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For robustness check, in this section we extend our analysis to the continuous type model, which

can be regarded as the limiting case of many finite types. As an overview, with a continuum of

types, the tax schedule chosen under each regime is characterized by a second-order differential

equation with two boundary values. By focusing on the case where the vertical types are distributed

uniformly, we are able to show that under independent taxation, the higher the mobility, the higher

the consumption for all but the highest and lowest types; the rich (types sufficiently close to the

highest type) pay lower tax, and the poor (types sufficiently close to the lowest type) receive lower

subsidy under competition; there exists a cutoff type θ∗ so that all types above θ∗are better off, and

all types below θ∗ are worse off with competition. Our computations confirm most of the findings

from the three type model regarding the preferences of the median type, who is responsible for the

constitutional choice.

Specifically, in the vertical dimension worker-consumers are distributed on [θ, θ] with density

function f(θ), where f(θ) is continuous, strictly positive everywhere in its support. All the other

assumptions are the same as those in the previous discrete type model.

As in the discrete type model, citizens can only be sorted in the vertical dimension. Thus,

offering a tax schedule T (Q) is equivalent to offering a menu of consumption and production pairs

{C(θ),Q(θ)}θ∈[θ,θ]. Define the tax function T (θ) = Q(θ)− C(θ). In the autarkic economy (no tax),

a citizen’s optimal consumption is determined by u
0
(c∗) = 1/θ.

Again we will consider unified and independent taxation rules. Under either the unified or

independent taxation rule, incentive compatibility has to hold for each type of citizen conditional on

her State of residence. Define

V (θ,bθ) = u(C(bθ))− Q(bθ)

θ

to be the utility for a citizen with (vertical) type θ who accepts contract {C(bθ), Q(bθ)}. Incentive

compatibility requires that

V (θ, θ) ≥ V (θ,bθ) ∀(θ,bθ) ∈ [θ, θ]2.

Let v(θ) denote the equilibrium rent provision to type-θ citizen: v(θ) = V (θ, θ). By the standard
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Constraint Simplification Theorem, the IC conditions are equivalent to the following two conditions:

v0(θ) =
Q(θ)

θ2 =
1

θ
[u(C(θ))− v(θ)] (1)

Q0(θ) ≥ 0 (2)

Constraint (2) is the monotonicity requirement as in the three-type model.

By (1), given v(θ), Q(θ) is uniquely determined and so is C(θ). For convenience, we will work

with the rent provision contract v(θ).1 It can be easily verified that Q0 = θu0(C)C 0. Thus, as in the

three-type model, Q0(θ) ≥ 0 if and only if C 0(θ) ≥ 0.

Given v(θ) provided by the State in question and the other State’s rent provision v−i(θ), the

type-θ “market share” for the State in question is given by

x∗(θ) = 1 +
v(θ)− v−i(θ)

k
. (3)

For ease of analysis, from now on we will work with the utility function u(C) = 2
√
C.2

Unified Taxation

Under unified taxation, the objective of the Federal authority is to maximize the weighted average

utility of all the citizens in both States, where the weight function w(θ) = f(θ) (in the same spirit as

in the three-type model). We focus on the symmetric solution in which the same menu of contracts

is applied to both States and the resulting “market shares” are symmetric (no citizen moves). We

can thus drop the State index to write {Ci(θ), Qi(θ)} = {C(θ), Q(θ)}, i = 1, 2. Mathematically, this

can be formulated as an optimal control problem:

max

Z θ

θ
v(θ)f(θ)dθ

s.t. v0(θ) =
1

θ

h
2
p
C(θ)− v(θ)

i
Q0(θ) ≥ 0Z θ

θ
[Q(θ)− C(θ)]f(θ)dθ = 0

The last constraint is the resource or budget constraint (RC).

1This approach follows the lead of Armstrong and Vickers (2001), who model firms as supplying utility directly to

consumers.

2Our main results should not be altered as long as we work with concave utility functions.
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To solve this optimal control problem, as is standard in the literature, we first ignore the

monotonicity constraint on Q(θ) to consider the relaxed program (and this approach will be jus-

tified if the solution of Q(θ) is indeed monotone). To deal with the resource constraint, we define

the new state variable J(θ) as follows

J(θ) =

Z θ

θ
[Q(θ)− C(θ)]f(θ)dθ, hence

J 0(θ) = [Q(θ)− C(θ)]f(θ).

