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Abstract

We analyze a repeated prisoners’ dilemma game played in a community setting with het-

erogeneous types. The setting is such that individuals choose whether to continue interacting

with their present partner, or separate and seek a new partner. Players’ types are not directly

observed, but may be imperfectly inferred from observed behavior. We focus on a class of equi-

libria that satisfy zero tolerance (an individual separates immediately if her partner defects),

and fresh start (behavior in a new relationship does not depend on experience in previous rela-

tionships). We find that the punishment for defecting and the reward for cooperating are driven

by the formation and the dissolution of long-term, high-paying relationships: An individual that

defects, aborts a long-term relationships that he is in, or that he might have entered into, is

thrown into short-term interactions with individuals who are likely to defect and, consequently,

receives low payoffs. On the flip side, an individual that cooperates, enters into or prolongs a

long-term interaction with a partner who cooperates and, consequently, receives high payoffs.
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1 Introduction

Overview and Results. In this paper we study a prisoners’ dilemma game in which individuals

interact with varying opponents over time. The environment is such that individuals have partial

control over who to interact with. Namely, individuals choose - based on their past experience -

whether to prolong the interaction with their present partner for another period, or seek a new

partner. In addition, the population of individuals is heterogeneous in that some individuals are

strategic types, i.e., they choose actions based on incentives, while others are behavioral types,

i.e., are programmed to take a fixed action. Our aim is to study the structure of incentives for a

certain class of equilibria in this environment and, in particular, to determine the impact of the

“demographics” of the population, i.e., the effect that the type-distribution has on equilibrium

behavior.

The equilibria we identify have the feature that behavior and, hence, payoffs depend on whether

a player is in one of two states. One state is that a player is in an ongoing relationship, i.e., she

has interacted with her current partner at least once. The other state is that a player is in a new

relationship. Since players are able to condition their behavior on state, being in an ongoing rela-

tionship might deliver higher payoffs than being in a new relationship because players cooperate in

the former, but defect in the latter. This possibility dictates the structure of equilibrium incentives.

In particular, a player in an ongoing relationship, who is “scheduled” to cooperate, has an incentive

to do so because, otherwise, the relationship he is in will be terminated and he will be forced to

interact with players who are likely to defect and, thereby, inflict low payoffs on him. In addition,

a player who is in a new relationship might, nonetheless, cooperate because if he is matched to

another player who cooperates, he will enter into a long-term, high-paying relationship. Therefore,

cooperation in this setting is a form of investment aimed at creating or maintaining a high-paying

status. Our goal is to explore this logic and, more specifically, to pin down the conditions under

which this force is sufficient to guarantee that the equilibrium in which strategic types cooperate -

called the good equilibrium - exists and, analogously, to pin down the conditions under which other

(pure and mixed strategy) equilibria exist.

We report two sets of results. In the first set, and as suggested above, we determine when

pure and mixed strategy equilibria exist as a function of model parameters. One of our main

findings is that the fraction of bad types (behavioral types that chronically defect) has to be in
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an intermediate range to sustain the good equilibrium. The reason for this is that if a strategic

player causes a long-term relationship to terminate by defecting and if the fraction of bad types

is sufficiently small, the defector is likely to meet another strategic type fairly quickly and, hence,

bounce back to another long-term, high-paying relationship, so he is not made to pay for the

infraction. On the other hand, if the fraction of bad types is sufficiently large, the time it takes to

form a long-term relationship is excessively long, and the cost incurred in the process is excessively

high, so strategic types do not try to form such relationship, i.e., they simply defect. A similar

principle applies to bad equilibria, which are shown not to exist, if the fraction of good types is in

some intermediate range. These results indicate that the type distribution has indeed an impact

on the equilibrium behavior. Another result we report is that the problem that a good equilibrium

does not exist because the fraction of bad types is too low can be rectified if we allow mixed

strategies. Namely, additional bad types can be “created” endogenously if some of the strategic

types defect (while other strategic types cooperate in accordance with the good equilibrium). In

the second set of results we extend the model so that the distribution of types is endogenized based

on equilibrium payoff-differentials. Specifically, we show that since strategic types collect higher

equilibrium payoffs than bad types, the latter may be willing to incur an expense to have a larger

set of actions available to them, “converting” them thereby to strategic types. In this way (or

similarly because of evolutionary pressures), the type distribution is endogenously determined. In

this extension of the model we also execute welfare analysis to identify externalities that cause

discrepancies between the equilibrium and the optimum number of strategic types. As it turn out,

there are both positive and negative externalities, so there may be either too many or too few

strategic types.

Although this paper is intended as a theoretical exploration, anecdotal evidence suggests that

the forces we identify here are of some relevance in the real world. One anecdote suggesting

this comes from the banking industry and, in particular, the practice of “customer relationships.”

Roughly speaking, this practice is such that an established customer, who pays back his loans on

time, gets to sustain his long-term relationship with the bank and, thereby, borrow at a lower

interest rate, or borrow larger amounts. On the other hand, a new customer may have to pay a

higher interest rate or borrow a smaller amount, and a customer who is not current on his loans,

is denied credit altogether and may have to turn to other institutions for future business, and pay
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a higher interest rate. In this way, payoffs to borrowers depend on their status, and sanctions are

invoked by changing one’s status. A similar arrangement applies to depositors, who receive extra

services (e.g., investment advisory) or higher interest rates on their deposits, if they maintain a

minimum balance or keep their deposits for a sufficiently long time. Looking at the industry not

from the angle of an individual customer, but from the perspective of the market as a whole, our

results also offer a reason for capital-market imperfections. Indeed, if corruption is rampant in the

society, banks may be leery of new borrowers and, in the extreme, refuse to extend credit to them,

or insist on very high interest rates. Such state of affairs is consistent with our result that the good

equilibrium is unsustainable when the fraction of bad types is sufficiently high. Other institutions

that feature a similar structure of incentives are seniority in employment relationships, or securing

long-term contracts in procurement and buyer-supplier relationships. A more extensive discussion

of real-world institutions of this type that operate in various contexts may be found in papers by

Johnson et al. (2002), Kali (1999), Kranton (1996), and Taylor (2000).

Brief literature review This paper relates to several strands of literature. The first strand is

repeated games in a community setting, pioneering papers in this literature being Kandori (1992)

and Ellison (1994). Our point of departure from that literature is that we incorporate the decision

whether to keep interacting with the same partner, and the heterogeneity of types. More relevant

to our setting are the papers by Datta (1993) and Ghosh and Ray (1996), who develop and analyze

the “building trust” mechanism. We depart from that literature in that we analyze a wider class

of equilibria, fully characterize them, and elucidate on the role of the heterogeneity of types in

sustaining good equilibria or eliminating bad equilibria (by contrast, heterogeneity in Ghosh and

Ray is used to select an equilibrium, using the criterion that bi-lateral deviation is not profitable).

A third strand of literature is the (Kreps-Wilson/Milgrom-Roberts) reputation literature, which in

a context similar to ours is found in papers by Watson (1999, 2002). These papers study a fixed re-

lationship between two players and, as such, do not consider the possibility of endogenously forming

long-term relationship and the impact of the demographics through the endogenous composition

of types in the pool of players that seek new partners. Another relevant paper is Sobel (2006).

He focuses, however, on the role of labor market aspects, and does not consider the heterogeneity

of types. Another paper that focuses on labor market issues, relating to racial discrimination is

Eeckhout (2006). He does not study, however, the disciplinary role of the heterogeneity of types.
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Other papers include Tirole (1996) and Dixit (2003), who study the role of information interme-

diaries that make information available to players. They, again, do not study the disciplinary role

of endogenizing relationships. A recent paper is Okuno and Fujiwara (2006) that studies a similar

formulation to ours, but from an evolutionary perspective and without heterogeneity of types. The

endogenous determination of the type distribution and its welfare implications are not studied in

any of the above papers.

More broadly, our paper relates to three major themes in economic theory. One theme is that

one may sustain cooperation under long-run competition via promises and threats, see Fudenberg

and Maskin (1986). Here we offer a different enforcement mechanism, namely, where no player is

specifically called upon to inflict a punishment. Rather, punishment is inherent in the fact that

it takes time to re-establish a relationship, during which time costs are incurred. This idea brings

us to the second theme, which is the efficiency-wage literature, see Shapiro and Stiglitz (1984). In

that literature a shirking worker is punished by being unemployed, which is similar to the idea

that a player who defects is forced into interactions with players who chronically defect. That

literature, however, is couched in a competitive (as opposed to a game-theoretic) setting, and does

not consider the heterogeneity of types, and what bearing it has on the type of equilibria that may

be sustained. The third theme is the search and matching literature à la Diamond (1982) and

Mortensen (1982). In that literature, like here, it takes time to be matched with an acceptable

type. On the other hand, that literature does not study the strategic interaction between agents

once they are matched.

Preview. The rest of the paper is organized as follows. The next section introduces our frame-

work. In Section 3 we determine when the pure-strategy good equilibrium, in which strategic types

always cooperate, exists and how it depends on parameters. In Section 4 we do the same thing

with respect to the pure-strategy bad equilibrium in which strategic types defect. In Section 5 we

study mixed-strategy equilibria. In Section 6 we classify all equilibria, and relate them to parame-

ter values. In Section 7 we relate social welfare to the heterogeneity of types. And, in section 8,

we extend the model to study investment in expanding the range of actions, how it interacts with

cooperative behavior in the community game, and what departures may exist between equilibrium

investments and socially-optimal investments. Most proofs are found in a technical appendix.

5



2 Model Formulation

The Environment We consider a community of individuals (or players or agents), modeled as

a continuum of measure 1. Time is discrete and the horizon is infinite. Each individual is infinitely

lived.

At the beginning of each period, the community is divided into partnerships (or relationships).

Then, the following sequence of events occurs. First, each pair of partners plays a prisoners’

dilemma game, and each partner chooses either C, which stands for “cooperate,” or D, which

stands for “defect.” The payoff matrix of this game is specified momentarily. Second, after playing

this game, each partnership persists with probability ρ, and breaks with probability 1−ρ. Third, if

a partnership persists, the two partners go into a simultaneous-move game, in which each partner

makes a stay-or-separate decision. If both partners choose to stay, the current partnership continues

into the next period. If at least one partner chooses to separate, or if the partnership (exogenously)

breaks, both partners go into a pool of unmatched individuals. No direct payoffs are associated

with the stay-or-separate game; its only role is to endogenize the decision whether to interact with

the same individual in the next period. Finally, all individuals in the pool of unmatched individuals

are randomly matched, so that all individuals are matched at the beginning of the next period.

Since there is a countable number of time periods and a continuum of players, we assume that

no player is ever matched with one of his ex-partners. The timing convention we just described is

shown in Figure 1.

There are three types of players in the population. There is a measure α of opportunistic types

that we denote by O, a measure β of bad types that we denote by B, and a measure γ (= 1−α−β)

of good types that we denote by G. A G-type player always chooses C in the prisoners’ dilemma

game, and a B-type player always chooses D. An O-type player chooses either C or D, depending

on which gives her a higher payoff (which depends on the equilibrium play). The payoff matrix of

an O-type, considered as a row player, is shown in Table 1. The payoff matrix of a G-type is the

C row of Table 1, and the payoff of a B-type is the D row.

C D

C a −l

D b 0
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N e w  p a r tn e r s h ip s  a r e  
f o r m e d  in  t h e  p o o l  o f  
u n m a t c h e d  a g e n t s

P a r tn e r s  c h o o s e  
a c t io n s  i n  t h e  
f i r s t - s ta g e  g a m e

S o m e  p a r tn e r s h ip s  
a r e  e x o g e n o u s ly  
d i s s o lv e d

P a r tn e r s  d e c id e  
w h e th e r  to  s t a y  i n  
n o n - d i s s o lv e d  
p a r tn e r s h ip s

A g e n t s  f r o m  
d i s s o lv e d  
p a r tn e r s h ip s  e n t e r  
t h e  p o o l  o f  
u n m a t c h e d  a g e n t s

Figure 1: Time Line

Table 1: Payoff matrix of an O-type

We assume 0 < a < b, 0 < l, and b− l < 2a. The first two restrictions say that this game, when

played by two O-types, is a prisoners’ dilemma game. The third restriction says that the action

profile (C,C) maximizes the sum of players’ payoffs when the game is played between two O-types.

