizontal differentiation, but also implies more fierce competition between two firms.

A decrease in k while holding y(·) fixed leads to an increase in the market share in Phase I (the
local monopoly range). Following the intuition suggested for Proposition 2, each firm would then

have incentive to decrease the rent provision in this range, which can be achieved by raising θ∗ or

lowering q(·). However the effect on Phase II (the competition range) is different. As k decreases, the
competition becomes more intense. As a result, the impact of the market share effect on firms’ profit

becomes relatively more important than that of the marginal effect on firms’ profit (which is further

reinforced by a decrease in θ̂), therefore each firm would have incentive to raise rent provisions,

which can be achieved by lowering θ∗ or raising q(·). So the effects on θ∗ and q(·) of decreasing
k in two phases work in exactly the opposite directions. The net effect depends on which effect

dominates.23 When k ∈ (0, k∗), i.e., when the initial competition between two firms is not too weak,

22The MATLAB code for all the computations in this paper is available upon request.
23 In terms of the rent provision schedule y(·), a decrease in k tends to increase y(θ) in the competition range and

decrease y(θ) in the local monopoly range. But y(·) has to be continuous at the junction of two ranges to satisfy the
IC constraint.
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the competition range is more important relative to the local monopoly range,24 thus the effect in

the competition range dominates and each firm offers more contracts and quality distortions reduce

in equilibrium. On the other hand, when k ∈ (k∗, 4/3), i.e., when the initial competition between
two firms is weak, the local monopoly range is relatively more important,25 thus the effect in the

local monopoly range dominates and each firm offers fewer contracts, though the effect on quality

distortions is not uniform: as k decreases, there is a cutoff type, say eθ, such that when θ ∈ [0, eθ),
q(·) moves downward, while when θ ∈ (eθ, 1), q(·) moves slightly upward. This non-uniform effect

actually makes perfect sense. When k ∈ (k∗, 4/3), the competition is weak so the movement of the
quality schedule should follow the pattern in the monopoly case. This explains why as k decreases

the quality schedule in lower type range moves downward while the schedule in higher type range

remains almost unchanged — recall that in the monopoly case, as k decreases the schedule q(·) in the
partial coverage range moves downward, while it stays the same in the full coverage range.

Again our computations show that the effect of changing k on either θ∗D or quality distortions

over the range k > k∗ is not quantitatively significant. However, it is qualitatively important as it

provides a “continuity” for our intuitions to work when moving from monopoly to duopoly.

From Figure 5, it is apparent that θ∗M − θ∗D is decreasing in k. Thus one potentially testable

empirical implication is that the impact of market structure on the variety of contracts offered

depends on the degree of horizontal differentiation: the smaller the k, the bigger the impact of

introducing competition on the variety of contracts offered.

5 Extension to the n-Firm Model

In this section we extend our analysis to any arbitrary finite n-firm case. Specifically, in the horizontal

dimension there are n brands owned and operated by n distinct firms (n ≥ 2), the locations of

which evenly split the unit circle; and each firm offers vertically differentiated products. Each

firm’s objective is to maximize the profit from its own brand, given other firms’ menus of contracts.

Again we look for symmetric Bertrand-Nash equilibria in which each firm offers the same menu of

contracts.26 An n-tuple (y∗(θ), ..., y∗(θ)) constitutes a symmetric equilibrium if, given that all other

firms offer y∗(θ) for θ ∈ [θ∗, 1], each firm’s best response is also to choose yi(θ) = y∗(θ), θ ∈ [θ∗, 1].