Now (RC) is equivalent to J(θ) = 0 and J(θ) = 0. The Hamiltonian of the problem is:

H = vf + λ
1

θ

h
2
√
C − v

i
+ µ[θ(2

√
C − v)− C]

Define z =
√
C, then the Hamiltonian can be rewritten as

H = vf + λ
1

θ
[2z − v] + µ[θ(2z − v)− z2]

where λ and µ are the two costate variables. The optimality conditions are as follows:

∂H

∂z
= 2

λ

θ
+ µ[2θ − 2z]f = 0 (4)

λ0 = −∂H
∂v

= −f +
λ

θ
+ µθf (5)

µ0 = −∂H
∂J

= 0 (6)

From (6), µ is a constant. From (4) and (5) we can get rid of λ to yield

z0 +
f 0

f
z = 2− 1

µθ
+

f 0

f
θ (7)

We can further getting rid of µ by turning (7) into a second-order differential equation:

z00 = −1

θ

∙
z0 − 2 + (z + θz0 − 2θ)

f 0

f
+ θ(z − θ)

µ
f 0

f

¶0¸
(8)

z(θ) = θ, z(θ) = θ

where the boundary conditions above are directly implied from the transversality conditions λ(θ) =

λ(θ) = 0 and (4). The above second-order (linear) differential equation system has a closed-form

solution, which is given by
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z(θ) =
f(θ)

f(θ)

∙Z θ

θ

f(s)

f(θ)

µ
2− 1

µs
+ s

f 0(s)

f(s)

¶
ds + θ

¸
, (9)

where µ =

Z θ

θ

dF (s)

s
.

Independent Taxation

Under the independent taxation regime, each State i chooses its taxation schedule simultaneously

and independently. Given v−i(θ), the rent provision provided by the other State, State i will choose a

rent provision v(θ) to maximize the weighted average utility of the citizens residing in its own State.

Again we focus on symmetric equilibria, in which the two States choose the same taxation sched-

ule. Suppose State 2’s rent provision contract is given by v∗(θ). Then if State 1 offers rent provision

contract v(θ), by (3) the type-θ “market share” for State 1 is given by η(θ) = 1 + 1
k [v(θ) − v∗(θ)].

Now State 1’s maximization problem can be formulated as the following optimal control problem:

max

Z θ

θ
v(θ)f(θ)dθ

s.t. v0(θ) =
1

θ

h
2
p
C(θ)− v(θ)

i
Q0(θ) ≥ 0

J 0(θ) = [θ(2
p
C(θ)− v(θ))− C(θ)]η(θ)f(θ)

J(θ) = 0, J(θ) = 0

where J(θ) =
R θ
θ [θ(2

√
C − v) − C]η(θ)f(θ)dθ is the state variable associated with the budget con-

straint. Note that the market share η(θ) does not directly enter the State’s objective function. How-

ever, the States compete for high-type citizens as the market shares affect the resource constraints

and hence the ability to redistribute.

We again drop the monotonicity constraint Q0(θ) ≥ 0 and define the Hamiltonian (with z =
√
C):

H = vf +
λ

θ
(2z − v) + µη[θ(2z − v)− z2]f.

The optimality conditions for a symmetric equilibrium are given by

∂H

∂z
= 2

λ

θ
+ µ[2θ − 2z]f = 0

λ0(θ) = −∂H
∂v

= −f − 2
λ

θ
− µ

k

£
θ(2z − v)− z2

¤
f + µθf

µ0(θ) = −∂H
∂J

= 0⇒ µ is a constant
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After getting rid of λ, we have:

z0 = 2− 1

µθ
− (z − θ)

f 0

f
− θ(2z − v)− z2

kθ

v0 =
1

θ
(2z − v)

J 0 = θ(2z − v)− z2

Letting w = 2z − v, the above system becomes

w0 = 2z0 − v0 = 2z0 − w

θ
(10)

J 0 = θw − z2 (11)

z0 = 2− 1

µθ
− (z − θ)

f 0

f
− θw − z2

kθ
= 2− 1

µθ
− (z − θ)

f 0

f
− J 0

kθ
(12)

From (11), we have

w =
1

θ
(J 0 + z2), (13)

w0 =
1

θ2

£
(J 00 + 2zz0)θ − (J 0 + z2)

¤
(14)

Substituting (13) and (14) into (10), we have

J 00 = 2(θ − z)z0 (15)

