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Abstract

We propose a framework to analyze a certain family of games called

games with inadequate information, where an outside observer of a game

intends to predict the payoff outcome without knowing the players’ interac-

tion process. We define a parametric solution called the valuation, where the

parameters in the solution characterize the belief the outside observer holds

about how the game is played. We discuss the properties of this solution,

especially in some special forms of games. We show that the valuation is

usually a more appropriate solution to a game with inadequate information

than some traditional solutions such as the Nash equilibrium.

1 Introduction

Suppose a group of people are playing a game. There is an outside observer

who cares about the outcome of the game. The outside observer knows the basic

physical structure of the game, including the set of players, whether the game is

cooperative or non-cooperative, the actions each player can take, and the outcome

that associates with each combination of actions taken by all players. However,

since the outside observer does not participate in the game himself, he is ignorant

of one important information that can affect the outcome of the game: the process

of interactions. In other words, the outside observer does not know whether the
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game is static or sequential, and in the latter case, played in what sequence. We

say that this is a game with inadequate information (GII for short).1

There exist lots of works in the literature that investigate games from the view

of outside observers, rather than players. For example, models of implementation

in complete information environments usually assume that the outside observer

does not know all players’ preference.2 However, to the best of our knowledge,

little has been done to systematically analyze a game whose process or procedure

under which the players interact is unknown to the outside observer.

In reality, the situations of inadequate information are common and worth

studying. For instance, suppose the government is considering whether or not to

set up a new policy to regulate a certain industry. However, as an outside observer,

the government does not know how the firms in this industry interact. Hence, an

appropriate suggestion regarding this policy depends on the government’s estima-

tion of the impact of the policy on each firm under the circumstance of inadequate

information.

The main purpose of this paper is to provide a framework to analyze GII, and

to suggest a solution based on this framework so that the outside observer can

use this solution to predict the expected payoff of each player. At first glance, it

seems impossible to predict the outcome without knowing the process of a game.

However, the outside observer can build some “beliefs” of the missing information

about how the game is played by observing some performance of players, e.g. their

relative “bargaining power” that reflects their distinctions in experience or wisdom.

It turns out that these beliefs can help to solve GII, and an appropriate solution

of GII should be consistent with the outside observer’s observation.

Our basic idea is to solve GII using the bargaining approach, which can be illus-

trated in Figure 1. Roughly speaking, in this approach we introduce an underlying

bargaining game for each original game with inadequate information. Although

the outside observer does not know how the original game G is played, he believes

1We emphasize on the difference between inadequate information and some well known in-
formation issues, especially incomplete (asymmetric) information and imperfect information.
“Incomplete information” describes a situation when one player does not know the type of an-
other player, while “imperfect information” is about one player not knowing which action has
been taken by another player at an earlier stage. In contrast, “inadequate information” involves
a totally different kind of missing information.

2See, for instance, Mas-colell et al. (1995, Chapter 23, Appedix B.).
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that the players are interacting through the underlying bargaining game G′(µ),

which can be solved by some tradition equilibrium solutions, e.g. stationary sub-

game perfect equilibrium. The inadequate information is characterized by some

parameters µ that appear in the underlying game and its equilibrium solution

x(µ). The outside observer regards this parametric solution x(µ) as a solution to

the original game.

G
µ //

!!

G′(µ)

��
x(µ)

Figure 1: The bargaining approach for GII.

In fact, the outside observer does not know whether G′(µ) is the actual inter-

action procedure followed by the players. Nevertheless, x(µ) is still an acceptable

solution as long as it can explain what is observed under some proper belief µ. In

this paper (e.g. section 2), we shall present some examples to show that this is

indeed the case, at least in some particular situations.

There is a large literature on the bargaining approach in game theory. Here we

only mention a few that are most closely related to this paper. The reader may

refer to Osborne and Rubinstein (1990), Ray (2007) and Serrano (2008) for some

surveys on this topic.

Nash (1953) first suggests to explain a solution of a cooperative game (orig-

inal game) as an equilibrium of a noncooperative game (underlying bargaining

game). This research agenda is later known as the Nash program. Rubinstein

(1982) considers a two-player bargaining game with alternating offers procedure

and fixed discount factors. He proves that this game has a unique subgame perfect

equilibrium outcome. A lot of works aims to extend Rubinstein’s model to more

general settings. For example, Gul (1989) discusses a bargaining among many

players where in each stage two players first match by random and then bargain

bilaterally. Chatterjee et al. (1993) proposes a multi-player bargaining game with

common discount factor and a fixed order of proposers. Okada (1996) and Yan

(2002) propose multi-player bargaining models that the proposer in the bargain-

ing is randomly chosen. Bloch (1996), Ray and Vohra (1999) extend the model to
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partition function form games.

Alternately, Binmore et al. (1986) proposes a two-player bargaining model so

that after an offer is rejected, instead of going to the next stage with payoffs dis-

counted, there is a risk that the bargaining breakdowns and some player becomes

inactive. It is usually more convenient to analyze games where payoffs are not

necessarily positive with this model. Hart and Mas-colell (1996, 2010) extend this

model to multi-player games under a variety of situations.

In this paper, we extend the bargaining approach, especially the models in

Hart and Mas-colell (1996, 2010), to analyze games with inadequate information.

Specifically, the outside observer believes that the players are bargaining over

which actions to take through a bargaining procedure. This procedure is random

in two aspects. In each round of the bargaining, one active player will be chosen

to be the proposer of this round according to an exogenous probability. If the

chosen player refuses to be proposer, or some player rejects the offer proposed by

the chosen player, then there is a given chance that the chosen player becomes

inactive in the remaining part of the bargaining. These two types of uncertainty

is characterized by some parameters. The outside observer thinks that the values

of these parameters are the only information he may not know about the game.

Given a game with inadequate information and some combination of parame-

ters, we define a valuation of this game relative to these parameters to be a payoff

vector that can be supported by an stationary subgame perfect equilibrium of the

underlying bargaining game. The dependence of the valuation on the parameters

can be used to investigate how this solution will be affected by outside observer’s

belief about the inadequate information.

Our model is general enough to explore GII in a variety of situations. How-

ever, due to the complexity of the model in the general setting, it is not easy to

obtain important properties of the valuation, including its existence, uniqueness,

efficiency, and how the solution depends on the parameters. For this reason in this

paper we mainly discuss three special forms of games: two-player zero-sum game,

two-player pure bargaining game, and three-player TU coalitional game.

In addition to exploring the above mentioned properties of the valuation in

these games, we are especially interested in one question: whether the valuation is

essentially different from, and even more suitable than, some traditional solutions
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such as the Nash equilibrium? This question is important because if the solutions

are substantially different, then a situation with inadequate information should

not be modeled as a traditional game (without inadequate information), since

otherwise systematic errors may occur. In general, our analysis provides a positive

answer to this question3. For example, the von Neumann (1928)’s value becomes

not fully satisfactory when solving two-player zero-sum games from the viewpoint

of outside observers, but this problem is fixed by the valuation. This justifies the

method and the solution introduced in this paper.

This paper is organized as follows. Section 2 introduces our motivation by some

simple examples. Section 3 and 4 develop a general framework to analyze GII and

define a particular solution (the valuation). We briefly discuss the properties of

this solution in section 5 and apply it to three special types of games in section 6.

Section 7 concludes.

2 Introductory examples

In this section, we illustrate the basic idea and motivation through some simple

examples.

The first example in Figure 2 is known as the Battle-of-sex (BOS) game played

by two players in a family. The wife and the husband negotiate to determine

whether to watch a dancing show (D) or a boxing match (B). The wife prefers D

and the husband prefers B, while they both agree that the worst outcome is for

them to take different actions. This game has three Nash equilibria: two are pure

strategies, (D,D) and (B,B), and one mixed strategies.

wife

husband
D B

D 3, 1 0, 0
B 0, 0 1, 3

Figure 2: BOS

Suppose an outside observer of this game (for example, a neighbor of the family)

3There are exceptions, though. For instance, in section 6.2 we show that for a two-player
pure bargaining game, the limit of valuation as p→ 0 is the weighted Nash bargaining solution.
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has observed that the family would take (D,D) in about seven times out of every

ten times, and (B,B) in the remaining three times. The neighbor believes that

the wife has a larger “power” in this family, but he does not know the detailed

process in which the family plays the BOS game. Given the limited information,

how much payoff does the neighbor expect each player would get? Intuitively, the

expected payoff vector should be 0.7× (3, 1) + 0.3× (1, 3) = (2.4, 1.6). Note that

none of the three Nash equilibrium outcomes coincides with this outcome.

More generally, imagine a family in which the wife has probability α to first

choose an action, which leads to payoff profile H1 = (3, 1); while the husband has

probability 1 − α to act first, leading to H2 = (1, 3). Then the expected payoff

profile for such a family should be (u1, u2) = αH1+(1−α)H2 = (1+2α, 3−2α). The

parameter α actually characterizes the power of the wife relative to the husband,

since this game clearly exhibits first mover advantage.

player 1

player 2
R P S

R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Figure 3: Rock, paper and scissors

The second example in Figure 3 is usually referred to as Rock, paper and scis-

sors (RPS). According to the Minmax theorem (von Neumann, 1928), each player

would receive an expected payoff of zero. However, an outside observer of this

game often observes that an experienced player may have a positive expected pay-

off when playing with a rookie, since the former has a larger probability of correctly

guessing which action the latter takes.4 Suppose from the outside observer’s view,

with probability α player 1 loses while with probability 1−α player 1 wins5, then

the expected payoff profile is α × (−1, 1) + (1 − α) × (1,−1) = (1 − 2α, 2α − 1).

