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Abstract
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monitoring reduces the necessary wage payment to induce efforts, thus making team
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1 Introduction

Classical works on team production (Alchian and Demsetz, 1972; Holmstrom, 1982) concluded that

team production is usually inefficient because of the well-known free-riding problem. But teams

have been increasingly popular in the business world. According to Osterman’s (1994) survey, work

teams are present in 54.5 percent of American establishments. Similarly, Dumain (1994) estimated

that about two-thirds of U.S. firms use work teams.

Several recent papers tried to reconcile the mismatch between theory and empirical evidence.

Essentially being static models, the classical works ignored two important features of team

production. First, the same team may last longer than one period; in other words, team members

may interact repeatedly. Second, team members have a great chance to observe each other’s effort

or contribution to the team. Combining these two features, the possibility of mutual monitoring

or peer sanction arises: if one team member shirks in one period, other team members can punish

him by shirking in later periods. In an infinitely repeated game setting, Che and Yoo (2001) (CY

henceforth) showed that mutual monitoring can provide implicit incentive to team members, thus

alleviating the classical free-riding problem in team production.1

However, the model of CY has two problems. Theoretically, the required punishment, which

is a grim trigger strategy, to support “work” equilibrium is not so credible. Suppose one team

member shirks in some period. According to the grim trigger strategy, all the members of the

team are going to shirk in all later periods. But this will affect the output realizations of the

team. Since the principal can observe the output realization in each period, he will soon infer

that the “work” equilibrium has broken down and the team is in punishment phase. Because the

punishment (shirking) is also costly to the principal, he would have incentive to dissolve the team.

But this possibility would make the required punishment (grim trigger strategy) non-credible, thus

destroying the “work” equilibrium.2

In terms of practical application, the results of CY only apply to teams that have the potential

to last forever. For finitely repeated team production, backward induction would destroy the

“work equilibrium.”3 In real business world, a lot of teams are short-lived. Typical examples

are problem-solving teams: a team is usually formed when a specific problem arises, and it is

dissolved right after the problem is solved. These kinds of short-lived teams are not only popular

1Their model is in a principal-agent setting and the same team (at least has the potential to) lasts for infinite
periods. At the end of each period, the principal only observes the outcome of the team production but not each
team member’s effort. On the other hand, at the end of each period each team memebr observes other members’
effort in that period.

2Actually, all the repeated team production (with or without a principal, finitely or infinitely repeated) models
have this problem. Off the equilibrium path, the team either dissolves voluntarily (if outside option is more attractive
than staying in the punishment phase) or is dissolved by the principal. And this in turn makes trigger strategy
non-credible and limits the effectiveness of mutual monitoring.

3One can change the model to a finite-horizon repeated team production with imcomplete information, but this
still requires the horizon to be “longer enough” to induce “work” equilibrium in early periods.
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among law firms, consulting firms and medical group partnerships, but also are increasingly popular

among manufacturing or service firms (Osterman (1994); Boning, Ichniowski, and Shaw (2001)).

Apparently, CY cannot explain the popularity of short-lived teams. Moreover, team regrouping is

a common practice in business, mainly due to the ever-changing business environment.

This motivates us to study the role of mutual monitoring in short-lived teams. Actually, even

for a team which is formed to implement a specific project (dissolves right after the project is

implemented), the free-riding problem is not as severe as previously thought. Due to the very

nature of a team (team members work together and interact frequently), team members might

observe each other’s effort made during the implementation of the project. For instance, team

members usually need to communicate intermittently to carry out the project. To make the idea

clear, consider the following example. A team of two members is formed to implement a project in

two weeks. In every weekend, they get together to discuss the development of the project. During

the discussion, they can at least infer whether the other member has exerted some effort in the first

period. A more concrete example is coauthorship: two authors need to interact frequently to write

a paper, and by interaction they can know each other’s effort level. Therefore, mutual monitoring

is still possible for short-lived teams.

To fix the idea, consider a team of two members to implement a project in two weeks. At the

end of the first week, each member observes the other member’s effort level in the first week.4 Then,

both members might make their effort level in the second week conditional on the observed effort

levels of the first week. In particular, both of them may adopt a trigger strategy: make effort in the

second week if and only if both members have made effort in the first week. This threat of mutual

sanction has the potential to deter free-riding in the first week. How about the second week? Since

it is the last week, mutual monitoring does not alleviate the free-riding problem because there is

no future punishment. If the cost of effort is linear and the return of effort is linear as well, then

mutual monitoring does not help at all: in the last week, teams members’ incentive to free-ride is

as strong as their incentive to free-ride in both weeks when effort is not observable.

However, if the marginal return of the project is increasing in total effort ( the value of the

project is an increasing and convex function of the degree of completeness of the project), or the

project has a “completion benefit,” then mutual monitoring can effectively alleviate the free-riding

problem. To see this, if both members exert effort in the first week, the marginal return of effort

in the second week is higher; as a result, both members have less incentive to free-ride in the

second week. In short, mutual monitoring discourages free-riding in the first week by possible

punishment, while increasing marginal return alleviates free-riding problem in the last week as

total effort accumulates on the equilibrium path.

Increasing marginal return or “completion benefit” is usually an essential feature of some

complex projects. Consider the previous example of coauthorship. The value of a paper is usually
4You can interpret that they get toghater at the end of the first week to discuss the development of the project.
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an increasing and convex function of the completeness of the paper: when a paper is just half

finished, it almost has no value; when it is eighty percent finished, it can be presented in some

conference or workshop; when it is completed, it can be sent for publication. Next consider a

team developing a new drug. This project at least exhibits “completion benefit”: compared to the

situation where a new drug is not developed, the development of the new drug creates additional

values. In general, for more complex projects the values of the projects are usually more sensitive

to the completeness of the projects. Therefore, it is natural to think that the more complex is the

project, the bigger the “completion benefit” or the more convex is the total return function.

Thus, we reach the main conclusion of the paper: even for short-lived teams, free-riding problem

is not as severe as people previously thought. Mutual monitoring still can alleviate the free-riding

problem, if the production technology exhibits increasing marginal return or has a “completion

benefit.” This applies to both principal-agent settings and partnerships. In principal-agent settings,

mutual monitoring reduces the required wage payment to motivate team members to exert effort,

thus increasing the attractiveness of teams relative to individual production. In partnerships, by

discouraging free-riding, mutual monitoring makes the implementation of the “efficient” action

easier, thus making the “range of inefficiency” smaller.

The paper also yields some interesting comparative statics results. First, other things being

equal, as the marginal return of effort increases faster or the “completion benefit” becomes

bigger, mutual monitoring becomes more effective in alleviating the free-riding problem. Since we

argued before that usually complex projects have a bigger “completion benefit” or their marginal

returns increase faster, this model predicts that team production should be more common for the

implementation of complex projects. Some empirical evidence (Osterman, 1994; Boning, Ichniowski

and Shaw, 2001) supports this prediction: they found that technologically more complex projects

are more likely to adopt teams.

Second, as team members interact more often, the free-riding problem becomes less severe. The

intuition is fairly simple. More frequent interaction is equivalent to the decrease of period length

and the increase of the number of periods. With the presence of mutual monitoring, a team member

can at most free-ride for one period. The gain from doing so is decreasing as the number of periods

increases, because each period’s effort is smaller. In the limit (as team members interact infinitely

often or period length shrinks to zero), free-riding problem can be completely solved by mutual

monitoring.