24 In the limit as k→ 0, the local monopoly range disappears.
25As k > 4/3, the competition range disappears and both firms behave as if they were local monopolists.
26As a direct consequence each firm is effectively competing with two adjacent firms.
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Given that all firms other than i offer the schedule y∗(θ), θ ∈ [θ∗, 1], it can be easily verified that
firm i’s relaxed program (by ignoring the constraint of the monotonicity of qi(·)) is as follows:

max

Z θ̂

θ∗i

[θqi(θ)− yi(θ)− c(qi(θ))]
yi(θ)

k
dθ

+

Z 1

θ̂
[θqi(θ)− yi(θ)− c(qi(θ))] ·

∙
1

2n
+
1

2k
(yi(θ)− y∗(θ))

¸
dθ

s.t. y
0
i(θ) = qi(θ)

yi(θ
∗
i ) = 0, θ

∗
i free

yi(θ̂) =
k

n
− y∗(θ̂), θ̂ free

yi(1) free

Following the analysis paralleling to that in the previous section, we can demonstrate that firm

i’s equilibrium rent provision y∗(θ) in the local monopoly range (θ < θ̂) is the same as that in the

duopoly model which is independent of n. The equilibrium rent provision in the competition range

(θ > θ̂) and the optimal switching point θ̂ are characterized by the following system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y00 = 2− n

k (θy
0 − y − 1

2y
02)

y(θ̂) = k/2n

y0(θ̂) =
p
3k/2n

y0(1) = 1

(16)

If we define k0 = k/n as the normalized degree of horizontal differentiation, then by inspection,

in terms of k0 the differential equation system (16) is exactly the same as the differential equation

system (15) in the duopoly case (where k0 = k/2). This implies that the analysis of the n-firm case

can be translated into the analysis of the duopoly case through normalizing k by n, and in terms

of k0 the solution to the n-firm model is the same as the solution to the duopoly model. Thus all

the results from the duopoly model carry over to the n-firm competitive model. In particular, the

n-firm competitive model has a unique symmetric equilibrium, and such equilibrium exhibits perfect

sorting, hence the participation threshold θ∗ becomes a measure for the variety of contracts offered

by each firm.27 Moreover, the effect of an increase in n (while holding k fixed) on the equilibrium is

27 In Gal-Or’s (1983) quantity-setting model, symmetric Cournot equilibria may exist when the number of firms is

small, but may fail to exist as the number of firms becomes larger. In contrast, in our model the symmetric Bertand-

Nash equilibrium always exists and is unique.
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exactly the same as the effect of a decrease in k on the duopoly equilibrium. To re-state the results

in the duopoly case in terms of k
0
, let’s define k∗

0
= k∗/2 ≈ .455. Then as k0 increases, for k0 < k∗

0
,

θ∗ increases and q(·) decreases, for k∗0 < k0 < 2/3, θ∗ decreases while q(·) increases for lower types
but decreases for higher types, and for k0 ≥ 2/3, both θ∗ and q(·) are independent of k0. Translating
this into n-firm case, we have the following result:

Proposition 6 Fix k > 0 and define n∗ = k/k∗
0
. When n > n∗, an increase in n leads to more

contracts offered by each firm and smaller quality distortions; when n ∈ (1.5k, n∗), an increase in
n leads to fewer contracts offered by each firm, and larger quality distortions for lower types and

smaller quality distortions for higher types; when n ≤ 1.5k, each firm is a local monopolist, hence

the contract variety and quality distortions are independent of n.

Proposition 6 thus implies that the effect of increasing competition on contract variety or quality

distortions depends on the initial state of competition, and that effect is not monotonic. This result

is consistent with a recent empirical study of cellular phone markets by Seim and Viard (2004), which

we briefly discuss below.

Nonlinear pricing is a standard practice for cellular firms to sort consumers with respect to their

different usage. Most wireless service is sold under “three-part tariffs”: monthly fee, peak minutes,

and off-peak minutes. Seim and Viard (2004) study the effect of entry on the tariff choices (the

number of contracts) of incumbent cellular firms. Before 1996, most geographic cellular market

areas (CMA’s) had a duopoly market structure, with two firms operating the wireless service in each

CMA. After the FCC auctioned off the PCS spectrum, PCS entrants began to enter the cellular

markets. Due to some exogenous reasons, by 1998 there were significant variations in the amount of

entry by PCS providers across cellular markets.28

Utilizing this heterogeneity across different cellular markets, Seim and Viard test the relationship

between the number of calling plans offered by the incumbent providers and the number of entrants.