Although the players are supposed to act simultaneously according to the rule of

RPS, the outsider observer may analyze the game as if the players move in turn,

4For example, see Zhijian et al. (2014).
5We have already taken into consideration the case of tie when defining α. For each player,

a draw can be treated as a combination of a half winning and a half losing.
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and the player who moves first loses the game. Hence, we may regard RPS as a

GII that has first mover disadvantage.

Both of the above examples are noncooperative games, but the idea used to

analyze them can also be applied to solve cooperative games. The next example

we consider is a pure bargaining game where two players (1 and 2) negotiate over

how to divide a pie. An outside observer assumes that the game proceeds in

rounds. In each round with probability α (or 1 − α) player 1 (or 2, respectively)

is chosen as the proposer and will suggest a partition of the pie. If the other

player accepts this proposal, then the game ends with this partition; otherwise

with probability p the bargaining breaks down and both player receive a payoff of

zero, while with probability 1 − p the game proceeds to the next round. Player

i’s payoff ui is his expected share of the pie. Let (u1, u2) be the expected payoff

profile. If player 1 is chosen in a round, then he will propose to player 2 an offer

which player 2 is indifferent between accepting and rejecting, and thus lead to the

payoff vector H1 =
(
1− (1− p)u2, (1− p)u2

)
. Similarly, the expected payoffs are

H2 =
(
(1−p)u1, 1− (1−p)u1

)
if player 2 is chosen in a round. Therefore, we have

(u1, u2) = αH1 + (1−α)H2, and consequently (u1, u2) = (α, 1−α). Note that this

game also has first mover advantage, and (u1, u2) is independent of p.

In each example above, the outside observer can find an expected payoff profile

which may dependend on (i) his knowledge of the structure of the game, and

(ii) some parameters (α and p) reflecting his belief on the missing information

with respect to how the game is played. These two aspects of games are formally

described in the next two sections.

3 The Game

To unify and simplify analysis in a variety of situations, we consider a general

game setting where some players interact to determine their actions that will yield

certain payoffs. The physical structure of the situation, which is commonly known

to all players and the outside observer, can be characterized by the set of players,

the feasible partitions of the player set, the possible actions players may take, and

the payoffs associated with their actions.

Formally, let G = (N,M ,A , π) denote a game. Roughly speaking, it tells
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us that players in N may form certain coalitions according to M , take actions

according to A , and receive corresponding payoffs according to π.

Player set

Let N = {1, 2, . . . , n} be the finite set of players, and let 2N denote the set of all

subsets of N . Each nonempty subset M is called a coalition. The cardinality of a

coalition M is denoted by m = |M |.

Coalition and partition

A coalition M is said to be feasible if the players in M can sign binding agreements

to coordinate their actions. Let M denote the set of all feasible coalitions. We

assume that {i} ∈ M for each i ∈ N . Let M i = {M ∈ M | i ∈ M} denote the

set of all feasible coalitions containing player i.

A game is said to be noncooperative if M =
{
{1}, {2}, . . . , {n}

}
≡M0, while

it is said to be cooperative if M = 2N\∅ ≡MN . In addition, a game is said to be

partially cooperative if M0 ( M ( MN .

A partition (or coalition structure) of a coalition S is a set of disjoint coalitions

whose union is S. If β is a partition of N and β ⊆ M , that is, every coalition

M ∈ β is feasible, then we say that β is a feasible partition of N . There exists at

least one feasible partition β0 = M0 for each game. Let B(M ) be the set of all

feasible partitions of N . In particular, B(M0) = {β0}, while B(MN) consists of

all partitions of N . If M ∈M , let BM(M ) = {β ∈ B(M ) |M ∈ β} be the set of

feasible partitions of N that contain coalition M .

Moreover, given M and coalition S, let M (S) = {M ∈ M |M ⊆ S}, and

let M i(S) = {M ∈ M (S) | i ∈ M}. Let B(M , S) denote the set of all feasible

partitions of S. Note that M0(S) ≡
{
{i} | i ∈ S

}
∈ B(M , S). If M ∈ M (S),

then let BM(M , S) = {β ∈ B(M , S) |M ∈ β}.

Action and choice

If M ∈M , let AM denote the set of all possible actions taken by coalition M . A

vector aM = (aMi )i∈M ∈ AM is called an action of M , where aMi is player i’s action.
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For simplicity, we may write Ai and ai instead of A{i} and a
{i}
i when M = {i},

write Aij instead of A{i,j} when M = {i, j}, and so on.

A game is said to be finite if, for any M ∈M , AM only contains finitely many

actions.

For any feasible partition of N , β = {M1, . . . ,Mk}, a combination of actions

a = (aM1 , . . . , aMk) is called a list of actions under β, where aMj ∈ AMj , ∀M j ∈ β.

Let A β denote the set of all lists of actions under β. That is, A β = ×M∈βAM .

Let A = ∪β∈B(M )A
β denote the set of all lists of actions.

Example 1. Suppose N = {1, 2, 3}, M =
{
{1}, {2}, {3}, {1, 2}, {1, 2, 3}

}
, then

we have B(M ) =
{
β0,
{
{1, 2}, {3}

}
, {N}

}
.

A β0 =
{(
a1, a2, a3

)
| a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

}
= A1 × A2 × A3. If β1 ={

{1, 2}, {3}
}

, then A β1 =
{(
a12

1 , a
12
2 , a3

)
|
(
a12

1 , a
12
2

)
∈ A12, a3 ∈ A3

}
= A12 × A3.

If β2 =
{
N
}

, then A β2 = AN . Finally, A = A β0 ∪A β1 ∪A β2 .

A pair (β, a) is called a choice of N , where β ∈ B(M ), a ∈ A β. The physical

outcome of the game can be fully characterized by a choice of N .

Likewise, given any coalition S and any β ∈ B(M , S), we use A β(S) to denote

the set of all lists of actions under β. Also, we use A (S) to denote the set of all

lists actions of S. A pair (β, a) is called a choice of S, if β ∈ B(M , S), a ∈ A β(S).

Payoff function

A payoff function of player i, denoted by πi, assigns a real value πi(a) to each

a ∈ A . If q is a probability distribution over A where q(a) is the probability that

a is realized, then the expected payoff of player i under q is

πi(q) =
∑
a∈A

q(a)πi(a). (1)

Let π(q) =
(
π1(q), . . . , πn(q)

)
denote the payoff vector of N under q.

Some special cases

Some traditional forms of game can be reformulated as special cases of the form

defined above. We list some examples below. The player sets in all these examples
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are N = {1, 2, . . . , n}.

• Let (Si, ui)i∈N be a noncooperative strategic form game, where Si is the set of

player i’s pure strategies, and ui is i’s payoff function defined on S = ×i∈NSi.
Then M = M0, A = S, π(a) = u(a) =

(
u1(a), . . . , un(a)

)
, ∀a ∈ A .

• Let (N,X, u0) denote a pure bargaining game, where X ⊂ Rn
+ is the feasible

utility space collecting all payoff profiles that can be achieved by coordinating

the actions of all players in N , and u0 ∈ X is the reservation payoff profile

describing the payoff outcome when the bargaining breaks down. Then M =

M0∪{N}; A β = X if β = {N}, and A β = {u0} if β = β0; π(a) = a, ∀a ∈ A .

• Suppose (N, V ) is a NTU cooperative coalitional form game. For each M ∈
2N , V (M) ⊂ Rm

+ is a set of possible payoff profiles of coalition M . Then

M = MN ; A β = ×M∈βV (M), ∀β; π(a) = a, ∀a ∈ A . Furthermore,

consider a TU coalitional form game (N, v), where v is the characteristic

function that for any M ∈ 2N , v(M) ≥ 0 is the total payoff of coalition

M , satisfying v(∅) = 0. Then M = MN ; for any partition β and M ∈ β,

AM =
{

(ai)i∈M |
∑

i∈M ai = v(M), ai ≥ 0, ∀i
}

, A β = ×M∈βAM ; π(a) = a,

∀a ∈ A .

• Consider a partition function form game (N,P ), where P is the partition

function. For any β and any M ∈ β, P (M ; β) ≥ 0 is the total payoff

of coalition S under the partition β. Then M = MN ; for any partition

β and M ∈ β, AM(β) =
{

(ai)i∈M |
∑

i∈M ai = P (M ; β), ai ≥ 0, ∀i
}

, A β =

×M∈βAM(β); π(a) = a, ∀a ∈ A .

It is worth noting that although these traditional forms can be used to formulate

the physical structure of a game with inadequate information, they do not require

the usual assumptions with regard to the process of iterations. For instance, a

game with inadequate information formulated in strategic form (e.g. the BOS

game in section 2) should not be understood as a situation where players act

simultaneously.
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4 The solution

To solve a game with inadequate information is to predict the expected payoff

outcome of the game from the viewpoint of the outside observer, who does not

know the detailed interactive process of the players. Therefore, a solution of a

game G = (N,M ,A , π) should depend on the belief the outside observer holds

about how the game is played. We assume that this belief can be summarized

by a bargaining among the players with a parameter p ∈ (0, 1] characterizing the

risk of breakdown of the bargaining when a player chooses not to finish the game

right away, and a vector α = (α1, . . . , αn) describing players’ personal possibilities

to move first in the bargaining, where α1, . . . , αn > 0,
∑n

i=1 αi = 1. Given α,

coalition M and i ∈ M , let αi(M) = αi/
∑

j∈M αj denote the possibilities that i

moves first in M .6

Formally, given a game G = (N,M ,A , π) and parameters (α, p), we introduce

an underlying bargaining game G′(α, p) described by (g1)–(g5) below. In this

bargaining game, players may take actions in discrete time periods t = 0, 1, 2, . . .