The objective of all players is to maximize the discounted sum of payoffs. The discount factor is

common to all players and is denoted by δ, where δ ∈ (0, 1).

We assume that monitoring is perfect inside each partnership: A player observes his partner’s

actions - beginning with the date at which this partnership is commenced. However, when a player

is matched to a new partner he knows nothing about the partner’s past history of actions with

other partners. That is, there are no information flows across matches. Also, a player’s type is

private information. However, players make statistical inferences about types (of other players),

based on the actions they observe. In particular, a player observed to choose C is known not to be

a B-type, and a player observed to choose D is known not to be a G-type. Finally, we assume that

the configuration of types, (α, β, γ), is common knowledge.

Steady-state equilibria We focus in this paper on a particular class of equilibria, delineated by

three properties. The first property is “fresh start”: a player’s behavior in a new relationship is
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independent of his past history. The second property is “zero tolerance”: when a player encounters

D, he immediately separates from his partner. The third property is “quick familiarity”: a player’s

behavior within a relationship depends only on whether the partnership has just started, or whether

it is an ongoing relationship. There are other equilibria that do not satisfy one or more of these

properties, and we later comment on them. Our focus in this paper, however, is on this class

of equilibria because the properties that define them seem to represent realistic features of social

interaction, and the model analysis under these properties is quite tractable.1 Given this, our aim is

to provide a complete characterization of equilibria that satisfy these three properties. To simplify

the analysis, we further assume that the distribution of types in each phase (defined more precisely

below) has settled to a steady-state at t = 0. For brevity we call this class of equilibria steady-state

equilibria.

Objective of Analysis Having delineated the game and the class of equilibria we focus on,

we proceed to analyze them. Specifically, for any configuration of parameter values (i.e., some

(a, b, l, δ, ρ, α, β, γ)-tuple) we determine whether an equilibrium exists, what type of behavior it

manifests, and whether it is unique. To this end, we note that some aspects of agents’ behavior

are already “hard-wired” into our setting. In particular, G and B-types are hard-wired to play

C and D, respectively, in the prisoners’ dilemma game. In addition, we already specified that

all player types separate in the stay-or-separate game if they encounter D (and this behavior is

optimal because it gives them a chance to interact with players who play C, which generates higher

payoffs).2 Given this, the only aspect of behavior that remains to be endogenously determined is

the behavior of O-types in the prisoners’ dilemma game.

It is convenient to analyze and discuss equilibria, using the following terminology: If two partners

are about to interact for the first time, we say they are in the stranger phase, denoted S, whereas

if they have previously interacted, we say they are in the friendly phase, denoted F .3 Also, we call

a mapping from phases to actions (the object to be determined in equilibrium) a behavior pattern.

1Note that the equilibria we derive are such that if all agents adopt strategies that satisfy these properties, the

remaining agent’s unconstrained best response is to adopt a strategy that satisfies them as well.
2G-types always choose C, yet they separate if they encounter D, because they get a higher payoff if they play

against an opponent that chooses C as opposed to an opponent that chooses D. In separating, therefore, G-types

are seeking future partners that bestow higher payoffs on them, which is driven by discounted payoff maximization.
3Terminology borrowed from Ghosh and Ray (1996).
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3 The Good Equilibrium

In this section we analyze a pure-strategy equilibrium, referred to as the good equilibrium, in which

the behavior pattern of O-types is to play C in both phase S and phase F . That is, O-types behave

exactly like G-types.

Steady State This behavior pattern, along with the zero tolerance property, induce a steady-

state over the measure of agents in phase S, and its composition. To determine this steady-state,

we note that all B-types are always in phase S. In addition, the fact that agents are sometimes

exogenously separated implies that a certain measure of G and O-types, henceforth called non-bad

types, are also in phase S. We let x ∈ [0, 1−β] be the measure of non-bad types in phase S. Then,

the overall measure of agents in phase S is x+ β, and the overall measure of agents in phase F is

1− x− β . In the steady-state of the good equilibrium x satisfies

(1− ρ)(1− x− β) = xρ
x

x+ β
. (1)

To understand (1), note that its left hand side is the measure of agents flowing from phase F

into phase S each period. This “inflow” is simply the probability of exogenous dissolutions, 1− ρ,

times the measure of agents in phase F , 1 − x − β. The right hand side of (1) is the measure of

agents flowing from phase S to phase F each period. This “outflow” is the product of x, which is

the measure of agents that could possibly depart phase S, the probability that one of these agents

is matched with another non-bad agent, which is x
x+β , and the probability, ρ, that such a match is

not exogenously dissolved after the first interaction. In a steady-state the inflow equals the outflow,

which is satisfied for any x ∈ [0, 1−β] that solves (1). There is exactly one such x which, as stated

earlier, is the measure of non-bad types in phase S.

As (1) shows, this x depends on β and ρ, but, since the ensuing analysis focuses mostly on the

role of β, we consider x as a function of β only, writing it as x = X(β). Given X(β) and β we define

the variable y = Y (β) ≡ β/X(β), which reflects the composition of bad versus non-bad types in

phase S. Given the behavior pattern we focus on, y also reflects the composition of behavior in

phase S, i.e., the ratio of the measure of agents choosing D to the measure of those choosing C.

We next state a simple and useful property of Y (β).

Lemma 1 Y (β) is increasing in β, ranging from zero to infinity, as β ranges from 0 to 1.
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Proof. See the Appendix.

Value functions Given the behavior pattern prescribed by the good equilibrium and given the

steady-state corresponding to it, we define beginning-of-period value functions for O-types. Let

VF and VS be the discounted payoffs in phases F and S, respectively. Let V d
F be the discounted

payoff when in phase F , deviating to D, and returning to prescribed behavior (i.e., C) thereafter,

a one-shot deviation. And let V d
S be the discounted payoff to a one-shot deviation when in phase

S. The equations defining these values are:

VF = a+ δ[ρVF + (1− ρ)VS ] (2)

VS =
x

x+ β
{a+ δ[ρVF + (1− ρ)VS]}+

β

x+ β
(−l + δVS) (3)

V d
F = b+ δVS (4)

V d
S =

x

x+ β
(b+ δVS) +

β

x+ β
(0 + δVS). (5)

To understand how these equations are formed, consider the RHS of (2), which is the discounted

payoff of an O-type in state F . This payoff is the sum of two terms: The period payoff a (all agents

in phase F are non-bad types, play C and, consequently, receive a), and the continuation payoff:

With probability ρ the partnership continues and an O-type gets δVF ; with probability 1− ρ the

partnership dissolves and an O-type gets δVS . The remaining three equations are based on a similar

logic.

Equations (2) and (3) represent a system of two linear equations in two unknowns, VF and VS ,

so one can explicitly solve them. Doing so we get

VF =
(x+ β − δβ)a− βδ(1− ρ)l

(1− δ)[x+ β(1− δρ)]
(6)

VS =
xa− β(1− δρ)l

(1− δ)[x+ β(1− δρ)]
. (7)

Incentive Constraints Above we considered the “mechanics” of the good equilibrium, comput-

ing the steady-state, and O-types’ discounted payoffs - assuming O-types follow the hypothesized

behavior pattern. Now we determine the conditions under which O-types have the incentive to

carry out this behavior pattern, i.e., the conditions under which this behavior pattern is part of an

equilibrium. For that, the following two incentive constraints must be satisfied:
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No deviation in phase F : 0 ≤ VF − V d
F . (8)

No deviation in phase S : 0 ≤ VS − V d
S . (9)

Analysis of these incentive constraints gives the first result.

Lemma 2 (i) (8) is redundant if (9) is satisfied. (ii) The good equilibrium exists if, and only if,

b− a ≤ β

x+ β
δρb− β

x
(1− δρ)l. (10)

Proof. (i) From (4) and (5), we have

V d
S =

x

x+ β
V d
F +

β

x+ β
δVS .

Subtracting this last equation from (3), we get

0 ≤ VS − V d
S ⇔ 0 ≤ x

x+ β
(VF − V d

F )−
β

x+ β
l.

Since 0 < l, this last equivalency shows that (9) implies (8).

(ii) Subtracting (5) from (3), we get

VS − V d
S =

x

x+ β
(−b+ VF − δVS)−

β

x+ β
l.

From (2) we have

VF − δVS = a+ δρ(VF − VS).

Substituting the last equation into the one just before it, we get

0 ≤ VS − V d
S ⇔

b− a

δρ
+

βl

xδρ
≤ VF − VS.

Solving for VF − VS from (6) and (7) and substituting the result into the last inequality, we obtain

(10).

In words, Lemma 2 tells us two things. The first thing is that it is “safer” to play C in phase F

than in phase S. Indeed, in phase F an O-type is sure to encounter C from her partner, resulting

in a payoff of a, while in phase S she may encounter D, resulting in a payoff of −l. Therefore, if it

pays to play C in phase S, it certainly pays to play C in phase F . The second thing that Lemma
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2 gives is a reduced-form expression, (10), telling us when O-types optimally choose C, so that the

good equilibrium exists.

To elaborate on what (10) entails, let us note that the choice between C and D in phase S is

governed by three forces. First, there is the long-term gain of switching from phase S to phase F ,

which is VF − VS . Second, there is the probability that this gain is realized, x
x+β . Third, there

is the short-term cost from playing C instead of D: An opportunist gets −l instead of 0 when

paired with a bad type, and she gets a instead of b when paired with a non-bad type. Condition

(10) summarizes the interplay between these three forces, giving us a reduced-form criterion to

determine whether the good equilibrium exists.

Existence of the good equilibrium Inspection of condition (10) reveals that it depends on all

parameter values. As stated earlier, however, we wish to isolate the role that the heterogeneity of

types plays, i.e., the role that (α, β, γ) plays as regards the existence of the good equilibrium. To

this end, we use the definition y ≡ β
x to re-write (10) as

b− a ≤ y

1 + y
δρb− y(1− δρ)l ≡ f(y). (11)

We give the RHS of (11) a name, f(y), since it will be used frequently in the analysis. Figure 2

shows one possibility for what the graph of f looks like.

0

b -a

yy y

f

Figure 2: The graph of f

Inspecting (11) we see that its LHS, b−a, is positive and independent of y. On the other hand,

its RHS is strictly concave in y, goes to 0 as y goes to 0, and goes to −∞ as y goes to ∞ (see
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Figure 2). Also, f is uniquely maximized at

y∗ =

s
δρb

(1− δρ)l
− 1.

Consequently, for the good equilibrium to exist, two conditions must hold: 0 < y∗, and b− a ≤

f(y∗). The first condition is necessary because, if y∗ ≤ 0, then f is strictly decreasing and f(y) ≤ 0

for all 0 ≤ y, so obviously there is no 0 ≤ y for which 0 < b − a ≤ f(y). The second condition is

necessary because, if the inequality were reversed, f(y∗) < b− a, there would again not be a y for

which b− a ≤ f(y). After some manipulations, we eliminate the endogenous variable y, and write

the two conditions in terms of model primitives only:

(1− δρ)l ≤ δρb and 4δρb(1− δρ)l ≤ [a+ (1− δρ)(l − b)]2. (12)

This analysis shows that (12) is a necessary condition for the existence of the good equilibrium.

Condition (12) is also sufficient. Indeed, if (12) is satisfied, then, as shown in Figure 2, there is

an interval of y’s (a single point “interval” is possible), call it [y, y], where (11) holds and, thus,

where the good equilibrium exists. y and y are the small and the large roots of the equation

f(y) = b−a, which are independent of (α, β, γ) (because f is). Since, as per Lemma 1, y is strictly

increasing in β, y ∈ [y, y] is equivalent to β ∈ [β, β], where β is defined by y = Y (β), and β is

defined by y = Y (β). Moreover, [β, β] does not include 0 or 1. This is because when β = 0, y = 0,

and f(0) = 0. And, when β = 1, y = ∞, and f(∞) = −∞. Either way, (11) does not hold.

Therefore, the interval of β’s that satisfy (11) is interior to (0, 1). Finally, observe that criterion

(11) is independent of γ, the proportion of good types.

We have now shown how the existence of the good equilibrium depends on the configuration of

types. Summarizing our analysis, we have the following result.

