
Investment Cycles, Strategic Delay, and Self-Reversing Cascades∗

James Peck and Huanxing Yang
Department of Economics, The Ohio State University

May 22, 2009

Abstract

We study investment cycles and information flows in a model of social learning in which
investment returns fluctuate according to a Markov process. In our Waiting Game, agents
observe the investment history and a private signal correlated with the current period’s
investment return. Agents then decide whether to invest in round 1 or to delay their decision
to round 2 of the current period. Cascades in which everyone invests and no one invests
eventually correct themselves. As compared to the No-Waiting Game with no opportunity
for delay, the Waiting Game has shorter investment cascades, longer recessions, and shorter
booms. The Waiting Game also has more underinvestment and less overinvestment.

1 Introduction

The beliefs of economic agents about investment prospects sometimes receives more media at-
tention than the prospects themselves. The importance of business confidence is particularly
salient during the current "Great Recession." Some government officials and some economists
speak about the importance of boosting business confidence, to encourage businessmen who are
on the fence to undertake projects that would increase employment and pull us out of recession.1

Not only are beliefs a crucial element, but they differ substantially across agents, due to private
information. Beliefs and private information influence economic activity, but at the same time,
beliefs endogenously respond to economic activity. Because agents may have an incentive to
delay investment opportunities to learn others’ information, strategic delay has the potential to
affect dramatically the flow of information and the course of economic fluctuations.

This paper studies how the possibility of strategic delay affects the extent to which markets
aggregate private information, and investigates the implications for investment cycles. We are
the first to study cycles in the context of social learning with strategic delay and a fluctuating
investment return. Information cascades, in which either all agents invest or no agents invest,

∗We would like to thank Hammad Qureshi for programming the algorithm for computing equilibria. We thank
Dan Levin, Hyun-Song Shin, and the Ohio State macro group for helpful conversations, and seminar participants
at the 2008 Cambridge (UK) Workshop on Social Learning, the Cornell-Penn State Macro Workshop, and the
New York Fed. We thank two referees for suggestions and some insightful comments.

1A good example is the speech by Lawrence H. Summers (Director of the National Economic Council) at the
Brookings Institution, March 13, 2009, in which he argues that "entrepreneurship and the search for opportunity
is what we need today."
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occur but eventually reverse themselves. Moreover, we find that the option to delay investment
leads to shorter investment booms and longer recessions, as compared to the situation without
the option to delay.

Our "Waiting Game" (henceforth, WG) extends the seminal work of Chamley and Gale
(1994). Specifically, the investment return can be either high or low, and agents privately
observe a binary signal that is correlated with the investment return. After observing their
signal and the history of transactions, remaining agents simultaneously decide whether to invest
right away or wait.2 The previous papers on herding with endogenous timing assume that the
investment return remains constant over time.3 Chamley and Gale (1994) and Levin and Peck
(2008) motivate their analysis with a discussion of how recessions can be prolonged, when many
firms receive signals that the investment climate has improved to the point of being profitable,
but they delay investment in an attempt to improve their information by observing whether
other firms invest. While this motivation is legitimate, there are no cycles in those models. Our
innovation is to introduce fluctuations in the investment return, which now evolves according to a
Markov process. In each period, a new generation of agents is born, and each agent observes the
history of previous investment decisions, receives a signal correlated with the current investment
return, and decides whether to invest.

In our WG, there are two rounds, and an agent that does not invest in round 1 observes
investment activity in round 1 before deciding whether to invest in round 2. The payoff of
investment in the second round is discounted, but the ability to observe market activity gives
rise to an option value of waiting. We find that, depending on the beginning-of-period expected
investment return, the economy can be in one of four possible regimes in equilibrium: Regime
0 in which no agent invests, Regime 2 in which every agent invests, Regime 1 in which only the
agents who receive the high signal invest in round 1, and Regime M, in which agents receiving the
low signal wait and agents receiving the high signal mix, investing in round 1 with probability
between zero and one. The amount of information aggregation depends crucially on which
regime we are in. No private information is revealed in Regime 0 and Regime 2, all the signals
are revealed in Regime 1, and partial information is revealed in Regime M. We characterize the
equilibrium behavior within a period, based on the agents’ beliefs about the investment return,
and we characterize the evolution of beliefs as a function of history.

Moscarini, Ottaviani, and Smith (1998) model self-reversing cascades in the literature on
herding with exogenous timing.4 As a benchmark to compare to our WG, we analyze the
No-Waiting Game (henceforth, NWG), which is the obvious extension of Moscarini, Ottaviani,
and Smith to the case of n agents per period. We see our contributions beyond Moscarini,
Ottaviani, and Smith (1998) and Chamley and Gale (1994) as: (i) successfully embedding

2See also the extension by Levin and Peck (2008) to two-dimensional signals, in which agents receive a common-
value signal, either high or low, and a private-value signal (interpreted as the cost of investment), drawn from a
continuous distribution.

3See Caplin and Leahy (1994), Gul and Lundholm (1995) and Chari and Kehoe (2004). In Caplin and Leahy
(1994), the economy eventually leaves the "business as usual" regime, not because the state could have changed,
but because agents accumulate more private information over time. In our model, on the other hand, the economy
leaves Regime 0 or Regime 2 because agents become less sure of the investment state over time, to the point that
different types might choose different actions.

4This literature also includes Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), and Smith and
Sorensen (2000).

2



a changing investment return into a tractable endogenous timing model, (ii) deriving results
about long run dynamics, and (iii) comparing the equilibria of the No-Waiting and Waiting
Games, to understand the effect of the ability to delay investment on cycles. We show that
the range of beliefs giving rise to Regime 2 is narrower in the WG than in the NWG, which
implies that a Regime 2 cascade is shorter. We show for the case of the large, persistent economy
that the average length of a boom is shorter, and the average length of a recession is longer,
in the WG than in the NWG. The WG has less overinvestment (investment when the return is
low) and more underinvestment (lack of investment when the return is high) than the NWG.
When we depart from the large, persistent economy, our simulations indicate that these long-run
properties of the dynamics hold more generally.

There is a huge literature, which we see as complementary, on cycles in models with payoff
externalities. Gale (1996) develops a dynamic model that incorporates both delay and cycles
generated by payoff externalities. See also Jovanovic (2006). Chamley (1999) and Yang (2006)
consider dynamic coordination games, and show that equilibrium cycles and regime switches
can occur. Information is asymmetric, but the payoff externality greatly affects the analysis.

The papers by Zeira (1994), Van Nieuwerburgh and Veldkamp (2006), and Veldkamp (2005)
look at informational cycles in a setting of symmetric information. In Veldkamp (2005), the
knowledge that an agent has invested provides no information, but the outcome of each invest-
ment is observed. Thus, each investment is a small experiment that provides information about
the common success probability. As a result, more investment activity is more informative,
which leads to cycles exhibiting a slow boom and a sudden crash. This is in contrast to our
model, in which agents learn nothing when everyone invests. Van Nieuwerburgh and Veldkamp
(2006) provide evidence that analysts’ forecasts of real GDP are both less accurate and more
dispersed near business cycle troughs. Their model explains well why forecasts are less accurate,
but has difficulty explaining dispersion because all agents share the same beliefs in their model.
Our model can explain both findings. On the other hand, our model cannot explain why cycles
exhibit a slow boom and sudden crash.

In our model, business confidence can be interpreted as the expected investment return, which
is the key variable that endogenously both responds to and influences activity. We see cycles of
euphoria (Regime 2) and fear (Regime 0), in which agents ignore their private information about
fundamentals. Most importantly, as the recession continues and the economy transitions from
Regime 0 to Regime M, agents with favorable signals believe that investment would be profitable,
but with high probability everyone delays, remaining on the fence hoping that someone else
will take the lead. In the model, a single agent with the urge to invest can set in motion
an avalanche of information flow that ends the recession.5 We believe that the presence of
asymmetric information, and the tendency of agents with favorable information to wait for
confirmation, plays an important role in actual business cycles. Thus, our model offers a formal
explanation for why recessions are extended due to delay, and why policy makers acting in the

5The notion of an urge to invest is reminiscent of the animal spirits literature. See Keynes (1936), Shleifer
(1986), Howitt and McAfee (1992), and Francois and Lloyd-Ellis (2003). In the recent literature, animal spirits
are equated to an aggregate state of expectation corresponding to one of several equilibria. In our setting, for
a given state of expectation and a given equilibrium, an individual agent would have animal spirits if she would
receive the same payoff from investing or not, but she invests because of what Keynes termed "a spontaneous
urge to action." See also Akerlof and Shiller (2009).
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social interest would seek to encourage investment in those circumstances. Furthermore, since
agents with favorable signals are indifferent in Regime M, it only takes the smallest nudge to
push such an agent off the fence; this could explain why speeches to encourage entrepreneurship
could yield beneficial results.

The rest of the paper is laid out as follows. Section 2 contains the benchmark of the NWG,
including the equilibrium characterization. In Section 3, the WG is presented and equilibrium
is characterized. Section 4 contains analytical results about long-run dynamics of both the
NWG and the WG, for the case of the large, persistent economy. Section 5 contains some brief
concluding remarks. All of the technical or long proofs are contained in the Appendix.

2 The No-Waiting Game

In our benchmark game, each agent has only one opportunity to invest. Time is discrete,
t = 1, 2, ..., and in each period, there are n agents or potential investors, who live for a single
period. The investment return in period t is common to all investors, and is normalized to be
either zero or one. We denote the investment return in period t by St, and assume that it follows
a Markov process with persistence parameter ρ > 1

2 . That is, we have

Pr(St+1 = 0|St = 0) = Pr(St+1 = 1|St = 1) = ρ,

and Pr(S1 = 0) = Pr(S1 = 1) = 1
2 . There is also a deterministic investment cost, c, which

is strictly between zero and one and common to all investors. Thus, the realized payoff to an
investor in period t is St − c, and the payoff to an agent that does not invest is 0.

