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We study an infinitely repeated Bertrand game in which an i.i.d. demand shock

occurs in each period. Each firm receives a private signal about the demand shock

at the beginning of each period. At the end of each period, all information but

the private signals becomes public. We consider the optimal symmetric perfect

public equilibrium (SPPE) mainly for patient firms. We show that price rigidity

arises in the optimal SPPE if the accuracy of the private signals is low. We also

study the implications of more firms and firms’ impatience on collusive pricing.

1. INTRODUCTION

Empirical evidence shows that prices in oligopolistic markets tend to be more
rigid than prices in competitive markets (Dixon, 1983; Carlton, 1986). This suggests
that collusion may result in firms’ inflexible pricing behavior. It is not obvious,
however, that collusion causes price rigidity. Why do colluding firms not adjust
prices according to changing environments, by which they can potentially earn
higher profits? What limits colluding firms’ ability to coordinate, thereby leading
to price rigidity?

In this article, we study how information asymmetry among firms limits collud-
ing firms’ ability to respond to demand shocks, and characterize the conditions
under which prices are rigid. Specifically, we consider private information about
demand in an infinitely repeated Bertrand game with two identical firms, in which
an i.i.d. binary demand shock occurs in each period. Each firm receives a con-
ditionally independent private signal about the underlying demand state at the
beginning of each period, and then charges a price. The accuracy of private signals
is measured by the probability of receiving a high (respectively, low) signal condi-
tional on a high (respectively, low) underlying demand state. Therefore, the lower
the accuracy, the higher the degree of informational asymmetry. At the end of
each period, firms observe the underlying demand and the prices, but they never
observe their rivals’ signals. We adopt symmetric perfect public equilibria (SPPE)
as our solution concept, which requires that, at each period, firms’ pricing schemes
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be symmetric after any public history.2 Collusive firms are supposed to play an
optimal SPPE, which yields the highest equilibrium payoff. We mainly deal with
patient firms, so that firms have no incentive to commit the off-schedule deviations
of charging prices that are not assigned for any signal.3

Firms can adopt two possible pricing schemes: sorting schemes in which firms
charge different prices for different signals, or pooling (price rigidity) schemes in
which they charge the same price regardless of signals. Under sorting schemes,
firms potentially can exploit the information contained in private signals, and thus
enjoy an informational gain. However, to support a sorting scheme in equilibrium,
each firm should have no incentive to commit the on-schedule deviation where a
firm receiving a specific signal charges a price that is assigned for another signal.
Since this deviation cannot be detected, price distortions or future punishments
on the equilibrium path are necessary to deter such deviation. This causes a loss in
the equilibrium payoff that we call coordination costs. On the other hand, under
pooling schemes firms incur no coordination costs since there is only one price
on the equilibrium path and thus firms have no opportunity to undertake on-
schedule deviation. At the same time, firms enjoy no informational gain since
they always charge the same price regardless of signals. As a result, which scheme
is optimal depends on the magnitude of the coordination costs relative to that of
the informational gain.

Our first result is that if the accuracy of private signals is low, a pooling scheme is
optimal; thus price rigidity optimally arises on the equilibrium path. Intuitively, as
the accuracy of signals decreases, while the informational gain of a sorting scheme
decreases, the coordination costs increase. Roughly speaking, the less accurate the
private signals, the more likely that miscoordination will occur on the equilibrium
path, leading to bigger coordination costs. Therefore, a pooling scheme becomes
relatively more profitable as the accuracy of private signals decreases. Our second
result is that when the accuracy of private signals is close to perfect, some sorting
scheme strictly dominates any price rigidity scheme. This is because when signals
are nearly perfect, coordination costs vanish but informational gain becomes large;
thus some sorting scheme is optimal.

These results contribute to our understanding of which industries, and under
what conditions, should exhibit rigid prices. Our model predicts that a collusive
industry with less predictable demand is more likely to exhibit rigid prices, and a
collusive industry with highly predictable demand changes prices more frequently.
This prediction is consistent with an empirical finding by Weiss (1993). These re-
sults also have macroeconomic implications. For example, as the aggregate de-
mand becomes more difficult to predict, the demand of each industry becomes
more difficult to predict as well; as a result, prices in collusive industries tend to
be more rigid. This also implies that shocks in aggregate demand may impact the
relative prices between collusive industries and competitive industries.

Our third result is that the price war behavior under the optimal sorting scheme
exhibits different patterns from those in Green and Porter (1984) and Rotemberg

2 The above symmetry requirement implies that firms share future punishments or rewards together.

This solution concept is adopted by Abreu et al. (1991) and Athey et al. (2004).
3 Any off-schedule deviation is always detected and thus can be deterred by imposing severe future

punishments, which do not affect the equilibrium payoff.
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and Saloner (1986).4 In our model only the price for the low signal is distorted
downward (to deter on-schedule deviation), whereas Rotemberg and Saloner pre-
dict that only the price in higher demand states needs to be distorted downward
(to deter off-schedule deviation). In Green and Porter, future equilibrium pun-
ishments are only triggered in low demand states, whereas in our optimal sorting
scheme they are only triggered in high demand states. The general conclusion is
that price war behavior is sensitive to the information structure and firms’ patience
level.

Our model can be extended to the setting of more firms, with the results qual-
itatively unchanged. Interestingly, in contrast to a common wisdom in industrial
organization, we find that as the number of firms increases from two to three in a
collusive industry, a price rigidity scheme is more likely to be optimal. Intuitively,
as the number of firms increases, coordination among firms becomes more difficult,
which reduces the profitability of sorting schemes relative to pooling schemes.

Our model is closely related to Athey et al. (2004, ABS henceforth), who pro-
vide the first rigorous explanation about the relationship between collusion and
price rigidity in a repeated game framework when firms receive private cost shocks.
Although our model shares several modeling features with ABS, there are reasons
why it is of independent interest to study the relationship between collusion and
price rigidity in the presence of demand shocks. First, empirical evidence suggests
that price rigidity with respect to cost shocks is different from that with respect
to demand shocks, both in terms of magnitude and in relations to concentration.5

Second, cost shocks and demand shocks affect firms’ payoffs differently; whereas
individual cost shocks only affect an individual firm’s own profit, demand shocks
commonly affect all firms’ profits. This leads to another difference: Private infor-
mation in our model is inherently correlated across firms, whereas it is independent
in ABS. Moreover, ABS mainly deal with the case of inelastic demand, whereas
elastic demand is essential for our model.

These differences generate a distinction on the role of future punishments; in our
setting, a sorting scheme with future equilibrium punishments might be optimal,
whereas in ABS future equilibrium punishments have no value.6 One advantage
to our approach lies in comparative statics. Our model predicts that the rigidity
of prices depends on the predictability about demand. Moreover, a price rigidity
scheme is more likely to be optimal as the number of firms increases in a collusive
industry. These predictions make our model more conducive to empirical testing
than ABS. In ABS, whether prices are rigid depends on the cost distribution, which

4 Both papers analyze repeated interactions of firms in an oligopolistic market in which the demand

state stochastically fluctuates over time. However, there is no private information in either model.
5 Geroski (1992) and Weiss (1993) find that prices are more rigid with respect to demand shocks

than to cost shocks. According to Weiss, price inertia with respect to demand shocks is three times

bigger than that with respect to cost shocks. Weiss also finds that although there is a positive correlation

between concentration and price rigidity with respect to cost shocks, this relationship does not exist

with respect to demand shocks.
6 This is because, with independent cost shocks and inelastic demand, any future equilibrium pun-

ishment can be replaced by the corresponding price distortion to sustain the on-schedule constraint

without affecting the equilibrium value. With correlated private information and elastic demand, this

property does not hold in our setting, since future equilibrium punishments and price distortions now

affect the equilibrium value differently.
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has little economic interpretation and is difficult to carry out comparative static
analysis.7

The rest of this article is organized as follows. Section 2 sets up the model. In
Section 3, we derive the optimal pooling scheme and the optimal sorting scheme.
Section 4 compares the two kinds of optimal schemes, and the equilibrium price
war behavior is summarized. The case of impatient firms is also briefly studied.
Section 5 extends the basic model. We offer discussions in Section 6 and conclu-
sions in Section 7.

2. THE MODEL

Primitives. Consider two firms that play an infinitely repeated Bertrand game
with homogenous products. In each period, each firm charges a price and the firm
charging the lower price wins the whole market. If two firms charge the same price,
they share the market equally. We assume that firms have the same marginal cost
of production, which is constant and normalized to be 0.

In each period, the underlying demand can be either high or low. Let S ∈
{H, L} denote the demand state and assume that each state arises equally likely,
that is, Pr(H) = Pr(L) = 0.5. The demand function for state S is denoted by
DS(p), and we assume the following conditions: DH(p) > DL(p) for every p,
and DH(p) and DL(p) are both downward-sloping, differentiable, and not too
convex so that the industry profit functions pDS(p), S ∈ {H, L}, are strictly con-
cave. Let π S(p) = pDS(p), S ∈ {H, L}, denote the total profit of the industry when
the (lower) price is p and the underlying demand is S. Assume that the industry
profit-maximizing price for the high state is higher than that for the low state, that
is, arg max π H(p) ≡ pH > pL ≡ arg max π L(p). Suppose also that some p̄ > 0 ex-
ists such that DS( p̄) ≤ 0 for S ∈ {H, L}. Then we can restrict the set of prices to
the closed interval [0, p̄].

Demand is i.i.d. across periods. At the beginning of each period, firms do not
observe the realized demand state of that period. Instead, each firm receives a
private signal si ∈ {h, �} about the underlying demand. The distribution of signals
is conditionally independent and

Pr(h | H) = Pr(� | L) = λ; Pr(� | H) = Pr(h | L) = 1 − λ,

where λ ∈ (0.5, 1]. By Bayes’ rule, note that

Pr(H | h) = Pr(L| �) = λ; Pr(L| h) = Pr(H | �) = 1 − λ.

This information structure captures the following business practice; nearly all
important decisions made by firms require predictions about uncertain future
demand, about which they usually have imperfect information. Moreover, firms
might have different predictions about future demand.