Proposition 1 Hold all parameter values other than (α, β, γ) constant. Then: (i) The existence

of the good equilibrium does not hinge on γ, the measure of good types. (ii) If (12) is not satisfied,

then there is no β for which the good equilibrium exists. (iii) If (12) is satisfied, then the good

equilibrium exists if, and only if, β ∈ [β, β], where 0 < β < β < 1, β and β being the roots of

f(Y (β)) = b− a.

The main insight from Proposition 1 is that for the good equilibrium to exist the measure, β,

of B-types must not be too small or too large. If β is too small, say β = 0, the fraction of B-types

13



in phase S is zero, which implies that behavior (under the hypothesized equilibrium strategy) in

phase S is the same as behavior in phase F . But, then, there is no punishment for playing D,

and no reward for playing C. If an O-type chooses D in phase F , he goes into phase S, where

he encounters the same behavior he encountered in phase F , and receives the same payoff, which

means he is not being punished. Conversely, if an O-type chooses C in phase S he goes into phase

F , where he again encounters the same behavior and receives the same payoff, which means he is

not being rewarded. Therefore, if β = 0, VF = VS and the good equilibrium unravels. At the other

end of the spectrum, if the measure of B-types is too large, the probability of being matched with

a non-bad type in phase S, x
x+β , is next to nil, which destroys the incentive to play C, and the

good equilibrium unravels again. Only if the proportion of B-types is in some intermediate range,

not too small to reduce the effectiveness of punishment in phase F , and not too large to discourage

cooperation in phase S, does the good equilibrium exist.

Another way to think about the structure of incentives in the good equilibrium is as follows. The

proportion of bad types in the community as a whole is β. However, as a result of the equilibrium

play, the proportion of bad types in phase S, β
β+x , is bigger than β (β < β

β+x because β + x < 1 ).

Intuitively, phase S is “contaminated” by a disproportionately large measure of bad types because

bad types never leave this phase. But this induces O-types to choose C, because choosing D means

going to (or staying at) phase S, interacting with bad types with a non-negligible probability, and

receiving low payoffs. Without (a critical mass of) bad types this threat does not exist, and neither

does the good equilibrium.

Note also that the measure of G-types has no bearing on the existence of the good equilibrium.

The reason for this is that the incentive of an O-type to play C hinges only on the composition

of behavior in phase S. But, since G-types and O-types behave alike in the good equilibrium, the

breakdown between the measures of these types makes no difference. Only the overall measure of

non-B-types (or, equivalently, the measure of B-types4) makes a difference.

Observe, finally, that the good equilibrium may not exist at all - no matter what β is. This

possibility is due to the values that other parameters assume. Most notably, if b−a is large enough,

so is the temptation to play D, which destroys the good equilibrium.

4Recall that the measures of B and non-B types add up to 1, so any condition on the measure of non-B types is

equivalent to a condition on the measure of B-types.
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Stability Having commented on the structure of incentives at the good equilibrium, let us now

comment on its stability, and on how the good equilibrium compares in this regard to the contagious

equilibrium à la Kandori (1992). (The contagious equilibrium is one where a player defects forever,

following a defection by himself or by one of his partners).

To this point we assumed that monitoring is perfect within a relationship. Consider now the

possibility of observational errors: A player observes her partner to play D (C) with probability

ε > 0, even though the partner actually chose C (D). Then, no matter how small ε is, an obser-

vational error eventually occurs, i.e., some player is erroneously observed to play D. Once that

happens, a contagious process is set in motion under the contagious equilibrium, whereby more and

more players defect, so cooperation in the community breaks down. By contrast, consider the good

equilibrium in our setting. This equilibrium continues to exist under the presence of observational

errors - for conditions analogous to (12), and as long as ε is small enough (one has to appropriately

modify the steady-state condition and the incentive constraints to account for the observational

errors). More importantly, cooperation does not break down in this equilibrium. Intuitively, in the

good equilibrium an agent that mis-observes his partner’s action separates from the partner, and

both get a fresh start in a new relationship next period. In this new relationship, each partner

ignores the past and expects (rationally) that playing C bears a chance of being rewarded in the

future. Thus, the effect of an observational error is local; it does not trigger the spread of uncoop-

erative behavior, and has no effect on global behavior in the community. This difference between

the good equilibrium and the contagious equilibrium comes from the fact that we endogenize sep-

arations and re-start of relationships, which is exactly what ‘contains’ the impact of observational

errors.

Let us mention at this juncture that Ellison (1994) proposed - within the context of the con-

tagious equilibrium - a different way to contain the spread of defection. In Ellison’s framework

the contagious equilibrium is made resilient if players have access to a public randomization de-

vice. Such device allows the severity of punishments to be adjusted and coordinated based on

the outcome of a device that everyone in the community can perfectly observe. By contrast, such

device is not necessary in our framework. Instead, the threat of terminating a relationship and the

consequent interaction with bad types are sufficient to enforce cooperative behavior.

15



Comparative Statistics Since Proposition 1 provides a closed-form criterion (namely, (12)) -

written in terms of model primitives - to determine when the good equilibrium exists, one can

readily use it to derive comparative statics results. One comparative statics result, which is just

a re-statement of Proposition 1, is that the effect of a change in β on the existence of the good

equilibrium is non-monotonic: When β is small the effect is positive (an increase in β widens the

set of other parameter values under which the good equilibrium exists), but when β is large the

effect is negative.

Now we perform a similar comparative statics exercise on other parameters of the model. That

is, we show how changes in a, b, l, δ and ρ affect the existence of a good equilibrium. To this end we

use condition (10) which determines a region in parameter space where a good equilibrium exists.

By studying this condition one determines whether an increase in the value of some parameter

expands or contracts this region. Let us re-write condition (10) as follows

F (a, b, l, δ, ρ) ≡ a− (1− β

x+ β
δρ)b− β

x
(1− δρ)l ≥ 0. (13)

Then if the derivative of F with respect to some variable, say a, is positive a higher value of this

variable expands the region where the good equilibrium exists; otherwise an increase in the value

of this variable contracts this region. After some calculations, the result of this exercise is

1. Fa > 0.

2. Fb < 0.

3. Fl < 0.

4. Fδ > 0.

These results are in conformity with the theory of repeated games. For example a higher discount

factor makes punishment more severe and thereby expands the region where a good equilibrium

exists. Similar interpretations apply to the effect of the component game parameters, a, b and l.

However, the effect of the persistence probability, ρ, is not so conventional, and is, in fact,

non-monotonic. In one sense, an increase in ρ, “should be” equivalent to an increase in δ because

it prolongs the longevity of relationships and, as such, should always have a positive effect. What

we find, instead (under a mild extra restriction), is that the effect is non-monotonic. We first state

the result, then explain the intuition.
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Proposition 2 Assume (1− δ)(a+ l) < b < a+l
1−δ ,

5 and a good equilibrium exists for some value of

ρ. Then, there exist a ρ and a ρ ∈ (0, 1), where ρ < ρ, so that the good equilibrium exists if, and

only if, ρ ∈ [ρ, ρ].

Proof. See the Appendix.

The intuition is that an increase in ρ has two effects. The first effect is what we mentioned

earlier: An increase in ρ prolongs the expected amount of time spent in phase F and, thus, makes

it more rewarding to play C in that phase. The second effect is that an increase in ρ reduces the

measure of non-bad types in phase S. As a result, an O-type is less likely to be matched with a

non-bad type in phase S, which makes it less rewarding to play C in that phase. These two effects

work in opposite directions. It turns out that when ρ is small the first effect dominates, whereas

when ρ is large the second effect dominates. Thus, in a community setting, a small possibility of

exogenous turnover (1−ρ) may help, rather than hinder, cooperation. Another way to look at this

is that turnover introduces “fluidity” into the system,6 enabling movements from phase S to phase

F and, thereby, generating incentives to play C in phase S.

Other comparative statics results, namely, with respect to parameters of the constituent game,

a, b and l, are derived straightforwardly and conform with expected intuitions; consequently, we do

not spell them out here (they may be found in the working paper version).

4 The Bad Equilibrium

In this and the next section we expand our results to other steady-state equilibria. Our analysis

here expands the analysis in Section 3 in the sense that we explore the structure of incentives at

these other equilibria, and pin down the conditions under which they exist. More broadly, our

analysis makes three points. The first point is that good types play a “dual” role vis-à-vis bad

types: While an intermediate measure of bad types ensures that the good equilibrium exists, an

intermediate measure of good types ensures that the bad equilibrium (namely, the equilibrium in

which all O-types play D) does not exist. The second point is that when the good equilibrium

5This assumption is satisfied if δ is large enough or if b = a+ l.
6When ρ = 1 agents are “stuck” in phase S, so there is no long-term reward for playing C. This can be seen from

equation (1), which shows that x = 0, if ρ = 1.
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fails to exist for some configuration of parameter values, another steady-state equilibrium may

exist. More than that, we show that some steady-state equilibrium exists for any configuration of

parameter values. The third point is that for some configurations of parameter values, there may

exist more than one steady-state equilibrium.

Steady state To start with, we study a pure-strategy equilibrium, that we call the bad equilib-

rium, in which O-types play D in phase S. Given zero tolerance, B-types and O-types, henceforth

called non-good types, are always in phase S. On top of those there is a certain measure of G-types

in phase S - because of exogenous dissolutions. Let x ∈ [0, γ] be the measure of G-types in phase

S. Then, the steady-state condition corresponding to the bad equilibrium is

(1− ρ)(γ − x) = xρ
x

x+ 1− γ
. (14)

Analogous to (1), the solution to (14) determines x as a function of γ, which we continue to call

X(γ). Likewise, we let the ratio of non-good types to good type in phase S be y = Y (γ) ≡ 1−γ
X(γ) ,

which, as before, is also the ratio of the measure of agents choosing D to the measure of those

choosing C in phase S. Similar to the good equilibrium, one shows that Y is strictly decreasing in

γ, approaches 0 as γ goes to 1, and approaches ∞ as γ goes to 0.

Value Functions and Incentive Constraints Since the hypothesized behavior pattern of O-

types here is such that they play D in phase S, they are never in phase F . Nevertheless, to check

whether this strategy is part of an equilibrium, the choice in phase F has to be specified. Obviously,

there are two possible specifications: either play D, or play C in phase F . We analyze these two

possibilities in turn.

• O-types play D in phase F

We first define value functions. The notation is similar to that of the previous section, except

that the hypothesized behavior pattern in the bad equilibrium is different. This generates a different

steady-state and different period payoffs. Making the requisite adjustments, the new value functions

are:
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VF = b+ δVS (15)

VS =
x

x+ 1− γ
b+ δVS (16)

V d
F = a+ δ[ρVF + (1− ρ)VS ] (17)

V d
S =

x

x+ 1− γ
{a+ δ[ρVF + (1− ρ)VS ]}+

1− γ

x+ 1− γ
(−l + δVS). (18)

Given these value functions, the incentive constraints are:

No deviation in phase F : 0 ≤ VF − V d
F . (19)

No deviation in phase S : 0 ≤ VS − V d
S . (20)

Analyzing these constraints, we have the following result.

Lemma 3 (i) (20) is redundant if (19) is satisfied. (ii) A bad equilibrium in which O-types defect

in phase F exists if, and only if,
1− γ

x+ 1− γ
δρb ≤ b− a. (21)

Proof. See the Appendix.

Although Lemma 3 is the analogue of Lemma 2, two differences should be noted. First, the

binding incentive constraint here is in phase F , not in phase S. Second, b− a has to be bigger, not

smaller, than some threshold value. This is due to the fact that in the bad equilibrium opportunists

are supposed to defect, not cooperate.

• O-types play C in phase F

We carry out similar analysis as in the last case. For brevity, we just report the end result (a

proof is found in the appendix).

Lemma 4 A bad equilibrium in which O-types play C in phase F exists if, and only if,

1− γ

x+ 1− γ
δρb− 1− γ

x
(1− δρ)l ≤ b− a ≤ 1− γ

x+ 1− γ
δb. (22)
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Unlike in Lemmas 2 and 3, no deviation in phase F does not imply no deviation in phase S,

and no deviation in phase S does not imply no deviation in phase F . That is why two inequalities

(rather than one) have to be satisfied in condition (22).