From (12), we have

J 00 = 2k − k(θz00 + z0)− k(z + θz0 − 2θ)
f 0

f
− kθ(θ − z)

µ
f 0

f

¶0
(16)

Equating (15) and (16), and simplifying, we have

z00 = −1

θ

∙
z0 − 2 + (z + θz0 − 2θ)

f 0

f
+ θ(z − θ)

µ
f 0

f

¶0
+

2

k
(θ − z)z0

¸
(17)

z(θ) = θ, z(θ) = θ

where the boundary conditions above, as in the unified taxation case, follow from the transversality

conditions λ(θ) = λ(θ) = 0. Note that this is again a second-order differential equation system with
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two boundary values. It is nonlinear, however, in this case. The complication is that a closed-form

solution is no longer available. The analysis can easily become intractable if we work with general

distributions. For this reason in the next subsection we will focus on the uniform distribution case,

where θ is distributed uniformly over
£
θ, θ
¤
.

The Uniform Distribution Case

Under unified taxation, assuming that θ is uniformly distributed (i.e., f 0 = 0), (8) reduces to

z00 = −1

θ

£
z0 − 2

¤
(18)

z(θ) = θ, z(θ) = θ

Substituting f(θ) = 1/
¡
θ − θ

¢
into (9), we obtain the solution in the uniform distribution case:

z(θ) = 2θ − (θ − θ)
log θ − log θ

log θ − log θ
− θ (19)

It can be easily verified that z0(θ) > 0 if θ/θ − 1 ≤ 2 log
¡
θ/θ
¢
, or equivalently,

θ/θ ≤ γ∗ ≈ 3.55 (20)

Note that z0(θ) > 0 implies that Q0(θ) > 0. Given our focus on perfect sorting equilibria and

to justify our approach to solve the relaxed program by ignoring the monotonicity constraint, we

maintain the sorting condition (20) throughout this section.3 Intuitively, the higher the θ/θ, the

more costly is sorting along the vertical dimension. When θ/θ is large enough, pooling at the lower

end is optimal.

It can be easily verified that θ−z > 0 for θ ∈
¡
θ, θ
¢
and z = θ for θ = θ, θ. The result of efficiency

at the top is standard in the screening literature. Efficiency at the bottom, which is implied from

the transversality condition, however, is different from what we have seen from our base model with

three types.4

3This is a similar condition to the one that Rochet and Stole (2002) impose to guarantee separating equilibrium in

a nonlinear pricing setting with random participation. When this assumption fails, pooling occurs at the lower end.

4A reconciliation is provided in the nonlinear pricing literature by Rochet and Stole (2002), who demonstrate that

in a finite type model, the quality distortion for the lowest type disappears as the number of types goes to infinity. In

the literature of optimal taxation, Seade (1977) provides a good intuition for the “no-distortion-at-the-bottom” result.
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Since T 0(θ) = 2(θ − z)z0, T 0(θ) > 0 for θ ∈
¡
θ, θ
¢
under unified regime. That is, the tax is

increasing in the type. Given (RC), this also implies that the low types receive subsidies and the

high types pay taxes.

Under independent taxation, given that θ is uniformly distributed, (17) becomes:

z00 = −1

θ

∙
z0 − 2 +

2

k
(θ − z)z0

¸
(21)

z(θ) = θ, z(θ) = θ

Despite the lack of closed-form solutions, we are able to explore some analytical properties of

the equilibrium based on this ODE system. Our first result is that under independent taxation,

consumption is downward distorted for all but the top and bottom:

Lemma 1 θ − zI > 0 for θ ∈ (θ,θ).

Proof. Define y(θ) = θ − zI(θ). Then y(θ) = y(θ) = 0, y0(θ) = 1− z
0
I(θ), and y

00
(θ) = −1

θ [1 + y0 −
2
k (1− y0)]. It is equivalent to show that y never drops strictly below the zero line (y = 0).

First, we show that the curve is initially shooting above, i.e., y0(θ) > 0. Suppose not, then there

are two cases:

Case 1: y0(θ) < 0. Since y(θ) = 0, in this case we have y(θ+) < 0. That is, the y curve is initially

shooting below. Given the endpoint condition y(θ) = 0, at some point the curve has to shoot back

to the zero line. So there is θ̂ ∈ (θ,θ), such that y0(θ̂) = 0 and y(θ) < 0 for all θ ∈ (θ, θ̂]. In that case,

y00(θ̂) = −1

θ̂
[1− 2

k
y(θ̂)] < 0.