7 Another related paper is Stiglitz (1984). Focusing on a particular equilibrium, he argues that

coordination costs due to informational asymmetry about demand may result in price rigidity. His

approach is limited since the equilibrium he focused on is not an optimal SPPE.
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The parameter λ captures the accuracy of the signals; a lower λ implies that
future demand is more difficult to predict.8 Since λ ∈ (0.5, 1], the signals are
informative. An increase in λ improves the informativeness of signals in the sense
of Blackwell (1953). After each firm receives its private signal, it charges a price,
which remains fixed during the period. At the end of the period, both firms observe
the underlying demand and prices of that period. However, each firm does not
observe the other firm’s signal.

We first consider the stage game. A pricing schedule for firm i is a function
pi(si), a mapping from the set of private signals, {h, �}, to the set of prices. When
firm i (−i, respectively) charges pi(p−i, respectively) and the demand state is S,
the profit for firm i is

πi (pi , p−i ; S) = π S(min{pi , p−i })mi (pi , p−i ); mi (pi , p−i ) =

⎧⎪⎨⎪⎩
0 if pi > p−i ,

0.5 if pi = p−i ,

1 if pi < p−i .

Thus, the (ex ante) expected stage payoff for firm i is

ui (pi (·), p−i (·)) = E[πi (pi (si ) , p−i (s−i ); S)].

Since the marginal costs are 0, as we know from the standard Bertrand game with
homogenous products, the stage game has a unique Nash equilibrium: Both firms
charge price 0 regardless of signals and earn zero profit in every period.9 Note
that the stage Nash equilibrium is independent of the demand states and private
signals.

The Repeated Game. Firms repeat the stage game infinitely often. In any period,
each firm chooses a pricing schedule depending on past history, which consists of
a sequence of realized demand states, a sequence of prices (public history), and
a sequence of signals the firm has received (private history). We focus on public
strategies, that is, plans of stage-game pricing schedules that depend only on public
histories. A profile of public strategies induces a distribution over the sequence
of pricing schedules {pt

1(·), pt
2(·)}∞

t=0. Each firm maximizes the discounted sum of
stage-game profits with a discount factor δ < 1. Given a strategy profile, firm i’s
expected payoff (after normalization by multiplying 1 − δ) is

E

[
(1 − δ)

∞∑
t=0

δt ui
(

pt
i (·), pt

−i (·)
)]

.

8 Empirically speaking, demand predictability is associated with a component of detrended demand

fluctuations that cannot be predicted by an adaptive expectation process. Demand is said to be more

difficult to predict if this component becomes larger.
9 Alternatively, we can consider a different stage game in which firms compete in a market with

differentiated products (e.g., Hotelling’s linear city model) and common demand shocks. Unlike the

homogeneous-product case, the stage Nash equilibrium for the differentiated-products case is sorting:

Each firm charges different prices for different signals. Our main results apply qualitatively to this

differentiated-products setting.
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We adopt perfect public equilibria (PPE) as our solution concept. A PPE is a
profile of public strategies for which no one-shot deviation is profitable for each
firm at any point of time. We further restrict attention to symmetric PPE (SPPE),
i.e., PPE for which firms’ pricing schedules are symmetric after any public history.
Intuitively, SPPE implies that, after any history, all firms together enjoy the same
future rewards or suffer the same future punishments.

To investigate SPPE, we adopt the APS approach (Abreu et al., 1986, 1990). APS
establish that, for each PPE, the equilibrium payoff, or the value, can be expressed
as a recursive formula subject to the incentive compatibility (IC) constraints that
ensure no (one-shot) deviation. Accordingly, we can decompose PPE values into
the stage-game profits and the continuation values v(·) = (v1(·), v2(·)), where v
map from each public outcome, (p1, p2; S), to PPE payoffs. In addition, SPPE
requires p1(·) = p2(·) = p(·) and v1(·) = v2(·) = v(·) with v(p, p′; S) = v(p′, p; S).
Let V∗

s (λ, δ) ⊂ R denote the set of SPPE payoffs. It is nonempty since repetition
of the stage-game Nash equilibrium is an SPPE, so 0 ∈ V∗

s (λ, δ). We assume that
firms have access to a public randomization device at the end of each period; thus
v(p1, p2; S) can be a probability distribution over V∗

s (λ, δ). Consequently, V∗
s (λ, δ)

must be convex. By slightly modifying the argument of Abreu et al. (1986, 1990)
for characterizing the PPE payoff set, we can show that V∗

s (λ, δ) is a closed interval
of the form [0, v̄(λ, δ)].10

Search for the Most Collusive SPPE. We focus on the most collusive SPPE (or
an optimal SPPE), that is, an SPPE with the highest ex ante payoff v̄(λ, δ). If firms
have an opportunity to coordinate before playing the repeated game, it is natural
for them to select this particular equilibrium among all SPPE. We are particularly
interested in firms’ pricing behavior that achieves v̄(λ, δ).

The ex ante problem. Given the public randomization device, any SPPE pay-
off can be achieved by the following “trigger” strategies with the bang-bang prop-
erty (see APS, 1990): Firms begin with playing a stage game strategy p(·), then
after observing the public outcome (pi, p−i ; S), with probability 1 − α(pi , p−i ; S)
they go back to the beginning (i.e., continue to play the same strategy p(·) in the
next stage), and with probability α(pi, p−i; S) they go to perpetual Nash reversion.
We can thus find an optimal SPPE payoff among such trigger strategy equilibria.
The following problem then characterizes the optimal SPPE payoff:

v̄(λ, δ) = max
v,p(·),α(·)

v

subject to

v = (1 − δ)ui (p(·), p(·)) + δvE[1 − α(p(si ), p(s−i ); S)]

v ≥ (1 − δ)ui ( p̃i (·), p(·)) + δvE[1 − α( p̃i (si ), p(s−i ); S)],

α(p, p′; S) = α(p′, p; S) ∈ [0, 1],

∀ p̃i (·), ∀(p, p′; S) ∈ [0, p̄]2 × {H, L}.

(1)

10 The proof is available upon request.
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The interim problem. The IC constraint (1) is formulated from the ex ante
viewpoint, that is, before firms receive private signals. We reformulate this con-
straint as a system of incentive constraints from the interim viewpoint, that is,
after firms receive private signals. These constraints require that each firm have
an incentive to charge the price assigned for the received signal.

For the subsequent analysis, we classify these incentive constraints into two
categories:11 (i) Off-schedule constraints; each firm has no incentive to charge an
off-schedule price, that is, a price assigned for neither signal. If an off-schedule
price is observed, firms can immediately tell that deviation has occurred. (ii) On-
schedule constraints; each firm receiving a specific signal must prefer charging
the price assigned for that signal to charging the price assigned for the other
signal. On-schedule deviations cannot be detected, since signals are privately
observed.

Accordingly, we rewrite the problem from the interim viewpoint as

(P) max
v,p(·),α(·)

v = {vh + v�}/2

subject to

vk = (1 − δ)E[πi (p(k), p(s−i ); S) | k]

+ δvE[1 − α(p(k), p(s−i ); S) | k]

(DIC) vh ≥ (1 − δ)E[πi (p(�), p(s−i ); S) | h]

+ δvE[1 − α(p(�), p(s−i ); S) | h],

(UIC) v� ≥ (1 − δ)E[πi (p(h), p(s−i ); S) | �]

+ δvE[1 − α(p(h), p(s−i ); S) | �],

(Offk) vk ≥ (1 − δ)E[πi ( p̃i , p(s−i ); S) | k]

+ δvE[1 − α( p̃i , p(s−i ); S) | k],

α(p, p′; S) = α(p′, p; S) ∈ [0, 1],

∀ p̃i �= p(k), ∀(p, p′; S) ∈ [0, p̄]2 × {H, L}, k = h, �.

The interim equilibrium payoff vk, k = h, �, is defined in the first line of the con-
straints. Since the ex ante probability that each firm receives a particular signal is
1/2, the value of an SPPE is {vh + v�}/2. The two constraints following the def-
inition of vk are the on-schedule constraints: the downward incentive constraint
(DIC), which deters a firm receiving a high signal from charging the price assigned

11 These classification and terms follow ABS (2004).
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for a low signal, and the upward incentive constraint (UIC), which is defined
similarly. The constraints marked as (Off k) are the off-schedule constraints:
Charging any price p̃i other than p(h) and p(�), is not profitable.

3. COLLUSION AMONG PATIENT FIRMS

In this section, we analyze the properties of solutions to (P). Note that, if the
discount factor δ is sufficiently high, off-schedule deviations can be deterred by
perpetual (off-path) Nash reversion, which causes no equilibrium value loss. For
the time being, we consider such patient firms; the remaining effective incentive
constraints are, therefore, the on-schedule ones. Impatient firm cases will be dis-
cussed in the next section.

3.1. Two Classes of Pricing Schemes. Firms can possibly adopt two classes of
pricing schemes: pooling schemes or sorting schemes. Under a pooling scheme,
firms charge the same price regardless of the signals, that is, p(h) = p(�). Un-
der a sorting scheme, firms charge different prices when they receive different
signals, namely, p(h) �= p(�). The key difference between these schemes is that,
on-schedule constraints are redundant for pooling schemes, but are relevant for
sorting schemes. This is because there is only one price on the equilibrium path
if firms adopt a pooling scheme, so all deviations are off-schedule. In contrast,
there are two prices on the equilibrium path if firms adopt a sorting scheme, so
on-schedule deviations are possible.

Using technical terms in repeated games, we can concisely rephrase the above
key difference between the two schemes. Namely, whether monitoring is perfect
depends on which type of pricing scheme is adopted. When firms adopt a pooling
scheme, monitoring is perfect because any deviation can be detected for sure.
However, when firms adopt a sorting scheme, monitoring becomes imperfect,
because each firm cannot observe its rival’s signals and pricing schedule.

We are mainly interested in under what conditions an optimal solution to (P)
exhibits sorting or pooling pricing. To proceed, we consider pooling and sorting
in turn.12

3.2. Pooling Pricing Scheme. Under pooling, the on-schedule constraints are
redundant. This implies that there is no need to impose future punishments on the
optimal equilibrium path. The optimal pooling price must maximize the ex ante
stage game profits, namely,

pr∗ = arg max
p

{π H(p) + π L(p)}/2.(2)

12 Treating both schemes at the same time is in fact inconvenient. This is because the deviation

gain exhibits discontinuity at points where the price for a high signal equals that for a low signal. This

discontinuity in the programming problem creates analytical inconvenience.
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Since each firm receives a half of the industry-wide profits every period, the equi-
librium value is

vr = {π H(pr∗) + π L(pr∗)}/4.(3)

Note that pr∗ and vr are independent of the accuracy of private signals, λ.