At the beginning of each period, each agent receives a binary private signal correlated with
the investment return. These private signals are independent across agents, conditional on the
investment return. Denoting the signal of an agent in period t as s, we have

Pr(s = 0|St = 0) = Pr(s = 1|St = 1) = α,

where the parameter α ∈ (1/2, 1) captures the accuracy of signals. We will refer to agents as
either type-0 or type-1, depending on whether they receive the low signal or the high signal.
Also, we denote the number of agents who invest in period t as It, and the history of investments
as ht−1 = (I1, ..., It−1) for t > 1 and h0 = ∅.

The timing of the No-Waiting Game (NWG) is as follows. At the beginning of period t,
the investment return is realized according the Markov process described above. Each agent
observes her signal and the history of past investments, ht−1. Then the agents alive in period t
simultaneously decide whether to invest or not. Then period t+1 begins with a new generation
of agents, and so on.

Since all agents alive in period t observe the same investment history, they share the same
initial belief about the investment return (before observing a private signal). Denote the prob-
ability that the investment return is high, conditional on the history ht−1, as μ(ht−1). We will
sometimes suppress the history, and simply refer to the beginning-of-period belief as μ. We
denote the probability of the high investment return, conditional on an agent being type-1 or
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type-0, and conditional on the beginning-of-period belief μ, as

μ1 ≡ Pr(St = 1|s = 1, μ) = 1

1 + (1−αα )(1−μμ )
(1)

μ0 ≡ Pr(St = 1|s = 0, μ) = 1

1 + ( α
1−α)(

1−μ
μ )

. (2)

Clearly, μ1 > μ0 since α > 1/2, and both μ0 and μ1 are increasing in the initial belief μ.
The following proposition shows that the NWG has a Bayesian Nash equilibrium, character-

ized by cutoffs of initial beliefs,

μNW ≡ 1

1 + ( α
1−α)(

1−c
c )

and μNW ≡ 1

1 + (1−αα )(1−cc )
, (3)

determining whether no one invests, just type-1 agents invest, or all agents invest. To simplify
notation, we define the following belief transition function: f(μ) ≡ ρμ+ (1− ρ)(1− μ).

Proposition 2.1: The NWG has a Bayesian Nash equilibrium, characterized as follows.
(i) Within-period behavior: If μ(ht−1) < μNW holds, then no one invests in period t (Regime

0). If μNW ≤ μ(ht−1) < μNW holds, then all of the type-1 agents and none of the type-0 agents
invest in period t (Regime 1). If μNW ≤ μ(ht−1) holds, then all agents invest in period t
(Regime 2).

(ii) Updating of beliefs: If the economy is in Regime 0 or Regime 2 in period t, beliefs in
period t+ 1 are given by μ(ht) = f(μ(ht−1)). If the economy is in Regime 1 in period t, beliefs
at the end of period t are given by

μI
t
=

1

1 + 1−μ(ht−1)
μ(ht−1) (

1−α
α )2It−n

, (4)

and beliefs in period t+ 1 are given by μ(ht) = f(μI
t
).

Proof. Given any history, a type-1 agent strictly prefers to invest if and only if μ1 − c > 0,
which is equivalent to μ > μNW . Similarly, a type-0 agent strictly prefers to invest if and only
if μ0 − c > 0, which is equivalent to μ > μNW . It follows that no agent has an incentive to
deviate from their behavior as specified in part (i). When the economy is in Regime 0 or Regime
2, then nothing is learned from activity in period t, so beliefs are updated by considering the
probability of a change in the investment return, using to Bayes’ rule, according to f(μ(ht−1)).
When the economy is in Regime 1, the number of type-1 agents is revealed to be It. By Bayes’
rule, the posterior after observing It investment can be computed as (4), and the initial belief
in period t+ 1 is updated according to f(μI

t
). ¤

The proof makes clear that the equilibrium characterized in Proposition (2.1) is essentially
the unique Bayesian Nash equilibrium of the NWG.6 It is worth emphasizing that different

6The only possibility for multiplicity occurs when beliefs happen to lie exactly on the boundary between
regimes. The characterization of behavior and beliefs off the equilibrium path does not affect the incentive to
deviate and is therefore unimportant.
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regimes give rise to different degrees of information aggregation. Specifically, no information
about the current underlying state is revealed in either Regime 0 or Regime 2, where either
no one invests or everyone invests. However, in Regime 1, all available information about the
investment return is aggregated.

If not for the possibility of a shift in the investment return from period to period, Regime 0
and Regime 2 would lead to traditional information cascades, where subsequent generations do
not pay attention to their signals. However, the possiblity of a shift in the investment return
causes subsequent generations to update their beliefs, so that the expected investment return
rises towards 1/2 in Regime 0, and falls towards 1/2 in Regime 2. Thus, for reasonable parameter
values, the equilibrium results in self-reversing information cascades. To make regime switches
interesting, we assume c < α throughout the paper.7

Proposition 2.2: For the NWG, if c < 1−α holds, the economy starts and remains in Regime
2. If 1 − α < c < α holds, the economy starts in Regime 1, and all Regime 0 and Regime 2
cascades are self-reversing. That is, whenever the economy reaches either Regime 0 or Regime
2, it will leave that regime with probability one.

Proposition (2.2) allows us to describe the equilibrium regime switches. Consider the case in
which all three regimes are possible (1−α < c < α).8 The economy starts in Regime 1, in which
all private information is revealed by investment activity. In Regime 1, the number of realized
investments, It, determines the Regime for period t+ 1. In general, there are two cutoffs, such
that the economy switches to Regime 2 if It exceeds the larger cutoff, and the economy switches
to Regime 0 if It is below the smaller cutoff. For intermediate values of It, the economy will
remain in Regime 1. Also, because μNW < 1/2 < μNW holds, all transitions out of Regime 0 or
Regime 2 must go through Regime 1.

3 The Waiting Game

In the Waiting Game (WG), agents have an opportunity to postpone investment. For tractabil-
ity, we assume that every period is divided into two rounds. An agent can either invest in the
first round (and remain invested in second round) or postpone the decision until the second
round. By waiting until round 2, the payoff will be discounted by a factor, δ < 1. However, the
realized investment return remains constant during the two rounds and agents only receive a
signal once at the beginning of the first round. Thus, the realized payoff to an investor in period
t, round 1, is St− c, and the realized payoff to an investor in period t, round 2, is δ(St− c). All
the other elements of the model are the same as those in the NWG.

Let kt1 and kt2 denote the number of investments in round 1 and round 2 of period t, re-
spectively. Thus, It = kt1 + kt2. Now the history at the beginning of period t is given by
ht−1 = (k11, k

1
2, ..., k

t−1
1 , kt−12 ). We assume that kt1 is observed before round 2 begins. By observ-

ing kt1, an agent is able to make more informative decisions.

7 If α < c holds, the economy starts and remains in Regime 0.
8Regime 0 and Regime 2 will be reached in equilibrium, for sufficiently large ρ. A necessary condition is

ρ > max[μNW , 1− μNW ], which is also sufficient as n→∞.
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As in Chamley and Gale (1994) and Levin and Peck (2008), the opportunity to delay invest-
ment in round 1 leads to a tradeoff between waiting and investing in round 1: waiting incurs the
cost of delay but enables a more informative decision in round 2. As a result, the equilibrium
may involve mixing by the type-1 agents. Let q denote the probability that other type-1 agents
invest in round 1, and let μk,qi (μk,q) denote a type-i agent’s (an outside observer’s) posterior
that the investment return is high after observing k investments in round 1. More explicitly, we
have

μk,qi =
1

1 + 1−μi
μi
(1−αα )k[1−(1−α)q(1−αq) ]

n−1−k
. (5)

Let V (μi, q) be the expected payoff of a type-i agent, who plans to delay the investment decision
until round 2. In particular,

V (μi, q) = δ
n−1X
k=0

max{μk,qi − c, 0}Pr(kt1 = k|s = i, q, μi).

Define T (k, μi, q), which represents the option value of investing in round 2 after observing k
investors in round 1, as

T (k, μi, q) = μi(1− c)

µ
n− 1
k

¶
(αq)k(1− αq)n−1−k

−(1− μi)c

µ
n− 1
k

¶
[(1− α)q]k[1− (1− α)q]n−1−k. (6)

Then V (μi, q) can be rewritten as

V (μi, q) = δ
n−1X
k=0

max [0, T (k, μi, q)] . (7)

Lemma 3.1: (i) The function, V (μi, q), is continuous in μi and q. (ii) V (μi, q) is weakly
increasing in μi and strictly increasing if T (n − 1, μi, q) > 0. V (μi, q) is weakly increasing in
q, and strictly increasing if T (n− 1, μi, q) > 0 and T (0, μi, q) < 0. (iii) The difference between
the payoff from investing in round 1 and the payoff from waiting, μi − c − V (μi, q), is strictly
increasing in μi.

Lemma 3.1 establishes that the expected payoff from waiting, V (μi, q), is weakly increasing
in initial belief, and strictly increasing unless an agent will never invest in round 2. The expected
payoff from waiting is weakly increasing in the probability with which type-1 agents invest in
round 1, and strictly increasing unless the agent would either never invest or always invest in
round 2. This is because more accurate information will be learned in round 2 if type-1 agents
invest with a higher probability in round 1. Finally, the advantage, of investing in round 1 over
waiting until round 2, is strictly increasing in an agent’s belief. The intuition for this last result
is that, since the agent is trading off the cost of delay with the option not to invest if unfavorable
information is revealed, the option not to invest is more valuable for an agent who has more
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pessimistic beliefs. This implies that agents have a stronger incentive to wait when the initial
belief is low and a weaker incentive to wait when the initial belief is high.