Combining Lemma 3 and Lemma 4, we see that a bad equilibrium exists if, and only if,

1− γ

x+ 1− γ
δρb− 1− γ

x
(1− δρ)l ≤ b− a. (23)

Existence of the bad equilibrium As we did with the good equilibrium, we transform condition

(23) to a condition that involves only the primitive data. To this end we re-write the RHS of (23)

in terms of y, giving us:
y

1 + y
δρb− y(1− δρ)l ≤ b− a. (24)

As can be readily seen, (24) is similar to (11), with 1− γ replacing β and reversing the inequality.

Thus, following the analysis leading up to Proposition 1, we derive the following result.

Proposition 3 Hold all parameter values other than (α, β, γ) constant. Then: (i) The existence

of the bad equilibrium does not hinge on β, the proportion of bad types. (ii) If (12) is not satisfied,

then the bad equilibrium exists for any γ. (iii) If (12) is satisfied, then the bad equilibrium exists

if, and only if, γ ∈ [0, γ]∪ [γ, 1], where γ and γ are found by solving f(Y (γ)) = b− a, and are such

that 0 < γ < γ < 1.

Although Proposition 3 is analogous to Proposition 1, one feature of it merits discussion and

comparison to the traditional theory of repeated games. Namely, Proposition 3 shows that the bad

equilibrium does not exist for some parameter configurations. This contrasts with the theory of

repeated games, where an indefinite repetition of a Nash equilibrium (the bad equilibrium in our

context) is the simplest equilibrium to construct. This is still true in our context if we consider

a community setting with good types, but without endogenously formed long-term relationships.

Therefore, Proposition 3 shows that with endogenously formed relationships, a new force comes

into play: An opportunist may cooperate in phase S in the hope of hooking up with a good type,

entering into phase F , and enjoying high future payoffs. Therefore, having good types and the

possibility of forming long-term relationships may destroy the bad equilibrium. Proposition 3 pins

down the set of circumstances under which this force is sufficiently strong that the bad equilibrium

does not exist.
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To be more specific about this set of circumstances, Proposition 3 shows that a bad equilibrium

does not exist if γ is in some intermediate range. If γ is small, all opportunists playing D in

phase S is an equilibrium because the probability of meeting a good type is too small. If γ is big,

all opportunists playing D in phase S is again an equilibrium, since the difference between the

continuation payoffs in phase F and phase S is too small. Thus, in both cases the bad equilibrium

exists. However, if γ is in some intermediate range, opportunists in phase S have a reasonable chance

of meeting a good type, and opportunists in phase F enjoy a significantly higher continuation payoff

than in phase S, so they cooperate. Thus, the bad equilibrium does not exist when γ is in this

range.

A convenient feature of Propositions 1 and 3 that we are going to exploit later is that there is a

duality between the existence of the good equilibrium and the non-existence of the bad equilibrium.

The incentive of an opportunist to cooperate in phase S (which is what it means for the good

equilibrium to exist, or for the bad equilibrium not to exist) depends on the proportion of agents

cooperating in that phase. Since this proportion is strictly decreasing in β in the good equilibrium

and strictly increasing in γ in the bad equilibrium, there is a duality between β and γ: If the good

equilibrium exists for some β, then the bad equilibrium does not exist for γ = 1 − β, and if the

bad equilibrium does not exist for some γ, then the good equilibrium exists for β = 1 − γ. One

implication of this property is that β = 1− γ, and β = 1− γ.7

5 The Mixed Strategy Equilibrium

In this section we study mixed-strategy equilibria in which the behavior pattern of O-types is to

mix instead of play a pure strategy (which is what they do in the good and the bad equilibria).

Since opportunists may mix in either or both phases, there are possibly 5 types of mixed strategy

equilibria, which are listed below according O-types’ behavior pattern.

1. Randomize in phase S, play C in phase F .

2. Play D in phase S, randomize in phase F .

3. Play C in phase S, randomize in phase F .

7Another feature of this duality is that the presence of bad types gives rise to the good equilibrium, while the

presence of good types does not. Analogously, the presence of good types eliminates the bad equilibrium, while the

presence of bad types does not.
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4. Randomize in phase S, play D in phase F .

5. Randomize in phase S, randomize in phase F .

The following lemma shows that some types of mixed strategy equilibria are not possible.

Lemma 5 For any configuration of parameter values, an equilibrium of type 1 or 2 might exist but

equilibria of type 3, 4 or 5 cannot exist.

Proof. See the Appendix.

The intuition for Lemma 5 is related to the result of Lemma 2: if an O-type has a preference for

C over D in phase S, then he has a stronger preference for C in phase F . Or, technically stated,

equilibrium behavior patterns are monotonically increasing. This rules out equilibria in which the

behavior pattern is decreasing, which is the case with equilibria of type 3, 4 and 5. Equilibria of type

2 are payoff- and equilibrium-behavior equivalent to the bad equilibrium that is already analyzed

in Section 4. Consequently from this point on we focus on equilibria of type 1, investigating the

circumstances under which it gives rise to an equilibrium. As a matter of notation, we let λ be

O-types’ probability of playing D in phase S and, as a matter of focus, we analyze completely

mixed-strategy equilibria, i.e., where λ ∈ (0, 1).

Steady state and value functions In a mixed-strategy equilibrium good types, bad types and

opportunistic types all behave differently. This requires the introduction of additional notation.

Let xα be the measure of O-types, and let xγ be the measure G-types in phase S. The steady-state

of a mixed-strategy equilibrium is characterized by a pair (xα, xγ) ∈ [0, α]× [0, γ], which satisfies

(1− ρ)(α− xα) = (1− λ)xαρ
(1− λ)xα + xγ
xα + xγ + β

(25)

(1− ρ)(γ − xγ) = xγρ
(1− λ)xα + xγ
xα + xγ + β

. (26)

Let z ≡ xα + xγ be the measure of non-bad types in phase S, and x ≡ (1 − λ)xα + xγ be the

measure of non-bad types that play C in phase S. Then, β + z is the overall measure of types

in phase S, and β+z−x
x is the ratio of the measure of agents playing D to the measure of agents

playing C in phase S.8

8β+z is the analogue of β+x in the good equilibrium and 1−γ+x in the bad equilibrium; β+z−x
x

is the analogue

of β
x
in the good equilibrium and 1−γ

x
in the bad equilibrium.
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The value functions of O-types, defined under this mixed behavior pattern, are:

VF = a+ δ[ρVF + (1− ρ)V C
S ] (27)

V C
S =

x

z + β
VF +

z + β − x

z + β
(−l + δV C

S ) (28)

V d
F = b+ δV C

S

V D
S =

x

z + β
(b+ δV C

S ) +
z + β − x

z + β
(0 + δV C

S ),

where the superscripts (C or D) on VS refer now to (candidate) equilibrium behavior, rather than

to deviation from such behavior, while the superscript (d) on VF continues to refer to deviation.

Incentive constraints This mixed behavior pattern is an equilibrium if, and only if, analogous

incentive constraints are satisfied. After some manipulations, we simplify these constraints as

follows.

No-deviation in phase F : 0 ≤ VF − V d
F ⇔

b− a

δρ
≤ VF − VS. (29)

Indifference in phase S: V D
S = V C

S ⇔ VF − VS =
b− a

δρ
+
(z + β − x)l

δρx
. (30)

Since the RHS of (30) exceeds the RHS of (29), it suffices to require (30), which we re-write - after

solving for VF and VS - as:
xa− (1− δρ)(z + β − x)l

(z + β)(1− δρ) + δρx
=

xb

z + β
. (31)

As before, letting y ≡ β+z−x
x , equation (31) is re-written as

b− a =
y

1 + y
δρb− y(1− δρ)l ≡ f(y). (32)

Existence of mixed-strategy equilibria We note that (32) is the same as (11), except that an

equality is in place of the inequality. This narrows down the set of y’s that can be associated with

a mixed-strategy equilibrium to at most two values, y and y, which are the small and the large

roots of (32). From the discussion in Section 3 we know that if (12) is not satisfied, there are no

roots to equation (32) and, hence, no mixed-strategy equilibria. Therefore, to proceed, we assume

that (12) is satisfied.

Analogous to previous notation, the dependence of y on λ is denoted as y = Y (λ). Observe now

that when λ = 0, y = β
xG
, where xG satisfies the steady-state condition of the good equilibrium
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(under β), (1), and that when λ = 1, y = 1−γ
xB
, where xB satisfies the steady-state condition of

the bad equilibrium, (14). Furthermore, straightforward calculations show that for any (α, β, γ),
β
xG

< 1−γ
xB
, and that Y (λ) is strictly increasing in λ.9 Therefore, as λ varies over [0, 1], the value of

y varies over [ βxG ,
1−γ
xB
]. Combining this with the fact that the y associated with any mixed strategy

equilibrium is either y and y, we conclude that a mixed-strategy equilibrium exists if, and only if,

at least one of y or y is in ( β
xG

, 1−γxB
), and that a mixed-strategy equilibrium is unique if exactly one

of y or y is in ( β
xG

, 1−γxB
).

To be more precise about the set of circumstances under which a mixed strategy equilibrium

exists, consider the condition β
xG

< y < 1−γ
xB
. The LHS of this condition is equivalent to β < β

and the RHS is equivalent to γ < γ; this follows from the monotonicity of β
xG
in β, and 1−γ

xB
in γ,

and from the definitions of β and γ. If this condition is satisfied, i.e., if (β, γ) ∈ [0, β) × [0, γ), a

λ ∈ (0, 1) can be found which gives rise to a mixed-strategy equilibrium in which the ratio of the

measures of agents choosing D to agents choosing C is y. Likewise, the condition β
xG

< y < 1−γ
xB

is

equivalent to β < β and γ < γ, and when this condition is satisfied, a λ ∈ (0, 1) can be found which

gives rise to a mixed-strategy in which the ratio of the measures of agents choosing D to agents

choosing C is y. This gives us a complete characterization of when mixed-strategy equilibria exist

as a function of underlying parameters. We summarize this analysis as follows.

Proposition 4 Hold all parameter values other than (α, β, γ) constant. Then, if (12) is violated,

there are no mixed-strategy equilibria. If (12) holds, then: (i) A mixed-strategy equilibrium exists

if, and only if, there is a λ ∈ (0, 1) so that (25), (26) and (32) are satisfied. (ii) This holds if, and

only if, (β, γ) ∈ [0, β) × [0, γ) ∪ [0, β) × [0, γ). (iii) A mixed-strategy equilibrium is unique if, and

only if, (β, γ) ∈ [0, β) × [0, γ) or (β, γ) ∈ [0, β) × [0, γ), but not both. (iv) In any mixed-strategy

equilibrium the ratio of the measure of agents playing D to the measure of agents playing C in

phase S is either y or y, where y and y are the small and the large roots of f(y) = b− a.

Having shown the set of circumstances under which a mixed-strategy equilibrium can be con-

structed and how to compute it, let us comment now on how this mixed-strategy equilibrium relates

to the procedure for constructing mixed-strategy equilibria in general, and how it relates to the

pure-strategy equilibria we studied in Sections 3 and 4. To be concrete we make these comments
9This is parallel to the property that y is increasing in β for the good equilibrium, and in 1 − γ for the bad

equilibrium.
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for parameter configurations in the domain (β, γ) ∈ [0, β) × (γ, γ). We know - from Propositions

1 and 3 - that a pure-strategy equilibrium does not exist for such parameter values, and we also

know - from Proposition 4 - that a mixed strategy equilibrium does.

1. Let (β, γ) ∈ [0, β) × (γ, γ). Then, if all opportunists play C (which is what they do in the

good equilibrium), y < y (because β < β), which implies that an opportunist is better off playing

D. On the other hand, if all opportunists play D, y < y < y (because γ < γ < γ), which implies

that an opportunist is better off playing C. As usual, the existence of such “cycle” suggests that

a mixed strategy equilibrium may be found by letting some opportunists play C and others play

D, or, more precisely, by finding an intermediate value of λ ∈ (0, 1), so that when a measure λ of

opportunists play D and a measure 1 − λ play C, each opportunist’s choice is a best response to

others’ choices.

2. One way to think about the mixed strategy equilibrium is that it endogenizes the measure of

bad types. Indeed, there is a measure β of bad types to begin with, but the measure of agents that

playD (which is the behavior manifested by bad types) is actually β, where β < β = β+z−x. This,

in effect, means that the measure of bad types is endogenously increased via uncooperative behavior

of opportunists. Alternatively, one may think of the mixed-strategy equilibrium as endogenously

increasing the measure of good types from γ to γ.