3.3. Sorting Pricing Scheme

Effective Constraints. Define (phm, p�m) as the prices that maximize the ex
ante stage payoff (πh + π�)/2, or those that capture the full informational gain,
namely,

phm = arg max
ph≥0

πh; p�m = arg max
p�≥0

π�.

Naturally, for λ∈ (0.5, 1), we have pH > phm > p�m > pL. We can show the following
properties of optimal sorting schemes.

First, a sorting SPPE with p̃(h) < p̃(�) is suboptimal. To see this, consider the
following sorting profile { p̃(h), p̃(�)} with phm > p̃(�) > p̃(h) > p�m. By the con-
cavity of the profit functions, the stage-game profit can be increased by shift-
ing p̃(h) and p̃(�) toward phm and p�m, respectively. Then there exists a pooling
SPPE with p ∈ ( p̃(h), p̃(�)) that dominates the initial sorting SPPE, since the
pooling SPPE can generate a higher current profit without any on-path future
punishments.

Second, the UIC must be slack under an optimal scheme. If a firm receiving
a signal � charges p(h) (>p(�)), its expected market share and its stage payoff
decrease. A firm would have no incentive to make such a deviation unless the
future punishments that the firm could avoid would be large. Such on-path future
punishments are excessive for an optimal scheme.13

Third, the cases in which the DIC is slack are trivial. This is because, if the DIC
is also slack at an optimal solution, sorting entails no loss from the on-schedule
constraint, but earns the full informational gain. To make our problem interesting,
we impose the following condition that guarantees the DIC always binds for all λ

in optimal sorting schemes.

ASSUMPTION 1. π H(pL) ≥ π H(pH)/2.

Recall that arg max π H(p) ≡ pH > pL ≡ arg max π L(p). Assumption 1 says
that pH and pL are fairly close to each other, which implies that phm and p�m

are also fairly close to each other for any λ. Under the sorting scheme {phm,
p�m}, which captures the full informational gain, a firm receiving a signal h is thus
tempted to charge p�m. Thus under Assumption 1 the DIC is effective.14

13 If the UIC binds for a sorting SPPE with p(h) > p(�), it can be shown straightforwardly that a

pooling SPPE with pr = p(h) and no on-path future punishment generates a higher equilibrium value.
14 Proofs of the above three claims are available upon request.
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By the above discussions, we can, therefore, drop the UIC, and impose p(h) >

p(�) and a binding DIC. The problem for an optimal sorting SPPE becomes:15

(P–S) max
v,p(·),α(·)

v = {vh + v�}/2

subject to

vk = (1 − δ)E[πi (p(k), p(s−i ); S) | k]

+ δvE[1 − α(p(k), p(s−i ); S) | k], k = h, �,

(DIC) vh = (1 − δ)E[πi (p(�), p(s−i ); S) | h]

+ δvE[1 − α(p(�), p(s−i ); S) | h],

α(p, p′; S) = α(p′, p; S) ∈ [0, 1],

∀(p, p′; S) ∈ {p(h), p(�)}2 × {H, L},
p̄ ≥ p(h) > p(�) ≥ 0.

Notations. We hereafter use the following simplified notations for convenience:

πk= E[πi (p(k), p(s−i ); S) | k], pk = p(k), k = h, �,

πh
d = E[πi (p(�), p(s−i ); S) | h]

αS
i j= α(pi , pj ; S), (i, j, S) ∈ {h, �}2 × {H, L}.

Given ph and p�, we can calculate the relevant stage payoffs as follows:

πh= λ2

2
π H(ph) + (1 − λ)2

2
π L(ph);

π� = (1 − λ)(1 + λ)

2
π H(p�) + λ(2 − λ)

2
π L(p�);

πh
d = λ(1 + λ)

2
π H(p�) + (1 − λ)(2 − λ)

2
π L(p�).

These prices and profits certainly depend on the level of signal accuracy, λ. For
notational simplicity, we drop λ from them unless otherwise noted.

Optimal Future Punishments and Price Distortions. Firms have two instruments
to satisfy the DIC: price distortions and future equilibrium punishments. By dis-
torting p� downward from p�m, the stage game deviation gain can be lowered.16

By increasing the probabilities of triggering perpetual Nash reversion, the contin-
uation value can be lowered for a deviating firm. Although these instruments can

15 This problem may not have a solution, since the constraint set is not compact. This is not a

problem, however. In the case where no solution exists to (P–S), the original problem (P) must have

a pooling pricing scheme as its optimal solution.
16 Distorting ph from phm is harmful for the DIC.



COLLUSION AND PRICE RIGIDITY 493

decrease the temptations for cheating, they cause equilibrium value loss at the
same time. Our goal is to identify the optimal pricing and punishment scheme.

Consider a feasible solution (ph, p�, v, (αS
i j )S∈{H,L},i j∈{h,�}) to (P–S). With our

new notations, the value of this profile is

v = 1 − δ

2
{πh + π�} + δv

∑
i, j∈{h,�}
S∈{H,L}

Pr(ij; S)
(
1 − αS

i j

)
,

where Pr(ij; S) = Pr(S) Pr(i | S) Pr( j | S), the probability that firm 1 receives signal
i, firm 2 receives signal j, and the underlying demand is S. The DIC holds with
equality, that is,

(1 − δ)
{
πh

d − πh} = δv
∑
S, j

Pr(ij; S | i = h)
(
αS

�j − αS
hj

)
.

Assume, for the time being, αS
i j > 0 for some (i, j, S). Define

LR =
∑

S, j Pr(hj ; S)αS
�j + ∑

S, j Pr(�j ; S)αS
�j∑

S, j Pr(hj ; S)αS
hj + ∑

S, j Pr(�j ; S)αS
�j

.

The denominator is the ex ante probability of triggering perpetual Nash reversion
on the equilibrium path. This probability measures the equilibrium value loss. The
numerator is the ex ante probability of triggering perpetual Nash reversion if a firm
deviates to charging p� after receiving a signal h. This probability thus represents
future punishments off the equilibrium path. The likelihood ratio LR measures
how effective the future punishments are in deterring deviation per unit of value
loss on the equilibrium path. A large LR implies that the trigger probabilities
impose heavy punishments on the deviator per unit of equilibrium value loss.

Using the likelihood ratio LR, we reformulate the DIC as

(1 − δ)
{
πh

d − πh
} = δv

Pr(i = h)

∑
S, j

Pr(hj ; S)
(
αS

�j − αS
hj

)
= δv

Pr(i = h)
× (LR − 1)

{∑
S, j

Pr(hj ; S)αS
hj +

∑
S, j

Pr(�j ; S)αS
�j

}
= 2δv(LR − 1)

∑
S,i, j

Pr(ij; S)αS
i j .

Suppose LR �= 1. Substituting this formula into the value function, we obtain

v = 1

2

{
πh − πh

d − πh

LR − 1

}
+ 1

2
π�.(AMP)

This formula incorporates the binding DIC into the value function. The term
of {πh + π�}/2 is the expected profit from the cooperative phase. The term of
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{πh
d − πh}/{LR − 1} is the expected loss resulting from on-path future punish-

ments. This is indeed a modified version of the formula developed by Abreu et al.
(1991, henceforth AMP).17,18

To justify the modified AMP formula at optimum, we show the following lemma.

LEMMA 1. Suppose that Assumption 1 holds, λ > 0.5, and that a solution to (P–S)
exists. For each solution, we must have αS

i j > 0 for some (i, j, S), and LR > 1.

PROOF. See the Appendix.

This lemma shows that using price distortion alone to satisfy the DIC is subop-
timal; in any optimal sorting SPPE, πh

d > πh holds, and future equilibrium pun-
ishments are necessary. These punishments cause equilibrium value loss, which is
one component of the coordination costs.

According to the modified AMP formula, an optimal future punishment scheme
maximizes LR subject to the binding DIC. This is equivalent to finding the maxi-
mum likelihood test to detect deviation. To attain a higher power of test, we need
to find a public outcome that is more likely to occur off the equilibrium path rel-
ative to its likelihood on the equilibrium path. For each public outcome (i, j, S),
the power of test, LRS

ij, is defined by the likelihood ratio when future punishments

are triggered only after either (i, j, S) or (j, i, S) is observed.19 For instance,

LRH
�� = Pr(h�; H)αH

�� + Pr(��; H)αH
��

Pr(��; H)αH
��

= λ(1 − λ) + (1 − λ)2

(1 − λ)2
= 1

1 − λ
.

Similarly,

LRL
�� = 1

λ
, LRL

h� = 1

2λ
, LRH

h� = 1

2(1 − λ)
.

The public outcome (�, �, H) has the highest power of test.20 Note that the
likelihood ratio LR is a convex combination of the powers of test, LRS

ij . This

17 AMP consider repetition of the following partnership game with imperfect public monitoring:

If both players cooperate, each player receives π ; if only one player cooperates, the deviator receives

π + g; if both players defect, the stage payoff is 0 for each player. AMP show that, if the incentive

constraint holds with equality, the value of an SPPE, v, can be written as v = π − g/(l − 1), where l is

the likelihood ratio of the future punishment scheme.
18 AMP’s model is simpler than ours: It has no in-stage private information, and each player’s action

space is binary. In AMP, the payoff from the cooperative phase and the stage-game deviation gain are

exogenously given. In contrast, due to the continuous action space, those payoffs in our model are

endogenously determined. Due to private information, the monitoring structure is also endogenous

in our model, as we have discussed earlier, whereas the monitoring structure in AMP is exogenous.
19 Note that, by the symmetry requirement, αS

i j = αS
ji is used in calculating LRS

ij.
20 This result depends on our restriction to symmetric equilibria: After any public outcome, both

firms’ continuation values must be the same. Because of this restriction, after observing the public

outcome (h, �, H), the firm charging ph cannot be rewarded. This is why (�, �, H) has a higher power

of test than (�, h, H) does.
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implies the following two important facts. First, to optimize a future punishment
scheme, (i) first only set αH

�� > 0 and (ii) then set αS
i j > 0 for (i, j, s) �= (�, �, H) only

if setting αH
�� = 1 is insufficient to deter deviation. Second, LR attains the least upper

bound of 1/(1 − λ) iff αS
i j > 0 only for (i, j, S) = (�, �, H).