Similar to the NWG, the WG has a Bayesian Nash equilibrium, characterized by cutoffs in
initial beliefs, μW , bμW , and μW , determining whether no one invests, type-0 agents do not invest
and type-1 agents mix, type-0 agents do not invest and all type-1 agents invest, or all agents
invest. To characterize these cutoffs, define μ∗ be the unique value of μi solving

μi − c− V (μi, 1) = 0. (8)

That is, μ∗ is the belief (after learning one’s type) such that an agent is indifferent between
investing in round 1 and making a decision in round 2 after learning the types of all agents. A
solution to (8) exists, because the expression is continuous, takes the value −c at μi = 0, and
takes the value (1− c)(1− δ) > 0 at μi = 1. Uniqueness follows from the strict monotonicity of
the left hand side of (8), according to Lemma 3.1. The cutoffs are defined as follows

μW =
1

1 + ( α
1−α)(

1−c
c )
; bμW =

1

1 + ( α
1−α)(

1−μ∗
μ∗ )

; μW =
1

1 + (1−αα )(1−μ
∗

μ∗ )
. (9)

Proposition 3.2: The WG has a Bayesian Nash equilibrium, characterized as follows.
(i) Regime 0: If μ(ht−1) < μW holds, then no one invests in period t. Beliefs in period t+1

are given by f(μ(ht−1)).
(ii) Regime M: If μW ≤ μ(ht−1) < bμW holds, then the type-0 agents wait and the type-

1 agents invest in round 1 with probability q(ht−1), where q(ht−1) is the unique solution to

μ1−c−V (μ1, q) = 0. Based on round-1 investment, if μ
kt1,q(h

t−1)
1 < c holds, then no one invests

in round 2, and beliefs in period t+1 are given by f(μk
t
1,q(h

t−1)). If μk
t
1,q(h

t−1)
0 ≤ c < μ

kt1,q(h
t−1)

1

holds, then the remaining type-1 agents (but no type-0 agents) invest in round 2, and beliefs in

period t + 1 are given by f(μI
t
). If c ≤ μ

kt1,q(h
t−1)

0 holds, then all remaining agents invest in
round 2, and beliefs in period t+ 1 are given by f(μk

t
1,q(h

t−1)).
(iii) Regime 1: If bμW ≤ μ(ht−1) < μW holds, then the type-0 agents wait and the type-1

agents invest in round 1. Based on round-1 investment, if μ
kt1,1
0 < c holds, then no one invests

in round 2. If c ≤ μ
kt1,1
0 holds, then all type-0 agents invest in round 2. Beliefs in period t+ 1

are given by f(μk
t
1,1).

(iv) Regime 2: If μW ≤ μ(ht−1) holds, then all agents invest in round 1. Beliefs in period
t+ 1 are given by f(μ(ht−1)).

Proof. (i). If μ(ht−1) < μW holds, then investment in round 1 is not profitable for either type
of agent, and nothing is learned from observing no investment in round 1.

(ii). If μW ≤ μ(ht−1) < bμW holds, then investment in round 1 is profitable for a type-1 agent,
so that μ1− c−V (μ1, 0) ≥ 0 holds. Also, from the definition of bμW in (9), a type-1 agent would
prefer to wait if waiting would allow her to learn the signals of all agents, so μ1−c−V (μ1, 1) < 0
holds. From Lemma (3.1) there must be a unique q such that μ1− c−V (μ1, q) = 0 holds, which
we denote by q(ht−1). For agents that do not invest in round 1, the specified behavior is to
invest in round 2 if and only if investment is profitable given their beliefs at that point. Clearly,
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no beneficial deviation in round 2 is possible. Type-1 agents have no incentive to deviate in
round 1 since they are indifferent between investing and waiting. Type-0 agents strictly prefer
to wait in round 1, since they have more pessimistic beliefs than type-1 agents and Lemma (3.1)
implies μ0 − c− V (μ0, q(h

t−1)) < 0. The end-of-period beliefs are determined from Bayes’ rule.
If round-1 investment is either small or large, then either no one invests or everyone invests
in round 2, so nothing additional is learned. If round-1 investment is intermediate, then only
type-1 agents invest in round 2, and the signals of all agents are revealed.

(iii). If bμW ≤ μ(ht−1) < μW holds, then a type-1 agent would prefer to invest in round 1
rather than wait, and a type-0 agent would rather wait than invest, even if waiting would allow
her to learn the signals of all agents. As a result, round-1 investments reveal all the signals.

(iv). If μW ≤ μ(ht−1) holds, then each agent would prefer to invest in round 1 rather than
wait, even if waiting would allow her to learn the signals of all agents, so nothing is learned from
behavior in period t. Given the end-of-period-t belief μ, the initial belief in period t+1 is given
by f(μ). ¤

As in the NWG, in Regimes 0 and 2 nothing is revealed, while in Regime 1, all of the
private information is revealed. In Regime M, information is revealed by round-1 investments
and potentially by round-2 investments. In round 1, an increase in mixing probablility q leads to
more information being revealed, as the behavior of type-1 agents becomes more different from
that of type-0 agents. Since the mixing probability q is increasing in μ(ht−1), the informativeness
of market activity is increasing in initial beliefs. The additional information revealed in round 2
depends on the realized investment in round 1, kt1. If k

t
1 is too small or too big, then either no

agents or all remaining agents invest in round 2, thus no additional information is revealed. If
kt1 is intermediate, then all remaining type-1 agents invest and no type-0 agents invest in round
2. In this case, all information is revealed by investment activity in two rounds.

Remark on Multiple Equilibrium. In general, the WG will have multiple equilibria, as in
Chamley (2004). Besides the equilibrium characterized in Proposition (3.2), all of the other
type-symmetric equilibria involve an "informational coordination failure." For example, after
some histories in which a type-0 agent finds investment profitable but not as profitable as
waiting and learning all of the signals, it is consistent with equilibrium for all agents to invest,
supported by the self-fulfilling expectation that no information will be revealed.9 It is worth
emphasizing that all of these equilibria are qualitatively similar to the equilibrium of Proposition
(3.2), in the following sense. The range of beliefs corresponding to Regime 0 is [0, μW ] in all
equilibria, the same range as in the NWG. For sufficiently high persistence, when beliefs are
slightly higher than μW , then we are in Regime M in all equilibria of the WG, while we are in
Regime 1 in the NWG; thus, the option to wait reduces information flow when we are leaving
Regime 0, inducing type-1 firms with profitable investment prospects to sit on the fence with
high probability, thereby lengthening recessions. The range of beliefs corresponding to Regime
2 is weakly larger in the NWG than in all of the equilibria of the WG; thus, the option to wait

9 It is also possible to have an equilibrium in which the type-1 agents invest in round 1 and the type-0 agents
mix. There is a self-fulfilling expectation that mixing will dilute the information content of observing market
activity, to the point that type-0 agents are indifferent between investing and waiting.
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weakly speeds the exit of Regime 2, which tends to shorten booms.10 While it is interesting
to note that informational coordination failures are possible here, coordination failures based
on payoff externalities have already been featured in the neo-Keynesian literature (see Shleifer
(1986)). Given space limitations, we focus on the most informationally efficient equilibrium, the
one without coordination failures. In so doing, we make clear that informational coordination
failures are in no way necessary to generate the result that strategic delay can lengthen recessions.

Proposition 3.3: The range of beliefs corresponding to Regime 0 is identical for the two games,
μW = μNW . The range of beliefs corresponding to Regime 2 is strictly smaller for the WG than
for the NWG, μW > μNW . For the WG, if the economy starts in Regime M or Regime 1 (a
sufficient condition is 1−α < c < α), then all Regime 0 and Regime 2 cascades are self-reversing.

Proof. That μW = μNW holds follows immediately from (3) and (9). From (3) and (9), showing
μW > μNW is equivalent to showing c < μ∗. We know that μ∗ solves (8). Also, μi− c−V (μi, 1),
evaluated at μi = c, is strictly negative, because the initial beliefs yield an expected payoff of
zero. From the monotonicity of μi − c− V (μi, 1), c < μ∗ follows.

Clearly, 1 − α < c < α is sufficient for the economy to start in Regime M or Regime 1,
because investment in round 1 of period 1 is profitable for a type-1 agent (rule out Regime 0),
but it is unprofitable for a type-0 agent (rule out Regime 2). The argument that the economy
deterministically moves out of Regime 0 or Regime 2 in a finite number of periods, assuming
that we start in Regime M or Regime 1, is the same as in the proof of Proposition (2.2). In
particular, μW > μNW > 1/2 holds, so the economy cannot remain in Regime 2 forever. ¤

By Proposition (3.3), the set of beliefs for which the economy is in Regime 0 is identical for
two games. This is because in both games the cutoff is determined by whether it is profitable for
type-1 agents to invest in round 1. On the other hand, the set of beliefs for which the economy
is in Regime 2 is strictly smaller when waiting is allowed. Intuitively, the threshold to fall into
Regime 1 occurs when investment is unprofitable for type-0 agents in the NWG. However, in the
WG it occurs when investment is less profitable than waiting and learning all agents’ signals.
Thus, beliefs do not have to fall all the way to the zero-profit point for type-0 agents.

Proposition 3.4: Suppose δ0 > δ00 holds. (i) In the WG, μW (δ0) > μW (δ00), so the range of
beliefs corresponding to Regime 2 is strictly larger for a lower discount factor. (ii) In Regime M
of the WG, holding μ constant, q(δ0) < q(δ00). That is, type-1 agents’ investment probability is
strictly decreasing in the discount factor.

Proof. Let μ∗(δ0) and μ∗(δ00) be the solutions to equation (8) for δ = δ0 and δ = δ00 respectively.
Since δ0 > δ00, we have

0 = μ∗(δ0)− c− V (μ∗(δ0), 1, δ0) < μ∗(δ0)− c− δ00

δ0
V (μ∗(δ0), 1, δ0).

10The lengthening of recessions and increased long-run probability of being in a recession, as compared to the
NWG, can be proven for the large, persistent economy when agents are not too patient, and remains a strong
conjecture otherwise.
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That is, for μi = μ∗(δ0), the left hand side of (8) is strictly positive for δ = δ00. Given that the
left hand side of (8) is strictly increasing in μi, we must have μ

∗(δ0) > μ∗(δ00). Following the
monotonicity of μW in μ∗ by (9), we have μW (δ0) > μW (δ00). This proves part (i).

For part (ii), by δ0 > δ00 in Regime M we have

0 = μ1 − c− V (μ1, q(δ
0), δ0) < μ1 − c− δ00

δ0
V (μ1, q(δ

0), δ0) = μ1 − c− V (μ1, q(δ
0), δ00).