(g1) At the beginning of t = 0, the set of active players is N0 = N .

(g2) Suppose by induction that the game has come to period t = k with the set of

active players Nk 6= ∅. All actions taken in previous periods are commonly

known. With probability αi(Nk), player i ∈ Nk will be chosen, and can

either refuse or agree to be the proposer in this period.

(g3) If i refuses to be the proposer, then with probability 1 − p all players in

Nk remain active; the game restarts from the beginning of t = k. With

probability p player i chooses an action ai ∈ Ai, becomes inactive alone and

forms coalition {i}; period t = k ends.

(g4) If i agrees to be the proposer, then he makes an offer (Mi, a
Mi), where Mi ∈

M i(Nk), a
Mi ∈ AMi . Player i himself trivially accepts this offer. If Mi\{i} 6=

∅, then all players in Mi\{i} sequentially determine whether to accept or

reject it in a predetermined order7.

6See Hart and Mas-colell (1996, section 6) for a more general setting of αi(M).
7The specification of the order does not affect the equilibrium outcome of the bargaining.
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(g4-1) If all players in Mi accept the offer, then coalition Mi is formed and aMi

is enforced. All players in Mi become inactive. Period t = k ends.

(g4-2) If at least one player rejects the offer, then with probability 1 − p all

players in Nk remain active; the game restarts from the beginning of

t = k. With probability p the proposer i chooses an action ai ∈ Ai,

becomes inactive alone, and forms coalition {i}; period t = k ends.

(g5) By the end of period t = k, if there still remains at least one active player,

then the game proceeds to t = k + 1 with Nk+1 consisting of all remaining

active players. If all players in N has become inactive with the resulting

choice (β, a) of N , then G′(α, p) ends with the payoff outcome π(a).

Unlike some bargaining procedures used in the literature (e.g., Okada (1996)

and Hart and Mas-colell (1996, 2010)), the bargaining game G′(α, p) has several

different features. First, in our model each player i is chosen according to a given

probability αi(Nk). Sometimes, αi(Nk) characterizes the relative bargaining power

of player i in the coalition Nk from the outside observer’s view.8 Second, we assume

that the chosen player in each round has an option to agree or refuse to be the

proposer, mainly to emphasize the distinction between games with early-mover

advantage and games with early-mover disadvantage. Third, we do not allow the

players to use mixed strategies. Note that this restriction is innocuous as players

are assumed to move in turns in G′(α, p) – even a player is allowed to use mixed

strategies at some stage, the chosen action would have already been realized before

other players move.

A strategy of player i in game G′(α, p), denoted by fi, specifies the action he

will take at each time when it’s his turn to move, given the history by that time.

Let f = (f1, . . . , fn) denote a strategy profile of all players in N , and let f−i denote

a strategy profile of all players other than i.

Due to (1), we can define a payoff function of G′(α, p) to be a mapping π(·)
that assigns a vector

π(f) =
∑
a∈A

P (a; f)π(a) (2)

8A larger αi(Nk) may imply a stronger or weaker bargaining power of player i, depending on
whether i has early-mover advantage or early-mover disadvantage.
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to each strategy profile f , where P (a; f) is the probability that a ∈ A will be

realized under f . Since p > 0, with probability one G′(α, p) will end up with some

a ∈ A under any f , implying
∑

a∈A P (a; f) = 1. Therefore, π(f) is the expected

payoff vector of N under f . We illustrate how to derive π(f) by an example.

Example 2. SupposeN = {1, 2}, M = MN , A1 = A2 = {1}, A12 =
{

(3, 0), (1, 2)
}

,

π(a1, a2) = (a1, a2), ∀(a1, a2) ∈ A , α = (2
3
, 1

3
), p = 1

4
.

Let f 0 = (f 0
1 , f

0
2 ) be the strategy pair such that: (i) if player 1 is chosen at

t = 0, then 1 will propose
(
N, (3, 0)

)
, and player 2 will accept all offers proposed

to him; (ii) if player 2 is chosen at t = 0, then 2 will refuse to be the proposer;

(iii) at t = 1, any active player i will choose ai = 1.

We first calculate P (a; f 0) for all a ∈ A so that P (a; f 0) > 0:

P
(
(3, 0); f 0

)
=2

3
+
(

1
3
× 3

4

)
× 2

3
+
(

1
3
× 3

4

)2 × 2
3

+ · · · = 8
9
,

P
(
(1, 1); f 0

)
=1

3
× 1

4
+
(

1
3
× 3

4

)
× 1

3
× 1

4
+
(

1
3
× 3

4

)2 × 1
3
× 1

4
+ · · · = 1

9
.

Due to (2), π(f 0) = 8
9
× (3, 0) + 1

9
× (1, 1) = (25

9
, 1

9
).

The following lemma shows that for a chosen player in some period of G′(α, p),

making an offer that will be rejected by at least one player can always be replaced

by refusing to be the proposer. Thus we shall assume from now on that no chosen

player will ever make an offer that will be rejected by any other player.

Lemma 1. Suppose f̂ is a strategy profile such that there exists a player i ∈ N
who, when chosen in some period t = k > 0, will agree to be the proposer and

propose an offer according to f̂i so that the offer will be rejected by at least one

player according to f̂−i. Then there exists f ′i such that according to f ′i , player i

will refuse to be the proposer when chosen in t = k, and π(f ′i , f̂−i) = π(f̂).

Proof. Let f ′i be the strategy of i such that i will refuse to be the proposer if he

is chosen in t = k; this is the only difference between f̂i and f ′i . If i is chosen in

t = k, then both f̂i and f ′i lead to the same result: restarting t = k with probability

1−p, and going to t = k+1 with Nk+1 = Nk\{i} with probability p. The expected

payoffs are the same under these two strategies. Therefore π(f ′i , f̂−i) = π(f̂).

We refer to a combination γ = (Mγ, βγ, aγ) as a state of G′(α, p), which indi-

cates that at some point of G′(α, p) the active player set is Mγ ⊆ N , while the
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choice of inactive players N\Mγ is (βγ, aγ). In particular, if Mγ = N , then the

state can be simply denoted by γ = N ; if Mγ = ∅, then we write γ = (βN , aN).

Let Γ denote the set of all states of G, and let Γ0 = {γ ∈ Γ |Mγ 6= ∅}.
A strategy profile f is said to be stationary, if in any period of G′(α, p) when

the state is γ ∈ Γ0, the actions specified by f do not depend on any information

before this period other than γ.

When f is stationary, we have another (maybe easier) method to calculate

π(f), other than directly applying (2). For instance, we consider Example 2 again.

It is easy to see that f 0 is stationary. Since π(·) is well defined for any f , we let

π(f 0) = (w1, w2). Due to the stationarity of f 0, when player 2 refuses to be the

proposer and the game restarts from the beginning of t = 0, the expected payoff

outcome under f 0 is also (w1, w2). Thus, one has

(w1, w2) = 2
3
× (3, 0) + 1

12
× (1, 1) + 1

4
× (w1, w2),

implying π(f 0) = (w1, w2) = (25
9
, 1

9
).

A strategy profile f is said to be a stationary subgame perfect equilibrium

(SSPE for short) of G′(α, p), if it is stationary and is subgame perfect — that is, it

induces a Nash equilibrium in each subgame of G′(α, p). Following the literature9

we use SSPE to predict the outcome of G′(α, p).

Definition 1. Given parameters (α, p), a payoff vector ψ = (ψ1, . . . , ψn) is called

a valuation of G relative to (α, p), if there exists a strategy profile f such that f

is an SSPE of G′(α, p), and ψ = π(f).

A valuation of G is associated with an SSPE of the underlying bargaining game

G′(α, p), and thus is a bargaining solution of G. The outside observer perceives a

valuation as a possible expected payoff outcome of G, given his knowledge of the

situation and his belief on the inadequate information.

9See, among others, Okada (1996), Hart and Mas-colell (1996, 2010).
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5 Discussions of the solution

In this section, we provide some preliminary analysis on the properties of the

valuation.

An important problem is that the valuation of a game may not exist or be

unique, and thus may not always provide an effective prediction for the game. In

fact, recall that we do not allow mixed strategies in G′(α, p), therefore the Nash

equilibrium (and hence SSPE) of G′(α, p) may not exist in general.

Example 3. Suppose N = {1, 2, 3}, M =
{
{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}

}
,

A1 = A2 = A3 = {0}, A12 =
{

(a1, a2) = (2, 1)
}

, A23 =
{

(a2, a3) = (5, 1)
}

, A13 =

{(a1, a3) = (1, 2)}, π(a1, a2, a3) = (a1, a2, a3), ∀(a1, a2, a3) ∈ A , α = (1
3
, 1

3
, 1

3
),

p = 1
2
. For notational simplicity, in this example we write a stationary strategy

profile as f = (s1, s2, s3), where si = 0 implies i will refuse to be the proposer,

si = i implies i will choose ({i}, 0), and si = ij means i will propose ({i, j}, aij)
where aij ∈ Aij, when i is chosen at t = 0; other players will not reject i’s offer.