Distorting p� downward from p�m can also be used to satisfy the DIC. To de-
termine an optimal p�∗ to (P–S), we need to evaluate the effectiveness of price
distortion relative to the likelihood ratios of future punishments. By the modified
AMP formula,

∂v

∂p�
= 1

2

[
∂π�

/
∂p� − ∂πh

d

/
∂p�

LR − 1

]
.

By manipulation, we have

∂v

∂p�
< 0 ⇐⇒ LR <

∂πh
d

/
∂p� + ∂π�

/
∂p�

∂π�
/
∂p�

≡ R(p�).(4)

Therefore, if LR < R(p�), then lowering p� and reducing future punishments
(keeping the DIC binding) can increase the equilibrium value. Now R(p�) becomes
an effectiveness measure comparable to the powers of test. Intuitively, R(p�)
measures how much deviation loss is created per unit of the equilibrium value
loss by lowering p�. The following lemma evaluates R(p�).

LEMMA 2. For any sorting scheme such that p� ≤ p�m, R(p�) > 1/λ. Moreover,
R(p�) ≥ 1/(1 − λ) if p�m ≥ p� ≥ pL.

PROOF. See the Appendix.

Now, we can determine the optimal punishment scheme in an optimal SPPE.
Combined with (4), Lemma 2 implies that, if p� > pL, p� should be lowered before
using any future punishment, since R(p�) is greater than all the powers of test.
Lemma 2 also implies that future punishments should be used only after (�, �, H),
(h, �, H), and (�, h, H) are observed, since the other public outcomes have smaller
powers of test than 1/λ.21

An Upper Bound for the Optimal Sorting SPPE Value. We would like to solve
(P–S) for all λ, but it is indeed hard to derive an explicit solution for λ close to 1.
Given the previous results, we can instead find an upper bound by setting LR =
1/(1 − λ).

LEMMA 3. Suppose that Assumption 1 holds, λ > 0.5, and that a solution to (P–S)
exists. An upper bound for the value of an optimal solution to (P–S) is given by

v̄s(λ) = 1

2λ
πh(ph∗) + (2λ − 1)(2 − λ)

4λ
π L(p�∗),(5)

21 The implications about price war behavior are summarized in Proposition 3 (Section 4).
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where

ph∗ = phm; p�∗ = pL.(6)

PROOF. From the above analysis, the value of an optimal solution to (P–S)
cannot exceed

1

2

{
πh − πh

d − πh

1/(1 − λ) − 1

}
+ 1

2
π� = 1

2

{
πh

λ
+ π� − 1 − λ

λ
πh

d

}
.(7)

Maximizing (7) with respect to ph and p� provides an upper bound of the value.
Thus, set

ph∗ = arg max
ph

πh = phm; p�∗ = arg max
p�

{
π� − 1 − λ

λ
πh

d

}
.

Note that

π� − 1 − λ

λ
πh

d = (1 − λ)(1 + λ)

2
π H(p�) + λ(2 − λ)

2
π L(p�)

− 1 − λ

λ

{
λ(1 + λ)

2
π H(p�) + (1 − λ)(2 − λ)

2
π L(p�)

}
= (2λ − 1)(2 − λ)

2λ
π L(p�).

This shows that, since λ > 1/2,

p�∗ = pL = arg max π L(p).(8)

Substituting the prices into (7), we obtain the upper bound as desired. �

This upper bound is attainable if the DIC binds with a future punishment only
after (�, �, H) is observed. However, such future punishment is not enough if λ

is close enough to 1, because then the public outcome (�, �, H) arises with a very
small probability when deviation occurs. In such a case, other future punishments
are necessary. As a result, the attainable equilibrium value is strictly less than the
upper bound.

4. OPTIMAL COLLUSION

4.1. Patient Firms. Based on the analysis in Section 3, we derive the impli-
cations of optimal collusion for patient firms. First of all, if the upper bound of
sorting SPPE v̄s(λ) is smaller than the value of the optimal pooling scheme vr,
then the optimal SPPE must exhibit price rigidity.

PROPOSITION 1. Suppose that Assumption 1 holds and the discount factor is high
enough such that all the off-schedule constraints can be ignored. Then there exists
a λ̂ ∈ (0.5, 1) such that for λ ∈ [0.5, λ̂], the pricing scheme for an optimal solution
to (P) must be pooling (price rigidity).
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PROOF. From now on, let us include the accuracy level λ in the value and profit
functions, for instance, πh = πh(λ). Recall (3) and (5):

v̄s(λ) = 1

2λ
πh(λ) + (2λ − 1)(2 − λ)

4λ
π L(p�∗),

vr = π H(pr∗) + π L(pr∗)

4
.

Thus

v̄s(λ) ≤ vr

⇐⇒ 1

2λ
πh(λ) + (2λ − 1)(2 − λ)

4λ
π L(p�∗) ≤ π H(pr∗) + π L(pr∗)

4
.(9)

Note that the right-hand side (RHS) of (9) is constant. Now we will show (i) that
the left-hand side (LHS) of (9) becomes smaller than the RHS as λ → 0.5, (ii)
that the LHS becomes larger than the RHS as λ → 1, and (iii) that the LHS is
increasing in λ. Let LHS(λ) denote the LHS in (9).

(i) First, note that ph∗
λ → pr∗ as λ → 0.5 (see (2) and (6)). Then

lim
λ↓0.5

LHS(λ) = πh(0.5) = π H
(

ph∗
0.5

) + π L
(

ph∗
0.5

)
8

= π H(pr∗) + π L(pr∗)

8
<

π H(pr∗) + π L(pr∗)

4
.

(ii) Similarly,

lim
λ↑1

LHS(λ) = 1

2
πh(1) + 1

4
π L(p�∗)

= π H
(

ph∗
1

) + π L(p�∗)

4
>

π H(pr∗) + π L(pr∗)

4
.

The inequality follows from the fact that ph∗
1 = arg max π H(p), and p�∗ =

arg max π L(p).
(iii) By taking the derivative of LHS(λ),

dLHS(λ)

dλ
= d

dλ

{
1

2λ
πh(λ) + (2λ − 1)(2 − λ)

4λ
π L(p�∗)

}

= λ2π H
(

ph∗
λ

) − (1 − λ2)π L
(

ph∗
λ

)
4λ2

+ 2(1 − λ2)π L(p�∗)

4λ2

≥ λ2π H
(

ph∗
λ

) + (1 − λ2)π L(p�∗)

4λ2
> 0.
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The second equality follows by the envelope theorem. The first inequality fol-
lows by πL(p�∗) ≥ πL(ph∗

λ ) since p�∗ is the maximizer for πL(p).
Clearly LHS(λ) is continuous and thus by (i)–(iii), there must be a λ̂ ∈ (0.5, 1)

such that for λ ∈ [0.5, λ̂), v̄s(λ) < vr
λ and for λ ∈ (λ̂, 1], v̄s(λ) > vr

λ. This completes
the proof. �

Proposition 1 can be understood in the following intuitive way. Compared to a
sorting scheme, a pooling scheme has both an advantage and a disadvantage. The
advantage is that firms can enforce it without the fear of cheating, since there is no
on-schedule deviation in this scheme. The disadvantage is that a pooling scheme
cannot enjoy informational gain, because it does not utilize the information con-
tained in private signals. In contrast, a sorting scheme entails future punishments
and price distortions on the equilibrium path even though firms behave honestly in
equilibrium. These are regarded as coordination costs due to incentive compatibil-
ity. A pooling scheme avoids the coordination costs but forgoes the informational
gain at the same time.

Which scheme is optimal thus depends on the magnitude of the informational
gain relative to that of the coordination costs. When the accuracy of signals is
sufficiently low (λ is close to 0.5), the informational gain is close to 0. But the
coordination costs are strictly positive.22 As a result, the optimal pooling scheme
strictly dominates any sorting scheme.

We conjecture that, not only its upper bound, v̄s(λ), but also the value of an
optimal solution to (P–S) is increasing in λ, thereby leading to a stronger result
such that “the value of an optimal sorting SPPE is greater than vr if and only if
λ ≥ λ̂.” However, we have not yet been able to conclude whether such a result
holds, because it is hard to characterize an optimal sorting scheme for λ close to 1.
Nevertheless, we establish a weaker result that optimal collusion exhibits sorting
pricing if λ is close enough to 1 (see Proposition 2).23

Price Rigidity. An immediate implication of Proposition 1 is that, if the accuracy
of signals is low enough (λ < λ̂), it is optimal for firms to adopt a pooling scheme
where they charge the same price, pr∗, over time regardless of their private signals
on the equilibrium path. To give some sense of how big this λ̂ is, we provide a
concrete example. Suppose that the demand functions are DH(p) = 1.2 − p and
DL(p) = 1 − p, and the discount factor is δ = 0.9. Then pr∗ = 0.55 and vr = 1.21/8.
The cutoff value is λ̂ = 0.986. In this example, the range of λ for which a price
rigidity scheme is optimal is very big.

22 When λ is close to 0.5, phm and p�m are very close to pr∗. For an optimal sorting SPPE, however,

Lemma 3 says that p�∗ = pL; thus the coordination cost due to price distortion is positive. Moreover,

the deviation gain πh
d − πh ≈ 3[π H(pL) + π L(pL)]/8 − [π H(phm) + π L(phm)]/8 is also strictly positive

by Assumption 1. Thus, the coordination cost due to future punishments is also positive.
23 In a repeated game with imperfect public monitoring, Kandori (1992) shows that the sequential

equilibrium payoff set expands as the quality of monitoring technology improves in Blackwell’s (1953)

sense. We cannot directly apply his argument since the monitoring technology in Kandori’s model

is exogenous, whereas in our model it is endogenous due to private information. This is why the

monotonicity result is not immediate in our model.
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Weiss (1993) empirically tests the relationship between price rigidity and the
predictability of demand using the data of Austrian manufacturing industries.
He uses coefficient of variation (CV) of time series data as a measure of demand
predictability; the higher the CV, the less predictable is the demand. His test result
is consistent with our prediction: As demand becomes more difficult to predict,
prices tend to be more rigid. Of course, this is just one empirical test, and is not
specifically designed for collusive industries. More empirical work needs to be
done to directly test our prediction. Possibly, we can pick a collusive industry,
and compare the pricing behavior of this industry across different countries with
different variations of demand.