3. Once the measures of behavioral types is endogenously increased in this way, we can think of

the mixed strategy equilibrium as replicating the good equilibrium in a fictional community with

β bad types or, equivalently, as replicating the bad equilibrium in a fictional community with γ

good types. Either way, the measure of agents in phase S is β + z and the ratio of the measure

of agents playing D to the measure of agents playing C in phase S is β+z−x
x =

β

X(β) . These two

variables, β + z and β+z−x
x , are independent of the particular value that (β, γ) assumes, as long as

(β, γ) ∈ [0, β) × (γ, γ). Therefore, if we define aggregate behavior as this pair of variables, we see

that aggregate behavior in the community, at this mixed-strategy equilibrium, is the same for all

(β, γ) ∈ [0, β)× (γ, γ).

Likewise, mixed-strategy equilibria over other regions in the parameter space are equivalent to

pure-strategy equilibria (good or bad) in fictional communities with β or β bad types, or γ or γ

good types. As stated earlier, what mixed strategies do is to (endogenously) increase the measure

of bad types to β or β and the measure of good types to γ or γ, enabling thereby the construction
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of a pure-strategy equilibrium. This trick works whenever there are sufficiently many opportunists

to increase the measure of behavioral types to the requisite critical values. Obviously, this trick

does not work to decrease the measures of bad or good types (and it, obviously, does not work to

transform the behavior of behavioral types).

6 Summary of Steady-State Equilibria and Discussion of Other

Equilibria

6.1 Classification of Equilibria

Propositions 1, 3, and 4 give a complete picture of how parameter configurations relate to different

types of steady-state equilibria. In particular, taking some configuration of parameter values, we

are now able to tell whether some steady-state equilibrium exists for this configuration and, if so,

whether it is unique and of which type(s) it is. To graphically illustrate the result, we fix the

values of all parameters other than (α, β, γ), and show how the equilibrium depends on (α, β, γ)

only. Since α+ β + γ = 1, it is convenient to represent the various (α, β, γ)-triples in the simplex

β + γ ≤ 1, which is shown in Figure 3.

γ

β

I

II

III

IV

V VI

β β

γ

γ

Figure 3: Classification of Equilibrium Outcomes
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To elaborate on what Figure 3 shows, let us first consider the existence of pure-strategy equilib-

ria. We know from Propositions 1 and 3 that the good equilibrium exists if and only if β ∈ [β, β],

and that the bad equilibrium exists if and only if γ /∈ (γ, γ). Also, due to duality, γ = 1 − β and

γ = 1 − β. Because of this, the simplex β + γ ≤ 1 is partitioned into six regions.10 In regions I,

IV , and V I, the bad equilibrium exists, while the good equilibrium does not exist. In region III,

the good equilibrium exists, while the bad equilibrium does not exist. In region V , both the good

and the bad equilibria exist. In region II, neither the good nor the bad equilibrium exists.

Let us turn now to mixed-strategy equilibria, determining whether they exist in each of the

above six regions, whether they are unique, and what type of behavior they manifest. Proposition

4 and the discussion following it provide complete answers to these questions and, re-stating these

answers in terms of the geometry of Figure 3, we have the following summary. There are two mixed

strategy equilibria in region IV because we can either increase β to β or increase γ to γ. On the

other hand, there are no mixed strategy equilibria in regions I, III, or V I because neither β nor γ

can be increased to bring them into a region in which a pure strategy equilibrium exists. Finally,

a unique mixed strategy equilibrium exists in region II because, although both β or γ may be

increased, the two increases lead to equivalent equilibria (corresponding either way to a ratio y of

defectors to cooperators in phase S). And, likewise, a unique mixed strategy equilibrium exists in

region V (with a ratio y of defectors to cooperators).

We summarize the existence of pure and mixed-strategy equilibria in Table 2.

Table 2: Characterization of Equilibria

Regions Pure-strategy equilibria Mixed-strategy equilibria

I Bad equilibrium None

II None One replicating y

III Good equilibrium None

IV Bad equilibrium Two

V Both equilibria One replicating y

V I Bad equilibrium None

10 In most statements below a region is understood as the interior of a region.
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In conclusion, our analysis, as summarized in Table 2, shows that a steady-state equilibrium

exists for each configuration of parameter values, and that the equilibrium is sometimes, but not

always, unique. The analysis also shows, for each of the six regions whether zero, one, or two

pure-strategy equilibria exist, and whether zero, one, or two mixed-strategy equilibria exist.

A numerical example We illustrate this characterization by means of a numerical example. Let

us specify parameter values, other than the configuration of types, as follows:

a = 4, b = 6, l = 2, δ = 0.9, ρ = 0.9.

Then, it is readily verified that (12) is satisfied for these parameter values, which, as per

Proposition 1, means that the good equilibrium exists for a range of β values. Indeed, the good

equilibrium exists if, and only if, f(Y (β)) ≤ 2 = b−a. The two roots of f(Y (β)) = 2 are β = 0.143

and β = 0.702. Therefore, the good equilibrium exists if, and only if, β ∈ [0.143, 0.702]. By duality,

the bad equilibrium does not exist if and only if γ ∈ (0.298, 0.857). Table 3 specializes Table 2 to

these numerical results, and provides examples of mixed-strategy equilibria.

Table 3: Numerical Example

Regions Parameter Values Pure equilibria Mixed equilibria

I β ∈ [0, 0.143); γ ∈ [0.857, 1] Bad None

II β ∈ [0, 0.143); γ ∈ (0.298, 0.857) None β = 0.1, γ = 0.5; λ = 0.406

III β ∈ [0.143, 0.702]; γ ∈ (0.298, 0.857) Good None

IV β ∈ [0, 0.143); γ ∈ [0, 0.298] Bad β = 0.1, γ = 0.2;

λ = 0.271, λ = 0.936

V β ∈ [0.143, 0.702]; γ ∈ [0, 0.298] Both β = γ = 0.2; λ = 0.914

V I β ∈ (0.702, 1]; γ ∈ [0, 0.298] Bad None

6.2 Other Equilibria

To show that equilibria other than the ones we have analyzed exist, we discuss now an equilibrium

that violates quick familiarity. Specifically, this equilibrium is such that any relationship starts

with a “getting acquainted” phase consisting of T periods of playing (D,D) (without endogenous

separation) and, then, if the relationship has not been exogenously dissolved, opportunists revert to
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(C,C). If such reversion occurs at T +1 (which is the analogue of the stranger phase), the partners

enter into a friendly phase and keep playing (C,C) until exogenously separated. Otherwise, i.e., if

reversion to (C,C) did not occur at T + 1, the partners endogenously separate. The incentive to

play C in the friendly phase of this equilibrium is stronger than in the good equilibrium because

the getting acquainted period is longer and, hence, the punishment for defecting is greater. On the

other hand, the reward for playing C at the stranger phase (T + 1) is smaller than in the good

equilibrium - because the average amount of time spent in the friendly phase is the same, but this is

followed by a longer stretch of time in which one’s opponents are playing D. Further, the structure

of incentives in this equilibrium is the same as in the good equilibrium, namely, the binding incentive

constraint is in the stranger phase. It follows, then, that this equilibrium exists under a smaller set

of parameter values compared to the good equilibrium. Also, players in this equilibrium spend a

larger fraction of their time playing D, so payoffs are lower, making this equilibrium is less efficient.

This equilibrium is also less efficient than the mixed-strategy equilibrium with the lower λ (over

the set of parameter values where both equilibria exist).

7 Welfare

In this section we construct measures of social welfare at certain steady-state equilibria, and show

how they relate to the configuration of types, (α, β, γ). We already know from the analysis in

Section 6 that some (α, β, γ) configurations give rise to multiple equilibria, so numerous welfare

measures may be calculated. To limit the number of cases to report and to prepare for the analysis

in the next section, we focus on two calculations. In the first calculation we fix the measure of good

types at zero, γ = 0, and compute welfare as a function of β at the best equilibrium corresponding

to this β. Then, in the second calculation, we fix the measure of bad types at zero, β = 0, and

compute welfare as a function of γ at the worst equilibrium.11 Our measure of welfare is the total

per-period payoff to the whole community at the equilibrium in question. Since the overall measure

of agents is one, this is the same as the average per-period payoff.

11These two calculations relate to our previous results that the presence of B-type can support the good equilibrium

and the presence of G-type can upset the bad equilibrium.
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Welfare as a function of β Suppose γ = 0. Then, specializing the analysis in Section 6, we

have a tripartite partition. When β < β (region IV ), three equilibria exist and the best equilibrium

is the mixed-strategy equilibrium replicating y. When β ≤ β ≤ β (region V ), two equilibria exist

and the best equilibrium is the good equilibrium. When β < β (region V I), the unique steady-state

equilibrium is the bad equilibrium.

Altogether, social welfare takes the following form.

W (β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− z − β)a+ (β + z − x) x

z+β b+ x[ x
z+βa−

β+z−x
z+β l] if β < β

(1− x− β)a+ β x
x+β b+ x[ x

x+βa−
β

x+β l] if β ≤ β ≤ β

0 if β < β

, (33)

where x in the second line comes from the solution to (1), and x and z in the first line come from

the solution to (25) and (26).

To elaborate on how (33) is arrived at, consider the middle term, which applies to the range

β ≤ β ≤ β. Then, as stated above, welfare is evaluated at the good equilibrium. Opportunists in

this equilibrium get a period payoff of a in phase F , and get either a or −l in phase S, depending

on whom they meet. Bad types get either b or 0, depending again on whom they meet. Using the

measures of agents at each phase (which come from the solution to the steady-state equation), we

take the average over these payoffs, and get the reported expression.

Analyzing equation (33) we derive the following result, which is graphically illustrated in the

left panel of Figure 4.

Lemma 6 (i) When β < β, W (β) is constant; (ii) when β ≤ β ≤ β, W (β) is strictly decreasing

and is, hence, maximized at β; (iii) when β < β, W (β) is zero.

Proof. See the Appendix.

The reason W is zero for β < β is that welfare is evaluated at the bad equilibrium, where all

agents play D and collect zero. The reason W decreases for β ≤ β ≤ β is that welfare is evaluated

at the good equilibrium at which having more bad types is not necessary to induce opportunists

to play C. As Proposition 1 shows, β is already in the range that induces all opportunists to play

C, so having more bad types only reduces the average level of cooperation and, hence, the average

payoff in the community. Finally, the reason welfare is constant for β ≤ β is that welfare (for each
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Figure 4: Welfare Measures

β in this range) is measured at the mixed-strategy equilibrium replicating y. As commented earlier

(see comment 3 after Proposition 4), the aggregate behavior in the community at each of these

mixed-strategy equilibria is the same and, thus, the aggregate payoff is also the same and is, thus,

constant.

An interesting feature of Figure 4 is that welfare decreases discontinuously at β = β. The reason

for this is that an equilibrium sustaining some cooperation can be achieved for β < β and for β = β,

but not for β slightly above β (for β < β, the only equilibrium is the bad one). Therefore, as β

crosses β, an infinitesimal increase in β has a quantum effect on the degree of cooperation in the

community and on welfare.

Welfare as a function of γ Let us turn now to the case where there are no bad types, β = 0.

As γ varies over [0, 1], the worst equilibrium varies as follows: When γ ∈ [0, γ] or γ ∈ [γ, 1], the

worst equilibrium is the bad equilibrium; and, when γ ∈ (γ, γ), the unique equilibrium is the

mixed-strategy equilibrium replicating y. Evaluating welfare at these equilibria, we get

W (γ) =

⎧⎨⎩ x(−l) + (γ − x)a+ (1− γ) x
x+1−γ b if γ ≤ γ or γ ≤ γ

(1− z)a+ (z − x)xz b+ x[xza−
z−x
z l] if γ < γ < γ

. (34)
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Analyzing this welfare function we derive the following result, which is analogous to Lemma 6, and

is proven in the appendix. A graphical representation of the result is found in the right panel of

Figure 4.

Lemma 7 (i)When γ ∈ [0, γ] ∪ [γ, 1], W (γ) is increasing in γ; (ii) when γ ∈ (γ, γ), W (γ) is

constant in γ.

Intuitively, as γ increases the average cooperation level in the bad equilibrium increases and,

thus, social welfare increases. In the mixed-strategy equilibrium replicating y, aggregate behavior

is constant (i.e., independent of γ) and, thus, the social welfare in that equilibrium is constant too.