Table 1 collects the payoff outcomes π(f) for all such strategy profile f , each one of

which can be derived by the method described in the previous section. Of course

there are other strategy profiles, involving some player’s offer being rejected by

other players. However, due to Lemma 1, if no strategy profile listed in Table 1 is

SSPE, then neither is any other strategy profile.

Table 1

f π(f) f π(f) f π(f) f π(f)
0,0,0 1., 2., 1. 0,2,0 1., 1.5, 1.25 0,12,0 1.5, 2., 0.25 0,23,0 0.5, 4., 0.75
0,0,3 1.25, 1.75, 0.75 0,2,3 1.2, 1.4, 1. 0,12,3 1.6, 1.8, 0.2 0,23,3 0.8, 3.4, 0.6
0,0,13 0.75, 1.25, 1.75 0,2,13 0.8, 1., 1.8 0,12,13 1.2, 1.4, 1. 0,23,13 0.4, 3., 1.4
0,0,23 0.25, 3.75, 1.25 0,2,23 0.4, 3., 1.4 0,12,23 0.8, 3.4, 0.6 0,23,23 0., 5., 1.
1,0,0 0.75, 2.75, 1. 1,2,0 0.8, 2.2, 1.2 1,12,0 1.2, 2.6, 0.4 1,23,0 0.4, 4.2, 0.8
1,0,3 1., 2.4, 0.8 1,2,3 1., 2., 1. 1,12,3 1.33, 2.33, 0.333 1,23,3 0.667, 3.67, 0.667
1,0,13 0.6, 2., 1.6 1,2,13 0.667, 1.67, 1.67 1,12,13 1., 2., 1. 1,23,13 0.333, 3.33, 1.33
1,0,23 0.2, 4., 1.2 1,2,23 0.333, 3.33, 1.33 1,12,23 0.667, 3.67, 0.667 1,23,23 0., 5., 1.
12,0,0 1.75, 0.75, 0.5 12,2,0 1.6, 0.6, 0.8 12,12,0 2., 1., 0. 12,23,0 1.2, 2.6, 0.4
12,0,3 1.8, 0.8, 0.4 12,2,3 1.67, 0.667, 0.667 12,12,3 2., 1., 0. 12,23,3 1.33, 2.33, 0.333
12,0,13 1.4, 0.4, 1.2 12,2,13 1.33, 0.333, 1.33 12,12,13 1.67, 0.667, 0.667 12,23,13 1., 2., 1.
12,0,23 1., 2.4, 0.8 12,2,23 1., 2., 1. 12,12,23 1.33, 2.33, 0.333 12,23,23 0.667, 3.67, 0.667
13,0,0 1.25, 0.25, 1.5 13,2,0 1.2, 0.2, 1.6 13,12,0 1.6, 0.6, 0.8 13,23,0 0.8, 2.2, 1.2
13,0,3 1.4, 0.4, 1.2 13,2,3 1.33, 0.333, 1.33 13,12,3 1.67, 0.667, 0.667 13,23,3 1., 2., 1.
13,0,13 1., 0., 2. 13,2,13 1., 0., 2. 13,12,13 1.33, 0.333, 1.33 13,23,13 0.667, 1.67, 1.67
13,0,23 0.6, 2., 1.6 13,2,23 0.667, 1.67, 1.67 13,12,23 1., 2., 1. 13,23,23 0.333, 3.33, 1.33

It can be verified that no strategy profile in Table 1 is SSPE, since each f ,

except (12, 23, 13), will be upset by some other f ′. For example, f = (0, 0, 0)

will be upset by f ′ = (0, 0, 23), since if 3 unilaterally deviates from f to propose
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({2, 3}, (5, 1)) and 2 accepts this new offer, both 2 and 3 will be better off. Also

note that although f = (12, 23, 13) cannot be upset by any other f ′ in the table,

player 2 has an incentive to reject 1’s offer leading to outcome (0.4, 3, 1.4), which

in turn will be upset by f ′′ = (13, 23, 13), and so on. Therefore, there exists no

SSPE of G′(α, p), and G does not have a valuation relative to (α, p).

There may be some special situations under which the valuation exists. For

example, the following propositions show that valuation exists when G is finite

and p = 1, or when G is a finite noncooperative two-player game, or when each

player has a weakly dominant action.

Proposition 1. For any finite game G and any α, there exists a valuation of G

relative to (α, 1).

Proof. In each period of G′(α, 1), the chosen player either refuses to be the pro-

poser, or proposes an offer that will be accepted by others. In both cases, this

period ends. Therefore, G′(α, 1) will end in finite periods of time, and thus an

SSPE of G′(α, 1) can be easily derived by backward induction.

Proposition 2. If G is a two-player noncooperative finite game, then G has a

valuation relative to any (α, p).

Proof. When player i is chosen in period t = 0, he can either refuse to be the

proposer, or choose ai ∈ Ai. Let (ai1, a
i
2) ∈ A1 × A2 denote a pair of actions

that can be derived by backward induction when i is chosen in period t = 0 and

agrees to be the proposer. Let si ∈ {0, i} be a strategy of player i such that: (a)

si = 0 represents refusing to be the proposer in period t = 0; (b) si = i represents

choosing aii in period t = 0; (c) no matter what si is, the action chosen by player i

in period t = 1 is a best response to the action chosen by player j in period t = 0

(in particular, i will choose aji in period t = 1 if j chooses ajj in period t = 0).

Let πi = π(ai1, a
i
2), and let π̃(s1, s2) denote the expected payoff outcome of

the game when players strategy pair is (s1, s2). It is easy to show that π̃(1, 2) =

π̃(0, 0) = α1π
1+α2π

2, π̃(0, 2) = α1p
α2+α1p

π1+ α2

α2+α1p
π2, π̃(1, 0) = α1

α1+α2p
π1+ α2p

α1+α2p
π2.

Note that α1p
α2+α1p

≤ α1, α2

α2+α1p
≥ α2, α1

α1+α2p
≥ α1, α2p

α1+α2p
≤ α2. Thus, if π1

1 ≥
π2

1, π2
2 ≥ π1

2, then π̃1(1, 2) ≥ π̃1(0, 2), π̃2(1, 2) ≥ π̃2(1, 0). Hence, (s1, s2) = (1, 2)
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is an SSPE of G′(α, p), while π̃(1, 2) = α1π
1 + α2π

2 is a valuation of G relative to

(α, p). Similarly, if π1
1 < π2

1, π2
2 < π1

2, then π̃1(0, 0) ≥ π̃1(1, 0), π̃2(0, 0) ≥ π̃2(0, 2),

and π̃(0, 0) = α1π
1 +α2π

2 is a valuation of G relative to (α, p); if π1
1 ≥ π2

1, π2
2 < π1

2,

then π̃1(1, 0) ≥ π̃1(0, 0), π̃2(1, 0) ≥ π̃2(1, 2), and π̃(1, 0) is a valuation of G relative

to (α, p); if π1
1 < π2

1, π2
2 ≥ π1

2, then π̃1(0, 2) ≥ π̃1(1, 2), π̃2(0, 2) ≥ π̃2(0, 0), and

π̃(0, 2) is a valuation of G relative to (α, p). In sum, G always has a valuation

relative to any (α, p).

According to the proof of Proposition 2, in the SSPE we constructed, the chosen

player will agree to be the proposer if and only if he has first mover advantage. In

addition, if both players have first mover disadvantage, the valuation is just the

same as that when both players have first mover advantage.

Proposition 3. If for any i ∈ N , there exists a∗i ∈ Ai such that πi(a
∗
i , a−i) ≥

πi(a
′
i, a−i), ∀a′i ∈ Ai, ∀a−i ∈ A (N\{i}), then π(a∗1, . . . , a

∗
n) is a valuation of G

relative to any (α, p).

Proof. Given (α, p), let f ∗ be the strategy profile such that (i) each chosen player

i will propose
(
{i}, a∗i

)
; (ii) suppose the chosen player j propose (M,aM) where

i ∈M , then i will accept this offer if and only if his expected payoff when accepting

the offer is not less than that when rejecting the offer. It is easy to see that f ∗

is stationary. Furthermore, in each subgame of G′(α, p), the chosen player has no

incentive to deviate from f ∗i since a∗i is his weakly dominant action. Hence, f ∗ is

an SSPE of G′(α, p), and π(a∗1, . . . , a
∗
n) = π(f ∗) is a valuation of G.

On the other hand, there exist some games that have multiple valuations. For

instance, consider the noncooperative strategic game in Figure 4. Since each player

is indifferent between A and B, each payoff vector of the form α1H1 + α2H2 is a

valuation relative to any (α, p), where Hi ∈ {(3, 1), (3, 2), (2, 1), (2, 2)}, i = 1, 2.

Player 1

Player 2
A B

A 3, 1 2, 1
B 3, 2 2, 2

Figure 4: A game with multiple valuations
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If the valuation(s) of a game does not exist or are not unique relative to some

parameters (α, p), then the outside observer’s belief characterized by the underly-

ing game G′(α, p) is not appropriate for the current situation, or is not sufficient to

determine a unique outcome of the game. In this case, we may adjust the method

to solve the game, or to impose additional restrictions to the solution. For exam-

ple, we may consider other bargaining procedures in the underlying game, or solve

it using some additional tie-breaking rules or refinement of SSPE.