They found that, generally speaking, incumbents introduce more calling plans in markets with more

entrants. Moreover, they found that the relationship is not monotonic: if only one entrant enters, the

incumbent duopolists actually reduce the number of calling plans; if more than one entrant enters,

the number of calling plans offered by the incumbents increases as the number of entrants increases.

28This was due to two factors. First, some licenses were undeveloped because the winning bidders went bankrupt.

Second, different cellular markets require different amounts of time to build a sufficiently large network of wireless

infrastructure.
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They also show that this relationship cannot be explained by demographic heterogeneity or cost

differences across markets. This non-monotonic relationship is consistent with the predictions in our

Proposition 6.

Our two-brand monopoly can be extended to n-brand multi-product monopoly by a similar

normalization. Thus Proposition 2 can be extended to imply that as a monopolist offers more

brands, each brand offers less contracts. So for a multi-product monopolist, the horizontal brand

variety and the vertical contract variety are substitutes. This can be viewed as another testable

implication from our analysis.

6 Conclusion

To our knowledge, this paper is the first to study the effects of the horizontal differentiation (com-

petition) on contract variety. Specifically, we characterize the unique symmetric equilibrium menu

of contracts in both the monopoly and duopoly models. We show that when moving from monopoly

to duopoly each brand offers more variety of contracts targeting more types of consumers, and the

quality distortions become smaller. We then extend our analysis to the arbitrary n-firm case, and

show that the major insights obtained from the base model continue to hold. In particular, we show

that as long as the competition among firms is not too weak, further increasing competition (i.e.,

increasing the number of firms) leads to more variety of contracts offered by each firm and smaller

quality distortions.

Our results have empirical relevance regarding how competition affects the variety of goods,

services, or contracts offered by firms. The predictions of our model are largely consistent with some

existing empirical evidence.

One restriction in this paper is that we assume a uniform distribution of consumers’ types. While

we maintain this assumption for ease of analysis, we believe that it is not crucial for our main results

to hold. The reason is as follows. If we work with some other distributions instead of the uniform

distribution, we may end up with partial pooling in equilibrium. However, in that case Lemma 1 and

hence the screening condition (5) still hold.29 Thus the same insight regarding the interplay between

horizontal differentiation and screening in the vertical dimension continues to apply: for example,

in the case that the initial competition is not too weak, as competition increases, the IC constraint

29Note that the equilibrium rent provision formula (5) holds as long as q0(·) > 0, which encompasses the case of

partial pooling.
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relaxes and we conjecture that the range of partial pooling shrinks and the participation threshold

moves downward, which in turn implies that more contracts will be offered targeting more consumer

types. A rigorous analysis is needed to confirm this insight, which is left for future research.
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Appendix

Proof of Proposition 3:

Following the derivations preceding to the Proposition, the proof will be completed by showing

that ∀k ∈ (0, 4/3], there is a unique θ̂ ∈ (0, 1] and a unique y(θ) defined over [θ̂, 1] satisfying the
differential equation system (15). Moreover, the solution of y(θ) is strictly convex.

First letting z(θ) = y(θ)− 1
2θ
2, we have

z00(θ) = 1 +
1

k
(z

02(θ) + 2z(θ)). (17)

Let z0(θ) = v(z(θ)), then z00(θ) = v0(z)z0(θ) = vv0(z). (17) thus becomes:

v
dv

dz
= 1 +

1

k
(v2 + 2z). (18)

Substituting w(z) = v2(z) into (18), we have w0 − 2w/k = 2 + 4z/k, which leads to

w(z) = ce2z/k − 2z − 2k.

where c is a parameter to be determined by the boundary conditions.

The system (15) can now be written in terms of function z(θ) as follows:

(z0(θ))2 = ce2z(θ)/k − 2z(θ)− 2k

z(θ̂) =
k

4
− 1
2
θ̂
2
:= ẑ

z0(θ̂) =

√
3k

2
− θ̂ (19)

z0(1) = 0.

Define α such that c = kαe−2ẑ/k, and δ such that θ̂ =
√
3k
2 δ (θ̂ ∈ (0, 1] implies δ ∈ (0, 2/

√
3k)).