It is important to note that the demand predictability in a particular industry is
typically affected by the predictability of economy-wide variables. For example, as
the aggregate demand becomes more difficult to predict, the demand in a collusive
industry might become more difficult to predict as well. As a result, the prices of
collusive industries tend to be more rigid. Thus, our model predicts that prices tend
to be more rigid when the macroeconomic environment becomes more unstable.
This empirical implication can be tested by cross-country studies (as Lucas, 1973,
does in testing the neutrality of money).

Optimality of Sorting Schemes. Since v̄s(λ) is just an upper bound for the optimal
sorting SPPE value, we have not established whether a sorting scheme is optimal
for some λ > λ̂. Although it is hard to specify the entire parameter region of λ for
which a sorting scheme is optimal, we can show the optimality of sorting schemes
for highly accurate signals. To verify that, we construct a feasible sorting profile that
generates an equilibrium value greater than that of the optimal pooling profile.

PROPOSITION 2. Suppose that Assumption 1 holds and firms are sufficiently pa-
tient. There exists a λ̄ < 1 such that λ > λ̄ implies that optimal collusion exhibits
sorting pricing.

PROOF. Consider the following profile:

ph
λ = phm

λ , p�
λ = pL

αH
h�,λ = αH

�h,λ = kλ

αS
i j,λ = 0, for (i, j, S) �= (h, �, H), (�, h, H),

where kλ, and the corresponding value vλ, are defined by the binding DIC and the
modified AMP formula, namely,

πh
d

(
p�

λ

) − πh(ph
λ

) − δ

1 − δ
vλ(λ2 − λ(1 − λ))kλ = 0(DIC)

vλ − 1

2

{
πh(ph

λ

) + π�
(

p�
λ

) − πh
d

(
p�

λ

) − πh
(

ph
λ

)
LR − 1

}
= 0.(AMP)
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Two remarks are worth mentioning. First, this is a feasible profile as long as kλ ≤ 1.
But it is not optimal since it imposes no future punishment after (�, �, H), which
should be used prior to imposing any punishment after (h, �, H). Second, the
existence of kλ and vλ is immediate; since LR = 1/{2(1 − λ)} regardless of kλ,
(AMP) uniquely defines vλ, and then (DIC) pins down kλ.

As λ → 1, ph
λ → pH = arg maxp π H(p), kλ → kλ=1 < 1, and 1/(LR − 1) → 0.

The prices at λ = 1 are the monopoly ones under perfect information, and by
continuity, the value of this profile thus converges to (a half of) the monopoly
profit. Let v∗

λ=1 denote the optimal collusive value under perfect information.
Recall v∗

λ=1 > vr . This implies that, for λ close to 1, there exists a feasible sorting
scheme that generates a higher value than the optimal pooling scheme does. This
shows that the optimal pricing scheme must be sorting if the accuracy of signals is
high enough. �

Price Wars. If a pooling scheme is not optimal to (P), an optimal SPPE must entail
a sorting pricing scheme with downward price distortion and future punishments,
which we call current and future price wars, respectively. Based on the results of
Section 3.3, we summarize the price war behavior as follows.

PROPOSITION 3. Suppose Assumption 1 holds and firms are sufficiently patient.
If rigid-pricing is not optimal among SPPE, then an optimal SPPE exhibits (i) a
current price war in which only the price for the low signal is distorted downward,
and (ii) future price wars that are triggered either only after (�, �, H) or only after
(�, �, H), (h, �, H), and (�, h, H).

If a sorting scheme is optimal, our model generates two implications about
price wars that are different from those in the existing literature.24 First, in an
optimal sorting SPPE, only the price for the low signal is distorted downward.
This result is in contrast to Rotemberg and Saloner (1986), who predicts that
only the price in high demand states needs to be distorted downward, and it
can be smaller than the price in low demand states. In their model on-schedule
deviation is absent because there is no private information. Instead, they focus
on off-schedule deviations when the discount factor is low. Smaller discounting
generates stronger temptations for undercutting in high demand states. So far
this effect has been absent in our model since we assume firms are sufficiently
patient. Our model instead focuses on private information about demand, and
shows that the on-schedule DIC is the only relevant incentive constraint, which
can be relaxed only if the price assigned for the low signal is distorted downward.
The general message here is that the relationship between prices and demand
states in collusive industries sensitively depends on the information structure and
the discount factor.

Second, in contrast to Green and Porter (1984), in which future price wars
are only triggered in low demand states, in our model future price wars are only
triggered in high demand states, specifically after observing (�, �, H), (h, �, H),

24 These price war implications are derived from an optimal SPPE that has two demand states.

When the underlying demand has more than two states, these implications might not follow.
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and (�, h, H).25 We do not claim that our result is more empirically relevant.
Again, the general conclusion is that at which demand state future price wars
are more likely to be triggered crucially depends on the information structure.
Actually, empirical evidence shows no pattern about whether collusion is more
likely to break down in an economic downturn or upturn. According to a survey
by Levenstein and Suslow (2002, table 14), cartels in the Beer and Steel industries
break up during economic downturn, whereas cartels in the Rayon industry break
up during economic upturn.26

4.2. Impatient Firms. We have so far restricted attention to patient firms, and
have dismissed all the off-schedule incentive constraints. Here we consider how
firms’ impatience affects the optimal SPPE.

Pooling Schemes. Under any pooling scheme, given that the price pr is indepen-
dent of signals, firms have a stronger incentive to engage in off-schedule deviation
when they receive the h signal. Thus, to deter off-schedule deviations the following
condition is necessary and sufficient:

(1 − δ)(2πh(pr ) − πh(pr )) ≤ 1

2
δ[πh(pr ) + π�(pr )]

⇔ δ ≥ 2λπ H(pr ) + (2 − 2λ)π L(pr )

(2λ + 1)π H(pr ) + (3 − 2λ)π L(pr )
≡ δ̂(pr , λ).

Note that δ̂(pr , λ) ∈ (0.5, 1) is increasing in λ, which means that more patience
is required to prevent off-schedule deviations as the accuracy of signals in-
creases. For the optimal pooling scheme pr∗, we can define δ̂(pr∗, λ) accordingly.
If δ ∈ [δ̂(pr∗, λ), 1], then the optimal pooling scheme pr∗ is sustainable. Combin-
ing with the previous results, we can draw the following conclusion: If λ ≤ λ̂ and
δ ∈ [δ̂(pr∗, λ), 1], an optimal SPPE is pooling with price pr∗.27

If δ < δ̂(pr∗, λ), then pr∗ cannot be sustained as an equilibrium pooling price. To
reduce firms’ incentive to deviate after a signal h, the pooling price pr needs to be
distorted downward from pr∗.28 Given that the expected stage payoff is concave in
price, the optimal pooling price pr is the highest price that satisfies the following
condition: δ = δ̂(pr , λ). Thus impatience would naturally decrease the optimal
pooling SPPE payoff.

25 A low profit is the only good indicator of deviation in Green and Porter’s setting, and therefore

punishments are triggered in low demand states on the equilibrium path. In our model, observing both

a high demand and low prices indicates a high likelihood of deviation.
26 Our model has another price war implication distinct from these papers: A price war can be

triggered when just one of several firms charges a lower price. This can be interpreted as one firm

deviating first and the other firms retaliating later. This pattern is also delivered in ABS, though, in

their extended model with public iid demand shocks. We thank a referee for pointing this out.
27 This is because in deriving an upper bound of the optimal sorting SPPE value for patient firms we

ignored the off-schedule constraints; incorporating these constraints would decrease the upper bound.
28 Distorting pr upward from pr∗ would increase deviation payoff after the h signal.
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Sorting Schemes. For a sorting scheme with ph > p�, it is after a signal h that firms
have stronger incentives to engage in off-schedule deviations. Now, there are two
candidates for the most profitable off-schedule deviation. The first possibility is
to undercut ph and receive a deviation gain of πh(ph). The second possibility
is to undercut p� and receive a deviation gain of λπ H(p�) + (1 − λ)π L(p�) −
πh(ph). When firms are impatient, both types of off-schedule deviations should be
prevented. To prevent the former possibility, ph might be distorted downward from
phm; and to prevent the latter possibility, p� might be distorted downward from
pL. Note that these price distortions will also affect the on-schedule constraints.29

Generally speaking, without imposing more concrete structure on the demand
functions, it is a complex task to pin down the optimal sorting scheme and to
evaluate the optimal SPPE value for impatient firms.

Since an optimal SPPE for patient firms exhibits sorting only when λ is high,
here we discuss how impatience affects the optimal sorting scheme when λ is close
to 1. When λ = 1, our model coincides with that of Rotemberg and Saloner. Thus
optimal collusion might involve countercyclical pricing (ph

λ=1 < p�
λ=1) if firms are

sufficiently impatient. If this is the case, in our working paper version we show that
for λ sufficiently close to 1 the optimal sorting scheme also exhibits countercyclical
pricing (ph < p�). Interestingly, now the relevant on-schedule constraint is the
UIC instead of the DIC. Moreover, future equilibrium price wars are triggered
after low demand states; thus the price war implications in Proposition 3 are
reversed. Again, the general conclusion is that the pattern of price war behavior is
sensitive to the information structure and the firms’ patience level, which means
that empirical tests have to be careful about those factors.

It would be desirable to study how firms’ impatience affects the form of the
optimal SPPE for each λ (whether it exhibits rigid pricing or sorting). However,
no general result has yet been obtained.30 We leave this for future work.

5. SOME EXTENSIONS

Our model is highly stylized. There are only two firms in the industry and only
two underlying demand states. In this section, we discuss how our results can be
generalized. We start with the case of more than two firms. Note that we come
back to the setting of patient firms.