Sometimes, there exists a unique valuation relative to some parameters (α, p).

Let ψ(α, p) =
(
ψ1(α, p), . . . , ψn(α, p)

)
denote this unique valuation. If a game

G has a unique valuation relative to all possible parameters (α, p), then ψ(α, p)

can be regarded as a function of (α, p) characterizing how the valuation depends

on outside observer’s belief. The properties of this function can help predict the

outcome of the game, since the dependence of ψ(α, p) on the parameters (α, p)

reflects how the procedure of interactions may affect the outcome of the game.

For instance, it is possible that the players have earlier mover advantage so

that for each player i, ψi(α, p) is increasing in αi; or players may have earlier

mover disadvantage so that ψi(α, p) is decreasing in αi. The BOS game and the

RPS game in Section 2 are examples of these two cases, respectively. For a game

with earlier mover advantage (disadvantage), a larger αi implies that player i’s

bargaining power is relatively stronger (weaker, respectively).

Moreover, sometimes the valuation may also be procedure-free; that is, ψ(α, p)

does not depend on (α, p). For instance, the noncooperative strategic form game

in Figure 5 has a unique valuation (4, 4), which is independent of (α, p). Note that

this valuation does not coincide with the unique Nash equilibrium payoffs (3, 3).

This example illustrates to us the difference between the valuation and the Nash

equilibrium, even if they both provide a unique prediction for the game. A natural

question is which solution is more appropriate. The answer depends on whether

the game has inadequate information.

If G has a unique valuation which does not depend on (α, p), then this val-

uation is called the fixed valuation of G, and can be simply denoted as ψ. We

are particularly interested in games with a fixed valuation, since in this case the

belief of an outside observer on the inadequate information does not affect his

prediction of the game. In other words, there is virtually no loss for the outside
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Player 1

Player 2
L K R

U 4, 4 2, 0 0, 0
H 6, 0 3, 3 0, 2
D 0, 0 0, 6 4, 4

Figure 5: A game with fixed valuation

observer to predict the outcome of a game with a fixed valuation due to inadequate

information.

6 Some special games

Usually, it is quite complex to calculate and analyze the valuation in a general

setting. Therefore, we may start from some simple games. The valuation in

several special cases are investigated in the following three subsections. We focus

on the calculation of the valuation, the existence and uniqueness of the valuation,

and the relationship between the valuation and some traditional solutions, such as

the Nash equilibrium outcome, the (weighted) Nash bargaining solution, and the

core.

6.1 Two-player zero-sum game

Consider a zero-sum strategic game G = (Si, ui)i∈N . Here, N = {1, 2} is the player

set, Si is a finite set of (pure) strategies of i, and u1(s)+u2(s) = 0 for any strategy

pair s = (s1, s2) ∈ S1×S2. The game can be either noncooperative (M = M0) or

cooperative (M = MN).

Let r1 := maxs1∈S1 mins2∈S2 u1(s1, s2), r2 := mins2∈S2 maxs1∈S1 u1(s1, s2). Then

player 1 can guarantee that he will get no less than r1 in G, while player 2 can

guarantee that player 1 will get no more than r2. It is easy to see that r1 ≤ r2.

Denote ψ(α) =
(
ψ1(α), ψ2(α)

)
:= (α1r1 + α2r2,−α1r1 − α2r2). Let f ∗i be a

stationary strategy of player i in the underlying game G′(α, p), such that:

(i) if i is chosen in t = 0, then he will refuse to be the proposer;
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(ii) if j 6= i has taken s̄j and become inactive in t = 0, then in t = 1 i will take

s∗i ∈ Si so that ui(s
∗
i , s̄j) ≥ ui(s

′
i, s̄j), ∀s′i ∈ Si;

(iii) if the game is cooperative and j proposes s to i in t = 0, then i will accept

it if and only if ui(s) ≥ pminsj∈Sj maxsi∈Si ui(si, sj) + (1− p)ψi(α).

Let Hi(f) denote player i’s expected payoff when players follow f and i is

chosen in t = 0. Then given f ∗ = (f ∗1 , f
∗
2 ), player 1’s expected payoff is H1(f ∗) =

pmaxs1∈S1 mins2∈S2 u1(s1, s2) + (1 − p)π1(f ∗) = pr1 + (1 − p)π1(f ∗) if 1 is chosen

in t = 0, while 1’s payoff is −H2(f ∗) = −pmaxs2∈S2 mins1∈S1 u2(s1, s2) − (1 −
p)π2(f ∗) = pr2 + (1 − p)π1(f ∗) if 2 is chosen in t = 0. Thus, one has π1(f ∗) =

α1[pr1 + (1− p)π1(f ∗)] + α2[pr2 + (1− p)π1(f ∗)], implying π1(f ∗) = α1r1 + α2r2.

Since G is zero-sum, we have π2(f ∗) = −α1r1 − α2r2. Therefore,

π(f ∗) = ψ(α). (3)

Since r1 ≤ r2, due to (3) we have π1(f ∗) ≥ r1, π2(f ∗) ≥ −r2. That is,

πi(f
∗) ≥ max

si∈Si
min
sj∈Sj

ui(si, sj), i 6= j.

Since Hi(f
∗) = pmaxsi∈Si minsj∈Sj ui(si, sj) + (1− p)πi(f ∗), we have

πi(f
∗) ≥ Hi(f

∗) ≥ max
si∈Si

min
sj∈Sj

ui(si, sj), i 6= j. (4)

The following proposition establishes the existence and uniqueness of valuation

for any two-player zero-sum game.

Proposition 4. The unique valuation of G relative to any (α, p) is ψ(α).

Proof. We shall first prove that f ∗ is an SSPE of G′(α, p). Since f ∗ is stationary,

it remains to prove that f ∗ is a subgame perfect equilibrium.

If j 6= i has taken s̄j in t = 0, then it is obvious that i cannot benefit from

deviating from f ∗i . If G is cooperative and j proposes s to i at t = 0, then when i

refuses the offer, his expected payoff is pminsj∈Sj maxsi∈Si ui(si, sj) + (1− p)ψi(α),

hence i will not deviate away from f ∗i .

If i is chosen in t = 0, then other than f ∗i , player i can either choose si ∈ Si,
or, if G is cooperative, propose s ∈ S1 × S2 to j.
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(i) In the former case, player i will take some s∗i so that minsj∈Sj ui(s
∗
i , sj) ≥

minsj∈Sj ui(s
′
i, sj), ∀s′i ∈ Si. Then given f ∗j , i’s expected payoff will be

maxsi∈Si minsj∈Sj ui(si, sj). Due to (4), this payoff is not larger than Hi(f
∗),

and thus i has no incentive to deviate from f ∗i .

(ii) In the latter case, if the offer s is rejected by j, then i’s expected payoff

is pmaxsi∈Si minsj∈Sj ui(si, sj) + (1 − p)ψi(α) = Hi(f
∗). If the offer s is

accepted by j, then according to f ∗j , uj(s) ≥ pminsi∈Si maxsj∈Sj uj(si, sj) +

(1−p)ψj(α), and hence ui(s) = −uj(s) ≤ pmaxsi∈Si minsj∈Sj ui(si, sj)+(1−
p)ψi(α) = Hi(f

∗). Again due to (4), i has no incentive to deviate from f ∗i

Thus we have proved that f ∗ is an SSPE of G′(α, p).

Furthermore, player i can guarantee that his expected payoff in G′(α, p) will

be at least ψi(α) by using f ∗i . On the other hand, by choosing f ∗j player j can

make sure that i’s expected payoff will be at most ψi(α). These imply that ψ(α)

is the only payoff outcome that can be supported by any SSPE of G′(α, p).

Proposition 4 also shows that the unique valuation of G does not depend on

p. But when is the valuation also independent of α? In other words, when does G

have a fixed valuation? Since ψ(α) = (α1r1 + α2r2,−α1r1 − α2r2), one has:

Corollary 1. G has a fixed valuation if and only if r1 = r2.

In the literature, when r1 = r2, we say that G has a value in pure strategies,

which can be denoted by r := r1 = r2. Moreover, von Neumann (1928)’ Minmax

Theorem shows that if players can use mixed strategies σi ∈ ∆Si, i = 1, 2, then

each finite two-player zero-sum game has a value in mixed strategies:

r̂ := max
σ1∈∆S1

min
σ2∈∆S2

u1(σ1, σ2) = min
σ2∈∆S2

max
σ1∈∆S1

u1(σ1, σ2).

This value coincides with the payoff of player 1 in each Nash equilibrium of G.

However, G need not have a value in pure strategies. For instance, consider again

the RPS game in section 2. This game does not have a value (and Nash equilib-

rium) in pure strategies. Meanwhile, it is easy to verify that in the RPS game,

r1 < r2, and hence this game does not have a fixed valuation.

This example motivates us to study the relationship between the valuation and

the Nash equilibrium (the value). The next proposition shows that these solutions
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only coincide and predict the same payoff outcome when G has a fixed valuation,

or when G has a pure-strategy Nash equilibrium.

Proposition 5. The following statements are equivalent:

(a) G has a fixed valuation (r,−r).

(b) G has a pure-strategy Nash equilibrium s∗, so that u(s∗) = (r,−r).

Proof. The equivalence of (b) and r1 = r2 = r has been proved in the literature.

See, for example, Maschler et al. (2013, Theorem 4.44 and Theorem 4.45). On the

other hand, (a) and r1 = r2 = r are equivalent due to Corollary 1. Hence, (a) and

(b) are equivalent.