Also define u(θ) = 2(z(θ)− ẑ)/k.

Then we have

u02 =
4

k2
z02 =

4

k2
(kαeu − 2z − 2k) = 4

k

µ
αeu − u− 2

k
ẑ − 2

¶
.

Letting f(u) = α(eu − 1)− u+ β, where β = α− 2
k ẑ − 2, then u02 = 4f(u)/k.

At θ̂, u(θ̂) = 0, u0(θ̂) =
p
3/k(1− δ), hence

β =
k

4
u02(θ̂) =

3

4
(1− δ)2, α = β +

2

k
ẑ + 2 =

13

4
− 3
2
δ.
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The system (19) can now be rewritten as follows:

u
02 =

4

k
f(u) (20)

u(θ̂) = 0 =: û (21)

u0(θ̂) =
p
3/k(1− δ) := û0 (22)

u0(1) = 0 := u01 (23)

where

f(u) = α(eu − 1)− u+ β =

µ
13

4
− 3
2
δ

¶
(eu − 1)− u+

3

4
(1− δ)2. (24)

For notational convenience let u1 =: u(1). Then u01 = 0⇒ f(u1) = 0.

First, from (22)-(23) it can be verified that θ̂ = 1 ⇒ k = 4/3. So for k ∈ (0, 4/3) we must have
θ̂ < 1, or δ < 2/

√
3k.

The rest of the proof is completed in 6 steps:

1. Show that (20) implies u0 = − 2√
k

p
f(u) and δ > 1.

Suppose not, then u0 = 2√
k

p
f(u) ≥ 0. By (22) δ ≤ 1, and α ≥ 7/4, which implies f 0(u) =

αeu − 1 ≥ 7/4− 1 > 0 for all u ≥ 0. But then f(u1) > f(û) = f(0) = β ≥ 0, a contradiction.
Therefore we must have u0 = − 2√

k

p
f(u) ≤ 0 and hence δ > 1 . Since u is decreasing, we

have u1 ≤ û = 0. It can be verified that for k ∈ (0, 4/3), u1 = û = 0 is impossible.30 Hence

u1 < û = 0 for k ∈ (0, 4/3), and f(u) ≥ 0 on [u1, 0].

2. Show that in the solution to system (20)-(23), α > 0, which implies that the original solution

y(·) is strictly convex.

Suppose not, i.e., suppose α ≤ 0. Then f 0(u) = αeu−1 < 0, which implies that f(û) < f(u1) =

0. But f(û) = α(eû − 1)− û+ β = β > 0, contradiction. So α > 0.

Since

y00 = 1 + z00 =
1

k
ce2z/k = αe2(z−ẑ)/k,

α > 0 (or δ < 13/6) implies that the original solution y(·) must be strictly convex.

3. Show that given δ (or θ̂), the solution of u(·) (and hence y(·)) exists and is unique.

Since f 00(u) = αeu > 0, f is strictly convex (with f(±∞) =∞). Hence f(u) > 0 on (u1, 0].

30u1 = û ⇒ u = 0, which implies z = ẑ and θ̂ =
√
3k
2 . Therefore y(θ) = 1

2θ
2 + ẑ = 1

2θ
2 + k

4 −
1
2 θ̂

2
= 1

2θ
2 − k

8 . But

then y(θ) does not satisfy the differentiation equation in system (15), a contradiction.
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f 0(u) = αeu − 1 = 0⇒ umin = − lnα.

Let A(δ) =: min f(u) = f(− lnα) = lnα+ 3
4(δ

2 − 2). Since f(u1) = 0, we must have A(δ) ≤ 0.

We next show that A(δ) < 0. Suppose not, then u1 = umin = − lnα < 0, which implies

f(u) ≈ a(u− u1)
2 near u1, where a is a positive real number. du√

f(u)
= − 2√

k
dθ implies that

Z 0

u1

dup
f(u)

= − 2√
k

Z θ̂

1
dθ =

2√
k
(1− θ̂) <∞. (25)

But on the other hand, Z 0

u1

dup
f(u)

=
1√
a

Z û

u1

du

u− u1
=∞,

a contradiction.