The relationship between social welfare at the worst equilibrium and γ is plotted in the right

panel of Figure 4. Analogous to the best equilibrium, social welfare has an upward jump at γ. This

is because the bad equilibrium no longer exists when γ is infinitesimally bigger than γ.

8 Endogenous Determination of the Type-Distribution

In the equilibria we constructed, an opportunist in a long term relationship can get the high payoff

a by playing C. He can also get the payoff b by playing D, but that behavior terminates the

relationship he is in, so the b payoff is short-lived. Since opportunistic types can choose either C

or D, while bad types can only choose D, the equilibrium payoff of opportunistic types is no lower

than the equilibrium payoff of bad types (in any equilibrium). This suggests that if bad types can

somehow expand the range of actions available to them to include C, they might do so even if such

expansion is costly. Further, if the decision whether to expand one’s set of actions is incorporated

into the model, then the distribution of types, which hitherto has been taken as a datum, is itself

endogenously determined. The aim of this section is to explore these ideas.12

A simple way to analyze the endogenous determination of the type distribution is to assume

that initially all individuals are bad types,13 and that each individual has the option of becoming

an opportunistic type by investing c > 0.14 Investment decisions are made independently and
12An alternative extension along these lines is a setting in which the measure of bad types declines, while the

measure of opportunistic types rises, over time due to evolutionary pressures.
13We briefly comment on the effect of having good types at the end of this section.
14One interpretation is that cooperation needs skills. By investing in skill acquisition, a B-type is able to play C,

hence is transformed to an O-type.
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simultaneously. Once these decisions are implemented, the distribution of types in the community

is determined, and becomes common knowledge. Then, the infinitely repeated community game is

played under this distribution. To limit the number of cases to consider, we assume that players

coordinate on the best equilibrium in this community game. We also assume that a steady-state is

reached immediately, and that individuals who invest are randomly assigned (at t = 0) to phase F

or S according to the steady-state probabilities.

We analyze the overall game, using backwards induction. As usual, the equilibrium outcome

in the community (sub-)game is what dictates the incentives to invest. In particular, whether and

how many individuals invest depends on the level of cooperation in the community game, which in

turn depends on how many individuals invested in the first place. Consequently, one goal of the

analysis is to reveal the interplay between investments and cooperation in the community.

Before we proceed we note the existence of a degenerate equilibrium in which no one invests.

This equilibrium arises because of a coordination problem: It takes a critical mass of agents to

invest to make it worthwhile for anyone to invest. In the sequel we focus (naturally) on other

equilibria.

Gross Return to Investment To determine equilibrium investments, we first derive the gross

return to investment, using the following notation. Let πO(β) (πB(β)) be an O-type’s (B-type’s)

discounted payoff at the best equilibrium under β in the community game. These payoffs are

derived from the value functions that correspond to this equilibrium. Specifically,

If β ∈ (β, 1], payoffs are evaluated at the bad equilibrium, so that

πO(β) = πB(β) = 0.

If β ∈ [β, β], payoffs are evaluated at the good equilibrium, so that

πO(β) =
x

1− β
VS(β) +

1− β − x

1− β
VF (β)

πB(β) =
1

1− δ

x

x+ β
b,

where x is the solution to (1) under β, and VF (β) and VS(β) are given by (6) and (7).
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Finally, if β ∈ [0, β), payoffs are evaluated at the mixed-strategy equilibrium, so that

πO(β) =
z − β

1− β
VS(β) +

1− z

1− β
VF (β)

πB(β) =
1

1− δ

x

z + β
b,

where x and z are derived from the solution to (25) and (26), and VF (β) and VS(β) are derived

from the solution to (27) and (28).

Let ∆(β) be the gross return to investment, which is the (discounted) equilibrium payoff differ-

ence between being an O-type and a B-type at the best equilibrium in the community game,

∆(β) ≡ πO(β)− πB(β).

Then, we have the following result.

Lemma 8 (i) 0 ≤ ∆(β) for all β ∈ [0, 1]; (ii) 0 < ∆(0)̇, and ∆(β) is increasing in β for β ∈ [0, β];

(iii) ∆(β) = 0 for β ∈ (β, 1]. (iv) Assume b ≤ a + l. Then, ∆(β) increases at β, and is either

increasing throughout [β, β], or is hump shaped, i.e., there exists a bβ ∈ (β, β), so that ∆(β) is
increasing over β ∈ [β, bβ) and decreasing over (bβ, β].

Proof. See the Appendix.

The reason that ∆(β) is increasing in β over [0, β] is that payoffs are evaluated at the mixed-

strategy equilibrium. Then, the aggregate behavior in the community is constant in β (see comment

3 after Proposition 4), which implies πB(β), VS(β), and VF (β) are constant as well. As a conse-

quence, the only effect of an increase in β is that an O-type has a higher probability of being

assigned to phase F (at t = 0), which makes πO(β) and, consequently, ∆(β) larger.

This effect is also present for β ∈ [β, β] (where payoffs are evaluated at the good equilibrium).

There is, however, a second effect for β ∈ [β, β], which is that VF (β) − VS(β) is increasing in β.

These two effects work in opposite directions, resulting in a potentially hump-shaped ∆ curve over

the domain [β, β].

Figure 5 illustrates the content of Lemma 8 (ignore for now the horizontal line with height c).
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Figure 5: Endogenous Types

Equilibrium in the investment sub-game Given the shape of ∆, as shown in Figure 5,

equilibrium investments may be interior (with some, but not all individuals investing), in which

case the measure of individuals investing is characterized by indifference between investing and not

investing. Alternatively, equilibrium investments may be such that all or none of the individuals

invest, in which case the same measure is characterized by a weak preference for the unanimously

chosen alternative. In symbols, the possibilities are:

Everybody invests : 0 ≤ ∆(0)− c

Some but not all players invest : ∆(β)− c = 0 for some β ∈ (0, 1)

Nobody invests : ∆(β)− c ≤ 0 for all β ∈ [0, 1].

To determine which of these possibilities materializes, let us inspect Figure 5 that shows ∆(β),

which is the gross return to investment, along with the horizontal line at height c, which is the

cost of investment. This figure is drawn so that the c-line intersects the ∆(β)-curve at two points.

The other possibilities for drawing this figure are that the c-line lies entirely above the ∆(β)-curve,

or that it lies below it over the range [0, β]. Which of these possibilities materializes depends on

parameter values.

35



Let us consider the possibility shown in Figure 5. Since ∆(β) is hump-shaped, there are (po-

tentially) two intersection points, giving rise to two equilibria. We rule out the equilibrium at the

higher intersection point, because it is unstable. Indeed, suppose that β is increased a bit from this

equilibrium value (i.e., that less individuals invest). Then, from Figure 5, at the perturbed point,

∆(β − ε) < c, so less individuals invest, which further increases β, drifting the system away from

the original equilibrium value. On the other hand, if we increase β at the equilibrium with the

lower intersection point, we get c < ∆(β− ε), so more individuals invest and β drifts back towards

its original equilibrium value. As a consequence, the interior equilibrium at the smaller β is stable,

while the other is unstable. We concentrate from this point onwards on the stable equilibrium.

Turning to corner equilibria, Lemma 8 tells us that 0 < ∆(0). Thus, everybody invests if

c ≤ ∆(0), and we have a corner equilibrium. At the other end of the spectrum, if the c-line lies

entirely above the ∆(β)-curve, then no investment is a dominant strategy, and we have the other

type of corner equilibrium, with no one investing. Summarizing the analysis, we have the following

proposition.

Proposition 5 (i) If c ≤ ∆(0), then everybody invests. (ii) If ∆(0) < c ≤ ∆(bβ), then somebody
but not everybody invests; moreover, the measure of players that invest in the stable equilibrium is

decreasing in c. (iii) If ∆(bβ) < c, then nobody invests.

Proposition 5 shows that the measure of individuals investing and the measure of individuals

cooperating in the community game are positively correlated in equilibrium. Indeed, let us consider

a decrease in c. Then, the equilibrium measure of individuals investing either increases if this

equilibrium is interior, or stays constant if the equilibrium is corner. At the same time, the measure

of individuals cooperating increases if the equilibrium β is such that the community is at the good

equilibrium, or remains constant if the community is at the mixed-strategy or the bad equilibrium.

Whatever combination of these possibilities materializes, a decrease in c induces a non-negative

correlation between the measure of individuals investing and the measure of individuals cooperating.

Therefore, if we interpret “investing” as acquiring skills (that enable playingC), what this prediction

says is that there is both a direct and an induced return to skill acquisition. The direct return is

that individuals with skills are more productive. The induced return is that individuals tend to

cooperate more when more of them have skills, which further increases the return to skill acquisition.
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Contrasting the equilibrium with the Social Optimum We contrast now the equilibrium

in the endogenous type distribution game to the planner’s optimum.

Proposition 6 (i) If c < ∆(β), then individuals over-invest in equilibrium. (ii) If ∆(bβ) < c <
W (β)

1−β , individuals under-invest in equilibrium.

Proof. (i) If c < ∆(β), the equilibrium measure of individuals that invest exceeds 1 − β.

But Lemma 6 tells us that gross welfare, W (β), is constant over [0, β], and we assumed a positive

investment cost c > 0, so it does not pay - from a social planner’s perspective - for more than 1−β

individuals to invest.

(ii) The social planner maximizes S(β) ≡ W (β)− c(1− β) over β. Given the shape of W (see

Lemma 8), if c <
W (β)

1−β , then 0 = S(1) < S(β), so no one investing cannot be socially optimal. On

the other hand, since ∆(bβ) < c, no one invests in equilibrium.

Proposition 6 shows two departures of the equilibrium from the social optimum. On the one

hand, individuals may under-invest because some of the benefit accrues to others who interact with

them in the community game. On the other hand, which might be more surprising, individuals

may over-invest. This is because individuals first invest but then “undo” the investments by not

cooperating.15 It may seem bizarre that individuals, on their own volition, will choose to do so.

The point, however, is that there is a discrepancy between ex-ante and ex-post incentives. Ex-ante

some agents invest because this enables them to enter into long-term, high-paying relationships.

Ex-post, when in transit between such relationships, an opportunist has a short-run incentive to

defect (and in a mixed-strategy equilibrium some of them do defect). Because of that investments

are not fully utilized, which means they had been wasted from a social point of view.

The impact of G-type on the investment game As Proposition 5 shows, an equilibrium with

no one investing may occur, depending on parameter values. This was shown on the assumption

that all agents are bad types to begin with, which implies the bad equilibrium in the community

game is a possibility. Suppose, on the other hand, that the measure of good types satisfies γ ∈ [γ, γ].
15Another way to think about this is that the maximum cooperation level in the community is reached when there

are 0 < β bad types. Further decrease in β cannot increase the cooperation level, since to sustain cooperation a

certain fraction of agents has to defect in the stranger phase. Therefore, if more agents than 1−β invest, some agents’

investment are “reversed”and are, hence, wasted.
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Then, as the analysis in Section 4 shows, the bad equilibrium in the community game is no longer

a possibility. As a result, if ∆(bβ) < c < e∆(1 − γ), where e∆ is the analogue of ∆ in a community

with good types, the no investment equilibrium that would have occurred without good types no

longer occurs. From this we conclude that the presence of good types can have a good influence on

the investment behavior of bad types, and help agents reach a more efficient outcome.
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9 Appendix

Proof of Lemma 1

Proof. The solution to (1) is

x =
(1− ρ)(1− 2β) +

p
(1− ρ)2 + 4β(1− β)ρ(1− ρ)

2
. (35)

Dividing (35) by β we get

1

y
=

x

β
=
(1− ρ)( 1β − 2) +

q
(1−ρ)2
β2

+ 4( 1β − 1)ρ(1− ρ)

2
. (36)

Since all terms in (36) decrease in β, y(β) increases in β. Moreover, when β → 0, x/β → ∞, and

y → 0. On the other hand, when β → 1, x→ 0, and y →∞.

Proof of Proposition 2

Proof. In this proof we hold β constant and consider x and value functions as functions of ρ

only, x(ρ), VS(ρ), etc. We define

D(ρ) ≡ VS(ρ)− V d
S (ρ) + l.

The proof is executed in 5 steps.