5.1. More Firms. For an industry in which there are more than two firms, the
price rigidity result still carries through qualitatively. In the Appendix, we prove
the following proposition.

29 Basically, firms can use price distortions of ph and p� to satisfy the off-schedule constraints,

and to satisfy the on-schedule constraints firms can use both price distortions and future equilibrium

punishments.
30 ABS derive a result that it is more difficult to satisfy off-schedule constraints with a sorting

scheme using future equilibrium punishments than with a payoff-equivalent pooling scheme. Given

the common value property of demand and the correlated signal structure, this result does not hold in

our model.
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PROPOSITION 4. Suppose there are n ≥ 3 firms in an industry, and δ is high
enough such that all the off-schedule constraints can be ignored. Then there exists a
λ̂(n) ∈ (0.5, 1) such that for λ ∈ [0.5, λ̂(n)], the optimal SPPE exhibits price rigidity.

Proposition 4 shows that the result of Proposition 1 extends to the n-firm case:
A price rigidity scheme is optimal when λ is small. Again, the main reason is that
the coordination costs of adopting a sorting scheme are positive as long as private
signals are not perfectly accurate, whereas the informational gain vanishes if λ

goes to 0.5.

Price Rigidity and Concentration. How does the price rigidity region (in terms of
λ) change when the number of firms in a collusive industry increases? Indeed, it
is difficult to derive general results on this matter. As a first step, we examine this
question by adding one more firm to the two firm case.

PROPOSITION 5. Fix λ > 0.5. Suppose a sorting scheme is optimal for n = 3, with
associated ph∗(3), p�∗(3) and α∗(3). If

[π H(ph∗(3)) − π H(p�∗(3))] ≥ [π L(p�∗(3)) − π L(ph∗(3))],(10)

then there is a sorting scheme that strictly dominates the optimal pooling scheme
for n = 2.

PROOF. See the Appendix.

Assumption (10) plays an important role in proving Proposition 5. This holds,
for example, in the following case in which demand fluctuation is driven by a
parameter:

DS(p) = aS − bp, S = H, L and aH > aL.

Now (10) is equivalent to aH + aL ≥ 2b(ph∗ + p�∗), the validity of which can be
shown straightforwardly.31

Intuitively, coordination becomes more difficult as the number of colluding firms
increases. With more firms, the probability that at least one firm charges the low
price on the equilibrium path becomes higher. As a result, harsher current or future
price wars are necessary to sustain the DIC. This leads to higher coordination costs.
In addition, the informational gain of sorting schemes can be decreasing in the
number of firms (this is so if (10) holds). As a result, the price rigidity region
expands as the number of firms increases. Since the same intuition applies to a
general n-firm setting, we conjecture that Proposition 5 extends to that general
setting. That is, as the number of firms increases in a collusive industry, a price
rigidity scheme is more likely to be optimal.

31 By the fact that ph∗ and p�∗ are optimal sorting prices for n = 3, ph∗ ≤ aH/2b (no distortion in

ph∗, and it equals aH /2b only if λ = 1), and p�∗ ≤ aL/2b (because it is distorted downward).
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Empirical Implications and Evidence. A common wisdom in the literature of in-
dustrial organization (e.g., Carlton, 1986) tells us that there is a positive correlation
between concentration and price rigidity. However, our model suggests that the
relationship between concentration and price rigidity may be nonmonotonic. In
fact, in highly concentrated industries our model predicts a negative correlation
between concentration and price rigidity: Prices in monopolies are more flexible,
since there is no need to coordinate, than those in duopolies; and as the number of
firms increases, prices are more likely to be rigid as long as the firms still manage
to collude. As the number of firms increases further, however, collusion cannot be
sustained any more because satisfying the off-schedule incentive constraints be-
comes more difficult.32 As a result, prices become flexible.33 Therefore, we should
observe that monopolistic and fairly competitive industries have more flexible
prices, whereas in oligopolistic industries prices are more rigid.

This nonmonotonicity may shed light on why the existing empirical studies
about the relationship between price rigidity and concentration have generated
conflicting results. For example, whereas Dixon (1983) and Carlton (1986) sup-
port a positive correlation between concentration and price rigidity, Chappell and
Addison (1983) and Weiss (1993) find little support for this positive correlation
with respect to demand shocks. None of these studies properly deals with a non-
monotonic relationship. Typically, they have only regressed the degree of price
rigidity on the concentration ratio. Our model thus calls for more careful empiri-
cal studies to test the potential nonmonotonic relationship.

Several existing empirical results are consistent with our prediction. First, Fisher
and Konieczny (1995) (studying the Canadian newspaper industry) find that
oligopolies change prices less often than monopolies. Second, Qualls (1979) shows
that price–cost margins are more flexible in highly concentrated oligopolies than
in less concentrated oligopolies.34 Finally, both Posner (1970) and Dick (1996) find
that cartel duration increases with the number of firms, which is consistent with
our prediction.35

5.2. More Underlying States. Our results remain qualitatively valid if the num-
ber of underlying states increases. As long as private signals are not perfectly
informative, the incentive compatibility conditions for any sorting scheme cause
positive coordination costs. On the other hand, the informational gain clearly
disappears as the informativeness of signals vanishes.

If there are more than two underlying demand states, firms may find it opti-
mal to adopt a partial sorting scheme. An optimal nonrigid scheme is harder to

32 This is because, as the number of firms n increases, each firm’s equilibrium payoff decreases at

the rate of 1/n, whereas its most profitable off-schedule deviation payoff roughly remains the same.
33 This argument for flexible pricing is based on a modified version of our model with product

differentiation (see footnote 9).
34 By normalizing the marginal cost to a positive number, our model predicts a negative relationship

between concentration and the rigidity of price–cost margin.
35 In our model, cartels using sorting schemes have a shorter expected duration (due to future

punishments on the equilibrium path) than those using price rigidity schemes. Since our model suggests

that cartels with more firms is more likely to adopt a price rigidity scheme, these cartels have a longer

expected duration than those with fewer firms.
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characterize, but as discussed above, a price rigidity scheme must be optimal if
private signals are of sufficiently low accuracy.

6. DISCUSSION

Asymmetric PPE. We have restricted our attention to symmetric PPE, and this
symmetry assumption is important for our results. Asymmetric PPE can in prin-
ciple attain higher profits than an optimal SPPE, and implications from optimal
collusion with asymmetric equilibrium can be different. Specifically, firms may
receive different continuation values on the equilibrium path, with a firm that is
more suspicious of deviating being punished whereas the other firm is rewarded,
for example.36

Although the symmetry assumption inevitably entails some loss of industry-
wide profits,37 we argue that APPE might not be so plausible for the following
reasons. First, to play an (optimal) APPE requires a high level of sophistication
because it can be highly nonstationary, and this might be overwhelming to the
colluding firms. In contrast, an optimal SPPE can be played by simple strategies
with two states. Second, the concern for off-schedule deviations becomes more
serious, since the firm being at a disadvantage in a period has a stronger incentive
for undercutting. The firms’ patience level, therefore, needs to be sufficiently high
to support such an APPE. Third, simple APPE may be easily detected as evidence
of collusion by the antitrust agencies.

To elaborate on the second and the third points, consider the following simple
APPE that attains higher ex ante profits for all firms than an optimal SPPE does:
Colluding firms take turns to serve the entire market one by one, and if one firm
breaks this rule, all firms go to perpetual Nash reversion. This APPE with rotation
solves the coordination problem (there is only one firm active in each period), yet
retains the informational gain (the active firm can utilize the information contained
in its private signal).

Arguably, the feature of serving the market alternately can be easily detected
by the antitrust agencies. In other APPE that require some firm to be nonactive
in some period (say, by posting a very high price), the equilibrium play would also
arouse the suspicion of the antitrust agencies.

To see the second point, consider the APPE with rotation and an optimal SPPE
with n firms and λ close to 0.5. Since the signals are very uninformative, the
incentives to engage in off-schedule deviation are almost independent of signals.
To satisfy the off-schedule constraints for the APPE with rotation,

πm ≤ δn−1πm

1 − δn
⇔ δn−1(1 + δ) ≥ 1.

36 The set of APPE payoffs is indeed hard to characterize, because the state space for an APPE can

be daunting.
37 This can be seen in models of collusion with private cost shocks, analyzed by ABS (2004) for

SPPE and Athey and Bagwell (2001) for APPE. Athey and Bagwell show that if firms are sufficiently

patient, an optimal APPE attains efficiency even though private information is present (Proposition

8), whereas an optimal SPPE is not efficient.
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To satisfy the off-schedule constraints for the optimal SPPE (price rigidity
scheme),

(n − 1)π r ≤ δπ r

1 − δ
⇔ δ ≥ n − 1

n
.

Comparing the above two inequalities, we can see that the APPE with rotation
requires a much higher discount factor to satisfy the off-schedule constraints,
especially when n is large.38 The main reason is that in the APPE there are big
stage payoff differences among firms, which makes low payoff firms very tempted
to cheat. Since APPE generally share this feature of having big differences in
stage payoffs, we suspect that APPE require a higher discount factor to deter
off-schedule deviations than an optimal SPPE does.

Communication. We have not addressed the issue of communications among
firms. Communication can in principle avoid the coordination problem and thus
improves the efficiency of sorting schemes. However, the plausibility of commu-
nications among firms is questionable because of the following reasons. First, if
the enforcement of antitrust law is stringent, firms may optimally avoid commu-
nications, which could be evidence of collusion per se.39 Second, as the number
of firms increases, communications among firms become more tedious. Third, if
each firm has to incur some individual cost to get the signal about demand, the
very presence of communication might dampen firms’ incentives to acquire infor-
mation, since each firm can rely on other firms’ information. For these reasons,
we have restricted our attention to the case without communication.

7. CONCLUSION

This article studies pricing behavior of a collusive industry when demand is
fluctuating and individual firms receive private information about demand in each
period. Our model provides a theoretical microfoundation for price rigidity with
respect to demand shocks. In particular, we find that the predictability of under-
lying demand, modeled as the accuracy of private information, plays a crucial
role in determining an industry’s optimal pricing scheme. If demand is poorly
predictable from private information, then it is optimal for firms to adopt a rigid-
pricing scheme.