This implies that y(θ̂
+

) < y(θ̂) < 0, i.e., the curve keeps shooting below right after θ̂. However,

given the endpoint condition, the curve has to come back at some later point. But our preceding

argument suggests that the curve can never come back to the zero line, contradicting the endpoint

condition.

Case 2: y0(θ) = 0. In this case,

y
00
(θ) = −1

θ
< 0.

Thus y(θ+) < 0. Now connecting our argument from here with the argument in the first case above,

we establish contradiction again.

Thus we show that the curve is initially shooting above (y0(θ) > 0). Given the endpoint condition,

the curve will eventually drop back to the zero line. If it drops back to zero exactly at θ = θ̄, we
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are done; otherwise, there is θ̂ ∈ (θ,θ), such that y0(θ̂) = 0 and y(θ̂) < 0. Now following the same

argument above, y can never get back to zero, contradiction. This establishes that y(θ) > 0 except

θ = θ, θ.

So as in the unified taxation case, consumption is also distorted downward for all but the top

and the bottom types for any k > 0. Note that this is very different from a result obtained in the

duopoly case in Rochet and Stole (2002), who show that when competition is sufficiently intense (k

sufficiently small), quality distortions disappear completely.

The next lemma establishes that the equilibrium under independent taxation exhibits perfect

sorting.

Lemma 2 Suppose condition (20) holds, then z0I(θ) > 0 and hence T 0I(θ) > 0 for any θ ∈ [θ, θ].

Proof. First, whenever z
0
I = 0, z

00
I = 2

θ > 0. By the single-crossing lemma, z
0
I has the single crossing

property. That is, z
0
I crosses zero line from below at most once.5

What remains to be shown is that z0I(θ) > 0. Now compare two differential equation systems

(18) and (21). Whenever z0I = z0U (> 0), we have z00I < z00U (since θ − zI > 0 by Lemma 1). By

the single-crossing lemma, the curve z0I(θ)− z0U (θ) crosses zero line from above at most once. Given

the boundary conditions zI(θ) − zU (θ) = zI(θ) − zU (θ) = 0, we conclude that z0I(θ) − z0U (θ) has to

cross zero line exactly once. That is, there is a bθ ∈ (θ, θ) such that z0U (θ) < z0I(θ) for θ ∈ [θ,bθ), and

z0U(θ) > z0I(θ) for θ ∈ (bθ, θ]. Given that z0U (θ) > 0, we have z0I(θ) > z0U (θ) > 0. This completes the

proof for z0I > 0. Given z0I > 0 and (θ − zI) > 0, we have T 0I(θ) = 2(θ − zI)z
0
I > 0 for θ ∈ (θ, θ).

The proof of Lemma 2 suggests that whenever the optimal solution under unified taxation ex-

hibits perfect sorting, the equilibrium under independent taxation must exhibits perfect sorting. On

the other hand, it is possible that pooling occurs under unified regime but the equilibrium under

independent taxation exhibits perfect sorting.6 The implication is that sorting occurs more easily

under a competition regime. The intuition is similar to that provided in Yang and Ye (2008): higher

types receive higher rents under competition, which relaxes the IC constraint, making it easier to

sort the agents.

The next proposition displays interesting comparative statics with respect to the role of mobility:

5Therefore, if there is pooling, it must happen at the low end.

6Consider the following example. θ is uniformly distributed on [1, 4], k = 0.5. Under unified taxation, the monotonic-

ity constraint is violated and pooling occurs in the neighborhood of the low end. However, the equilibrium under

independent taxation exhibits perfect sorting.
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Proposition 1 Let k2 < k1. Under independent taxation, (i) θ > z2 > z1 for all θ ∈ (θ, θ); (ii)

T1(θ) > T2(θ) and T2(θ) < T1(θ); (iii) the tax schedule for (relatively) rich people is flatter under k2.

Proof. (i) The two differential equations under independent taxation are as follows:

z001 =
1

θ
[2− z01 −

2

k1
(θ − z1)z01], (22)

z002 =
1

θ
[2− z02 −

2

k2
(θ − z2)z02].

Let y = z2 − z1. We have y(θ) = y(θ) = 0. We need to show that y(θ) > 0 for all θ ∈ (θ, θ). The

proof idea resembles that of Lemma 1.

First we show that y0(θ) > 0. Suppose in negation, y0(θ) ≤ 0.