In the first step we show that

D(ρ) = − x

x+ β
b+

x

x+ β(1− δρ)
(a+ l). (37)

Proof of step 1: Using (3) and (5)

VS − V d
S = − β

x+ β
l − x

x+ β
b+

x

x+ β
(VF − δVS)

= −l + x

x+ β
[l − b+ a+ δρ(VF − VS)],

where the last equality follows from (2) and (3). Now substituting into the last term from (6) and

(7) we get

VS − V d
S = −l + x

x+ β
{l − b+ a+ δρ

(β − βδ)(a+ l)

(1− δ)[x+ β(1− δρ)]
}

= −l + x

x+ β
[l − b+ a+ δρ

β(a+ l)

x+ β(1− δρ)
]

= −l − x

x+ β
b+

x

x+ β(1− δρ)
(a+ l),
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which is the desired equation.

In the second step, we show that: (i) x(0) = 1− β and x(1) = 0. (ii) ∂x
∂ρ |ρ=0= −(1− β)2 ≤ 0

and ∂x
∂ρ |ρ=1= −∞. (iii)

∂x
∂ρ < 0 and ∂2x

∂ρ2 < 0 for all ρ.

Proof of step 2: (i) This follows by substitution into (35).

(ii) Differentiating (35) with respect to ρ we get

∂x

∂ρ
=
2β − 1 + −2(1−ρ)+4β(1−β)(1−2ρ)

2
√
(1−ρ)2+4β(1−β)ρ(1−ρ)

2
=
2β − 1 + −(1−ρ)+2β(1−β)(1−2ρ)√

(1−ρ)2+4β(1−β)ρ(1−ρ)

2
. (38)

Evaluating (38) at ρ = 0 we get
∂x

∂ρ
|ρ=0 = −(1− β)2 ≤ 0. (39)

Likewise evaluating (38) at ρ = 1 we get

∂x

∂ρ
|ρ=1 =

2β − 1 + −2β(1−β)
0

2
= −∞. (40)

Given (39), if we show x is strictly concave in ρ it would follow that x decreases in ρ for all ρ ∈ [0, 1].

(iii) Using (38) let’s compute the second derivative of x.

2
∂2x

∂ρ2
=
[1− 4β(1− β)]

p
(1− ρ)2 + 4β(1− β)ρ(1− ρ)− 2[−(1−ρ)+2β(1−β)(1−2ρ)]2

2
√
(1−ρ)2+4β(1−β)ρ(1−ρ)

(1− ρ)2 + 4β(1− β)ρ(1− ρ)
.

This is negative if and only if the numerator is negative and the latter holds if and only if

[1− 4β(1− β)][(1− ρ)2 + 4β(1− β)ρ(1− ρ)] < [−(1− ρ) + 2β(1− β)(1− 2ρ)]2.

After some calculation, the above inequality is equivalent to

4β(1− β)ρ(1− ρ)− 4β(1− β)(1− ρ)2 + 4β(1− β)(1− 2ρ)(1− ρ)− 16β2(1− β)2ρ(1− ρ)

< 4β2(1− β)2(1− 2ρ)2

and this is true because the first three terms on the LHS add up to zero.

In the third step we show that if ρ is sufficiently small or sufficiently large, VS − V d
S < 0 and

thus that the good equilibrium does not exist for such ρ’s.

Proof of step 3: Substitute ρ = 0 into (37), recalling that x(0) = 1− β (see step 2). Then

(VS − V d
S )(0) = −l − (1− β)b+ (1− β)(a+ l) < −(1− β)(b− a) < 0,
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since b > a. Likewise, substitute ρ = 1 into (37), recalling that x(1) = 0. Then

(VS − V d
S )(1) = −l < 0.

Since D is continuous this completes the proof of step 3.

In the fourth step we show that D is increasing in a neighborhood of ρ = 0 and decreasing in a

neighborhood of ρ = 1 and thus that a ρ∗ ∈ (0, 1) exists for which D0(ρ∗) = 0 (we show later that

ρ∗ is unique).

Proof of step 4: Differentiating D we get

D0(ρ) = −( x

x+ β
)0b+ (

x

x+ β(1− δρ)
)0(a+ l). (41)

Now let’s find the derivative of x
x+β

(
x

x+ β
)0 =

x0(x+ β)− x0x

(x+ β)2
=

x0β

(x+ β)2
. (42)

Let’s also find the derivative of x
x+β(1−δρ)

(
x

x+ β(1− δρ)
)0 =

x0[x+ β(1− δρ)]− (x0 − βδ)x

[x+ β(1− δρ)]2
=

x0β(1− δρ) + βδx

[x+ β(1− δρ)]2
. (43)

Using step 2 and equations (41), (42) and (43), we evaluate D0 at ρ = 0

D0(0) = β[−x0b+ (x0 + δ(1− β))(a+ l)]

= β(1− β)[(1− β)(b− a− l) + δ(a+ l)].

From the above expression, the necessary and sufficient condition for 0 < D0(0) (for all β) is

that (1− δ)(a+ l) < b.

Turning to ρ = 1, we repeat the same steps

D0(1) =
−x0
β

b+
x0

β(1− δ)
(a+ l)

=
x0

β
[
a+ l

1− δ
− b].

Since, by step 2, x0(1) = −∞, the necessary and sufficient condition for D0(1) < 0 is that b < a+l
1−δ .

Altogether, in order to have D0(1) < 0 < D0(0), it is necessary and sufficient to have

(1− δ)(a+ l) < b <
a+ l

1− δ
,
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which is a maintained assumption for this Lemma. This completes the proof of step 4.

Let ρ∗ be such that D0(ρ∗) = 0, i.e., so that

( x
x+β )

0

( x
x+β(1−δρ))

0 (ρ
∗)b− (a+ l) = 0. (44)

Since ( x
x+β )

0 < 0 for all ρ (which follows from equation (42) and Lemma 1), (44) implies that

( x
x+β(1−δρ))

0(ρ∗) < 0. So to prove that D0(ρ) < 0 for ρ∗ < ρ, it would suffice to prove that
( x
x+β

)0

( x
x+β(1−δρ) )

0 is decreasing in ρ and that ( x
x+β(1−δρ))

0(ρ) < 0 for ρ∗ < ρ. This is the fifth and final

step of the proof.

Proof of step 5: Using (42) and (43) we form and simplify the ratio
( x
x+β

)0

( x
x+β(1−δρ) )

0 .

( x
x+β )

0

( x
x+β(1−δρ))

0 =
x0β

(x+ β)2
[x+ β(1− δρ)]2

x0β(1− δρ) + βδx
=
[x+ β(1− δρ)]2

(x+ β)2
x0

x0(1− δρ) + δx

= [1− βδρ

x+ β
]2

1

1− δρ+ δ x
x0
.

Since, by step 2, x0 < 0, the first term is decreasing in ρ. To show that the second term is decreasing,

too, we need to show that the derivative of the denominator in the second term is positive. So let’s

compute this derivative.

(1− δρ+ δ
x

x0
)0 = −δ + δ

x0x0 − x00x

(x0)2
= −δ + δ(1− x00x

(x0)2
) = −δ x

00x

(x0)2
.

For this to be positive we require x00 to be negative. But this is already shown in step 2.

To show that ( x
x+β(1−δρ))

0(ρ) < 0 for all ρ∗ < ρ we use (43)

(
x

x+ β(1− δρ)
)0 =

x0β(1− δρ) + βδx

[x+ β(1− δρ)]2
.

This is negative if and only if the numerator is negative which, since x0 < 0 < β, is equivalent to

0 < 1 − δρ + δ x
x0 . Now, by the proof of step 4, this holds at ρ = ρ∗ and as we have just shown,

1− δρ+ δ x
x0 is increasing in ρ. So this means 1− δρ+ δ x

x0 is positive for all ρ
∗ < ρ. This also shows

that ρ∗ is unique. So the proof of step 5 is complete.

The proof that 0 < D0(ρ) for ρ < ρ∗ is analogous.

Considering the five steps together, it is seen that the effect of ρ is analogous to the effect of

β. Either D(ρ)− l is negative for all ρ ∈ (0, 1) or it is positive for some ρ. In the first instance the
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good equilibrium does not exist; in the second instance it exists for all ρ’s in some interval [ρ, ρ],

where 0 < ρ < ρ < 1.

Proof of Lemma 3

Proof. (i) Substituting (17) into (18) we get

V d
S =

x

x+ 1− γ
V d
F +

1− γ

x+ 1− γ
(−l + δVS).

From (16) and the last equality

VS − V d
S =

x

x+ 1− γ
b+ δVS −

x

x+ 1− γ
V d
F −

1− γ

x+ 1− γ
(−l + δVS).

Replacing δVS by VF − b, which is valid by (15), in this last equality and re-arranging we get

VS − V d
S =

x

x+ 1− γ
b+ VF − b− x

x+ 1− γ
V d
F −

1− γ

x+ 1− γ
(−l + VF − b)

=
x

x+ 1− γ
(VF − V d

F ) +
1− γ

x+ 1− γ
l.

Since l > 0, the last equality shows that (19) implies (20).

(ii) From (15) and (16) we have

ρVF + (1− ρ)VS =
x+ ρ(1− γ)

x+ 1− γ
b+ δVS =

x+ ρ(1− γ)

x+ 1− γ
b+ VF − b,

where the last equality follows from (15). Therefore (19) is equivalent to

VF ≥ a+ δ

∙
x+ ρ(1− γ)− x− (1− γ)

x+ 1− γ
b+ VF

¸
⇔

(1− δ)VF ≥ a− δ

∙
(1− ρ)(1− γ)

x+ 1− γ
b

¸
=
(x+ 1− γ)a− δ(1− ρ)(1− γ)b

x+ 1− γ
.

Now we substitute (49) into the LHS, which gives

VF ≥ V d
F ⇔

x+ (1− δ)(1− γ)

x+ 1− γ
b ≥ (x+ 1− γ)a− δ(1− ρ)(1− γ)b

x+ 1− γ
.

After some re-arrangement we get (21).

Proof of Lemma 4

Proof. In this case, the value functions of O-types are as follows.

VF = a+ δ[ρVF + (1− ρ)VS], (45)

VS =
x

x+ 1− γ
b+ δVS , (46)

V d
F = b+ δVS , (47)

V d
S =

x

x+ 1− γ
VF +

1− γ

x+ 1− γ
(−l + δVS). (48)
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Compared to (15)-(18), VS and V d
S are the same, whereas VF and V d

F are interchanged.

Solving (45) and (46) for VS and VF , one gets

VF =
(1− δ)[x+ 1− γ]a+ δ(1− ρ)xb

(1− δ)(1− δρ)[x+ 1− γ]
, (49)

VS =
x

(1− δ)[x+ 1− γ]
b. (50)

Given this solution one solves for V d
F and V d

S , using equations (47) and (48).

V d
F =

x+ (1− δ)(1− γ)

(1− δ)[x+ 1− γ]
b, (51)

V d
S =

(1− δ)[x+ 1− γ][xa− (1− γ)(1− δρ)l] + δxb[(1− ρ)x+ (1− δρ)(1− γ)]

(1− δρ)(1− δ)[x+ 1− γ]2
. (52)

The behavior pattern described above constitutes an equilibrium if and only if the following incen-

tive constraints are satisfied

No deviation in phase F : VF − V d
F ≥ 0. (53)

No deviation in phase S : VS − V d
S ≥ 0. (54)

Now we use (49), (50), (51) and (52) to verify when (53) and (54) are satisfied. After some

calculations we get

VF − V d
F ≥ 0⇔ (55)

b− a ≤ 1− γ

x+ 1− γ
δb

and

VS − V d
S ≥ 0⇔ (56)

b− a ≥ 1− γ

x+ 1− γ
δρb− 1− γ

x
(1− δρ)l.

Combining (55) and (56), we get the desired inequality (22).

Proof of Lemma 5: We prove the statement for type 2-5 equilibria. The case of

type 1 equilibria is treated in the text.

Proof. (ii) Suppose that O-types play D with probability 1 in phase S and play D with some

positive probability in phase F . Let μF be the implied probability that an O-type bumps into
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another O-type that plays D in phase F . Then the value functions are

V C
F = (1− μF ){a+ δ[ρVF + (1− ρ)VS]}+ μF (−l + δVS),

V D
F = (1− μF )b+ δVS ,

VS =
x

x+ 1− γ
b+ δVS ,

V d
S =

x

x+ 1− γ
VF +

1− γ

x+ 1− γ
(−l + δVS),

where x is the steady state proportion of agents playing C in phase S. If this is an equilibrium

behavior pattern, the following must hold

V C
F = V D

F ,

VS ≥ V d
S .