This paper complements and extends CY. Note that the mutual monitoring equilibrium in our

model is free of the criticism mentioned before. Since a short-lived team just implements one

project once, (inefficient) perpetual punishment is neither feasible nor necessary. Arya, Fellingham

and Glover (1997) studied the role of mutual monitoring in a team which repeats a task twice.

They show that implicit incentive can be provided by mutual monitoring in the first period.5 But
5Their model is also subject to the criticisim mentioned earlier, since in the second period the principal has
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our model studies teams which just implement a task once. Miller (1997) examined the efficiency

in partnerships with joint monitoring. He demonstrated that when one partner can observe at least

one of other partners’ effort, the efficient effort vector can be sustained in an equilibrium by sharing

rule that exhibits budget balance and limited liability. But the equilibrium he derived is based on

the observing partner’s report conditional on his observation. Strausz (1999) studied efficiency in

sequential partnership, in which partners choose effort sequentially and later movers observe all

the effort choices of previous partners. Under this setting, he proved that efficient production can

be induced by a sharing rule which is budget-balanced and does not rely on unlimited liability.

This paper is also related with the literature of optimal task design and compensation scheme in

multi-agents setting (Itoh, 1991; Rob and Zemsky, 2002).

Another related literature is dynamic contributions to a public good (Admati and Perry, 1991;

Marx and Matthews, 2000, MM henceforth). The basic logic of this literature is that if the

contribution is divided into consecutive small contributions, each member can try the other’s good

faith for a small price, and the free-riding problem can be alleviated. Admati and Perry (1991)

studied a sequential model, in which two players move alternately. Our model is more closely

related with MM, in which the stage contribution game is a simultaneous move game. Except for

different applications, the main differences between our model and MM are the following. First, in

our model, the number of periods to implement a project is fixed, while in MM the completion date

is endogenous. This makes their setting more flexible in terms of the completion of the project:

the project can always be completed as long as the contribution horizon is long enough; the only

inefficiency is the delay of the project. In our model (partnership setting), the fixed completion date

might cause the non-completion of an efficient project. Second, in MM the contribution is divisible,

which may cause a dynamic free-riding problem: current player can free-ride on future players. In

our model, the contribution of effort in each period is indivisible, thus dynamic free-riding is not

an issue. Our model is also related to the class of monotone games with positive spillovers studied

by Gale (2001).

The rest of the paper is organized as follows. Section 2 studies a two-period model in a principal-

agent setting. Also using a two-period model, Section 3 shows how mutual monitoring can reduce

the inefficiency of partnership. A generalization to n-period model is provided in Section 4. The

last section concludes.

2 Principal-agent setting

A manager (principal) hired two workers (agents) (1 and 2) to implement some projects. The

projects can be either two independent ones (a and b) or a combined one. If the manager chooses

incentive to dissolve the team off the equilibrium path. But the authors did discuss about the principal’s ability to
commit to a two-period contract.
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two individual projects, each project is assigned to one worker. Instead, if the manager chooses

the combined project, two workers are assigned and they work as a team. The outcome of each

project can be either a success s, or a failure f . If succeeds, each individual project yields a revenue

of S > 0, and the combined project yields a revenue of 2S. Each project yields revenue 0 if it

fails. Each project needs two periods to complete. One way to interpret the time structure is the

following: each project has a deadline, after which no further effort can affect the outcome; from

the inception to the deadline, if the combined project is chosen, two players might meet once to

discuss the ongoing of the project. Denote worker i’s effort in period j as eji . e
j
i ∈ {0, 1}; in other

words, he can either work or shirk.6 The probability of success of each project depends on relevant

agents’ effort. In particular, we assume that the probability of success of individual project i is

q(si|ei) ≡ qe1i+e2i

ei is the effort vector of agent i. Depending on effort choices, there are three possibilities: q0,

q1 and q2. Note that the probability of success only depends on the sum of the efforts. We assume

that

q2 > q1 > q0 ≥ 0 and q2 − q1 > q1 − q0 (1)

That is, the probability of success is increasing in total effort; moreover, the marginal return of

exerting effort is increasing in total effort.

For the combined project, the probability of success is

p(s|e) = pP
i,j e

j
i

Depending on effort choices, there are five possibilities: p0, p1, p2, p3, p4. Note that the

probability success only depends on the total efforts,7 hence the efforts of agent 1 and agent 2 are

perfect substitutes in some sense. We further assume that

p4 > p3 > p2 > p1 > p0 ≥ 0 and
p4 − p3 > p3 − p2 > p2 − p1 > p1 − p0 (2)

In words, the probability of success is increasing in total effort; moreover, the marginal return

of effort is increasing in total effort. That is, the marginal increase in the probability of success by

exerting an extra unit of effort is increasing in the total effort accumulated. Put it another way,

the probability of success is an increasing and convex function of total effort. One can interpret

6The assumption that effort choices are discrete is for the sake of simplicity in exposition. This assumption rules
out the possibility that one worker may overwork in one period to make up the shirking happened in previous periods.
An alternative way of modelling is that effort choice is continuous but the cost of efforts is convex, this can also rule
out workers’ incentive to overwork.

7The probability of success does not depend on the distribution of efforts. This assumption captures the bite of
free-riding problem. If the probability of success does depend on the distribution of efforts between two workers,
workers incentive to free-ride would decrease, as illustrated by Legos and Matthews (1993).
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assumption (2) in the following way. Total effort determines the degree of completeness of the

project in a linear way, with full effort producing a fully completed project. But the value of the

project is increasing and convex in the degree of completeness.8

The manager does not observe workers’ effort choice in any case; the only verifiable signal is the

outcome of the projects. So the compensation contract or wage contract can only be conditional

on the outcome of the projects. The form of contracts is w = (ws, wf ), with wf denotes the wage

payment paid by the manager to the worker if the project fails, and ws is the wage payment when

the project succeeds. Workers are subject to limited liability, which requires requires wf ≥ 0 and
ws ≥ 0. The workers’ outside options are normalized to be 0. All the parties are risk neutral.

Given contract w, worker i’s utility is,9

ui(w, e) = Ew − e1i + e2i
2

And the manager’s payoff is,

π(w, e) = (qa + qb)S −E(w1 + w2)

if two individual projects are chosen; and it is

π(w, e) = 2pS −E(w1 + w2)

if the combined project is chosen.

We assume that S is big enough such that the efficient actions are full effort level: exerting

efforts in both periods for both workers. Specifically, we assume that

(q2 − q0)S − 1 > 0 (3)

2(p4 − p0)S − 2 > 0 (4)

Given these two assumptions, the efficient action for each individual project is exerting effort in

both periods, because

(q2S − 1)− (q1S − 1
2
) = (q2 − q1)S − 1

2
>
1

2
(q2 − q0)− 1

2
> 0

The first inequality comes from assumption (1) and the second inequality comes from (3).

Similarly, the efficient action for the combined project is exerting effort in both periods for both

8The results of the paper hold under a more general technology. Define the expected return of the combined
project as V (e), where e is the total effort. What we require is that V (e) exhibits increasing returns: V4 − V3 >
V3 − V2 > V2 − V1 > V1 − V0. In the paper, we fix S and only p is a function of e, which is a special case of the
general technology.