Therefore A(δ) < 0 and hence in the neighborhood of u1, f(u) = O(u− u1).

Define

Φ(u) =:

Z u

0

dvp
f(v)

=

Z θ

θ̂
− 2√

k
ds = − 2√

k
(θ − θ̂).

Note that Φ(u) is well defined for any u ∈ [u1, 0], as f(u) = O(u− u1) near u1 (which implies

|
R u1
0

dv√
f(v)

| <∞).

Since Φ(u) is a strictly increasing function over [u1, 0], inverting we have

u(θ) = Φ−1
µ
− 2√

k
(θ − θ̂)

¶
for θ ∈ [θ̂, 1]. (26)

Thus given θ̂, u(·) (and hence y(·)) is uniquely determined by (26). It remains to show that θ̂
(or δ) exists and is unique.

4. Show that in the solution δ ∈ [1,min{δ0, 2/
√
3k}) (where δ0 is defined below).

Since − lnα = umin < u1 < 0, we have α > 1 or δ < 3
2 . We thus have δ ∈ [1,

3
2) (from step 1).

It is straightforward to verify that A(δ) is strictly increasing over the interval [1, 32) and there is a

unique δ0 ∈ [1, 32) such that A(δ0) = 0. Since A(δ) < 0, we thus have δ ∈ [1, δ0). Combining this
with δ < 2/

√
3k, in the solution to the system (20)-(23) we must have δ ∈ [1,min{δ0, 2/

√
3k}).

By (25) we have
R 0
u1

du√
f(u)

= 2√
k
(1− θ̂) = 2√

k
−
√
3δ.

Define

ξ(δ) =
√
3δ +

Z 0

u1

dup
f(u)

. (27)
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5. Show that given any k ∈ (0, 43), there is a δ ∈ (1,min{δ0, 2/
√
3k}) satisfying ξ(δ) = 2√

k
.

First f−β+u+α = αeu implies (f−β+u+α)0 = f−β+u+α. That is, f 0−f−u =constant=
f 0(u1)− f(u1)− u1 = f 0(u1)− u1.

Hence f 0 − f − (u− u1) = f 0(u1) > 0, which leads to

f 0(u1)

Z 0

u1

1√
f
du =

Z 0

u1

f 0√
f
du−

Z 0

u1

p
fdu−

Z 0

u1

u− u1√
f

du. (28)

Define ξ1(δ) =
R 0
u1

√
fdu, and ξ2(δ) =

R 0
u1

u−u1√
f
du. Note that f 0(u1) = αeu1 − 1 > 0, andR 0

u1
f 0√
f
du = 2

p
f(0) = 2

√
β =
√
3(δ − 1). Therefore by (28) we have

ξ(δ) =
1

αeu1 − 1
h√
3(δ − 1)− ξ1(δ)− ξ2(δ)

i
+
√
3δ. (29)

Since u1(δ) is continuous in δ, both ξ1(δ) and ξ2(δ) are also continuous in δ. Therefore, ξ(δ) is

continuous in δ.

First, consider δ → 1+. It is easily verified that β → 0+, α → (74)
−. Hence f(u) → g(u) =

7
4(e

u − 1)− u, and u1(δ)→ 0−.

By (29), ξ(δ) < 1
αeu1−1

√
3(δ − 1) +

√
3δ →

√
3. Since

√
3 < 2/

√
k, we have ξ(δ) < 2/

√
k for δ

sufficiently close to 1+.

Second, consider δ → b = min{δ0, 2/
√
3k} from the left. We discuss the following two cases:

Case 1: δ0 > 2/
√
3k. Then when δ → b− = (2/

√
3k)−, ξ(δ) >

√
3δ =

√
3b = 2/

√
k (the

inequality is due to (27)).

Case 2: δ0 ≤ 2/
√
3k. For δ → b− = δ−0 , A(δ) = fmin → 0− (since A(δ0) = 0). So u1 →

(− lnα)+, and by (27), ξ(δ)→∞. So when δ → b−, ξ(δ) > 2/
√
k.