But

VS ≥ V d
S ⇐⇒

x

x+ 1− γ
b+ δVS ≥

x(1− μF )b− (1− γ)l

x+ 1− γ
+ δVS ,

which is always satisfied because of our parameter restrictions. Therefore, this behavior pattern is

an equilibrium if and only if there is a μF ∈ (0, 1) such that

V C
F = V H

F ⇔ −μF l + (1− μF )[a− b+ δρ(1− x

x+ 1− γ
)b] = 0. (57)

The LHS of (57) strictly decreasing in μF and hence maximized at μF = 0, where it equals

a− b+
1− γ

x+ 1− γ
δρb. (58)

Also at μF = 1 the LHS of (57) is negative. Thus if (58) is positive there must be a μF so that

(57) is satisfied. Therefore if b − a < 1−γ
x+1−γ δρb, there is a mixed strategy behavior pattern that

supports type 2 equilibrium.

(iii) Consider the mixed strategy equilibrium in which O-types randomize in both phases. Con-

sider an O-type and let μF (μS) be the probability that his partner plays D in phase F (S). The

value functions are

V H
F = (1− μF ){a+ δ[ρVF + (1− ρ)VS ]}+ μF (−l + δVS), (59)

V C
F = (1− μF )b+ δVS,

V H
S = (1− μS){a+ δ[ρVF + (1− ρ)VS]}+ μS(−l + δVS),

V C
S = (1− μS)b+ δVS .
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The relevant incentive constraints are:

V H
F = V C

F ⇔ VF − VS =
b− a

δρ
+

μF
1− μF

l

δρ
> 0,

VS = V C
S ⇔ VF − VS =

b− a

δρ
+

μS
1− μS

l

δρ
> 0.

The above two equations implies that μF = μS. But then VF = VS, which contradicts VF −VS > 0.

Therefore, there is no mixed strategy equilibrium in which O-types randomize in both phases.(iv)

Next consider a mixed strategy behavior pattern in which O-types randomize in phase F and play

C in phase S. The value functions are:

V C
F = (1− μF ){a+ δ[ρVF + (1− ρ)VS]}+ μF (−l + δVS), (60)

V D
F = (1− μF )b+ δVS ,

VS = (1− μS){a+ δ[ρVF + (1− ρ)VS ]}+ μS(−l + δVS),

V d
S = (1− μS)b+ δVS.

The relevant incentive constraints are:

V H
F = V C

F ⇔ VF − VS =
b− a

δρ
+

μF
1− μF

l

δρ
> 0,

VS > V d
S ⇔ VF − VS ≥

b− a

δρ
+

μS
1− μS

l

δρ
.

The above two equations implies that μF ≥ μS. But then VS ≥ VF , which contradicts VF −VS > 0.

Therefore, this type of equilibrium does not exist.

(v) Finally consider a behavior pattern in which O-types randomize in phase S and play D in

phase F . Consider an O-type and let μF (μS) be the probability that his partner plays D in phase

F (S). Then the value functions corresponding to this behavior pattern are

VF = (1− μF )b+ δVS, (61)

V d
F = (1− μF ){a+ δ[ρVF + (1− ρ)VS ]}+ μF (−l + δVS),

V H
S = (1− μS){a+ δ[ρVF + (1− ρ)VS]}+ μS(−l + δVS),

V C
S = (1− μS)b+ δVS .
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The relevant incentive constraints are:

VF ≥ V d
F ⇔ VF − VS ≤

b− a

δρ
+

μF
1− μF

l

δρ
,

V H
S = V C

S ⇔ VF − VS =
b− a

δρ
+

μS
1− μS

l

δρ
> 0.

From the value functions we also get VF − VS = (μS − μF )b. So a necessary condition for this

behavior pattern to be an equilibrium is that μS > μF . But then
μS
1−μS

> μF
1−μF

, which implies that

VF − VS =
b− a

δρ
+

μS
1− μS

l

δρ
>

b− a

δρ
+

μF
1− μF

l

δρ
,

which contradicts VF ≥ V d
F .

Proof of Lemma 6

Proof. (i) In stationary state, by abusing notation (both z and x are functions of β),

(1− ρ)(1− β − z) = xρ
x

z + β

⇔ 1− ρ

ρ
(
1

x
− β + z

x
) =

x

z + β
(62)

But we know that, when β ≤ β, in the mixed-strategy equilibrium β+z−x
x = y is independent of β.

Therefore, from (62) x is also independent of β. As a result, β + z is also independent of β. Since

W (β) is only a function of x and z + β (see equation (33), we reach the conclusion that W (β) is

constant when β ≤ β.

(ii) First we show that 1−x−β, which is the measure of agents in phase F is strictly decreasing

in β. Suppose not, that is, suppose there exist a β0 and a β00 in [β, β] so that β0 < β00 and yet

1− x0 − β0 ≤ 1− x00 − β00, where x0 (x00) is the steady state x under β0 (β00). Then from (1)

x0
x0

x0 + β0
≤ x00

x00

x00 + β00
,

which is equivalent to

x0
1

1 + β0/x0
≤ x00

1

1 + β00/x00
.

But β0/x0 < β00/x00 since y is increasing in β. Therefore, we must have x0 < x00, which implies

1− x00 − β00 < 1− x0 − β0,

a contradiction.
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Lemma ?? shows that x
x+β , the probability of being matched with a non-bad type in phase S,

is decreasing in β. From expression (33) we see that by increasing β, the average payoff in phase

S decreases and the weight placed on this payoff increases. Hence the total social welfare in the

community must decrease.

Proof of Lemma 7

Proof. (i) From (33) and (34), we can see that when γ ≤ γ or γ ≤ γ, W (γ) = W (1 − β),

β ≤ β ≤ β. Directly applying part (ii) of Lemma (6), we reach the conclusion that W (γ) is

increasing in γ.

(ii) Similar to the proof of part (i) of Lemma (6), it can be shown that in the mixed strategy

equilibrium replicating y, both z and x are independent of γ. Thus by (34) W (γ) is constant in γ

if γ < γ < γ.

Proof of parts (i)-(iii) of Lemma 8

Proof. (i) An O-type has the option of playing D independent of her personal history, in which

case she realizes the same payoff as a B-type. Hence, 0 ≤ πO(β)− πB(β) = ∆(β).

(ii) If β ∈ (β, 1], the unique steady-state equilibrium is the bad one. Therefore, ∆(β) = 0.

(iii) If β ∈ [0, β], the mixed-strategy equilibrium replicating y features

πB(β) =
1

1− δ

x(β)

z(β) + β
b =

1

1− δ

b

1 + y
,

which is independent of β. In addition,

πO(β) =
z − β

1− β
VS(β) +

1− z

1− β
VF (β).

From the analysis in Section 5 we know that both VS(β) = πB(β) and VF (β) are independent of β

(which follows from the fact that aggregate behavior is independent of β), and VS(β) < VF (β). From

the same analysis, we also know that β+z is constant in β and, thus, that z is decreasing in β. But

then z−β
1−β is decreasing in β and

1−z
1−β is increasing in β. Putting these facts together, we conclude that

the weighted average z−β
1−βVS(β)+

1−z
1−βVF (β) is increasing in β, which implies ∆(β) = πO(β)−πB(β)

is increasing too. Finally, when β = 0, VS(0) = V B(0). So, since 0 = VS(0) < VF (0) and 1−z
1−β is

positive, we have 0 < ∆(0).

Proof of part (iv) of Lemma 8
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Proof. We first show (a) the hump shapedness of ∆, then we show (b) it increases at β.

(a) Since ∆ is evaluated at the good equilibrium, we have

∆(β) =
x

1− β
VS(β) + (1−

x

1− β
)VF (β)− πB(β) (63)

= VS(β)− πB(β) + (1− x

1− β
)[VF (β)− VS(β)]

=
1

1− δ
[
xa− β(1− δρ)l

x+ β(1− δρ)
− x

x+ β
b] + (1− x

1− β
)

β(a+ l)

x+ β(1− δρ)
,

where x comes from (1) and VS and VF are given by (6) and (7). Using the variable y ≡ β/x(β),

(1) tells us that
x

1− β
=

(1 + y)(1− ρ)

ρ+ (1 + y)(1− ρ)
.

Substituting this into (63), we get

∆(y) =
1

1− δ
[
a− y(1− δρ)l

1 + y(1− δρ)
− 1

1 + y
b] +

ρ

ρ+ (1 + y)(1− ρ)

y(a+ l)

1 + y(1− δρ)
. (64)

Differentiating (64) and doing some algebra, we get:

∆0(y) =
1

1− δ
[
−(1− δρ)(a+ l)

(1 + y(1− δρ))2
+

b

(1 + y)2
] +

ρ

ρ+ (1 + y)(1− ρ)

(a+ l)

(1 + y(1− δρ))2

− ρ(1− ρ)

(ρ+ (1 + y)(1− ρ))2
y(a+ l)

1 + y(1− δρ)

=
1

(1− δ)[1 + y(1− δρ)]2
×

×
½
[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

(1 + y)2

+
ρ[1− (1− ρ)(1− δρ)y2]

(ρ+ (1 + y)(1− ρ))2
(a+ l)

¾
. (65)

We are going to show now that there is a 0 ≤ by so that ∆0(y) is positive for 0 < y < by and
negative for by < y, which implies that ∆ has the desired hump shape property (if by = 0, ∆ is

increasing throughout). Since 0 < 1
(1−δ)[1+y(1−δρ)]2 , it suffices to show this for the term inside the

braces, which we abbreviate as

ϕ(y) =
f1(y)

g1(y)
+

f2(y)

g2(y)
.

Inspecting the two terms of ϕ we see that: (1) The denominator of each term is positive and

increasing in y. (2) Each numerator is quadratic and, because a+ l ≤ b, it decreases in y and tends

to −∞ as y → ∞. From these observations we infer that there are two points 0 ≤ y1 and 0 < y2
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so that the first term is positive for y < y1 and negative for y1 < y, and similarly for the second

term. In addition, one readily verifies that y1 < y2, so that ϕ is positive for [0, y1] and negative for

[y2,∞).

It remains to analyze the behavior of ϕ over (y1, y2). By continuity, there exists a by ∈ (y1, y2)
so that ϕ(by) = 0. To show that by is unique, which would bring the proof to a conclusion, it suffices
to prove that ϕ0(by) < 0.

Since y1 < y2, we know that
f1(by)
g1(by) < 0 < f2(by)

g2(by) . This implies
³
f2(y)
g2(y)

´0
|y=by< 0, so it suffices to

show that
³
f1(y)
g1(y)

´0
|y=by< 0. Now,µ

f1(y)

g1(y)

¶0
=

f 01g1 − f1g
0
1

g21
< 0⇐⇒ f 01g1 < f1g

0
1.

Substituting in for f1 and g1, leaves us with the following inequality to prove:

(1 + y)2 {2(1− δρ)[b− (a+ l)] + 2(1− δρ)[(1− δρ)b− (a+ l)]y}

< 2(1 + y)
©
[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

ª
.

Dividing both sides of this inequality by 2(1 + y), we need to show that:

[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

> (1 + y) {(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y}

= (1− δρ)[(1− δρ)b− (a+ l)]y2 + (1− δρ)[(1− δρ)b− (a+ l)]y + (1− δρ)[b− (a+ l)]y

+(1− δρ)[b− (a+ l)]

= (1− δρ)[(1− δρ)b− (a+ l)]y2 + (1− δρ)[(2− δρ)b− 2(a+ l)]y + (1− δρ)[b− (a+ l)].

Looking at the two ends of this inequality, and comparing term by term establishes that this

inequality holds.

(b) Consider the two terms of (65), evaluated at y. The first term is equivalent to d(VS(y)−πB(y))
dy ,

which is positive at y because VS(y)−πB(y) = 0 and 0 < VS(y)−πB(y) for all y ∈ (y, y). Also, since

y1 < y2, we have that the numerator of the second term of (65) is positive. Since the denominator

of the second term is always positive, this term is positive as well, so altogether 0 < ∆0(y). Finally,

since β and y are monotonically related, this implies 0 < ∆0(β).
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