Case 1: y0(θ) < 0. Given that y(θ) = 0, there exists bθ ∈ (θ, θ) such that y0(bθ) = 0 and y(θ) < 0

for all θ ∈ (θ,bθ]. But then it is easily verified that y00(bθ) < 0. This implies that y will always remain

strictly below zero after initially shooting below, a contradiction.

Case 2: y0(θ) = 0. It is easily verified that in this case all higher derivatives at θ are zero:

y(n)(θ) = 0 for all n ≥ 2. This, combined with y(θ) = 0, implies that there exists bθ sufficiently
close to θ, such that y(bθ) = y0(bθ) = y00(bθ) = 0. However, with notation z(bθ) = z1(bθ) = z2(bθ) and

z0(bθ) = z01(bθ) = z02(bθ), we can demonstrate that

y00(bθ) =
1bθ
∙
2(bθ − z(bθ))z0(bθ)

µ
1

k1
− 1

k2

¶¸
.

Since z0(bθ) > 0 and bθ − z(bθ) > 0, the above expression implies that y00(bθ) < 0, a contradiction.

So the y curve is initially shooting up. Given the endpoint condition, it will eventually come

back to the zero line. If it comes back exactly at θ, we are done with the proof; otherwise it drops

below zero before reaching the end point θ. But then there is bθ ∈ (θ, θ) such that y0(bθ) = 0 and

y(θ) < 0 for all θ ∈ (θ,bθ]. Applying the same argument to rule out Case 1 above, we can establish

the contradiction. So y has to stay above zero except two boundary points.

(ii) Similarly to the previous proof, that θ > z2 > z1 implies that v2 cross v1 at most once from

below. Again, the case that v1 > v2 for all θ can be ruled out. But so far the case v1 < v2 for all θ

cannot be ruled out. Therefore, we can only show T2(θ) < T1(θ).

(iii) Note that we have z1(θ) < z2(θ) for any interior θ. This implies that at the neighborhood of

θ, z01 > z02. As a result, in this neighborhood, T
0
1 > T 02 as well.

By continuity, we also have T1(θ) > T2(θ) for types sufficiently close to θ, and T2(θ) < T1(θ)

for types sufficiently close to θ. As k goes down, the competition between two States becomes
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more intense. Proposition 1 suggests that as mobility (or competition) increases, the consumption

distortion is reduced, the rich (types sufficiently close to the top) pay less taxes, and the poor

(types sufficiently close to the bottom) receive less subsidies. While these results are obtained

computationally in our three type model, they are obtained analytically in this continuous type

model. Thus the result that increased mobility leads to lower progressivity is a fairly robust prediction.

As in the three type model, as k → 0, T (θ) = 0. The solution under unified taxation, on the other

hand, is independent of k, which can be regarded as the limiting case when k → +∞ (this can be

seen from comparing (8) and (17)).

In Simula and Trannoy (2010), a “curse” of middle-skilled workers is identified, in the sense that

the marginal tax rate is negative at the top and the average tax rate is decreasing over some interval

close to the top. Such a curse does not occur in our model.7 The difference arises for the following

reasons. In Simula and Trannoy, higher types have lower moving cost than lower cost types. This

means that competition for top types is stronger than the competition for middle types, thus a

negative marginal tax rate might occur at the top. In our model, all (vertical) types have the same

moving cost given the same horizontal type. We have thus demonstrated that the “curse” of middle

types may not arise in a model with outside options endogenously determined.

We next turn to comparing the two taxation systems. This will be done by comparing the ODE

systems (18) and (21). Using subscripts U and I to denote the unified and independent taxation

regimes, respectively, we can state the following comparison results:

Proposition 2 (i) There is a bθ ∈ (θ, θ) such that z0I(bθ) = z0U (bθ), z0I(θ) > z0U (θ) for θ ∈ [θ,bθ) and

z0I(θ) < z0U (θ) for θ ∈ (bθ, θ]; (ii) zI(θ) > zU (θ) for any θ ∈ (θ, θ); (iii) T 0I(θ) < T 0U (θ) for θ ∈ (bθ, θ).

Proof. Part (i) is established in the proof of Lemma 2.

Part (ii) follows from (i) given the boundary conditions zI(θ) − zU (θ) = zI(θ) − zU(θ) = 0. For

θ ∈ (bθ, θ], that zU < zI and z0U > z0I implies that T
0
I(θ) < T 0U (θ), as T 0 = 2(θ − z)z0 under both

taxation regimes.