By the fact that V (·, q, ·) is strictly increasing in q, we must have q(δ0) < q(δ00). ¤

Proposition (3.4) states the comparative statics regarding the discount factor. Intuitively,
as the cost of delay increases when δ decreases in the WG, agents have less incentive to delay
investment. As a result, in Regime M, type-1 agents will invest with a higher probability, given
the initial belief. In addition, the range of beliefs for which type-0 agents invest in round 1
(Regime 2) becomes larger.

Comparing the long-run dynamics of the NWG and the WG. The long-run dynamics
of the WG differ from that of the NWG in two major aspects. First, a smaller region of Regime
2 means that the length of a Regime 2 cascade is shorter in the WG. A second difference is
that the economy typically enters Regime M when it emerges from Regime 0 in the WG, but it
enters Regime 1 in the NWG. Since information aggregation is less efficient in Regime M than in
Regime 1, it will take agents longer, in the WG than in the NWG, to learn that the investment
return has switched from low to high.

It is desirable to study the long-run cyclical patterns of boom and recession. We define a
boom to be a period in which investment is the predominant activity, i.e., a period in which
more than half of the agents invest. We define a recession to be a period in which we are not
in a boom. We also define underinvestment as lack of investment in the high return state and
overinvestment as investment in the low return state.

Unfortunately, in general it is not possible to derive analytical expressions for the long-run
probability of recession and boom. The reason is that the dynamical systems characterized by
Propositions (2.1) and (3.2) cannot be represented as finite-state Markov processes, because
beliefs depend on the entire history (the transition matrix is not time-homogenous). However,
equilibrium trajectories can be computed numerically. Specifically, equilibrium can be computed,
history by history, by updating beliefs, determining the regime, computing the investment prob-
ability if necessary, and so on. We conduct simulations with the following parameter values:
α = 0.65, c = 0.5, n = 100, ρ = 0.95, and a time horizon of 1000 periods. The statistics are
reported in Table 1.11

Table 1: Simulation Statistics
11The average overinvestment (underinvestment) is the probability that the state is low (high) and a random

agent invests (does not invest). The welfare is the average total payoff that all agents get in a period. Programming
was done using SAS version 9.1. Source code and graphs are available upon request. We are grateful to Hammad
Qureshi for doing an excellent job programming the algorithms.
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NWG WG (δ = 0.9) WG (δ = 0.7) WG (δ = 0.5)
Mean of Investment 54.941 33.255 38.255 43.167

Overinvestment Index 0.13446 0.01584 0.04652 0.06419

Underinvestment Index 0.09405 0.19229 0.17297 0.14152

Welfare 14.0245 14.75895 13.9886 14.5535

Several features emerge from Table 1. First, as compared to the NWG, in the WG the econ-
omy spends more time in recession and less time in boom. Second, there is less overinvestment
and more underinvestment in the WG than in the NWG. Third, as δ decreases, in the WG the
economy spends less time in recession and more time in boom, and there is more overinvestment
and less underinvestment. These features generalize across all parameter values for which we
have performed simulations. Table 1 also indicates that either the NWG or the WG can provide
higher welfare, and that the welfare comparison is non-monotonic in δ.

In the next section, we will analytically study the long-run dynamics of the large and per-
sistent economy. To proceed, we first prove a usefully lemma when n→∞.12

Lemma 3.5: As n→∞, the regime cutoffs for WG are as follows

bμW =
1

1 + ( α
1−α)(

1−c
c )(1− δ)

, μW =
1

1 + (1−αα )(1−cc )(1− δ)
.

Proof. As n→∞, when all type-1 agents invest in round 1, the investment return is revealed,
so an agent who waits can invest if and only if the investment return is high. Therefore, we have

V (μi, 1) = δμi(1− c). (10)

From (8) and (10), we have

lim
n→∞

μ∗ =
c

1− δ(1− c)
,

which, when substituted into (9), allows us to derive the expressions for bμW and μW . ¤

4 The Large, Persistent Economy

All of our simulations indicate that investment cycles have longer recessions and shorter booms
in the WG than in the NWG. While we conjecture that this is a general result, the nonstationary
nature of the dynamics makes proving this result impossible (at least, for us). However, in this
section we derive analytical results for the important case of the large, persistent economy. We
consider the limiting case in which n→∞, ρ→ 1, and the order of limits is such that n→∞ for
any value of ρ. We will argue that this allows us to characterize the equilibria of the NWG and

12For large economies in Regime M, it is easy to show that an individual agent’s investment probability must
converge to zero as n→∞. However, the probability that no agent invests in the good and bad investment states,
(1− αq(ht−1))n and (1− (1− α)q(ht−1))n, converge to a positive limit.
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the WG as finite-state Markov processes, from which we can study the long run probabilities of
boom and recession. Intuitively, large n allows us to use the law of large numbers, thus getting
rid of the randomness of beliefs in Regime 1 and Regime M. Meanwhile, large n also leads to nice
cutoffs in the WG as shown by Lemma (3.5). Large ρ makes belief transitions across periods
(in either Regime 0 or Regime 2) smoothly and guarantees that Regime 1 and Regime M occur
when beliefs first cross the boundaries.

4.1 The Large, Persistent NWG

The economy can be represented by rNW + 2 + bNW Markov states. Regime 0 has rNW states
(state 1 to state rNW ). Regime 1 has two states: state rNW + 1 (corresponding to a low
investment return) and state rNW + 2 (corresponding to a high investment return). Regime 2
has bNW states (state rNW + 3 to state rNW + 2 + bNW ).

Since n → ∞, by the law of large numbers, in Regime 1 the investment return is always
fully revealed. Therefore, if the economy is in Markov state rNW +1, in the following period the
economy will be in state 1 (corresponding to the beginning of Regime 0) for sure, with initial
belief 1−ρ. Similarly, state rNW+2 transitions to state rNW+3 (corresponding to the beginning
of Regime 2) for sure, with inital belief ρ. From state 1, the economy transitions through rNW

states of Regime 0 deterministically, until state rNW is reached. State rNW transitions to Regime
1 with probability one. Specifically, it transitions to state rNW + 1 with probability 1 − pNW ,
which is the probability of the investment return being low after rNW periods, given that it
was low initially; and it transitions to state rNW + 2 with probability pNW . Similarly, once the
economy reaches state rNW +3, it transitions through bNW states of Regime 2 deterministically,
until state rNW +2+ bNW is reached. State rNW +2+ bNW transitions to either state rNW +1
or state rNW + 2. The probability of transitioning to state rNW + 2, denoted by pNW , is the
probability of the investment return being high after bNW periods, given that it was high initially.

Note that the stationarity of the processes is guaranteed by the law of large numbers, as the
investment return is fully revealed in regime 1. We summarize the state transitions in the NWG
in the following transition probability matrix PNW (from top to bottom rows and from left to
right columns are state 1 to state rNW + 2 + bNW ).

PNW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1...

1
(1− pNW ) pNW

1
1
1
1...

1
(1− pNW ) pNW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since all of the Markov states are ergodic, we can calculate the stationary distribution of

states πNW (a row vector), which is defined as πNWPNW = πNW . Using standard techniques,
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the fraction of time the economy spends in booms, πNW
B , can be calculated as

πNW
B =

(bNW + 1)pNW

(rNW + 1)(1− pNW ) + (bNW + 1)pNW
, (11)

with the probability of recession equal to 1− πNW
B .

We can determine rNW (bNW ) by calculating the number of periods that must pass, in order
for the probability of the high investment return to first exceed μNW (fall below μNW ), given
that the investment return was low (high) initially. Thus, we have13

rNW =
log(1− 2μNW )

log(2ρ− 1) ; bNW =
log(2μNW − 1)
log(2ρ− 1) . (12)

Equations (12) indicate that the number of periods in Regime 0 and Regime 2 grow without
bound as ρ → 1, but the ratio converges to a well defined limit. We can compute the limiting
boom probability by noting that limρ→1(pNW ) = μNW and limρ→1(pNW ) = μNW , yielding14

πNW
B =

1

1 +
log(1−2μNW )

log(2μNW−1)

h
1−μNW

μNW

i . (13)

4.2 The Large, Persistent WG

For the WG of the large, persistent economy, we want to show that the dynamics are approxi-
mated by a first-order Markov process. Specifically, there are rW +4+bW Markov states. States
1 to rW correspond to Regime 0. Regime M has two states: state rW + 1 (corresponding to a
low investment return) and state rW + 2 (corresponding to a high investment return). Regime
1 has two states: state rW + 3 (corresponding to a low investment return) and state rW + 4
(corresponding to a high investment return). States rW +5 to rW +4+bW correspond to Regime
2.

The state transitions are as follows. By the law of large numbers, state rW + 3 transitions
to state 1 for sure, and state rW + 4 transitions to state rW + 5 for sure. From state 1, the
economy goes through the rW states of Regime 0. State rW transitions to Regime M: to state
rW +1 with probability (1− pW ) and to state rW +2 with probability pW . From state rW +5,
the economy goes through the bW states of Regime 2. State rW +4+ bW transitions to Regime
1: to state rW + 3 with probability (1− pW ) and to state rW + 4 with probability pW .

Now we specify transitions from Regime M. From state rW + 1, with probability λ0 the
investment return is revealed to be low and the economy transitions to state 1; with probability
(1−λ0)ρ it remains in state rW +1 next period, and with probability (1−λ0)(1−ρ) it switches
13Of course, the expressions (12) are not generally integers, so rNW and bNW are actually the smallest integers

greater than or equal to the corresponding expressions.
14Clearly, if c = 1/2, then μNW = 1− μNW and bNW = rNW holds. By (13), we have πNW

B = πNW
R = 1/2. As

we will see, this symmetry of investment cycles for the symmetric model with c = 1/2 does not carry over to the
WG.
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to state rW + 2. Similarly, from state rW + 2, with probability λ1 the investment return is
revealed to be high and the economy transitions to state rW +5; with probability (1−λ1)(1−ρ)
it switches to state rW +1 next period, and with probability (1−λ1)ρ it remains in state rW +2.
The Markov transition matrix PW is summarized below (from top to bottom rows and from left
to right columns are state 1 to state rW + 4 + bW ):

PW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1...