Our model also finds new price war implications different from those in the pre-
vious literature. In an optimal sorting SPPE with patient firms, prices tend to be
higher in high demand states than in low demand states, and future price wars are

38 Intuitively, as n increases, after a firm makes a sale it would then need to “sit out” for a greater

number of periods, and this in turn raises the incentive for this firm to cheat.
39 In the antitrust legal context (see Hay, 1982), there was a per se approach to any kind of infor-

mation exchange, that is, any information exchange among firms in the same industry is illegal per se.

Recently, a modified per se approach was suggested: Under certain structural conditions, information

exchange is per se illegal.
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triggered only in high demand states. Moreover, our model suggests that the rela-
tionship between price rigidity and concentration is not monotonic: monopolistic
and competitive industries have more flexible prices than oligopolistic industries,
and in oligopolistic industries, prices tend to be more rigid as the number of firms
increases.

As seen in Section 5, our model can be extended in less stylized ways without
qualitatively changing the main results. One restrictive assumption that we have
maintained throughout the article is that the demand shocks are i.i.d.. It seems
more plausible to incorporate business cycles explicitly in the model.40 This is left
for future research.

Our model can be applied to other situations where (i) economic agents’ pay-
offs are affected by common shocks, (ii) information about common shocks is
imperfect and private, and (iii) coordination with respect to common shocks is
important. If information about common shocks is poor, tailoring actions to the
changing environment entails high coordination costs. It is then optimal for play-
ers to adopt a “rigid rule,” in which actions are not responsive to the changing
environment.

APPENDIX: PROOFS

PROOF OF LEMMA 1. We show that neither αS
ij = 0 for all (i, j, S) nor LR ≤ 1 is

optimal. Suppose αS
ij = 0 for all (i, j, S) at optimum. The binding DIC then requires

πh
d =πh. As we argued before, ph = phm at a solution to (P–S) (no distortion for ph).

In the first step we show that p� < pL. Define

phm
d ≡ arg max

p
πh

d (p) = arg max
p

λ(1 + λ)

2
π H(p) + (1 − λ)(2 − λ)

2
π L(p).

It is obvious that phm > phm
d , since arg max π H(p) = pH > pL = arg max π L(p)

and the relative weight on πH is larger in πh than in πh
d. Now suppose phm

d ≤
p� < phm; then

πh
d = λ(1 + λ)

2
π H(p�) + (1 − λ)(2 − λ)

2
π L(p�)

>
λ(1 + λ)

2
π H(phm) + (1 − λ)(2 − λ)

2
π L(phm)

>
λ2

2
π H(phm) + (1 − λ)2

2
π L(phm) = πh,

a contradiction (the first inequality follows since the RHS is a single-peaked func-
tion in p). Thus, we must have p� < phm

d . Now suppose phm
d > p� ≥ pL; then

40 There are articles that study collusion under serially correlated demand with no private informa-

tion. Bagwell and Staiger (1997) consider persistent demand shocks, and Haltiwanger and Harrington

(1991) incorporate deterministic business cycles.
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πh
d = λ(1 + λ)

2
π H(p�) + (1 − λ)(2 − λ)

2
π L(p�)

≥ λ(1 + λ)

2
π H(pL) + (1 − λ)(2 − λ)

2
π L(pL)

>
λ2

2
π H(pH) + (1 − λ)2 π L(pL)

2

>
λ2

2
π H(phm) + (1 − λ)2 π L(phm)

2
= πh,

a contradiction (the first inequality follows from the single-peakedness of πh
d and

p� < phm
d , and the second inequality is based on Assumption 1). Therefore, we

must have p� < pL.
So far, we have αS

i j = 0 and ph = phm > pL > p� for a solution to (P–S). In
the next step, we show that this profile is dominated by the following profile:
ph = phm, p̃� = p� + ε ∈ (p�, pL), αS

i j = 0, ∀(i, j, S) �= (�, �, H), and 1 > αH
��(ε) >

0 such that

(1 − δ)
(
π̃h

d (ε) − πh) = δṽ(ε) Pr(h�; H)αH
��(ε),

where π̃h
d (ε) and ṽ(ε) are defined according to this new profile. First, note that ṽ(ε)

and αH
��(ε) are continuous, and ṽ(0) = v and αH

�� (0) = 0.41 It should also be noted
that LR = {λ(1 − λ) + (1 − λ)2}/(1 − λ)2 = 1/(1 − λ). For a sufficiently small ε,
we show that αH

��(ε) ≤ 1, and ṽ(ε) > v, which implies this profile is feasible and
dominates the original profile. Indeed,

ṽ(ε) − v = 1

2

{
πh − π̃h

d (ε) − πh

LR − 1

}
+ 1

2
π�(ε) − 1

2
{πh + π�}

= 1

2

{
π�(ε) − π� − 1 − λ

λ

(
π̃h

d (ε) − πh)} ,

where π�(ε) = π�(p� + ε). Recall ṽ(0) = v. In order to have ṽ(ε) − v > 0 for some
small ε, it suffices to show that

d
dε

{
π�(ε) − 1 − λ

λ
π̃h

d (ε)

}∣∣∣∣
ε=0

> 0.

41 The value ṽ(ε) is defined by the modified AMP formula (page 493). Note that the likelihood ratio

LR equals {Pr(h�; H) + Pr(��; H)}/ Pr(��; H), independent of the level of αH
��(ε) > 0. Thus

ṽ(ε) = 1

2

{
πh − π̃h

d (ε) − πh

LR − 1

}
+ 1

2
π�(ε)

is continuous in ε, and ṽ(0) = v. This also implies that

αH
��(ε) = (1 − δ)

(
π̃h

d (ε) − πh
)

δṽ(ε) Pr(h�; H)

is continuous (at least around ε = 0), and αH
��(0) = 0.
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In fact,

d
dε

π�(ε) | ε=0 = (1 − λ)(1 + λ)

2
π H′(p�) + λ(2 − λ)

2
π L′(p�)

1 − λ

λ

d
dε

π̃h
d (ε) | ε=0 = (1 − λ)(1 + λ)

2
π H′(p�) + (1 − λ)2(2 − λ)

2λ
π L′(p�),

where π S′(p) = dπ S/dp, S = H, L. Thus

d
dε

{
π�(ε) − 1 − λ

λ
πh

d (ε)

}∣∣∣∣
ε=0

=
{
λ − (1 − λ)2

λ

}
× 2 − λ

2
π L′(p�) > 0,

since, for λ > 1/2, λ > (1 − λ)2/λ, and π L′(p�) > 0 by single-peakedness. This is
the desired fact, which leads to a contradiction.

Finally, if LR ≤ 1, then the profile must be dominated by another one with no
future punishments, that is, all α’s being zero. This shows that a profile with LR ≤
1 cannot be optimal to (P–S). �

PROOF OF LEMMA 2. By manipulation,

∂πh
d

∂p�
= λ(1 + λ)

2
π H′(p�) + (1 − λ)(2 − λ)

2
π L′(p�),

∂π�

∂p�
= (1 − λ)(1 + λ)

2
π H′(p�) + λ(2 − λ)

2
π L′(p�) ≥ 0.

The last inequality results from p� ≤ p�m, and equality holds only if p� = p�m.
Now suppose that p� ≥ pL = arg max π L(p), and therefore π L′(p�) ≤ 0. Note
that πH ′(p�) > 0. Then

∂πh
d /∂p� + ∂π�/∂p�

∂π�/∂p�
= λ(1 + λ)π H′(p�) + (1 − λ)(2 − λ)π L′(p�)

(1 − λ)(1 + λ)π H′(p�) + λ(2 − λ)π L′(p�)
+ 1

≥ λ(1 + λ)π H′(p�) + λ(2 − λ)π L′(p�)

(1 − λ)(1 + λ)π H′(p�) + λ(2 − λ)π L′(p�)
+ 1

≥ λ

1 − λ
+ 1 = 1

1 − λ
.

Suppose instead that p� < pL, and therefore πL′(p�) > 0. In this case the ratio is

∂πh
d /∂p� + ∂π�/∂p�

∂π�/∂p�
= λ(1 + λ)π H′(p�) + (1 − λ)(2 − λ)π L′(p�)

(1 − λ)(1 + λ)π H′(p�) + λ(2 − λ)π L′(p�)
+ 1

>
(1 − λ)(1 + λ)π H′(p�) + (1 − λ)(2 − λ)π L′(p�)

(1 − λ)(1 + λ)π H′(p�) + λ(2 − λ)π L′(p�)
+ 1

>
1 − λ

λ
+ 1 = 1

λ
.

This completes the proof. �
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PROOF OF PROPOSITION 4. In the optimal price rigidity scheme,

pr∗(n) = arg max
pb

{
π H(p) + π L(p)

2

}
vr (n) = π H(pr∗) + π L(pr∗)

2n
.

Thus, the optimal rigid price pr∗(n) is independent of n, and so is the industry
profit. Moreover, each firm’s collusive profit vr(n) is 1/n of the industry profit.

To solve for the optimal sorting scheme, we first need to identify the optimal
punishment scheme on the equilibrium path. Due to the symmetry requirement,
firms’ decision about future punishments only depends on the observed demand
S ∈ {H, L} and the observed number of firms charging price p�, z ∈ {0, 1, . . . , n}.
More specifically, given an outcome (S, z), firms go to perpetual Nash reversion
with probability αS

z . Let vFS(n) denote the value of an optimal sorting scheme with
n firms.42 Now the value function becomes

vF S(n) = 1 − δ

2
{πh(n) + π�(n)} + δvF S(n)

∑
z∈{0,1,...,n}

S∈{H,L}

Pr(z, S)
(
1 − αS

z

)

and the binding DIC becomes

(1 − δ)
(
πh

d (n) − πh(n)
) = δvF S(n)

∑
z∈{0,1,...,n−1}

S∈{H,L}

Pr(z, S | h)
(
αS

z+1 − αS
z

)
,

where

πh(n) = λn π H(ph)

n
+ (1 − λ)n π L(ph)

n

πh
d (n) = λ

n−1∑
k=0

Ck
n−1λ

n−1−k(1 − λ)k π H(p�)

k + 1

+ (1 − λ)
n−1∑
k=0

Ck
n−1λ

k(1 − λ)n−1−k π L(p�)

k + 1

π�(n) = λ

n−1∑
k=0

Ck
n−1λ

k(1 − λ)n−1−k π L(p�)

k + 1

+ (1 − λ)
n−1∑
k=0

Ck
n−1λ

n−1−k(1 − λ)k π H(p�)

k + 1
.