The value for a two-player zero-sum game plays an important role in game

theory. Some scholars10 think that this is so far the only case in game theory that

we can provide an unquestionable prediction for a game. However, Proposition 5

suggests that when the zero-sum game has inadequate information, the value is

no longer an unquestionable solution; it is an appropriate prediction only when

the game has a pure-strategy Nash equilibrium. If, on the contrary, the game

does not have a Nash equilibrium in pure strategies, just as in the RPS, then

the outside observer believes that the payoff outcome of the game (the valuation)

should depend on α. As mentioned when analyzing RPS in section 2, in this case

the value (Nash equilibrium) of the game, which is independent of α, is inconsistent

with the experience of the outside observer.

6.2 Two-player pure bargaining game

Consider a pure bargaining game G = (N,X, u0) where N = {1, 2}. Suppose

the feasible payoff space X =
{

(u1, u2) ∈ R2
+ |u2 6 g(u1)

}
is a bounded, convex,

closed set, whose boundary can be denoted by ∂X = {(u1, u2) |u2 = g(u1), 0 6

u1 6 τ1} = {(u1, u2) |u1 = g−1(u2), 0 6 u2 6 τ2}, where τ1 = g−1(0), τ2 = g(0).

Write X\∂X = {u ∈ X |u /∈ ∂X}. We assume that

(h1) g(·) is twice continuously differentiable on [0, τ1];

(h2) g(x)′ < 0, g(x)′′ ≤ 0, ∀x ∈ [0, τ1];

10For example, Aumann and Dreze (2008).
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(h3) u0 ∈ X\∂X.

The following proposition establishes the existence and uniqueness of the val-

uation of G. Also, it shows how to calculate the valuation.

Proposition 6. Given any (α, p), G = (N,X, u0) has a unique valuation ψ(α, p) =

(w1, w2) relative to (α, p), satisfying

w1 = α1g
−1
(
(1− p)w2 + pu0

2

)
+ α2

[
(1− p)w1 + pu0

1

]
, (5)

w2 = α1

[
(1− p)w2 + pu0

2

]
+ α2g

(
(1− p)w1 + pu0

1

)
. (6)

Proof. See Appendix.

Note that if ∂X is a straight line, then ψ(α, p) ∈ ∂X; that is, the valuation

is Pareto efficient. However, the valuation is typically not Pareto efficient (i.e.

ψ(α, p) ∈ X\∂X) if X is strictly convex. See Figure 6(a) and 6(b) for an exhibition

of these two cases, respectively. Furthermore, we shall show in Proposition 7 that

as p goes to zero, the limit of valuation is Pareto efficient, and coincides with the

weighted Nash bargaining solution (WNBS for short) of the game11.

u0

û1

û2

w = α1û
1 + α2û

2

pu0 + (1− p)w

u1

u2

(a) ∂X is linear

u0

û1

û2

w = α1û
1 + α2û

2

pu0 + (1− p)w

u1

u2

(b) ∂X is nonlinear

Figure 6: Valuation of two-player bargaining game

11This conclusion is not surprising, given the large literature on the noncooperative implemen-
tation of the (asymmetric) Nash bargaining solution. See, for examples, Hart and Mas-colell
(1996), Britz et al. (2010), and Kawamori (2014).
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Let κ(α) denote the WNBS of G relative to α. That is, suppose Q(u, u0, α) =

(u1 − u0
1)α1(u2 − u0

2)α2 is the weighted Nash product, then κ(α) is defined as the

unique solution to the optimization problem: maxu∈X Q(u, u0, α). The WNBS can

be characterized by the following Lemma.

Lemma 2. Suppose v = (v1, v2) ∈ ∂X, and the slope of the tangent to ∂X at v is

−α1

α2
· v2−u

0
2

v1−u01
, then v = κ(α).

Proof. The slope of the tangent to ∂X at κ(α), which is equal to the slope of the

tangent to the curve Q(u, u0, α) = Q(κ(α), u0, α) at κ(α), is

−∂Q(κ(α), u0, α)/∂u1

∂Q(κ(α), u0, α)/∂u2

= −α1

α2

· κ2(α)− u0
2

κ1(α)− u0
1

.

On the other hand, if v ∈ ∂X but v 6= κ(α), then we shall show that the

corresponding slope at v cannot be −α1

α2
· v2−u

0
2

v1−u01
. Suppose without loss of generality

that v1 > κ1(α), v2 < κ2(α), then due to (h2),

Slope(v) < Slope(κ(α)) = −α1

α2

· κ2(α)− u0
2

κ1(α)− u0
1

< −α1

α2

· v2 − u0
2

v1 − u0
1

.

This proves our statement.

Proposition 7. Given any α, limp→0 ψ(α, p) = κ(α).

Proof. If there exists a function τ(α) such that for each α, limp→0 ψ(α, p) = τ(α),

then according to (6) we have τ2(α) = g(τ1(α)). Thus, τ(α) ∈ ∂X. Let

w1(α, p) =
(
g−1((1− p)ψ2(α, p) + pu0

2), (1− p)ψ2(α, p) + pu0
2

)
,

w2(α, p) =
(
(1− p)ψ1(α, p) + pu0

1, g((1− p)ψ1(α, p) + pu0
1)
)
,

then w1(α, p), w2(α, p) ∈ ∂X, and ψ(α, p) = α1w
1(α, p) + α2w

2(α, p). The slope

of the secant line passing through w1(α, p) and w2(α, p) is t(α, p) =
w2

2(α,p)−w1
2(α,p)

w2
1(α,p)−w1

1(α,p)
.

Due to (5) and (6), it is easy to see t(α, p) = −α1

α2
· ψ2(α,p)−u02
ψ1(α,p)−u01

. Since ψ(α, p) always

locates on this secant line, the slope of the tangent to ∂X at τ(α) is limp→0 t(α, p) =

−α1

α2
· τ2(α)−u02
τ2(α)−u01

. According to Lemma 2, limp→0 ψ(α, p) = τ(α) = κ(α).
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It remains to prove that for each α, ψ(α, p) indeed converges as p→ 0. By (6)

and Lagrange’s mean value theorem, for any p1 < p2, there exists p̄ ∈ [p1, p2] such

that

α2

(
ψ2(α, p2)− ψ2(α, p1)

)
=− α1

(
p2ψ2(α, p2)− p1ψ2(α, p1)

)
+ α1(p2 − p1)u0

2

+ α2g
′((1− p̄)ψ1(α, p̄) + p̄u0

1

)
(p2 − p1).

(7)

Given α, for any ε > 0, we can easily find some δ > 0 according to (7) such that

for any p1, p2, 0 < p1 < p2 < δ, |ψ2(α, p2)−ψ2(α, p1)| < ε. By Cauchy convergence

criterion, ψ(α, p) converges as p→ 0.

6.3 Three-player TU coalitional game

Coalitional games, where all coalitions are feasible, can be regarded as an extension

of pure bargaining games. In this section, we consider a TU coalitional game (N, v)

where N = {1, 2, 3}. Suppose v is superadditive, that is, v(S) + v(T ) ≤ v(S ∪ T )

for any disjoint coalitions S and T . In this subsection, we sometimes abuse the

notation to write i, ij, ... instead of {i}, {i, j}, ...

To calculate the valuation of this game, we introduce a strategic form game

(Si, ui)i∈N as follows. Let Si = {0, i, ij, ik,N}, where {i, j, k} = N , and let S =

×i∈NSi.
Let wiji := v(i) + αi

αi+αj

(
v(ij) − v(i) − v(j)

)
denote player i’s payoff when the

coalition {i, j} splits surplus according to players’ parameters αi and αj.

For any column vector w = (w1, w2, w3)T and s = (s1, s2, s3) ∈ S, let

H i(w, si) =
(
H i

1(w, si), H
i
2(w, si), H

i
3(w, si)

)T
,

where

H i
i (w, 0) = pv(i) + (1− p)wi,

H i
j(w, 0) = pwjkj + (1− p)wj,

H i
i (w, i) = v(i),

H i
j(w, i) = wjkj ,

H i
i (w, ij) = v(ij)− pwjkj − (1− p)wj,

25



H i
j(w, ij) = pwjkj + (1− p)wj,

H i
k(w, ij) = v(k),

H i
i (w,N) = v(N)− pv(jk)− (1− p)(wj + wk),

H i
j(w,N) = pwjkj + (1− p)wj.

Finally, let H(w, s) =
∑

i∈N αiH
i(w, si), where s = (s1, s2, s3). Thus for each s,

we have defined a mapping H(·, s) that associates each w with a payoff vector

H(w, s).

Intuitively, Si collects the possible actions of player i when he is chosen in t = 0

of G′(α, p), where si 6= 0 represents the offer that the coalition si forms and splits

v(si) so that each j ∈ si\i is indifferent between accepting and rejecting the offer,

while si = 0 represents that i refuses to be the proposer. Suppose the outside

observer has an initial expectation w about the payoff outcome of G′(α, p). For

any chosen player i at t = 0, the outside observer would deduce that i can enforce

an expected payoff profile H i(w, si). Given s, H(w, s) is the outside observer’s

predictions for the payoff outcome that the players’ reactions will lead to against

the initial expectation w. Hence a reasonable expectation w should be a fixed

point of H(·; s); that is,

w = H(w, s), (8)

Lemma 3. For any s ∈ S, there exists a unique vector w satisfying (8).