1
(1− pW ) pW

λ0 (1− λ0)ρ (1− λ0)(1− ρ)
(1− λ1)(1− ρ) (1− λ1)ρ λ1

1
1

1
1...

1
(1− pW ) pW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The law of large numbers guarantees that the investment return is revealed in Regime 1, or

if the economy is in Regime M and kt1 induces all remaining type-1 agents and no type-0 agents
to invest in round 2. For ρ sufficiently close to one, it is clear that: when the investment return
is revealed to be high (low), then the following period is in Regime 2 (0); during the first period
that the economy leaves Regime 2, it is in Regime 1;15 and during the first period that the
economy leaves Regime 0, it is in Regime M. To finish our justification that PW is an accurate
approximation to the transition dynamics, we will show that for ρ sufficiently close to one, (i) in
Regime M, if one agent invests in round 1, kt1 = 1, then the remaining type-1 agents and none of
the type-0 agents will invest in round 2, thereby revealing the investment return, (ii) in Regime
M, the probability of more than one agent investing in round 1, kt1 > 1, is negligible, even as
compared to the already small probability that exactly one agent invests, and (iii) in Regime
M, the beginning of period beliefs are approximately constant, independent of the history.

It will be useful to define the following notation for the probabilities of aggregate round-1
investment in Regime M, given beginning of period beliefs, μ, and the investment return:

prk0(μ) ≡ pr(kt1 = k|St = 0) and prk1(μ) ≡ pr(kt1 = k|St = 1).

Also, based on the investment probability q (which implicitly depends on μ), we define Q(μ)
to be the ratio of the probability that no one invests when the investment return is low, to the
probability that no one invests when the investment return is high:

Q(μ) ≡ (1− (1− α)q

1− αq
)n. (14)

15Regime 2 and Regime 1 always exists (not bypassed) for fixed δ < 1 and ρ → 1. If δ → 1 as well, then to
ensure Regime 2 and Regime 1 exist the limiting ratio (1− δ)/(1− ρ) must be sufficiently large.

15



Lemma 4.1: For the large, persistent WG in Regime M, let the beginning of period belief be
given by μ(ht−1) = μ < 1. Then in the limit, as n → ∞, round-1 investment probabilities are
characterized as follows.

pr00(μ) = Q(μ)−(1−α)/(2α−1)

pr10(μ) =

µ
1− α

2α− 1

¶
Q(μ)−(1−α)/(2α−1) log(Q(μ))

pr01(μ) = Q(μ)−α/(2α−1)

pr11(μ) =

µ
α

2α− 1

¶
Q(μ)−α/(2α−1) log(Q(μ))

Also, if n→∞ and μ→ μW , then Q(μ), pr00(μ), and pr01(μ) converge to one. Although the
probability of kt1 = 1 is converging to zero, the probability of kt1 > 1, relative to the probability
of kt1 = 1, also converges to zero.

If beliefs in Regime M are close to μW , Lemma (4.1) allows us to ignore the possibility of
more than one agent investing in round 1. Also, if kt1 = 1 holds, then from (5) and Lemma (4.1),
a type-1 agent finds it profitable to invest and a type-0 agent does not; thus, only the remaining
type-1 agents invest in round 2, thereby revealing the investment return. Lemma (4.2) below
completes our justification that PW is an accurate approximation to the transition dynamics.

Lemma 4.2: Consider the limiting large, persistent WG as n → ∞, for fixed ρ close to one.
Also assume that 1

2 < δ < 1 holds. Then for all histories such that kt1 = 0 in Regime M, in the
next period μ(ht) will be in Regime M, in the interval, [μW , ρμW+(1−ρ)(1−μW )]. Furthermore,
the beginning of period beliefs converge to a constant, μfix, following a sequence of periods of
kt1 = 0 in Regime M.

Standard techniques allow us to compute the steady state distribution of Markov states, πW ,
which is defined as πWPW = πW . To simplify notation, we denote the probability of one of the
Regime 0 (2) states as πW0 (πW2 ), the probability of Regime M, low (high) investment return as
πWM0 (π

W
M1), and the probability of Regime 1, low (high) investment return as π

W
10 (π

W
11). After

much manipulation, we can solve the following equations for πWM1 and πWM0:

1 = πWM1(
bW + 1

1− pW
λ1 + 1 + λ1r

W ) + πWM0(1 + λ0r
W ), (15)

πWM1 =
1− ρ+ λ0[ρ− (1− pW )]

1− ρ+ λ1(ρ− pW )
πWM0. (16)

Next, the steady-state probability of being in one of the Markov states corresponding to a boom
can be written as

πWB =
bW + 1

1− pW
λ1π

W
M1. (17)
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Finally, we take limit as ρ→ 1, yielding

pW = μW =
1

1 + ( α
1−α)(

1−c
c )
, pW = μW =

1

1 + (1−αα )(1−cc )(1− δ)
,

bW

rW
=
log(2 μW − 1)
log(1− 2μW ) ,

and λ0
λ1
, 1−ρλ1

, and λ0r
W are computed in the proof of Proposition (4.3) below. This allows us to

compute the limiting boom probability, and the recession probability 1− πWB .
16

In Chamley and Gale (1994), when the number of agents is large and agents are extremely
patient, underinvestment is the only source of inefficiency; there is no overinvestment, in the
sense that when the investment return is low, the probability that an agent ever invests is zero.
This finding seems to contradict our finding for the large, persistent economy, that the economy
spends a positive fraction of periods in Regime 2 with all agents investing. In fact, our analysis
shows that the Chamley-Gale no-overinvestment result is robust to our setting. In the large,
persistent economy as δ → 1, the length of a single Regime 0 cascade approaches infinity, but the
length of a single Regime 2 cascade is bounded.17 Thus, booms are characterized by a sequence
of many Regime 2 cascades, which repeat themselves as long as the investment return remains
high. Overinvestment during the entire cycle only occurs during Regime M periods with a single
round 1 investor, or (almost certainly) during at most one Regime 2 cascade, which together
comprise a negligible fraction of the length of that cycle.

4.3 Comparing the Long Run Dynamics Across Games

In this subsection, based on the Markov matrices PNW and PW , we compare the long-run
dynamics of the NWG and the WG, for the large, persistent economy. We demonstrate that
the expected length of a boom is shorter and the expected length of a recession is longer in the
WG. The probability of being in a recession is greater in the WG than in the NWG. We also
show that overinvestment (investing when the return is low) is more prevalent in the NWG, and
underinvestment (not investing when the return is high) is more prevalent in the WG.

Let LNW
B be the expected length of a boom for the NWG. The actual length of a boom is

a random variable that can take one of the values, bNW + 1, 2(bNW + 1), 3(bNW + 1), and so
on. The probability that a boom lasts for k(bNW +1) periods is (1− pNW )(pNW )k−1. Thus, we
have

LNW
B = (bNW+1)

∞X
k=1

k(1−pNW )(pNW )k−1 = (bNW+1)
1

(1− pNW )
= (bNW+1)

2

1− (2ρ− 1)bNW+1

(18)
Similarly, the expected length of recessions LNW

R is

LNW
R = (rNW + 1)

1

pNW
= (rNW + 1)

2

1− (2ρ− 1)rNW+1
. (19)

16For the large, patient, persistent economy (δ → 1) the limiting probability of boom is πWB =
2c(α−c)

6cα−2c−4c2α−(α−c) log( α−c
c+α−2cα )

.
17The limiting ratio (1− δ)/(1− ρ) must be sufficiently large to ensure that there is a Regime 2.
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Although the expected lengths of booms and recessions grow without bound as ρ→ 1, the ratios
have well defined limits.

Similarly, the expected length of booms in the WG, denoted by LW
B , is given by

LW
B = (bW + 1)

∞X
k=1

k(1− pW )(pW )k−1 =
bW + 1

1− pW
. (20)

Denote the expected length of recessions in the WG by LW
R . It will be convenient to keep track

of the expected length of recessions starting from Regime M when the investment return is high,
which we denote by c1, and starting from Regime M when the investment return is low, which
we denote by c0. From PW , we have the following equations:

LW
R = (rW + 1) + pW c1 + (1− pW )c0 (21)

c1 = (1− λ1)[1 + ρc1 + (1− ρ)c0] (22)

c0 = (1− λ0)[1 + ρc0 + (1− ρ)c1] + λ0L
W
R (23)

Solving the above equations simultaneously, we can compute LW
R .

Proposition 4.3: In the large, persistent economy, the expected length of a boom is shorter, and
the expected length of a recession is longer, in the WG than in the NWG. That is, LW

B < LNW
B

and LW
R > LNW

R .

The average length of a boom is shorter in the WG than in the NWG, because Regime
2 cascades are shorter with the possibility of waiting. The shorter Regime 2 cascades reduce
the chance that the investment return switches from high to low without being detected. The
average length of a recession is longer in the WG, because of the presence of Regime M. Suppose
the investment return switches to high during a Regime 0 cascade. In the NWG, the economy
moves to Regime 1, and the high investment return is revealed, ending the recession. However,
in the WG, the economy moves to Regime M, and is likely to stay there for many periods. This
directly prolongs the recession, and also allows for the possibility that the investment return
switches back to low before the high return is detected.

Next we consider long-run probabilities of boom and recession.

Proposition 4.4: In the large, persistent economy, the long-run probability of being in a
recession in the WG is greater than in the NWG, πWR > πNW

R and πWB < πNW
B .

The intuition for Proposition (4.4) is the following. The economy is oscillating between boom
and recession. Given that the average length of a boom is shorter and the average length of a
recession is longer in the WG than in the NWG (Proposition (4.3)), the economy must spend
relatively more time in a recession in the WG.

Finally, we show that the possibility of waiting reduces expected overinvestment and in-
creases expected underinvestment. Let O (U) be the overinvestment (underinvestment) index,
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measuring the average investment (lack of investment) when the return is low (high). More
specifically,

O = lim
T→∞

1

T

TX
t=1

[
It

n
|St = 0]; U = lim

T→∞

1

T

TX
t=1

[
n− It

n
|St = 1].