Therefore, under competition all types θ ∈ (θ, θ) receive strictly higher consumption. Moreover,

the tax schedule is flatter for the rich (those with sufficiently high types).

Proposition 3 (i) There is a eθ ∈ (θ, θ) such that vI(eθ) = vU (eθ), vI(θ) < vU (θ) for θ ∈ [θ,eθ) and

vI(θ) > vU (θ) for θ ∈ (eθ, θ]; (ii) TI(θ) > TU (θ) and TI(θ) > TU (θ).

7Under independent taxation, T 0 = 2(θ − z)z0 is always positive as (θ − z) ≥ 0 and z0 > 0.
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Proof. From the first order conditions of the IC constraints, we have

v0I − v0U =
1

θ
[2(zI − zU )− (vI − vU)]. (23)

Over (θ, θ), given zI > zU , from (23) we have v0I > v0U whenever vI = vU . This implies that over

(θ, θ), vI and vU cross at most once, and at the intersection vI must cross vU from below.

Next we rule out the case that vI and vU never cross in the interior domain. Suppose vI(θ) ≥

vU (θ). Then vI(θ) ≥ vU (θ) for all θ and vI(θ) > vU (θ) for any θ > θ. This contradicts the fact that

vU (θ) is the optimal solution under the unified regime, while vI(θ) is one of the feasible schedules

under the unified regime. Therefore, vI(θ) < vU (θ). Given that zI(θ) = zU (θ), it must be the case

that TI(θ) > TU (θ).

Next we rule out the case that vI(θ) ≤ vU (θ). Suppose this is the case. Then vI(θ) < vU (θ) for

all θ < θ. At θ, vI(θ) < vU(θ), which implies that TI(θ) > TU (θ). At θ, vI(θ) ≤ vU (θ), which implies

TI(θ) ≥ TU (θ). For any interior θ ∈ (θ, θ),

vI(θ)− vU (θ) =

∙µ
2zI(θ)− z2

I (θ)

θ

¶
−
µ

2zU (θ)− z2
U (θ)

θ

¶¸
+

TU (θ)− TI(θ)

θ
.

The first term in the bracket is positive since θ > zI(θ) > zU (θ). If vI(θ) < vU (θ), we must have

TU (θ) < TI(θ) for all θ ∈ (θ, θ). Therefore,
R θ
θ TI(θ)dθ >

R θ
θ TU (θ)dθ, violating the resource constraintR θ

θ TI(θ)dθ =
R θ
θ TU (θ)dθ = 0.

Thus, vI crosses vU (from below) exactly once at some interior θ ∈ (θ, θ). This proves part (i).

Part (ii) follows from part (i) and the boundary conditions.

So the rich (high-type citizens) are better off while the poor (low-type citizens) are worse off

moving from unified to competitive taxation. The highest type (and the types sufficiently close to

the highest type) pay less tax and the lowest type (and the types sufficiently close to the lowest type)

get less subsidy under independent taxation.

To illustrate, we consider the example with θ = 1 and θ = 2. We can plot the tax schedules under

both taxation regimes for any given value of k. The case with k = 0.5 is given in Figure 3 below. It

is evident that for this case the tax schedule under independent regime is everywhere flatter, which

strengthens our analytical result given in Proposition 3. Generally speaking, higher types are taxed

less and lower types get less subsidy under the independent system.
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Figure 3: Tax Schedule Comparison with Uniform Distribution

With these results at hand, we are now ready to examine the determinants of constitutional

choice with a continuum of types.

Constitutional Choice

With continuous types the constitutional choice is determined by the median voter’s preference. As

in the three-type model, the preference of the median type can only be obtained using numerical

computations. We thus go back to our model with general distributions for vertical types to char-

acterize constitutional choice as a function of the mobility parameter, the distribution of relative

classes (the types), and the distribution of income.

With any given distribution F (density function f), our computations can be done based on (8)

and (17). Since the Pareto distribution is commonly adopted to proxy real world income inequality

in the taxation literature, we consider the following truncated Pareto distribution family:

f(θ) =
αθ−α−1

1− 4−α
and 1− F (θ) =

θ−α − 4−α

1− 4−α
, θ ∈ [1, 4] .8 (24)

Note that the uniform distribution is a special case of the Pareto distribution family (with

α = −1). As α increases, the density becomes more tilted toward lower types (more poor peo-

ple). The tax schedules under two taxation systems are compared in Figure 4 below (plotted for the

case α = 1 and k = 0.5), which exhibits the same pattern as in the case of uniform distribution.