Proof. See Appendix.

Lemma 3 shows that H(·, s) always has a unique fixed point. Let u(s) =(
u1(s), u2(s), u3(s)

)
denote this fixed point. Thus, we have defined (Si, ui)i∈N .

The following proposition suggests that the valuation of (N, v) can be derived by

calculating the pure-strategy Nash equilibrium of (Si, ui)i∈N .

Proposition 8. If a vector ψ ∈ R3 is a valuation of (N, v) relative to (α, p), then

there exists a pure-strategy Nash equilibrium s∗ of (Si, ui)i∈N such that ψ = u(s∗).

Conversely, if s∗ is a pure-strategy Nash equilibrium of (Si, ui)i∈N , then ψ = u(s∗)

is a valuation of (N, v) relative to (α, p).

Proof. Suppose ψ is a valuation of (N, v) relative to (α, p), then there is an SSPE

f ∗ of G′(α, p) such that ψ = π(f ∗). A strategy profile s∗ = (s∗1, s
∗
2, s
∗
3) of (Si, ui)i∈N
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can be derived from f ∗ as follows. Suppose player i is chosen in t = 0 of G′(α, p).

If i refuses to be the proposer according to f ∗i , then s∗i = 0. If i agrees to be

the proposer and proposes an offer (Mi, a
Mi) according to f ∗i , then s∗i = Mi. Due

to Lemma 1, we might as well assume that no players in Mi will reject this offer

according to f ∗, since otherwise f ∗i can be replaced by a strategy in which i refuses

to be the proposer. Hence, in offer (Mi, a
Mi), aMi will be a payoff vector such that

each j ∈ Mi\{i} is indifferent between accepting and rejecting this offer, leading

to payoff vector H i
(
π(f ∗), s∗i

)
. Hence, one has

π(f ∗) =
∑

i∈N
αiH

i
(
π(f ∗), s∗i

)
= H

(
π(f ∗), s∗

)
.

According to Lemma 3 and the definition of u, one has π(f ∗) = u(s∗). Since f ∗

is an SSPE, no player has an incentive to unilaterally deviate his strategy from

f ∗. Therefore in (Si, ui)i∈N , no player is willing to deviate from his strategy s∗i

given other players’ strategies s∗−i. Hence, s∗ is a pure-strategy Nash equilibrium

of (Si, ui)i∈N , and ψ = π(f ∗) = u(s∗).

Conversely, suppose s∗ is a pure-strategy Nash equilibrium of (Si, ui)i∈N . Con-

sider a stationary strategy profile f ∗ of G′(α, p) as follows. If i is chosen in t = 0,

then according to f ∗i , player i will refuse to be the proposer if s∗i = 0, and will

propose the offer (Mi, a
Mi) if s∗i 6= 0, where Mi = s∗i , a

Mi
j = H i

j

(
u(s∗), s∗i

)
, ∀j ∈Mi.

If i is chosen in some period t > 0 under state γ, then he will propose (Mi, a
Mi)

where Mi = Mγ, while (aMi
i , aMi

j ) =
(
v(ij)−v(j), v(j)

)
if Mγ = ij, and aMi

i = v(i)

if Mγ = i. If j 6= i is chosen in some period t ≥ 0 under state γ and proposes

(Mj, a
Mj) so that i ∈ Mj, then when Mγ = N , i will accept this offer if and

only if a
Mj

i ≥ Hj
i

(
u(s∗), s∗j

)
; when Mγ = ij, i will accept this offer if and only if

a
Mj

i ≥ pv(i) + (1− p)wiji . According to the definition of f ∗, one has

π(f ∗) =
∑

i∈N
αiH

i
(
u(s∗), s∗i

)
= H

(
u(s∗), s∗

)
= u(s∗).

Since s∗ is a pure-strategy Nash equilibrium of (Si, ui)i∈N , f ∗ is a Nash equilibrium

of G′(α, p). Furthermore, due to the definition of H i and the superadditivity of v,

it is easy to verify that f ∗ is subgame perfect. Therefore, ψ = u(s∗) = π(f ∗) is a

valuation of (N, v) relative to (α, p).
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Finally, we briefly discuss some properties of the valuation through an example.

We emphasize on the efficiency12 and uniqueness of the valuation, as well as the

comparison between the valuation and some other solutions, e.g. the core and the

Shapley value. The core of the game is the set C(v) = {(x1, x2, x3) |x1 +x2 +x3 =

v(N), xi + xj ≥ v(ij), xk ≥ v(k), ∀i, j, k ∈ N, i 6= j}. The Shapley value is a payoff

vector φ(v) =
(
φ1(v), φ2(v), φ3(v)

)
, where

φi(v) =
∑

S⊆N\{i}

|S|!(2− |S|)!
6

[
v(S ∪ {i})− v(S)

]
, ∀i ∈ N.

Example 4. Consider a game where v(1) = v(2) = v(3) = 0, v(12) = v(23) =

v(13) = 2
3
, v(N) = 1. The Shapley value of this game is (1

3
, 1

3
, 1

3
), which is also

the only allocation in the core. However, when α = (1
2
, 1

3
, 1

6
), p = 0.05, the unique

valuation of the game is (0.4, 0.3778, 0.2222). This shows that the valuation of a

game may be different from the core or the Shapley value. Hence, the core or the

Shapley value may not be appropriate for TU games with inadequate information.

When α = (1
3
, 1

3
, 1

3
), p = 0.05, this game has two valuations relative to (α, p):

(2
9
, 2

9
, 2

9
) and (1

3
, 1

3
, 1

3
). This shows that a valuation is not necessarily efficient. In

addition, this example also suggests that it is possible that (N, v) has multiple

valuations.

We conclude by noting that whether a pure-strategy Nash equilibrium of (Si, ui)i∈N ,

and hence the valuation of (N, v), always exists remains an open question. We are

not able to show the existence of the valuation; on the other hand we also fail to

find a three-player superadditive TU game in which the valuation relative to some

(α, p) does not exist. We leave this existence problem for future research.

7 Conclusion

We have developed a framework in which an outside observer of a game with inad-

equate information can predict each player’s expected payoff. A solution, namely

the valuation, is defined based on this framework. We discuss the properties of

this solution, especially in some special cases. The main findings are as follows.

12Since payoffs are transferable, a payoff vector (x1, x2, x3) is efficient if x1 + x2 + x3 = v(N).
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First, for each two-player zero-sum game or two-player pure bargaining game,

there exists a unique valuation. For three-player TU coalitional games, the exis-

tence and uniqueness of the valuation are not guaranteed, but when a valuation

exists, we have provided an algorithm to calculate all of the valuations.

Second, the valuation generally does not coincide with some traditional solu-

tions of games. For example, for TU coalitional games, the valuation relative to

some parameters need not coincide with the core and the Shapley value. This

suggests that games with inadequate information is essentially different from tra-

ditional games. However, there are some exceptions under certain circumstances.

For example, for a two-player pure bargaining game, as p → 0, the limit of the

valuation approaches the weighted Nash bargaining solution.

In addition, the distinction between the valuation and some traditional solu-

tions also helps us explain some phenomena that cannot be explained by traditional

theory. The BOS and the RPS in section 2 are two examples in this regard. Hence,

for an outside observer of a game with inadequate information, the valuation is

usually a more appropriate solution than traditional solutions.

Third, we are particularly interested in the situation when inadequate informa-

tion does not affect the outside observer’s prediction in any way — that is, when

the game has a fixed valuation. So far, we have only found few games satisfying

this property. Even a two-player zero-sum game does not have a fixed valuation,

unless it has a pure-strategy Nash equilibrium.

Finally we list some works that might be worth exploring in the future research.

First, some theoretical problems remain unanswered. For example, under what

conditions a game has a valuation, and when the valuation is unique. Second, we

can try to apply the method introduced in this paper to a variety of real world

circumstances with inadequate information,13 for example, to design a mechanism

when the designer is an outside observer of the situation. Third, using the method

introduced in this paper, we may build a bridge connecting game theory and

econometrics. On one hand, econometrics tools can be introduced to estimate the

13Mao (2014) provides an application of GII that explains why a dictator, who is an outside
observer of a tax-collecting game played by the government and the people, is willing to change
the type of the government from dictatorship to equality, under some mild condition. In the
Supplementary Material, this example is adapted and translated into English for the convenience
of the readers.
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parameters in the valuation, which makes the solution more accurate. On the other

hand, the model of GII may help build more solid foundations for some empirical

analysis.

Appendix

Proof of Proposition 6.

Let X(u0) = {(u1, u2) ∈ X |u1 > u0
1, u2 > u0

2}, then X(u0) is a convex and

compact set. We first show that there exists a unique vector w = (w1, w2) ∈ X(u0)

satisfying (5)(6), i.e. w2 = α2
1−α1(1−p)g

(
(1−p)α1

1−α2(1−p)g
−1
(
(1− p)w2 + pu0

2

)
+

pu01
1−α2(1−p)

)
+

α1pu02
1−α1(1−p) , where w1 ∈ [u0

1, g−1(u0
2)], w2 ∈ [u0

2, g(u0
1)].