For the large, persistent NWG, ONW and UNW can be expressed as

ONW = {b
NW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)bNW
]}π2 + (1− α)π0, (24)

UNW = {r
NW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)rNW
]}π0 + (1− α)π11. (25)

To understand (24), note that the term in braces is the expected number of periods that the
investment return is low during bNW consecutive periods of Regime 2. The second term is the
probability that the investment return is low during Regime 1, multiplied by the fraction of
agents that invest.

For the large and persistent WG, OW and UW can be computed as:

OW = (1− α)(λ1π
W
M1 + λ0π

W
M0) +

λ1π
W
M1

1− pW
{b

W

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)bW ]} (26)

UW = πWM1[(1− λ1) + λ1(1− α)] + πW0 {
rW

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)rW ]} (27)

Proposition 4.5: In the large, persistent economy, (i) the overinvestment index is higher for
the NWG than for the WG, ONW > OW , and (ii) the underinvestment index is higher for the
WG than for the NWG, UNW < UW .

The reason for part (i) of Proposition (4.5) is that Regime 2 cascades are longer in the
NWG than in the WG. Longer Regime 2 cascades on average lead to higher probabilities of
overinvestment, since it becomes more likely that the investment return has switched from high
to low during a Regime 2 cascade. The result of part (ii) is due to the presence of Regime M in
the WG. The presence of Regime M increases the probability that no agent invests, even though
the investment return has switched from low to high.

Proposition 4.6: Consider the large, persistent WG with δ0 > δ00. Then we have (i) LW
B (δ

0) <
LW
B (δ

00) and LW
R (δ

0) = LW
R (δ

00); (ii) πWR (δ
0) > πWR (δ

00); (iii) OW (δ0) < OW (δ00) and UW (δ0) >
UW (δ00).

Propsoition (4.6) shows that as δ decreases, the long-run dynamics of the WG become closer
to those of the NWG. The underlying intuition is that, as δ decreases, Regime 2 cascades become
longer, because μW decreases, which tends to increase the average length of booms. On the other
hand, since ρ is very close to one, the transition probability from Regime M to Regime 2 does
not depend on δ. This means that the average length of recessions remains the same as δ
changes. Combining these two effects, as δ decreases the economy spends more and more time
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in booms rather than in recessions. As a result, the overinvestment probability increases and
underinvestment probability decreases. If ρ is strictly less than 1, then a decrease in δ would
lead to a higher investing probability for type-1 agents in Regime M, which in general shortens
the average length of recessions.

Proposition (4.6) has some potentially testable implications. We can interpret a larger δ as
a smaller cost of waiting. Then our model would predict that, as the cost of delaying investment
decreases, booms will tend to be shorter and recessions will tend to be longer; that the economy
will tend to spend less time in booms; and that the averge investment (or output) will decrease.

Our results are consistent with the empirical evidence provided by Van Nieuwerburgh and
Veldkamp (2006), that analysts’ forecasts of real GDP are both less accurate and more dispersed
near business cycle troughs. Suppose that forecasters are the agents (or outsiders who observe a
signal) of our large, persistent economy, and forecasts are the conditional beliefs of the investment
return. Then measuring the inaccuracy of forecasts as the squared deviation between the forecast
and the true investment return, the average inaccuracy is a function of α and the beginning of
period belief μ, given by

μ[α(1− μ1)
2 + (1− α)(1− μ0)

2] + (1− μ)[αμ0
2 + (1− α)μ1

2],

which is symmetric in μ with a peak at μ = 0.5. Assume that Regime 0 cascades are longer
than Regime 2 cascades, which occurs if the model parameters are symmetric (i.e., c = 0.5) or
if agents are reasonably patient. Then forecasts are most accurate during Regime 2 (boom),
somewhat less accurate during Regime 0 (recession), and far less accurate during Regime M
(also recession). In terms of dispersion, type-0 and type-1 forecasters will have almost the
same beliefs during Regime 2, somewhat more dispersed beliefs during Regime 0, and far more
dispersed beliefs during Regime M.

The WG can also shed some light on the timing of goverment policy to pull the economy out
of recession. Suppose the government only observes the history of aggregate investments. Our
model predicts that an investment subsidy will be most effective when the economy transitions to
Regime M, i.e., after the recession has lasted for some time. At that point, beliefs are reasonably
optimistic, and the subsidy needed to induce type-1 agents to invest (with a high probability)
is small. Moreover, it is reasonably likely that market activity will reveal the investment return
to be high (in a large economy) and that the recession can be ended. On the other hand, if
there is a subsidy at the beginning of Regime 0, agents are very pessimistic, which means that
a large subsidy rate is required to induce type-1 agents to invest, and the investment return
is very likely to be low. As a result, even if type-1 agents are induced to invest, the revealed
information is very likely to be bad news, and thus the recession will continue.

5 Concluding Remarks

This paper studies how the option to delay investment in order to learn from others’ activity
affects the process of information aggregation and the course of information cascades. We also
make the following contributions to the macro literature on business cycles. First, we have
formally demonstrated that the option to delay (or a decrease in the cost of delay) investment
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will tend to lengthen recessions and shorten booms. The macro literature cites Chamley and
Gale (1994) on this point, but their model does not actually contain cycles. Second, we show
that asymmetric information gets aggregated by market activity, but imperfectly and in chunks.
Only periodically does the economy find itself in a regime in which different types choose different
actions, where a lot of information gets revealed. Third, even large economies can find themselves
in a situation where investment by a single agent sets in motion a process whereby others invest
and information is revealed that either prolongs the recession further or else starts a boom.

Many of the key features of real world economies relevant to cycles are left out of the model.
For example, our model does not contain liquidity constraints, collateral, or asset prices. Instead,
we isolate the role of information flows and the incentive to delay to learn from market activity,
in order to demonstrate as cleanly as possible the effect of delay on lengthening recessions. We
believe that the presence of asymmetric information, and the tendency of agents with favorable
information to wait for confirmation, plays an important role in actual business cycles. This
feature is particularly salient in the current recession, as government officials and economists
speak about the importance of boosting business confidence. However, it is useful to discuss how
our results would change if we were to expand the model to include these additional features. A
simple way to introduce financing constraints would be to assume that investors must borrow
the full cost, c, in order to undertake their investment. We would now reinterpret the agents of
our model as the lenders, who receive signals and decide whether to lend immediately or delay
their decision to learn from the decisions of other lenders.18 If we were to model a procyclical
investment cost, c, this would reduce both the average length of recessions and the average
length of booms. A procyclical cost of waiting tends to increase both the average length of
recessions and the average length of booms. This is because a stronger incentive to wait in
recession prolongs recessions and a weaker incentive to wait in booms prolongs booms.19

We could match any desired ratio of boom length to recession length by adjusting the invest-
ment cost. Empirical patterns of investment or GDP for actual economies are usually charac-
terized by steep downturns and short recessions, followed by gradual recoveries and long booms.
While our model as currently formulated cannot match this pattern, introducing more than
two investment returns could lead to smoother and more realistic looking fluctuations. Also, it
would be interesting to extend the model, by allowing some information to flow directly from
investment outcomes, perhaps delayed several periods.20

18With limited liability, potential investors will always want to invest. Introducing collateral would require a
new model and not just a reinterpretation. Also, the investment returns, 0 and 1, should be interpreted as the
returns to the lenders.
19Avery and Zemsky (1998) model a financial market with asset prices in a herding model with exogenous

timing. Unfortunately, including asset markets with endogenous timing is far more complicated, and remains an
unsolved problem even in simpler models with a constant investment return. For asymmetric movement of asset
prices in a model with symmetric information, see Veldkamp (2005).
20Veldkamp (2005) has this feature, without the asymmetric information, which generates slow booms and

sudden crashes.
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6 Appendix

Proof of Proposition 2.2. Note that in period 1 the initial belief is 1/2, hence the expected
investment return is 1− α for a type-0 agent and α for a type-1 agent. If c < 1− α holds, both
type-0 and type-1 agents will invest in period 1. Moreover, expected returns in period 2 are the
same as they were in period 1, and thus everyone invests, and so on.

Now suppose that 1 − α < c < α holds, and suppose that the economy reaches Regime 0
after some history with initial belief μ(ht−1) < μNW . We will show that the economy moves out
of Regime 0 deterministically, in a finite number of periods. Given α > c, we have μ(ht−1) <
μNW < 1/2. Since no information is revealed as long as we are in Regime 0, beliefs evolve
according to f(μ(ht−1)), which defines a sequence of increasing beliefs that converges to 1/2.
After a finite number of periods, the initial belief must exceed μNW , at which point the economy
moves out of Regime 0. The same reasoning implies that the economy moves out of Regime 2
deterministically in a finite number of periods. ¤

Proof of Lemma 3.1. The continuity of V (μi, q) follows immediately from (7) and (6).
From (6), it is easy to verify that T (k, μi, q) is strictly increasing in k. Therefore, we have

the following three mutually exclusive cases: T (k, μi, q) ≥ 0 for all k, T (k, μi, q) ≤ 0 for all k, or
there is a cutoff k∗, 0 < k∗ < n− 1, such that T (k, μi, q) ≥ 0 for k ≥ k∗ and T (k, μi, q) < 0 for
k < k∗. From (6) it is easy to see that T (k, μi, q) is strictly increasing in μi. Thus, whenever
T (n − 1, μi, q) > 0 holds, then V (μi, q) is a sum containing at least one positive term, each of
which are strictly increasing in μi. Hence V (μi, q) is strictly increasing in μi.

The fact that V (μi, q) is weakly increasing in q, and strictly increasing when T (0, μi, q) < 0
holds, is a special case of a result in Chamley and Gale (1994). Consider two investment
probabilities q > q0. We can think of q0 as being generated by type-1 agents first mixing with
probability q and then having the "successful" agents mix again with probability q0/q. Then the
second, garbled information structure is less informative than the first information structure in
the sense of Blackwell, and Blackwell’s theorem implies that the expected payoff must be weakly
higher. When T (n−1, μi, q) > 0 and T (0, μi, q) < 0 holds, then reducing the mixing probability
leads to a strictly lower V (μi, q).