9Here we assume that there is no discounting. The main reason is that we focus primarily on short-term teams.
Adding discounting would not change the qualitative results of the paper.
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workers, since for k = 1, 2, 3

(2p4S − 2)− (2pkS − k

2
) = 2(p4 − pk)S − 1

2
(4− k) > 2

4− k

4
(p4 − p0)S − 1

2
(4− k) > 0

The first inequality comes from assumption (2) and the second one follows (4).

There are two decisions to be made for the manager. The first one is which projects to choose.

We call this task design decision. The second one is to choose contracts to induce effort. If the

combined project exhibits no synergy, that is p4 ≤ q2, then choosing the combined project is always

dominated by choosing the individual projects. This is because of the free-riding problem associated

with team production. Therefore, a necessary condition for the manager to choose the combined

project is p4 > q2. In other words, team production exhibits synergy. We make this assumption

in this section. It also follows that the overall efficient action is for the manager to choose the

combined project and for both workers to exert effort in both periods.

An immediate observation is that wf = 0 in the optimal contracts. Given that workers are risk

neutral, the difference between ws − wf should be as big as possible to motivate workers to exert

effort. By the assumption of limited liability, wf = 0 in optimal contracts. To ease exposition, we

drop wf from now on.

2.1 The optimal contract for individual projects

If two individual projects are chosen, we assume that workers cannot observe each other’s effort

choice.10 Thus two projects are completely independent. Suppose that the manager intends to

implement the full effort for a project, the optimal contract is characterized by

min
ws

q2w
s

subject to : q2w
s − 1 ≥ q1w

s − 1
2
⇔ ws ≥ 1

2(q2 − q1)

q2w
s − 1 ≥ q0w

s ⇔ ws ≥ 1

(q2 − q0)

q2w
s − 1 ≥ 0

The first two inequalities are incentive compatibility constraints and the third one is

participation constraint. Note that only the second constraint is binding in the optimal contract,

because 2(q2 − q1) > (q2 − q0) by assumption (1). Therefore, the optimal contract is ws∗ = 1
q2−q0 .

Under this contract, the manager’s payoff is q2(S − 1
q2−q0 ). And his total payoff from two projects

are 2q2(S − 1
q2−q0 ). Notice that it is positive by assumption (3).

10 If two workers work in the same office, they may occasionally observe whether the other worker shirked. But since
two projects are independent, this kind of observation might not be perfect. In Che and Yoo (2001), they assume
that workers may observe each other’s effort even if they are assigned two independent jobs.
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If the manager wants to implement effort (0, 0), it is obvious that the optimal contract is w = 0,

and the manager’s payoff is q0S. On the other hand, it can be shown that (0, 1) or (1, 0) cannot

be implemented. The reason is that exerting partial effort is always dominated either by exerting

full effort or by exerting zero effort, given that marginal return of exerting effort is increasing. The

relative magnitudes of q2(S − 1
q2−q0 ) and q0S are ambiguous. As a result, the efficient action may

not be implemented. The efficient action can be implemented if and only if

S ≥ q2
(q2 − q0)2

which is obviously satisfied if q0 = 0.

2.2 Team production without mutual monitoring

Now suppose that the combined project is chosen but workers do not observe each other’s effort.

We are only interested in the implementation of the efficient action, i.e., both workers exert effort

in both periods. The optimal contract is characterized by

min
ws

p4w
s

subject to : p4w
s − 1 ≥ p3w

s − 1
2
⇔ ws ≥ 1

2(p4 − p3)

p4w
s − 1 ≥ p2w

s ⇔ ws ≥ 1

(p4 − p2)

p4w
s − 1 ≥ 0

The first two inequalities are incentive compatibility constraints and the third one is

participation constraint. The first constraint makes sure that each worker has no incentive to

deviate in single period given the other worker exerts effort in both periods. The second condition

ensures that each worker has no incentive to deviate in both periods. Note that only the second

constraint is binding in the optimal contract, since 2(p4 − p3) > (p4 − p2) by assumption (2).

Therefore, the optimal contract is ws∗ = 1
p4−p2 . Under this contract, the manager’s payoff is

2p4(S − 1
p4−p2 ). Notice that it may be negative.

2.3 Team production with mutual monitoring

In this subsection, we study team production when workers can observe each other’s effort choice

at the end of each period. We are interested in how to implement the efficient action, that is, both

workers exert efforts in both periods. Since each worker’s effort in the first period is observable

to the other worker at the beginning of the second period, they might be conditional their effort

choices in the second period on the observed first period’s efforts. In particular, we are interested
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in the following strategy profile: each worker exerts effort in the first period, and he exerts effort

in the second period if and only if both workers exerted effort in the first period. That is, workers

may “sanction” each other in second period if some worker shirks in the first period. Note that

this is not a repeated game: worker’s incentive to exert effort in the second period depending on

the effort accumulated in the first period. But this game belongs to multi-stage game, so one-stage

deviation principle still applies (Fudenberg and Tirole, 1991). The strategy profile specified before

constitutes a subgame perfect equilibrium under a contract w if and only if the following conditions

are met.

Condition 1 Each worker should have no incentive to deviate on the equilibrium path.

This requires

p4w
s − 1 ≥ p1w

s (5)

p4w
s − 1 ≥ p3w

s − 1
2

(6)

The first condition says following equilibrium strategy is better than shirking in the first period.

The second condition makes sure that following equilibrium strategy is better than shirking in the

second period.

Condition 2 Each worker should have no incentive to deviate off the equilibrium path.

This requires

p2w
s − 1 ≤ p1w

s − 1
2

(7)

p1w
s − 1

2
≤ p0w

s (8)

The first constraint assures that each worker will not exert effort in the second period if one

worker deviates in the first period, while the second one makes sure that each worker will not exert

effort in the second period if both workers deviate in the first period.11

The optimal contract for the manager is characterized by

min
ws

p4w
s

subject to : (5), (6), (7), (8) and

p4w
s − 1 ≥ 0

11Actually, we ignored one possibility: if one worker shirks in the first period (the other worker works in the first
period), he should have no incenitve to work in the second period. Mathematically, p2ws − 1

2
≤ p1ws. But this

constraint is the same as (10).
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Proposition 1 When mutual monitoring is feasible, the optimal contract that induces full effort
level is ws∗ = max{ 1

(p4−p1) ,
1

2(p4−p3)}.

Proof. The first observation is that (8) is redundant if (7) is satisfied, since p2 − p1 > p1 − p0

by assumption (2). The participation constraint is also redundant given (5) is satisfied. Then the

programming problem can be simplified as

min
ws

p4w
s

(p4 − p1)w
s ≥ 1 (9)

(p4 − p3)w
s ≥ 1

2
(10)

(p2 − p1)w
s ≤ 1

2
(11)

From assumption (2), we have (p4 − p3) > (p2 − p1) and (p4 − p1) > (p4 − p2) > 2(p2 − p1).

Therefore, there exists a ws such that (9), (10) and (11) are all satisfied. The optimal contract

depends on the magnitudes of (p4 − p1) and (p4 − p3). If (p4 − p1) ≥ 2(p4 − p3), then the optimal

wage ws∗ = 1
2(p4−p3) . On the other hand, if (p4 − p1) < 2(p4 − p3), then ws∗ = 1

(p4−p1) .

Note that under the optimal contract, the manager’s payoff is 2p4(S −max{ 1
(p4−p1) ,

1
2(p4−p3)}).