8With the support of θ being [1, 4], the highest type’s pre-tax income is 16 times that of the lowest type.
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Figure 4: Tax Schedule Comparison with Pareto Distribution

Recall that with uniform distribution we established that the utility schedule vI crosses vU once

from below. Our computation shows that this pattern of single crossing holds for truncated Pareto

distributions as well. Let θ∗ be the indifference type at which vI crosses vU . Then all the types below

θ∗ prefer the unified regime and all the types above θ∗ prefer the independent regime. The following

table shows how the indifference type θ∗ shifts as k changes (for the truncated Pareto distribution,

the computations are done based on the case α = −0.15).

Table 1: How θ∗ shifts as k changes

k = 1 k = 0.5 k = 0.3 k = 0.2 k = 0.1 k = 0.03

Uniform [1, 3] 1.8422 1.8529 1.8577 1.8635 1.8711 1.8815

Pareto [1, 4], α = −0.15 2.0471 2.0626 2.0728 2.0798 2.0889 2.0965

The above table indicates that θ∗ is monotonically decreasing in k. This is consistent with Result

?? in the three type model. Therefore, as the moving cost decreases, the measure of citizens who

prefer the unified regime increases. As a result, the unified regime is more likely to be chosen at the

constitutional stage for a smaller moving cost, other things equal. The intuition for this result is

analogous to that provided in the three type model. As k decreases, the previously indifferent type

(the median type) “benefits” less from the presence of the rich (all the types above her), hence will

switch her preferences toward the unified regime, whose solution does not depend on k.

For the range of mobility parameter k reported in the table, the unified regime is always chosen

in the uniform distribution case (since the median type θm = 2). However, for the truncated Pareto

distribution case, the median type is θm = 2.0732. Hence the independent regime will be chosen for
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cases k = 0.3, 0.5, and 1, and unified regime will be chosen for cases k = 0.01, 0.1, and 0.2.

We are also interested in how changes in the (type) income distribution affect the constitutional

choice. Fix k = 0.5, and consider the truncated Pareto distributions given in (24). The following

table reports how the indifference type θ∗ and the median type θm change as α varies:

Table 2: How θ∗ and θm shift as α changes

α −0.5 −0.3 −0.2 −0.15 −0.1 0.5 1 1.5

θ∗ 2.136 2.0933 2.0731 2.0626 2.0519 1.9437 1.8431 1.7645

θm 2.25 2.1484 2.0981 2.0732 2.0486 1.7778 1.60 1.4675

For all the cases we examined, the solutions exhibit perfect sorting. Two observations are worth

noting. First, as α increases (more poor around), the indifferent type monotonically decreases. Again

this is consistent with what we found from the three type model. This is intuitive: having more poor

implies more taxes from the higher types in the unified regime, while in the independent regime

the solution is closer to autarky. Therefore, the indifference type will decrease, as in Result ??.

However, if α is sufficiently large (α > −0.15), the median type prefers the unified regime. Thus

having more poor people in this continuous type case makes the choice of the unified system more

likely, which seems to be inconsistent with our finding in the three type model. This happens in this

Pareto distribution case simply because the indifference type decreases slower than the median type:

as the size of the poor increases, the median type becomes even poorer. This observation highlights

a difference between our three-type model and the continuous type model, that is, the median type is

generically different from the type who is indifferent between the various constitutional choices, and

they vary at different rates when the parameters change.

Finally, we study how the degree of inequality affects constitutional choice by examining a distrib-

ution family with mean preserving spread. Again, we fix k = 0.5. Consider the following distribution

family:

fa(θ) =
1

20− 2
3a

[10− a(2− θ)2], θ ∈ [1, 3]

with a ∈ [0, 10). The case a = 0 corresponds to the uniform distribution. As a increases, the

distribution becomes more concentrated around the mean or median (which is 2 in this case), so

inequality decreases. The computation results are reported in the following table. (θ∗ is once again

the cutoff type who is indifferent between the two tax regimes):

Table 3: How θ∗shifts as inequality parameter changes
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a = 0 a = 3 a = 5 a = 7 a = 9

θ∗ 1.8813 1.8615 1.8561 1.8672 1.8728

The table shows that the relationship between inequality and the indifference type is not monotonic

in this particular continuous type distribution case.
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