For any q, investment in round 1 must yield the same payoff as always investing in round 2,
but without discounting. We can therefore express μi − c as follows: μi − c =

Pn−1
k=0 T (k, μi, q).

Let us consider the possibilities. First, suppose that T (k, μi, q) ≥ 0 holds for all k. Then we
have

μi − c− V (μi, q) = (1− δ)V (μi, q),

which is strictly increasing in μi, because T (n − 1, μi, q) > 0 must hold. Second, suppose that
T (k, μi, q) ≤ 0 holds for all k. Then we have μi−c−V (μi, q) = μi−c, which is obviously strictly
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increasing in μi. Finally, suppose that there is an interior cutoff, k
∗. Then we have

μi − c− V (μi, q) =
n−1X
k=0

T (k, μi, q)− δ
n−1X
k=0

max [0, T (k, μi, q)] =

k∗−1X
k=0

T (k, μi, q) + (1− δ)
n−1X
k=k∗

T (k, μi, q). (28)

We have already shown that T (k, μi, q) is strictly increasing in μi. Thus, k
∗ remains constant

as a function of μi, except for a finite number of values at which increasing μi causes k
∗ to

decrease by one. Away from the jump points, (28) is strictly increasing in μi, because each term
is strictly increasing. At one of the jump points, as k∗ decreases from, say, κ+ 1 to κ, the term
T (κ, μi, q) moves from the left summation to the right summation in (28). However, since this
movement occurs exactly when we have T (κ, μi, q) = 0, changing the weight on T (κ, μi, q) in
(28) from 1 to 1− δ has no effect on the overall expression. ¤

Proof of Lemma 4.1. For a type-1 agent that does not invest in round 1 and observes kt1 = 0,
the probability of the high investment return, μ0,q1 , is

μ0,q1 =
1

1 + 1−μ
μ (1−αα )(1−(1−α)q1−αq )n−1

=
1

1 + 1−μ
μ (1−αα )Q

. (29)

The last equality holds because q must be near zero as n approaches infinity.21 From (14), the

investment probability q can be written as q = Q
1
n−1

αQ
1
n−(1−α)

. The probability of kt1 = 0 in the

high investment return is given by

pr01 = (1− αq)n = [
αQ

1
n − (1− α)

2α− 1 ]−n.

Taking the limit of log(pr01), as n approaches infinity, yields

lim
n→∞

log(pr01) = − lim
n→∞

log[αQ
1
n−(1−α)
2α−1 ]

1/n
= − α

2α− 1 logQ.

Thus, we have
lim
n→∞

pr01 = Q−α/(2α−1).

By a similar computation, one can show that the probability of kt1 = 0 in the low investment
return is given by

lim
n→∞

pr00 = Q−(1−α)/(2α−1).

21To economize on clutter, we suppress the dependence of Q, pr00, pr01, etc. on beginning of period beliefs, μ.
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The probability of kt1 = 1 in the high investment return is given by nαq(1− αq)n−1. Therefore,
we have

lim
n→∞

pr11 = lim
n→∞

(nαq(pr01)) = lim
n→∞

(nα

"
Q

1
n − 1

αQ
1
n − (1− α)

#
pr01)

=

µ
α

2α− 1

¶
Q−α/(2α−1) log(Q).

By a similar computation, one can show that the probability of kt1 = 1 in the low investment
return is given by

lim
n→∞

pr10 =

µ
1− α

2α− 1

¶
Q−(1−α)/(2α−1) log(Q).

If μ is close to μW , it follows that round 1 investment is only slightly profitable for a type-1
agent. For a type-1 agent to be indifferent between investing in round 1 and waiting, the option
value of not having to invest if kt1 = 0 must be small. It follows that profits from investing in
round 2 are only slightly negative if kt1 = 0, and are positive if k

t
1 > 0. The indifference equation

can therefore be written as

(1− δ)(μ1 − c)/δ = Pr(kt1 = 0|s = 1, q, μ1)(μ
0,q
1 − c),

which can be written as

(1− δ)

δ

∙
1− c− c(

1− α

α
)(
1− μ

μ
)

¸
Qα/(2α−1) =

∙
c− 1 + cQ(

1− α

α
)(
1− μ

μ
)

¸
. (30)

As n→∞ and μ→ μW , the left side of (30) converges to zero, which implies Q→ 1. Therefore,
we have limμ→μW limn→∞ pr01 = 1 and limμ→μW limn→∞ pr00 = 1 hold. Although we have
limμ→μW limn→∞ pr11 = 0 and limμ→μW limn→∞ pr10 = 0, having one agent invest is infinitely
more likely than having more than one agent invest. To see this, note that

lim
μ→μW

lim
n→∞

Ã
nX

k=2

prk1

!
= 1− lim

μ→μW
lim
n→∞

pr11− lim
μ→μW

lim
n→∞

pr01 = 1− lim
μ→μW

lim
n→∞

pr11−Q−
α

2α−1 .

Thus, we have

lim
μ→μW

lim
n→∞

µPn
k=2 prk1

pr11

¶
= lim

Q→1
[

1−Q−
α

2α−1

α
2α−1Q

− α
2α−1 logQ

]− 1 = lim
Q→1

[
Q

α
2α−1 − 1
α

2α−1 logQ
]− 1

= lim
Q→1

α
2α−1Q

α
2α−1−1

α
2α−1

1
Q

− 1 = 0.

A similar calculation yields

lim
n→∞

µPn
k=2 prk0

pr10

¶
= 0,

which completes the proof. ¤
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Proof of Lemma 4.2. During the first period that the economy emerges from Regime 0 into
Regime M, clearly beliefs must satisfy μ ∈ [μW , ρμW +(1−ρ)(1−μW )]. For beginning of period
t beliefs in this interval, consider the mapping to beginning of period t+ 1 beliefs, Ψ(μ), based
on the equilibrium mixing probability and outcome kt1 = 0. For ρ sufficiently close to one, from
the proof of Lemma (4.1) the equilibrium mixing condition is (30). Denoting the left hand side
of (30) as LHS, we have

Q =
LHS + 1− c

c(1−αα )(1−μμ )
. (31)

Using (5) and (31), μ0,q can be simplified to

μ0,q =
1

1 + (1 +D)(1−cc )(
α
1−α)−D(1−μμ )

, (32)

where D = (1−δ)
δ Qα/(2α−1) is governed by the discount factor, since Qα/(2α−1) is nearly one for

all μ ∈ [μW , ρμW + (1 − ρ)(1 − μW )]. Since no one invests in round 2 when kt1 = 0, beliefs at
the beginning of period t+ 1 are given by

Ψ(μ) =
2ρ− 1

1 + (1 +D)(1−cc )(
α
1−α)−D(1−μμ )

+ 1− ρ. (33)

It is straightforward to check that Ψ(μW ) > μW and Ψ(ρμW + (1 − ρ)(1− μW )) < ρμW +

(1−ρ)(1−μW ) hold, so Ψ must have a fixed point within the interval, which we denote by μfix.
From (33), the slope of the mapping is −D(2ρ − 1). Therefore, for δ > 1

2 and ρ close to one,
it can be shown that beliefs converge to μfix over time (in an oscillatory fashion) and remain
within the interval, [μW , ρμW + (1− ρ)(1− μW )], as long as no one invests in round 1.22 ¤

Proof of Proposition 4.3. Since rW = rNW and pW = pNW , we will drop the superscripts
without causing confusion. It will also be convenient to adopt the shorthand notation,

z =

µ
α

1− α

¶µ
1− c

c

¶
, (34)

z > 1 by α > c. From (12), we have

lim
ρ→1

(r + 1)(1− ρ) = lim
ρ→1

r(1− ρ) = lim
ρ→1

(1− ρ) log[z−1z+1 ]

log(2ρ− 1) =
1

2
log

1 + z

z − 1 . (35)

From Lemma (4.1), we have23

lim
ρ→1

λ0
λ1

= lim
ρ→1

pr10(μfix)

pr11(μfix)
=
1− α

α
, (36)

lim
ρ→1

(1− ρ)

λ1
= lim

ρ→1
1− ρ

1−Q(μfix)
−α
2α−1

= lim
ρ→1

−1
α

2α−1Q
0(μfix)

=
2α− 1

α

z

z2 − 1 . (37)

22To demonstrate that we remain within the interval (and therefore do not drop out of Regime M), solve the
quadratic equation based on (33) for μfix, then show that (μfix−μW )/( ρμW +(1−ρ)(1−μW )−μfix) is greater
in absolute value than the slope of Ψ. Computations were performed using Maple 10.
23 In (37), we use l’Hopital’s rule and analytically evaluate limρ→1[Q

0(μfix)] using Maple 10 software.
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By using the fact that λ1 goes to 0 as ρ goes to 1 and (35)-(37) , we have

lim
ρ→1

rλ1 = lim
ρ→1

(r + 1)λ1 = lim
ρ→1

(r + 1)(1− ρ)
λ1
1− ρ

=
1

2

α

2α− 1
z2 − 1
z

log
z + 1

z − 1 , (38)

lim
ρ→1

rλ0 = lim
ρ→1

rλ1
λ0
λ1
=
1

2

1− α

2α− 1
z2 − 1
z

log
z + 1

z − 1 , (39)

lim
ρ→1

πWM0

πWM1

= lim
ρ→1

(1−ρ)
λ1

+ (1− 1
1+z )

(1−ρ)
λ1

+ λ0
λ1

1
1+z

=
1 + α

2α−1(z − 1)
1 + 1−α

2α−1
z−1
z

. (40)

By (18) and (20), we have

LNW
B − LW

B =
bNW + 1

1− pNW
− bW + 1

1− pW
. (41)

To show that (41) is positive, we define the function, p10(b) ≡ 1
2 −

1
2(2ρ − 1)b+1, which is the

probability of the investment return switching from high to low after b periods. Note that
p10(bNW ) = 1− pNW and p10(bW ) = 1− pW hold. We will now show that b+1

p10(b)
is increasing in

b. We have

b+ 1

p10(b)
− b

p10(b− 1) ∝ [1− (b+ 1)(2ρ− 1)
b + b(2ρ− 1)b+1]

= [1− (2ρ− 1)]{[1 + (2ρ− 1) + ...+ (2ρ− 1)b]− (b+ 1)(2ρ− 1)b]}
> [1− (2ρ− 1)]{(b+ 1)(2ρ− 1)b − (b+ 1)(2ρ− 1)b} = 0. (42)

Thus, b+1
p10(b) is increasing in b, so we have LNW

B > LW
B .