2.4 Comparisons

Relative to the case without mutual monitoring, team production with mutual monitoring yields

a higher payoff for the manager. To see this, note that both (p4 − p1) and 2(p4 − p3) are greater

than (p4 − p2) by assumption (2). Therefore,

max{ 1

(p4 − p1)
,

1

2(p4 − p3)
} < 1

p4 − p2

That is, the expected wage payment with mutual monitoring is strictly less than those without

mutual monitoring. The expected revenue is the same since both induce the full effort level. So the

manager is strictly better off with the presence of mutual monitoring. Thus, we have the following

proposition.

Proposition 2 Mutual monitoring strictly improves the Principal’s payoff, thus making team
production relatively more attractive.

The main intuition for this result is that, with mutual monitoring workers may sanction each

other if one worker shirks in the first period. As a result, a worker can at most free-ride for one
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period with mutual monitoring. On the other hand, a worker can free-ride for two periods without

mutual monitoring. This difference is reflected in the difference between the term 1
(p4−p1) and the

term 1
p4−p2 . In the second period, workers’ incentive to free-ride on the equilibrium path decreases,

since the marginal return of exerting effort increases as total effort accumulated. This is reflected

in the difference between 1
2(p4−p3) and

1
p4−p2 . On the other hand, in the second period worker’s

incentive to shirk increases off the equilibrium path, which in turn makes the trigger strategy

credible. Overall, mutual monitoring reduces the gain from free-riding, thus the manager needs to

pay less to induce the “work” equilibrium.

Note that the condition of increasing marginal returns plays an important role. Suppose that

the marginal return of effort is constant, that is, pk = p0 +
k
4 (p4 − p0) for k = 1, 2, 3. In other

words, the probability of success is linear in total effort. Then 2(p4 − p3) = (p4 − p2) < (p4 − p1).

Therefore, max{ 1
(p4−p1) ,

1
2(p4−p3)} = 1

p4−p2 . Thus, the presence of mutual monitoring does not

reduce the necessary wage payment to motivate workers. The main reason for this is that without

increasing marginal returns, worker’s incentive to free-ride in the second (last) period is as strong

as his incentive to free-ride in both periods without mutual monitoring. Mutual monitoring can

discourage free-riding in the first period, but it cannot discourage free-riding in the last period since

there is no future punishment anymore. Increasing marginal return ensures that worker’s incentive

to free-ride decreases on the equilibrium path as early effort accumulates.

It is natural to think that as the technology becomes more convex (marginal return increases

faster), the expected wage payment in the optimal contract decreases. To prove that formally,

we first define the criterion to compare two technologies. Fix p4 and p0, for two set of pi0and pi00

(i = 1, 2, 3) satisfying assumption (2), if

(p4 − pi0) > (p4 − pi00) for all i = 1, 2, 3

then we say that technology pi0 is more convex than technology pi00 . It follows immediately that

max{ 1

(p4 − p10)
,

1

2(p4 − p30)
} < max{ 1

(p4 − p100)
,

1

2(p4 − p300)
}

That is, the necessary wage payment to motivate workers decreases as the technology becomes

more convex. This result is pretty intuitive. As the technology becomes more convex, shirking

in the first period becomes less attractive, which is reflected in the decrease of the term 1
(p4−p1) .

Moreover, shirking in the second period on the equilibrium path is more costly, since doing so

means forego a bigger increase in return; this effect is embodied by the decrease in term 1
2(p4−p3) .

Overall, mutual monitoring becomes more effective in deterring shirking as the technology becomes

more convex. The following corollary summarizes the comparative statics result:

Corollary 1 : As the technology becomes more convex, the expected wage that is necessary to
motivate workers in team production decreases.
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Since complex projects usually have more convex technology, the corollary implies that more

complex projects should be more likely to adopt teams. The results of two empirical studies

support this prediction. Based on the survey data from 875 American establishments, Osterman

(1994) found that as an enterprise’s technology becomes more complex, it is more likely that teams

are used. Boning, Ichniowski and Shaw (2001) studied the use of teams in the operations of U.S.

steel minimills. They reached the conclusion that “problem-solving teams are adopted only in the

presence of incentive plans, and that more technologically complex production lines are much more

likely to adopt teams.”

One may doubt that why two workers choose to sanction each other, which actually reduces

their payoff compared to the case without mutual monitoring. Standard repeated games usually

have multiple equilibria. Likewise, under the optimal contract there are two subgame perfect Nash

equilibrium in this game: mutual monitoring equilibrium and shirking equilibrium (shirking in each

period regardless of history). Shirking equilibrium definitely hurts the principal. But we argue that

the mutual monitoring equilibrium is a more plausible one. Given the optimal wage contract, if

workers accept the contract, ex post workers have incentive to carry out mutual monitoring. To

see this, in mutual monitoring equilibrium each worker gets p4max{ 1
(p4−p1) ,

1
2(p4−p3)}− 1. On the

other hand, the shirking equilibrium yields payoff p0max{ 1
(p4−p1) ,

1
2(p4−p3)} for each worker. But

p4max{ 1

(p4 − p1)
,

1

2(p4 − p3)
}− 1− p0max{ 1

(p4 − p1)
,

1

2(p4 − p3)
}

= (p4 − p0)max{ 1

(p4 − p1)
,

1

2(p4 − p3)
}− 1 > 0

Therefore, workers will have incentive to carry out mutual sanction if the optimal contract is offered.

To make the comparison of project selection simple, we further assume that q0 = p0 = 0. Then

for two individual projects, the manager’s highest total payoff is 2q2(S − 1
q2
), which is achieved

when the “work” equilibrium is implemented. Without mutual monitoring, choosing the combined

project is optimal if and only if

p4(S − 1

p4 − p2
) ≥ q2(S − 1

q2
) (12)

Note that two necessary conditions for (12) to hold are: p4 > q2 and S > 1
p4−p2 .

On the other hand, with mutual monitoring choosing the combined project is optimal if and

only if

p4(S −max{ 1

(p4 − p1)
,

1

2(p4 − p3)
}) ≥ q2(S − 1

q2
) (13)

Since max{ 1
(p4−p1) ,

1
2(p4−p3)} < 1

p4−p2 , (13) is less stringent than (12). Therefore, mutual

monitoring can make team production relatively more attractive: there is a set of parameter values

such that without mutual monitoring two individual projects will be chosen, but with mutual

12



monitoring team production will be chosen. Moreover, as the technology becomes more convex.,

choosing the combined project is more likely to be optimal.

Actually, mutual monitoring is also effective under one special technology. For total effort level

i, suppose that pi = p0 + ki for i = 1, 2, 3, where k is some constant; and p4 = p0 + 3k + b, where

b is another constant. That is, the marginal return of exerting effort is constant for partial effort,

but full effort has an additional bonus b, probably due to the completion of the project. We call

this b “completion benefit.” Under this technology,

2(p4 − p3) = 2b+ 2k > b+ 2k = (p4 − p2)

Therefore,

max{ 1

(p4 − p1)
,

1

2(p4 − p3)
} < 1

p4 − p2

The presence of mutual monitoring still decreases the necessary wage payment thus increases

the relative attractiveness of team production. Fix p4 and p0, an increase in b means a decrease in

k, the marginal return of partial effort. One can easily show that max{ 1
(p4−p1) ,

1
2(p4−p3)} decreases

as b increases. Therefore, corollary 1 still holds under this technology.