By the mean-value theorem, there exists δ ∈ (1,min{δ0, 2/
√
3k}) such that ξ(δ) = 2√

k
.

6. Show that the solution from step 5 is unique.

We have

f(u1) = α(eu1 − 1)− u1 + β = 0. (30)

Differentiating (30) with respect to δ, we have

−3
2
(eu1 − 1) + 3

2
(δ − 1) + (αeu1 − 1)u01 = 0.
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which gives

u
0
1 =

3
2(e

u1 − δ)

αeu1 − 1 =
1

η

3

2
(eu1 − δ),

where η = αeu1 − 1 > 0.

By (29),

ξ01 =
dξ1
dδ

=
dξ1
du1

du1
dδ

= 0 · du1
dδ

= 0

ξ02 =
dξ2
du1

u01 =

µ
0 +

Z 0

u1

−1√
f
du

¶
u01 = −(ξ −

√
3δ)u01.

So

ξ0 =
√
3 +

1

η
(
√
3− ξ01 − ξ02)−

1

η2

µ
αeu1u01 −

3

2
eu1
¶
[
√
3(δ − 1)− ξ1 − ξ2]

=
√
3 +

1

η
[
√
3 + (ξ1 −

√
3δ)u01] +

eu1(32 − αu01)

η
(ξ −

√
3δ)

=
√
3 +

1

η

√
3 +

1

η
(ξ −

√
3δ)

∙
u01(1− αeu1) +

3

2
eu1
¸

=
√
3 +

1

η

√
3 +

1

η
(ξ −

√
3δ)
3

2
δ

> 0 (since ξ −
√
3δ =

Z 0

u1

dup
f(u)

> 0).

Therefore ξ(δ) is strictly increasing in δ ∈ (1,min{δ0, 2/
√
3k}), which implies that there is a

unique δ satisfying ξ(δ) = 2√
k
.

Proof of Proposition 4:

Suppose θ∗M ≤ θ∗D. Since θ̂
D − θ∗D = θ̂

M − θ∗M =
p
k/3, θ̂

M ≤ θ̂
D
. By the quality provision

schedules in the partial coverage range we have

qM(θ̂
M
) = qD(θ̂

D
) =
√
3k/2

From the quality provision schedule in the full coverage range under monopoly,

q0M(θ) = 2 > 0 for θ ∈ [θ̂
M
, θ̂

D
]

⇒ qM(θ̂
D
) > qD(θ̂

D
) (31)

From (14),

q0D(θ) = 2−
2

k

∙
θy0 − y − 1

2
y02
¸
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In equilibrium, a firm’s profit from a type θ consumer is positive for θ > θ∗D, i.e. θy0−y− 1
2y
02 > 0

hence

q0M(θ) = 2 > q0D(θ) for θ ∈ [θ̂
D
, 1] (32)

Note that k ∈ (0, 43) implies θ̂
D
< 1. Combining this with (31) and (32), we have qM(1) > qD(1),

which contradicts the fact that qM(1) = qD(1) = 1. Therefore θ∗M > θ∗D in equilibrium.

To show that qD(θ) > qM(θ), we consider the following cases:

For θ ∈ [θ∗D, θ̂D], by the quality provision schedules in the partial coverage range we have
qD(θ) > qM(θ) as θ∗D < θ∗M .

For θ ∈ ( θ̂D, θ̂M ], qD(θ) > qD(θ̂
D
) =
√
3k/2, and qM(θ) ≤ qM(θ̂

M
) =
√
3k/2. Hence qD(θ) >

qM(θ).

For θ ∈ ( θ̂M , 1), q0D(θ) < 2 = q0M(θ) and qM(1) = qD(1) implies that qD(θ) > qM(θ).

To sum up, qD(θ) > qM(θ), hence θ − qD(θ) < θ − qM(θ) for θ ∈ [θ∗D, 1), which implies that
quality distortion is smaller in the duopoly case.
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