To show LW
R > LNW

R , first recall that LNW
R = r+1

p holds. By (21), (22), and (23), LW
R −LNW

R

can be simplified to

LW
R − LNW

R ∝ p2(1− λ1)[λ0 + (1− λ0)
(1− ρ)λ1
1− ρ+ ρλ1

] + (1− λ0)p[1− ρ+ ρλ1 − pλ1](2−
λ1

1− ρ+ ρλ1
)

−(r + 1)(1− ρ)[λ1(1− λ0)(1− p)− λ0(1− λ1)p].

Since λ1
1−ρ+ρλ1 < 1 holds, to show LNW

R < LW
R , it is sufficient to show that the third term is

smaller than the first term in the above expression, which is implied by the following condition:

(r + 1)(1− ρ)[1−
p

1− p

1− λ1
1− λ0

λ0
λ1
] ≤ p+

p

1− p

1− λ1
λ1

(1− ρ) +
p2

1− p

1− λ1
1− λ0

λ0
λ1

. (43)

Using the limits (36)-(40), when ρ converges to 1, (43) becomes

1

2
(1− 1− α

α

1

z
) log

1 + z

z − 1 ≤ 1

1 + z
+

1

z2 − 1
2α− 1

α
+

1

z(z + 1)

1− α

α

⇔ 1

2
log

1 + z

z − 1 ≤
1

z2 − 1
z2 − 1−α

α

z − 1−α
α

.
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since z > 1 holds, the following inequality is sufficient to show LNW
R < LW

R :

2z

z2 − 1 − log
1 + z

z − 1 ≥ 0. (44)

Given z is bounded, (44) holds. To verify the condition, the derivative of the expression with
respect to z is −4

(z2−1)2 , which is negative, so the left side of (44) is decreasing in z. Moreover,

we have limz→∞[
2z

z2−1 − log
1+z
z−1 ] = 0. Therefore, inequality (44) holds. ¤

Proof of Proposition 4.4. To establish part (i), it is sufficient to show

lim
ρ→1

πNW
R

πNW
B

< lim
ρ→1

πWR
πWB

, (45)

because πNW
R + πNW

B = 1 and πWR + πWB = 1 hold.
By (11) and (17) we have

lim
ρ→1

πNW
R

πNW
B

= lim
ρ→1

r+1
p

bNW+1
1−pNW

= lim
ρ→1

r+1
p λ1

bNW+1
1−pNW λ1

and

lim
ρ→1

πWR
πWB

= lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

bW+1
1−pW λ1

> lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

bNW+1
1−pNW λ1

. (46)

Inequality (46) comes from the fact that bW+1
1−pW < bNW+1

1−pNW holds. To show (45), it is sufficient to
show

lim
ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

≥ lim
ρ→1

r + 1

p
λ1. (47)

Using the previous limiting results (36)-(40), inequality (47) is equivalent to

4+2
1− α

2α− 1
z − 1
z

+2
α

2α− 1(z−1)+
1− α

2α− 1
z2 − 1
z

log
z + 1

z − 1−
α

2α− 1(z
2−1) log z + 1

z − 1 ≥ 0. (48)

It is easy to verify that inequality (48) holds if the following condition holds

1

2
log

z + 1

z − 1 −
1

z − 1 < 0. (49)

To see (49) holds, note that the derivative with respect to z is positive, which implies that the
left side of (49) is increasing in z. Moreover, we have limz→∞[

1
2 log

z+1
z−1 −

1
z−1 ] = 0. Therefore,

(49) holds. ¤

Proof of Proposition 4.5. First, define the function, A(b), by

A(b) ≡ 1
b
{ b
2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)b]} = 1

2
− 2ρ− 1
4(1− ρ)

[1− (2ρ− 1)b]
b

.
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That is, A(b) is the probability that the investment return is low during one of the b periods
of Regime 2, chosen at random, and A(r) is the probability that the investment return is high
during one of the r periods of Regime 0, chosen at random. We show that A(·) is an increasing
function. To see this, it is sufficient to show that [1−(2ρ−1)

b]
b is decreasing in b. This condition is

satisfied, since we have

1− (2ρ− 1)b
b

− 1− (2ρ− 1)
b+1

b+ 1
∝ [1− (2ρ− 1)b+1 − (b+ 1)(2ρ− 1)b(1− (2ρ− 1))] > 0,

where the last inequality follows from (42).
By (26) and the fact that both λ1 and λ0 go to 0 as ρ goes to 1, we have

lim
ρ→1

OW = lim
ρ→1

bw + 1

1− pW
λ1π

W
M1A(b

W ) = lim
ρ→1

πWB A(bW ). (50)

By (24) and the fact that r and bNW go to infinity as ρ goes to 1, we have

lim
ρ→1

ONW = lim
ρ→1

A(bNW )
(bNW + 1)p

(r + 1)pNW + (bNW + 1)p
= lim

ρ→1
πNW
B A(bNW ). (51)

Now we compare (50) and (51). From Proposition (4.4), we have limρ→1 πNW
B > limρ→1 πWB .

And by the fact bNW > bW , we have A(bNW ) > A(bW ). Therefore, limρ→1OW < limρ→1ONW .
This proves part (i).

Now we show part (ii). By (25), we have

lim
ρ→1

UNW = lim
ρ→1

rpNW

(r + 1)pNW + (bNW + 1)p
A(r) = lim

ρ→1
πNW
R A(r). (52)

On the other hand, by (27), we have

lim
ρ→1

UW = lim
ρ→1

πWM1 + (rλ1π
W
M1 + rλ0π

W
M0)A(r)

= lim
ρ→1

[(rλ1 + 1)π
W
M1 + (rλ0 + 1)π

W
M0]A(r) + [1−A(r)]πWM1 −A(r)πWM0

= lim
ρ→1

πWR A(r) + lim
ρ→1

[1−A(r)]πWM1 −A(r)πWM0, (53)

where the last equality follows from (17). Now we compare (52) and (53). Since by Proposition
(4.3), limρ→1 πWR > limρ→1 πNW

R holds, the following condition is sufficient to show limρ→1(UW−
UNW ) > 0:

lim
ρ→1

[1−A(r)]πM1 −A(r)πM0 ≥ 0, (54)

After using (40) and simplifying, we can rewrite (54) as

1

2

µ
1− α

2α− 1

¶
z − 1
z

+
1

(z + 1) log z+1
z−1

[2 +
1− α

2α− 1
z − 1
z

+
α

2α− 1(z − 1)]−
1

2

α

2α− 1(z − 1) ≥ 0.

The above inequality holds since 1
2 log

z+1
z−1 <

1
z−1 , by (49). Therefore, inequality (54) holds. ¤
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Proof of Proposition 4.6. By Proposition (3.5), we have μW (δ0) > μW (δ00). This implies that
bW (δ0) < bW (δ00). On the other hand, rW does not depend on δ. The limit limρ→1 πWM1/π

W
M0

does not depend on δ either (see (40)). Following the proof of Proposition 4.3, We have

LW
B (δ

0)− LW
B (δ

00) =
bW (δ0) + 1

1− pW (δ0)
− bW (δ00) + 1

1− pW (δ00)
< 0.

Inspecting the proof of Proposition (4.3), one can see that LW
R does not depend on δ, thus

LW
R (δ

0) = LW
R (δ

00). This proves part (i).
To show part (ii), it is sufficient to show that

lim
ρ→1

πWR (δ
0)

πWB (δ
0)
> lim

ρ→1

πWR (δ
00)

πWB (δ
00)
,

because πWR + πWB = 1 hold. By the proof in Proposition (4.4),

lim
ρ→1

πWR (δ
0)

πWB (δ
0)
− lim

ρ→1

πWR (δ
00)

πWB (δ
00)
= lim

ρ→1

(rλ1 + 1) + (1 + rλ0)
πWM0

πWM1

λ1
[

1
bW (δ0)+1
1−pW (δ0)

− 1
bW (δ00)+1
1−pW (δ00)

] > 0.

The last inequality follows part (i) and limρ→1 πWM1/π
W
M0 does not depend on δ.

By the proof in Proposition (4.5), limρ→1OW (δ) = limρ→1 πWB (δ)A(b
W (δ)). Moreover,

A(bW ) is increasing in bW . Given that bW (δ0) < bW (δ00), we have A(bW (δ0)) < A(bW (δ00)). In ad-
dition, from part (ii) we have πWB (δ

0) < πWB (δ
00). Thereforefore, limρ→1OW (δ0) < limρ→1OW (δ00).

Similarly,
lim
ρ→1

UW (δ) = lim
ρ→1

πWM1(δ) + [rλ1π
W
M1(δ) + rλ0kπ

W
M1(δ)]A(r),

where k ≡ πWM0

πWM1
. Note that when ρ goes to 1, by (37)-(40) the limits of rλ1, rλ0 and k do not

depend on δ. Therefore, to show UW (δ0) > UW (δ00) it is sufficient to show that limρ→1 πWM1(δ
0) >

limρ→1 πWM1(δ
00). By (15) and (16),

lim
ρ→1

πWM1(δ) =
1

limρ→1[
bW (δ)+1

1−pW (δ)λ1 + 1 + k + rλ1 + rkλ0]
.

Since bW (δ)+1

1−pW (δ) is decreasing in δ, we have limρ→1 πWM1(δ
0) > limρ→1 πWM1(δ

00). This proves part

(iii).
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