2.5 Examples

In this subsection, we provide two concrete examples. The technologies of example 1 is the following:

p0 = 0 p1 = 0.1 p2 = 0.25 p3 = 0.5 p4 = 0.8

q0 = 0 q1 = 0.2 q2 = 0.6

Obviously, technology p satisfies assumption (2) and technology q satisfies assumption (1).

S = 2. The table below reports the optimal contracts and the associated profits of the principal.

Optimal contract Profits

Individual projects ws∗ = 5
3

1
5

Combined project without mutual monitoring ws∗ = 20
11

8
55

Combined project with mutual monitoring ws∗ = 5
3

4
15

From the table, we see that the presence of mutual monitoring decreases the expected wage

payment from 20
11 to

5
3 . Without mutual monitoring, choosing individual projects is optimal for

the principal (15 > 8
55). But with mutual monitoring, choosing the combined project is optimal

( 415 >
1
5).

In the second example, the technology exhibits constant marginal returns of partial effort, but

with a positive “completion benefit.” In particular,

13



p0 = 0 p1 = 0.15 p2 = 0.3 p4 = 0.45 p4 = 0.8

and the “completion benefit” b = 0.2. Without mutual monitoring, to induce full effort ws∗ = 2
, which yields a zero expected profit for the principal. With mutual monitoring, ws∗ = 20

13 < 2, and

the expected profit for the principal is 2465 > 0.

3 Partnership

In this section we study how mutual monitoring can reduce the inefficiency of partnership. We

assume that only the combined project is available, and two entrepreneurs form a partnership

(there is no longer a principal to break the budget). All the other features of the model are the

same as the one presented in Section 2. Assumption (2) is satisfied, so effort exhibits increasing

marginal returns. Assumption (4) is also satisfied, so the efficient action is exerting effort in both

periods for both workers. We are interested in when the efficient action can be implemented by

simple sharing rules, that is, sharing rules exhibits balanced budget and limited liability. Let the

sharing rule be s(y) = (s1(y), s2(y)), si(y) is the share of player i if the output is y. Balanced

budget requires s1(y) + s2(y) = 1, and limited liability requires si(y) ≥ 0. Because y = 0 if the

project fails, the only relevant sharing rule is si(y = S). To simplify notation, we simply drop the

argument and denote the relevant sharing rule as si.

3.1 Partnership without mutual monitoring

To implement the efficient action without mutual monitoring, the following conditions have

to be met. First, no player should have incentive to deviate in one period only. That is,

siSp4− 1 ≥ siSp3− 1
2 , i = 1, 2. Second, no player should have incentive to deviate in both periods.

Mathematically, siSp4 − 1 ≥ siSp2 − 0, i = 1, 2. Given assumption (2), 2(p4 − p3) > (p4 − p2), the

first condition is redundant. Moreover, to make the second condition easier to be satisfied for both

players, the best sharing rule is si = 0.5 for i = 1, 2. Therefore, the efficient action, or the working

equilibrium can be implemented if and only if

(p4 − p2)S ≥ 2

Recall that for working in both periods to be the efficient action, the condition is (p4−p0)S ≥ 2.
Therefore, if 2

p4−p0 < S < 2
p4−p2 , the efficient action cannot be implemented without mutual

monitoring. The bite comes from the classical free-riding problem; to discourage free-riding, the

return of the project should be high enough.
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3.2 Partnership with mutual monitoring

With mutual monitoring, players can use trigger strategies to “sanction” or “punish” non-

cooperative behavior. Specifically, we consider the following strategy: work in the first period, and

work in the second period if and only if both players work in the first period. We call this mutual

monitoring equilibrium if this strategy profile can be supported as a subgame perfect equilibrium.

To support this strategy profile as an equilibrium, the following conditions have to be met:

siSp4 − 1 ≥ siSp1 (14)

siSp4 − 1 ≥ siSp3 − 1
2

(15)

siSp2 − 1 ≤ siSp1 − 1
2

(16)

siSp1 − 1
2
≤ siSp0 (17)

(14) makes sure that one player has no incentive to shirk in the first period. (15) requires that

no player has incentive to deviate in the second period on the equilibrium path. (16) and (17) make

sure that each player has no incentive to deviate off the equilibrium path in the second period.

Because all these conditions have to be satisfied for both players. It follows that the least

stringent sharing rule is si = 0.5 for i = 1, 2. Similar to the Principal-agent setting, (17) is

redundant if other three conditions are satisfied. Then the set of conditions are boiled down to:

(p4 − p1)S ≥ 2; (p4 − p3)S ≥ 1; and (p2 − p1)S ≤ 1

It follows that if

max{ 2

(p4 − p1)
,

1

(p4 − p3)
} ≤ S ≤ 1

p2 − p1
(18)

then the mutual monitoring equilibrium exists, and the efficient action can be implemented in a

perfect equilibrium. Note that by assumption (2), (p4− p1) > 2(p2− p1) and (p4− p3) > (p2− p1).

Therefore, there exists a range of S that satisfies (18).

How about the case S > 1
p2−p1 , can the efficient action be implemented with mutual monitoring?

Apparently, trigger strategies are no longer credible. But notice that 2
p4−p2 <

1
p2−p1 by assumption

(2). Recall that in the last subsection, we showed that if S ≥ 2
p4−p2 , then the efficient action can

be implemented without mutual monitoring. Of course, with mutual monitoring, if S ≥ 2
p4−p2 ,

the efficient action still can be implemented: players simply ignore their observation of the other’s

effort. Actually, if S > 1
p2−p1 >

2
p4−p2 , players’ incentive to free-ride total disappear; so the efficient

action can be implemented in any case. Therefore, we have the following lemma.
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Lemma 1 With mutual monitoring, if S ≥ max{ 2
(p4−p1) ,

1
(p4−p3)}, then efficient action can be

implemented. In particular, if max{ 2
(p4−p1) ,

1
(p4−p3)} ≤ S ≤ 2

p4−p2 , the efficient action can only be
implemented by trigger strategies. If S ≥ 1

p2−p1 , then the efficient action can only be implemented
by strategies ignoring first period efforts. For 2

p4−p2 ≤ S ≤ 1
p2−p1 , the efficient action can be

implemented both by trigger strategies and strategies ignoring first period efforts.

Compared to the case without mutual monitoring, mutual monitoring reduces the range of

inefficiency. If max{ 2
(p4−p1) ,

1
(p4−p3)} ≤ S < 2

p4−p2 , then the efficient action cannot be implemented
without mutual monitoring, but it can be implemented with mutual monitoring. Notice that mutual

monitoring does not eliminate the inefficiency completely: if 2
p4−p0 < S < max{ 2

(p4−p1) ,
1

(p4−p3)},
then the efficient action still cannot be implemented. Moreover, the comparative statics result of

the previous section applies to the partnership setting as well: the more convex is the technology,

the lower the low bound of S that the efficient action can be implemented (max{ 2
(p4−p1) ,

1
(p4−p3)}

decreases as the technology becomes more convex), thus the smaller the range of inefficiency. The

following proposition summarizes the above discussion:

Proposition 3 Compared to the case without mutual monitoring, the presence of mutual

monitoring makes the efficient action more likely to be implemented by simple sharing rules. The

more convex is the technology, the smaller the range of inefficiency.

The intuition of this result is the same as those in the principal-agent setting. With mutual

monitoring, each player can at most free-ride once, which reduces the gain from free-riding; and

increasing marginal returns makes sure that players have less incentive to free-ride in the last period

on the equilibrium path. This puts less restriction on the return of the project for the efficient action

to be implemented. As a result, the range of inefficiency shrinks.