Let E(x) = −x+ α2
1−α1(1−p)g

(
(1−p)α1

1−α2(1−p)g
−1
(
(1− p)x+ pu0

2

)
+

pu01
1−α2(1−p)

)
+

α1pu02
1−α1(1−p) ,

then E′(x) = α1α2(1−p)2
[1−α1(1−p)][1−α2(1−p)]

g′
(

(1−p)α1
1−α2(1−p)

g−1
(

(1−p)x+pu02

)
+

pu01
1−α2(1−p)

)
g′
(
g−1
(

(1−p)x+pu02

)) −1, where x ∈

[u0
2, g(u0

1)]. According to (h3), we have u0
2 < g(u0

1). Since x 6 g(u0
1), (1−p)x+pu0

2 <

g(u0
1), by (h2), g−1

(
(1− p)x+ pu0

2

)
> u0

1. Therefore,

(1− p)α1

1− α2(1− p)
g−1
(
(1− p)x+ pu0

2

)
+

pu0
1

1− α2(1− p)
< g−1

(
(1− p)x+ pu0

2

)
.

Again by (h2), 0 <
g′
(

(1−p)α1
1−α2(1−p)

g−1
(

(1−p)x+pu02

)
+

pu01
1−α2(1−p)

)
g′
(
g−1
(

(1−p)x+pu02

)) < 1. In addition, it is

obvious that 0 6 α1α2(1−p)2
[1−α1(1−p)][1−α2(1−p)] < 1. Thus E ′(x) < 0, ∀x ∈ [u0

2, g(u0
1)]. Hence

there exists at most one w2 ∈ [u0
2, g(u0

1)] such that E(w2) = 0.

Let H(·) be a mapping that assigns a vector H(w) = α1û
1(w) + α2û

2(w) to

each w ∈ X(u0), where ûi(w) =
(
ûi1(w), ûi2(w)

)
∈ ∂X such that

ûij(w) = (1− p)wj + pu0
j , j 6= i. (9)

This mapping is obviously continuous. Since ûi ∈ X(u0), i = 1, 2, H(w) ∈ X(u0)

due to the convexity of X(u0). By Brouwer’s fixed point Theorem, there exists

at least one w ∈ X(u0) such that w = H(w). It is obvious that w = H(w) is

equivalent to (5) and (6). Hence, there exists at least one w satisfying (5) and (6).
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In sum, there exists a unique w∗ ∈ X(u0) satisfying (5) and (6).

Now consider the following stationary strategy profile f ∗ of the underlying

game G′(α, p): if γ = {i}, then i chooses to stay independent which leads to u0; if

γ = N and i is chosen, then i will agree to be the proposer and suggest
(
N, ûi(w∗)

)
where ûi(w∗) =

(
ûi1(w∗), ûi2(w∗)

)
∈ ∂X, ûij(w

∗) = (1− p)w∗j + pu0
j , and j 6= i will

accept an offer if and only if his payoff in the offer is not less than ûij(w
∗). We

have π(f ∗) = α1û
1(w∗) + α2û

2(w∗) = H(w∗) = w∗.

It is easy to verify that f ∗ is a subgame perfect equilibrium, and thus is an

SSPE. In fact, the case γ = {i} is trivial. Now consider the case γ = N and i is

chosen. Given f ∗i , if j rejects i’s offer, than j’s expected payoff will be (1− p)w∗j +

pu0
j , which is exactly ûij(w

∗) according to (9). Given f ∗j , if i refuses to be the

proposer, or to propose an offer that will be rejected by j, then i’s expected payoff

will be (1−p)w∗i +pu0
i , which is smaller than ûii(w

∗) since (1−p)w∗+pu0 ∈ X\∂X.

Hence, no player has an incentive to deviate from f ∗ unilaterally. Therefore, we

have proved that f ∗ is an SSPE, and thus w∗ is a valuation of G.

Now we shall show that w∗ is the only valuation of G. Assume on the contrary

that G has another valuation w′ 6= w∗, then there is an SSPE f ′ such that π(f ′) =

w′. Suppose according to f ′, the chosen player i at γ = N will propose
(
N, ūi

)
where ūi ∈ ∂X, and j will accept the offer if and only if he will get no less than ūij.

For f ′ to be SSPE, we have ūij = pu0
j + (1− p)πj(f ′) = pu0

j + (1− p)w′j = ûij(w
′).

Therefore, ūi = ui(w′). This implies w′ = α1ū
1 + α2ū

2 = α1u
1(w′) + α2u

2(w′) =

H(w′), which contradicts the uniqueness of the fixed point of H(w).

Proof of Lemma 3.

Note that (8) can be rewritten in terms of matrices as follows:

T (s)w = c(s), (10)

where c(s) is a column vector, and T (s) =
(
Ti,j(s)

)
is a square matrix. Due to the

definition of H(·; s), we have T (s) = I3 −
∑

i∈N αiT
i(si), where I3 is the identity

matrix of size 3, while T i(0) = (1− p)I3, T i(i) is 3× 3 zero matrix, and T i(si) is

a matrix whose entries are either 0 or ±(1 − p) so that the sum of the entries in
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each column is zero if si 6= 0, i. For example,

T 1(12) =

 0 p− 1 0

0 1− p 0

0 0 0

 , T 2(12) =

 1− p 0 0

p− 1 0 0

0 0 0

 ,

T 3(13) =

 1− p 0 0

0 0 0

p− 1 0 0

 , T 1(N) =

 0 p− 1 p− 1

0 1− p 0

0 0 1− p

 ,

T 2(N) =

 1− p 0 0

p− 1 0 p− 1

0 0 1− p

 , T 3(N) =

 1− p 0 0

0 1− p 0

p− 1 p− 1 0

 .

It is easy to verify that for any s, T (s) satisfies: (i) the sums of the entries

in each column of T (s),
∑3

i=1 Ti,j(s) ∈ (0, 1], are identical across all columns, (ii)

each entry Ti,j(s) > 0, and (iii) the non-zero entries off the main diagonal of T (s)

are of the form Ti,j(s) = αi(1− p), i 6= j.

We can use some elementary row operations to transform T (s) into T ′(s) as

follows. First, add row two and row three to row one, and multiply row one by

some appropriate number to transform this row into (1, 1, 1). Next, multiply row

1 by −Ti,1(s) and add it to row i, i = 2, 3, then the matrix has been transformed

into the form:

T ′(s) =

 1 1 1

0 T ′2,2 T ′2,3

0 T ′2,3 T ′3,3

 .

We can prove by exhaustion that det[T ′(s)] = T ′2,2T
′
3,3−T ′2,2T ′3,3 > 0. For examples,

det[T ′(0, 12, 13)] = p[1− α1(1− p)] > 0, det[T ′(N,N,N)] = p2 > 0, etc.

Therefore we have found a nonsingular matrix P such that T (s) = T ′(s)P .

Hence, det[T (s)] = det[T ′(s)] det(P ) 6= 0. Thus there exists a unique vector w

satisfying (10).

32



Supplementary Material

The following example is adapted from Mao (2014). Basically, this is a two-stage

game with three players. The player who moves in stage one is an outside observer

of the stage-two game, which is a noncooperative game played by the other two

players. Hence, in stage one the moving player must first solve the stage-two

game with inadequate information before choosing his action, which will affect the

setting and the expected outcome of the stage-two game.

Once upon a time, there is a kingdom. The king relies on the government

to govern a group of people. The people (represented by a single person) can

produce e unit of output with e2/2 unit of cost. The government decides the tax

rate θ ∈ [0, 1], and transfers all tax income θe to the king. Given e and θ, the

king’s payoff is u = θe, and the people’s payoff is v = (1− θ)e− 1
2
e2.

There are two possible types of the government: dictatorship and equality. Let

t = a and t = b denote these two types, respectively. If t = a, the government only

concerns the interests of the king, and hence the government’s payoff is wa = u.

If t = b, the government treats the people as important as the king, and the

government’s payoff is wb = min{u, v}.
The game is noncooperative, and proceeds as follows:

• Stage one: The king chooses the type of the government, t ∈ {a, b}.

• Stage two: The people and the government decide e and θ respectively in

a game with inadequate information, which follows (g1)–(g5). Suppose the

parameters are (α1, p), where p = 1, and α1 ∈ (0, 1) is the probability that

the government is chosen to move first.

Assume that each player seeks to maximize his expected payoff. The king will

choose equality if he is indifferent between two types.

If t = a, and the government moves first in stage two and chooses θ, then by

backward induction we know e = 1
2
, θ = 1

2
, and the payoffs are (ua1, v

a
1 , w

a
1) =

(1
4
, 1

8
, 1

4
). When the people move first in stage two and choose e, we have e = 0,

θ = 1, and the payoffs are (ua2, v
a
2 , w

a
2) = (0, 0, 0). Thus, the expected payoffs are

(ua, va, wa) =
(

1
4
α1,

1
8
α1,

1
4
α1

)
.
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If t = b, we can similarly obtain payoffs when the government and the people

are chosen to move first respectively: (ub1, v
b
1, w

b
1) = (2

9
, 2

9
, 2

9
), (ub2, v

b
2, w

b
2) = (1

4
, 1

4
, 1

4
).

The expected payoffs are (ub, vb, wb) =
(

1
4
− 1

36
α1,

1
4
− 1

36
α1,

1
4
− 1

36
α1

)
.

The king will choose equality type if and only ua ≤ ub; that is, α1 ≤ 0.9. In

other words, when the chance that the government moving earlier than the people

is not very large (sometimes this implies that the government’s bargaining power

relative to the people is not too weak), the king is willing to give up dictatorship

and introduce a more equal government out of his own interests. This result may

help explain the transition of political systems in the history.
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