42 As before, we drop λ in v’s, p’s, and α’s for notational simplicity.
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Again, each public outcome has a distinct likelihood ratio. By simple calculation,
the LR of each (S, z) is

LR(H, z) = λCz−1
n−1λ

n−z(1 − λ)z−1 + (1 − λ)Cz−1
n−1λ

n−z(1 − λ)z−1

λCz
n−1λ

n−z−1(1 − λ)z + (1 − λ)Cz−1
n−1λ

n−z(1 − λ)z−1
= 1

1 − λ

z
n
.

Similarly,

LR(L, z) = λCz−1
n−1λ

z−1(1 − λ)n−z + (1 − λ)Cz−1
n−1λ

z−1(1 − λ)n−z

λCz−1
n−1λ

z−1(1 − λ)n−z + (1 − λ)Cz
n−1λ

z(1 − λ)n−z−1
= 1

λ

z
n
.

According to these formulas, all the public outcomes can be ranked in terms of
punishment efficiency. The outcome (H, n) obviously has the highest LR, thus is
the most efficient punishment. For (H, z) the LR is increasing in z, and so is the
LR for (L, z). In the optimal punishment scheme, a particular αS

z(n) > 0 only if
αS

k(n) = 1 for any (S, k) with k > z.
Using the modified AMP formula, we can specify an upper bound of vFS(n).

From the formulas of LRs, the actual LR cannot exceed 1/(1 − λ) for each n. Now
by the modified AMP formula, the following is an upper bound of vFS(n):

v̄s(n) = 1

2

{
πh(n) + π�(n) − πh

d (n) − πh(n)

1/(1 − λ) − 1

}
= 1

2

{
πh(n)

λ
+ π�(n) − 1 − λ

λ
πh

d (n)

}
.

(A.1)

Maximizing (A.1) with respect to ph(n) and p�(n) yields

ph∗(n) = arg max
ph

{
λn π H(ph)

n
+ (1 − λ)n π L(ph)

n

}
p�∗(n) = pL∗ = arg max

p
π L(p).

In deriving p�∗(n), we use the fact that

π�(n) − 1 − λ

λ
πh

d (n) =
[
λ − (1 − λ)2

λ

] [
n−1∑
k=0

Ck
n−1λ

k(1 − λ)n−1−k 1

k + 1

]
π L(p�).

As λ → 0.5, ph∗(n) → pr∗(n). Then,

lim
λ→0.5

v̄s(n) = πh(n) = (1/2)n

n

[
π H(pr∗) + π L(pr∗)

]
<

1

2n

[
π H(pr∗) + π L(pr∗)

] = vr (n).

Therefore, when λ is small, a price rigidity scheme is optimal. �
PROOF OF PROPOSITION 5. The proof is by construction. Specifically, we construct

an equilibrium sorting scheme for n = 2 such that its value is higher than vr(2).
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Fix the prices for the sorting scheme such that ph = ph∗(3) and p� = p�∗(3). We
proceed in several steps.

Step 1. We want to show

2[πh(2) + π�(2)] ≥ 3[πh(3) + π�(3)].(A.2)

On the equilibrium path, a firm’s ex ante stage profit is just 1/n of the whole
industry’s ex ante stage profit. Hence, it is sufficient to prove that the industry’s
stage profit is decreasing in n, that is,

G(n) ≡ 1

2
[λnπ H(ph) + (1 − λn)π H(p�)

+ (1 − λ)nπ L(ph) + (1 − (1 − λ)n)π L(p�)]

is decreasing in n.

2[G(n) − G(n + 1)] = λn(1 − λ)[π H(ph) − π H(p�)]

+ (1 − λ)nλ[π L(ph) − π L(p�)] ≥ 0.

The inequality comes from condition (10).

Step 2. We want to show πh
d(3) − πh(3) ≥ πh

d(2) − πh(2). By calculation, we have

πh
d (3) = λ

[
λ2 + 2λ(1 − λ) × 1

2
+ (1 − λ)2 × 1

3

]
π H(p�)

+ (1 − λ)

[
λ2 × 1

3
+ 2λ(1 − λ) × 1

2
+ (1 − λ)2

]
π L(p�)

πh
d (2) = λ

[
λ + (1 − λ) × 1

2

]
π H(p�) + (1 − λ)

[
λ × 1

2
+ (1 − λ)

]
π L(p�)

πh(3) = λ3

3
π H(ph) + (1 − λ)3

3
π L(ph)

πh(2) = λ2

2
π H(ph) + (1 − λ)2

2
π L(ph).

Thus,[
πh

d (3) − πh(3)
] − [

πh
d (2) − πh(2)

]
= [

πh
d (3) − πh

d (2)
] + [

πh(2) − πh(3)
]

= λ
2λ − 1

6
π H(ph) + λ

[
1 − λ

2
− (1 − λ)2

3

]
[π H(ph) − π H(p�)]

− (1 − λ)
2λ − 1

6
π L(p�) − (1 − λ)

[
1 − λ

2
− (1 − λ)2

3

]
[π L(p�) − π L(ph)] > 0.

The last inequality comes from the fact π H(ph) > π L(p�) and condition (10).
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Step 3. We want to show vFS(2) > 3vFS(3)/2. To abuse notation, we use v(n) and
vFS(n) interchangeably. We first need to identify the optimal punishment scheme
for n = 3, that is, α∗(3). Given the ranking of the LR of each public outcome,
αS∗

z = 0 if there is a (S′, z′) such that αS′∗
z′ < 1 and LR(S′, z′) > LR(S, z). We need

to consider several cases. Here we just provide the proof for two cases. The proof
of the other cases is similar.

CASE 1. Suppose α∗(3) sets αH∗
3 ≤ 1 and all other αS∗

z = 0. For n = 2, we construct
αH

2 = (1 − λ)αH∗
3 and all other αS

z = 0. Note that this construction is feasible since
the constructed αH

2 ∈ [0, 1). Then by the binding DIC for n = 3,

πh
d (3) − πh(3) = δ

1 − δ
v(3)λ(1 − λ)2αH∗

3 .

By step 2,

πh
d (2) − πh(2) ≤ πh

d (3) − πh(3) = δ

1 − δ
v(3)λ(1 − λ)2αH∗

3

= δ

1 − δ
v(3)λ(1 − λ)αH

2 <
δ

1 − δ
v(2)λ(1 − λ)αH

2 .(A.3)

Thus, the DIC for n = 2 holds if inequality (A.3) holds. But inequality (A.3) holds
if v(2) > v(3). Now we only need to verify that from the value function.

v(3) = (1 − δ)[πh(3) + π�(3)]/2

1 − δ + δ(1 − λ)3αH∗
3 /2

<
2

3

(1 − δ)[πh(2) + π�(2)]/2

1 − δ + δ(1 − λ)2αH
2 /2

= 2

3
v(2).

Note that we use the result of step 1 in deriving the above inequality.

CASE 2. Now suppose α∗(3) sets αH∗
3 = 1, αH∗

2 ∈ (0, 1] and all other αS
z = 0.

Then by the binding DIC for n = 3,

πh
d (3) − πh(3) = δ

1 − δ
v(3)

[
λ(1 − λ)2 + λ(1 − λ)(3λ − 1)αH∗

2

]
.

For n = 2, we construct αH
2 and αH

1 as follows:

αH
2 = (1 − λ) + (3λ − 1)αH∗

2 and αH
1 = 0 if (1 − λ) + (3λ − 1)αH∗

2 ≤ 1,

αH
2 = 1 and αH

1 = 1 − λ

2λ − 1

[
(3λ − 1)αH∗

2 − λ
]

if (1 − λ) + (3λ − 1)αH∗
2 > 1.

Note that αH
1 is well defined since αH∗

2 ≤ 1. By the construction, in both subcases

πh
d (2) − πh(2) ≤ πh

d (3) − πh(3) = δ

1 − δ
v(3)

[
λ(1 − λ)2 + λ(1 − λ)(3λ − 1)αH∗

2

]
≤ δ

1 − δ
v(2)

[
λ(1 − λ)αH

2 + λ(2λ − 1)αH
1

]
.(A.4)



514 HANAZONO AND YANG

Thus the DIC for n = 2 holds if inequality (A.4) is valid. But inequality (A.4)
holds as long as v(2) ≥ v(3). Now we only need to verify it in both subcases. We
start with the first subcase. From the value function for n = 3,

v(3) = (1 − δ)[πh(3) + π�(3)]/2

1 − δ + δ
[
(1 − λ)3/2 + 3λ(1 − λ)2αH∗

2

/
2
] <

2

3

(1 − δ)[πh(2) + π�(2)]/2

1 − δ + δ
[
(1 − λ)2αH

2

/
2
]

= 2

3
v(2).

The last inequality comes from the fact that (the denominator of v(3) is bigger
than that of v(2))

1

2
(1 − λ)2

[
1 − λ + 3λαH∗

2 − αH
2

] = 1

2
(1 − λ)2αH∗

2 ≥ 0.

In the second subcase,

v(3) = (1 − δ)[πh(3) + π�(3)]/2

1 − δ + δ[(1 − λ)3/2 + 3λ(1 − λ)2αH∗
2 /2]

<
2

3

(1 − δ)[πh(2) + π�(2)]/2

1 − δ + δ[(1 − λ)2/2 + λ(1 − λ)αH
1 ]

= 2

3
v(2).

The last inequality comes from the fact that

1

2
(1 − λ)2

[
1 − λ + 3λαH∗

2 − 1 − λ

2λ − 1

[
(3λ − 1)αH∗

2 − λ
]]

= 1

2

λ

2λ − 1
(1 − λ)2

(
1 − αH∗

2

) ≥ 0.

Step 4. vF S(2) > vr (2). In the previous three steps, we show that there is a sorting
scheme for n = 2 such that vFS(2) > 3vFS(3)/2. By the assumption that vFS(3) ≥
vr(3) and the fact that vr(2) = 3vr(3)/2, we get our desired result that vFS(2) >

vr(2). �
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