4 Players interact more frequently

In previous sections, we assume that there are two periods needed to complete a project. More

realistically, team members may interact more often before the deadline of a project. If we define

the span between players’ two consecutive interactions as a period, then more frequent interactions

means that period length becomes smaller, and it takes more periods to complete a project. In this

section, we study how the frequency of interactions between team members affects the effectiveness

of the mutual monitoring.

We adopt the principal-agent setting (the partnership setting is similar). The model is essentially

the same as the model in section 2. The only difference is that now players needs n ≥ 2 periods
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Figure 1:

to complete a project. For simplicity, we assume that only a combined project is available. To

make comparative statics analysis reasonable, we fix the technology. Specifically, the probability of

success only depends on the ratio of total exerted effort to full effort. Denote P e
2n
as the probability

of success given that two players total effort is e. Note that if two players exert effort in each period,

then the probability of success is P1, which is independent of n. Also note that if neither players

exert effort in any period, then the probability of success is P0, which is also independent of n.

Basically, P is a function mapping from [0, 1] to [0, 1]. We fix function P , and assume it is strictly

increasing and convex. The P function is plotted in figure 1. Note that the convexity assumption

is a generalization of assumption (2).

Given n, the relevant P e
2n
for e ∈ {0, 1, 2, ..., 2n} are determined from the function P . As n

increases, the domain of relevant P e
2n
expands. This captures the idea that, as agents interact more

often (n increases), a unit of effort in one period decreases in absolute value and the number of

possible partial effort increases.

Let wi be the wage payment of player i when the project succeeds, player i’s utility function is

generalized to:

ui(wi, ei) = Ewi −
Pn

j=1 e
j
i

n

In words, player i’s disutility of effort is just the average of his total efforts.12 We also assume

that

(P1 − P0)S − 2 > 0 (19)
12Adopting discounting would not change the qualitative results.
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(19) implies that the efficient action is for both workers to exert effort in each period. To see

this, take any action profile in which the total effort is m, 0 < m < 2n. The total surplus under this

action profile is P m
2n
S − m

n . The total surplus under full effort is P1S − 2. The difference between
the total surpluses is:

(P1 − P m
2n
)S − (2− m

n
) = [(P1 − P0)− (Pm

2n
− P0)]S − (2− m

n
)

> [(P1 − P0)− m

2n
(P1 − P0)]S − (2− m

n
)

= (1− m

2n
)(P1 − P0)S − (2− m

n
) > 2(1− m

2n
)− (2− m

n
) = 0

The first inequality comes from the assumption of convexity, and the second inequality comes

from assumption (19). The intuition is straightforward: the cost of effort is linear, while the

marginal return of effort is increasing; given that exerting full effort is more efficient than exerting

zero effort, exerting full effort dominates exerting any partial effort. In the following analysis, we

first fix n and derive the optimal contract. Then we carry out comparative statics analysis: how

does the optimal contract change as n varies.

4.1 Team production without mutual monitoring

In this subsection, we assume that efforts exerted by players are not mutually observable in any

period. Under this setting, to implement the efficient action the following conditions have to be

met:

(P1 − Pn+m
2n
)wi − (1− m

n
) ≥ 0 for all m, 0 ≤ m < n (20)

That is, given that the other player exerts effort in every period, player i should not have

incentive to deviate in any possible combination of periods. Lemma 2 shows that the most stringent

condition is m = 0, that is, one player shirks in all periods.

Lemma 2 If (P1 − P n
2n
)wi − 1 ≥ 0, then all the other conditions in (21) are satisfied.

Proof. pick any 0 < m < n.

[(P1 − Pn+m
2n
)wi − (1− m

n
)]

> (1− m

n
)(P1 − P 1

2
)wi − (1− m

n
)

= (1− m

n
)[(P1 − P 1

2
)wi − 1] ≥ 0

The first inequality comes from the convexity assumption, while the second inequality comes from

the assumption specified in lemma 2.
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Following lemma 2, the principal’s optimal contract is to offer w∗i =
1

(P1−P 1
2
) if the project

succeeds. Note that the optimal contract is independent of n.

4.2 Team production with mutual monitoring

Now suppose that at the end of each period, players can observe each other’s effort in that period.

As in the two-period model, this creates the possibility of mutual sanction: if one player shirks in

some period, the other player may punish him by shirking in all later periods. The n-period model

is different from the two-period model in that in later periods players might not have incentive to

carry out punishment even if they observe some shirking. But this is not a big problem, since it

simply means that players’ incentive to free-ride disappears in later periods. However, this does

make the task of finding a subgame perfect equilibrium harder, because trigger strategies may not

be supported as a subgame perfect equilibrium.

Note that any subgame in this game is characterized by (t, e(t)), where t is the period

index and e(t) is the total effort that has been accumulated at the beginning of period t.

e(t) ∈ {0, 1, 2, ..., 2t− 2} and is like a state variable. Consider the class of subgames starting from
period t. We are interested in whether shirking in all subsequent periods is a Nash equilibrium in

the subgame. Of course, this depends on e(t). To proceed, we first prove a useful lemma.

Lemma 3 At the beginning of any period t, for any accumulated effort m (0 ≤ m ≤ 2(t−1)), given
that the other player is going to shirk in all subsequent periods, exerting partial effort in subsequent

periods is dominated by either exerting 0 effort or by exerting full effort.

Proof. Given that the other player shirks in all subsequent periods, exerting total effort k in
later periods (0 ≤ k ≤ n− t+ 1) yields a payoff (net of the sunk cost of efforts exerted in previous

periods ): Pm+k
2n

wi − k
n ≡ f(k). Then

f(k + 1)− f(k) = [Pm+k+1
2n
− Pm+k

2n
]wi − 1

n

Given the convexity assumption, f(k + 1)− f(k) is increasing in k. Let k0 be the smallest k such
that f(k+1)− f(k) is positive. Overall, there are three possibilities: a) k0 = 0. Then f(n− t+1)

is the largest among f(k), 0 ≤ k ≤ n− t+1. b) 0 < k0 < n− t+1. Then either f(0) or f(n− t+1)
is the largest among f(k). c) k0 does not exist. Then f(0) is the largest among f(k). In all the

cases, one of the following must be true:

f(k) ≤ f(0)

or f(k) ≤ f(n− t+ 1) for all 1 ≤ k < n− t+ 1
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Denote E(t) as the set of e(t) ∈ {0, 1, 2, ..., 2t − 2} such that shirking in all subsequent
periods is not a Nash equilibrium in the subgame. By lemma 3, e(t) ∈ E(t) if and only if

e(t) ∈ {0, 1, 2, ..., 2t− 2} and,

(P e(t)+n−t+1
2n

− P e(t)
2n

)wi − n− t+ 1

n
≥ 0

That is, given the other player shirks in all subsequent periods, the player still have incentive to

work in all subsequent periods. By the convexity, if e(t) ∈ E(t), then e(t) + 1 also belongs to E(t).

Note that E(t) may be empty. In this case, shirking in all subsequent periods constitute a Nash

equilibrium in all the subgame starting from t. Let k(t) be the smallest e(t) that belongs to E(t)

and k(t) ≤ 2t − 3. Note that k(t) may not exist. In that case, shirking in all subsequent periods
is a Nash equilibrium of all the subgames starting from t and at least one player shirks once in

previous history. The following lemma establishes the relationship of k(t) in different periods.

Lemma 4 (i) k(t)+1 ∈ E(t+1) and k(t) is weakly increasing in t; (ii) if k(t) does not exist, then

k(t− 1) does not exist.

Proof. Property (i). By the fact k(t) ∈ E(t),

(Pk(t)+n−t+1
2n

− Pk(t)
2n

)wi − n− t+ 1

n
≥ 0 (21)

(Pk(t)+1+n−t
2n

− Pk(t)+1
2n

)wi − n− t

n
>

n− t

n− t+ 1
(Pk(t)+n−t+1

2n

− Pk(t)
2n

)wi − n− t

n
≥ n− t

n
− n− t

n
= 0

The first inequality comes from the convexity assumption and the second inequality comes from

(21). Thus, k(t) + 1 ∈ E(t+ 1).

Suppose k(t) < k(t− 1). By the definition of k(t), (21) is satisfied. Then,

(Pk(t)+n−t+2
2n

− Pk(t)
2n

)wi − n− t+ 2

n
>

n− t+ 2

n− t+ 1
(Pk(t)+n−t+1

2n

− Pk(t)
2n

)wi − n− t+ 2

n
≥ 0

The first inequality comes from the convexity assumption and the second inequality comes from

(21). This means that k(t) ∈ E(t−1), and it contradicts the fact that k(t−1) > k(t) is the smallest

e ∈ E(t− 1). Therefore, k(t) is weakly increasing in t.

Property (ii). Since k(t) does not exist,

(P 2t−3+n−t+1
2n

− P 2t−3
2n
)wi − n− t+ 1

n
< 0 (22)

(P 2t−5+n−t+2
2n

− P 2t−5
2n
)wi − n− t+ 2

n
<

n− t+ 2

n− t+ 1
(P 2t−3+n−t+1

2n
− P 2t−3

2n
)wi − n− t+ 2

n
< 0
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The first inequality comes from the convexity assumption and the second inequality comes from

(22). Therefore, k(t− 1) does not exist.

Now we are ready to describe the strategy of mutual sanction, which is essentially a modified

trigger strategy. In the first period, each worker exerts effort. In any other period t, each worker

exerts effort in that period if one of the three conditions holds: (1) nobody shirks in previous

history; (2) e(t) ≥ k(t); (3) e(t) + 1 ≥ k(t + 1); otherwise, shirk in period t. This strategy is

different from trigger strategy in that if e(t) ≥ k(t) or e(t) + 1 ≥ k(t+ 1), players are still going to

exert effort in period t even if shirking happened in previous history. The essence of this strategy is

to carry out the harshest possible punishment if somebody deviates. From lemma (4), it is in later

periods (as more effort accumulates) that players’ incentive to carry out punishment decreases.

Depending on the degree of the convexity of the technology, the optimal wage payment have two

different values.

Lemma 5 If (P1 − P 1
2n
) ≥ n(P1 − P 2n−1

2n
), then the optimal contract is w∗i =

1
n(P1−P 2n−1

2n
) . And

under this contract, the strategy profile we described constitutes a perfect equilibrium.

Proof. We first prove that under the optimal contract, k(n) does not exist. For m = 2n− 3,

(P 2n−3+1
2n
− P 2n−3

2n
)w∗i −

1

n
=
1

n
[
P 2n−2

2n
− P 2n−3

2n

P1 − P 2n−1
2n

− 1] < 0

The inequality comes from the convexity assumption. Therefore, k(n) does not exist. By lemma

(4), k(t) does not exist for all t. This means that trigger strategy is credible in all subgames, and

the strategy we described becomes trigger strategy.

Second, we prove that under the contract, nobody has incentive to deviate on the equilibrium

path. That is,

(P1w
∗
i − 1)− [P 2(t−1)+1

2n

w∗i −
(t− 1)

n
] ≥ 0 for all t, 1 ≤ t ≤ n (23)

(nobody has incentive to deviate in any period t). (23) includes n conditions. If we minus the left

hand side of tth condition by the left hand side of (t+ 1)th condition, then we get

(P 2t+1
2n
− P 2t−1

2n
)w∗i −

1

n
(24)

Note that (24) is increasing in t. Suppose that (24) is greater than 0 for t = 1, then (24) is greater

than 0 for all t. As a result, if (23) is satisfied for t = n, i.e., (P1 − P 2n−1
2n
)w∗i − 1

n ≥ 0, then all the
conditions in (23) are satisfied. Now suppose that (24) is less than 0 for all t < T and it is greater

than 0 for all t ≥ T . Then if (23) is satisfied for t = 0, i.e., (P1−P 1
2n
)w∗i − 1 ≥ 0, all the conditions

in (23) with t ≤ T −1 are satisfied. Similarly, if (23) is satisfied for t = n, i.e., P1−P 1
2n
)w∗i −1 ≥ 0,

then all the conditions in (23) with t ≥ T are satisfied. The last possibility is that (24) is less than
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0 for all t, then if (23) is satisfied for t = 0, i.e., (P1 − P 1
2n
)w∗i − 1 ≥ 0, all the conditions in (23)

are satisfied. To sum up, in any case given that

(P1 − P 1
2n
)w∗i − 1 ≥ 0 (25)

(P1 − P 2n−1
2n
)w∗i −

1

n
≥ 0 (26)

are satisfied, all the conditions in (23) are satisfied. It is readily verified that (25) and (26) are

satisfied given (P1 − P 1
2n
) ≥ n(P1 − P 2n−1

2n
).

We next prove that nobody has incentive to deviate off the equilibrium path. That is,

(P1w
∗
i − 1)− [P 2(t−1)+1+l

2n

w∗i −
(t− 1) + l

n
] ≥ 0 for all t, 1 ≤ t ≤ n and all k, 1 ≤ l ≤ n− t+1 (27)

following equilibrium strategy is better than shirking in period t and working in any combination

of later periods. First we fix t. By lemma (3), we only need to worry about l = 0 and l = n− t+1

for condition (27). When l = 0, (27) becomes one condition in (23). So we should only worry about

(27) for k = n− t+ 1. It is equivalent to:

(P1w
∗
i − 1)− [Pn+t−1

2n
w∗i −

n− 1
n

] ≥ 0 for all t, 1 ≤ t ≤ n

⇔ (P1 − Pn+t−1
2n

)w∗i ≥
1

n
for all t, 1 ≤ t ≤ n (28)

It follows immediately that if (P1 − P 2n−1
2n
)w∗i ≥ 1

n , then (28) is satisfied.

Finally, it is obvious that w∗i is the lowest possible wage payment to make (23) satisfied, since
(25) has to hold.

This case corresponds to the situation where the convexity of the technology is not strong

enough. The optimal wage just deters workers from deviating in the last period on the equilibrium

path. As a result, mutual sanction about deviation is always credible in all periods given the

convexity. Under trigger strategy, player can at most free-ride in one period. Since player’s incentive

to free-ride decreases as total effort accumulates, deterring shirking in first period is enough. But

since the convexity is not so strong, shirking is deterred in first period if player has no incentive to

deviate in the last period.

Lemma 6 If (P1 − P 1
2n
) ≤ n(P1 − P 2n−1

2n
), then the optimal contract is w∗i =

1
P1−P 1

2n

. And under

this contract, the strategy we described is a perfect equilibrium.

Proof. We first prove that nobody has incentive to deviate on the equilibrium path. By lemma
(4), there is a t0 such that for all t < t0 k(t) does not exist and all t ≥ t0 k(t) exists. For t ≤ t0 − 2,
any deviation will cause perpetual shirking, because k(t0− 2) and k(t0− 1) do not exist. Therefore,
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to deter deviation in t ≤ t0 − 2, the following conditions are necessary and sufficient:

(P1w
∗
i − 1)− [P 2(t−1)+1

2n

w∗i −
(t− 1)

n
] ≥ 0 for all t, 1 ≤ t ≤ t0 − 2 (29)

According to the proof of the last lemma, all the conditions in (29) are satisfied if (25) and (26)

are satisfied. It is readily verified that (25) and (26) are satisfied under w∗i , given (P1 − P 1
2n
) ≤

n(P1 − P 2n−1
2n
).

By the fact that on the equilibrium path e(t) ≥ k(t) for t ≥ t0, neither player has incentive to
deviate.

In period t0 − 1, if one player deviates, punishment will not happen in later periods, since k(t0)
exists. To deter this deviation, the following condition should be satisfied:

P1w
∗
i − 1 ≥ P 2n−1

2n
w∗i −

n− 1
n
⇔ n(P1 − P 2n−1

2n
)w∗i ≥ 1 (30)

Obviously, (30) is satisfied under the optimal contract w∗i .
Next we prove that nobody has incentive to deviate off the equilibrium path. In any case,

following equilibrium strategy is optimal. To see this, if e(t) ≥ k(t), working in next period is

optimal since even the other worker shirks in all subsequent periods the worker still have incentive

to work. If e(t) + 1 ≥ k(t + 1), then working in next period is optimal. To see this, the payoff

difference between working and not working in next period is the following:

(P e(t)+1+2n−2t
2n

− P e(t)
2n

)w∗i −
n− t+ 1

n
≥ (P e(t)+n−t+2

2n

− P e(t)+1
2n

)w∗i −
n− t+ 1

n

≥ n− t+ 1

n− t
[(P e(t)+n−t+1

2n

− P e(t)+1
2n

)w∗i −
n− t

n
] ≥ 0

The last inequality comes from the fact that e(t)+1 = k(t+1). If e(t)+1 < k(t+1) and e(t) < k(t),

then shirking in next period is clearly optimal, because working in next period would not induce

the other worker to work in later periods (this comes from e(t) + 1 < k(t+ 1)) and working alone

is not optimal (this comes from e(t) < k(t)).

Finally, it is obvious that w∗i is the lowest possible wage payment to deter deviation in the first
period. Therefore, w∗i is the optimal wage.

This case corresponds to the situation where the convexity is strong. The optimal wage just

deters workers from deviating in the first period on the equilibrium path. Since the convexity is

strong, mutual sanction is not credible in later periods. But in early periods mutual sanction is still

credible. Now the problem is reduced to motivate workers to exert effort in earlier periods. Given

that player’s incentive to free-ride decreases as total effort accumulates, deterring shirking in the

first period is enough. More intuitively, under strong convexity mutual sanction is still effective to

discourage shirking in early periods; when mutual sanction becomes not credible (in later periods),

workers’ incentive to free-ride already disappeared. The following proposition summarizes the

results of lemma (5) and (6).
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Proposition 4 The optimal contract is w∗i = max{ 1
(P1−P 1

2n
) ,

1
n(P1−P 2n−1

2n
)}. The corresponding

strategy is either a trigger strategy (convexity is not so strong ) or a modified trigger strategy

(strong convexity).

Now we are ready to do the comparative statics. As n increase (the frequency of interactions

between players increases), (P1 − P 1
2n
) apparently increases. Moreover, as n goes to infinity,

(P1 − P 1
2n
) converges to (P1 − P0).

Lemma 7 n(P1 − P 2n−1
2n
) is increasing in n, and it goes to infinity as n goes to infinity.

Proof. Let n(P1 − P 2n−1
2n
) = z(n). Then

z(n+ 1)− z(n) = (n+ 1)(P1 − P 2n+1
2n+2

)− n(P1 − P 2n−1
2n
)

= (P1 − P 2n+1
2n+2

)− n(P 2n+1
2n+2
− P 2n−1

2n
)

2n+1
2n+2−2n−12n = 1

n(2n+2) . By the assumption of convexity, (P 2n+1
2n+2
−P 2n−1

2n
) < 1

n(P1−P 2n+1
2n+2

). Therefore,

(P1 − P 2n+1
2n+2

)− n(P 2n+1
2n+2
− P 2n−1

2n
) > (P1 − P 2n+1

2n+2
)− n

1

n
(P1 − P 2n+1

2n+2
) = 0

Therefore, z(n) is increasing in n. Moreover, as n goes to infinity, (P1 − P 2n−1
2n
) converges to the

derivative of P evaluated at 1, which is positive since P is an increasing and convex function.

Therefore, as n goes to infinity, n(P1 − P 2n−1
2n
) also goes to infinity.

Following lemma (7), the optimal wage w∗i decreases as n increases. Since in the case of without
mutual monitoring the optimal wage payment is independent of n, mutual monitoring becomes

more effective in deterring free-riding as n increases. Moreover, as n goes to infinity, w∗i converges
to 1

P1−P0 , which is the optimal wage in the absence of free-riding problem. In other words, free-
riding problem completely disappears if workers interact infinitely often. The following proposition

summarizes the comparative statics result.

Proposition 5 The optimal wage payment w∗i is strictly decreasing in n, and it converges to
1

P1−P0
as n goes to infinity. Mutual monitoring becomes more effective in deterring free-riding as workers

interact more often.

This comparative statics result is quite intuitive. With mutual monitoring, one player can

at most free-ride for one period. As the frequency of interaction increases, each period becomes

shorter. As a result, player’s gain from free-riding decreases. Therefore, the principal only needs

to pay a smaller wage to discourage free-riding. Similar result applies to the partnership setting:
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as the frequency of interaction among partners increases, team members’ incentive to free-ride

decreases, thus the range of inefficiency shrinks; as partners interact infinitely often, the range

of inefficiency completely disappears. It is natural to think that complex projects need more

interactions among team members. Then proposition (5) implies that teams are more likely to be

adopted for technologically more complex projects.

5 Conclusions

This paper shows that the free-riding problem in short-lived teams is not as severe as previously

thought. When the technology exhibits increasing marginal return or has a “completion benefit,”

mutual monitoring can effectively alleviate the free-riding problem. This extends and complements

the results of CY. In principal-agent settings, mutual monitoring reduces the necessary wage to

motivate workers in team production, thus making teams more attractive relative to individual

production. In partnership settings, mutual monitoring can reduce partners’ incentive to free-

ride, making socially productive partnership more likely to be implemented (reduce the range of

inefficiency).

We also derived two comparative statics results. When the technology is more convex, has

a bigger “completion benefit,” or teams members are required to interact more often, mutual

monitoring is more effective in alleviating the free-riding problem. These results imply that

technologically more complex projects are more likely to adopt teams. Some existing empirical

evidence supported this prediction. But the fact that teams are more likely adopted for complex

projects might be explained by another factor: the gain from complementarities in production

among workers is bigger for complex projects. We do admit that this factor contributes to the

popularity of teams for complex projects. But we also do believe that, due to mutual monitoring,

free-riding problem is less severe for teams with more complex technology, and this effect also

contributes to the popularity of teams for complex projects. More empirical works need to be done

to distinguish these two effects.
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