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Abstract 

 

In this paper we study equilibrium refinement in signaling models. We propose a 

Local Credibility Test (LCT) that is somewhat stronger than the Cho and Kreps Intuitive 

Criterion but weaker than the refinement concept proposed by Grossman and Perry. 

Allowing deviations by a pool of “nearby” types, the LCT gives consistent solutions for 

any positive, though not necessarily perfect correlation between the signal sender’s true 

types (e.g., signaling cost) and the value to the signal receiver (e.g., marginal product).  

Furthermore, it avoids selecting separating equilibria when they do not make sense. We 

identify conditions for an equilibrium to satisfy the LCT in both the finite and continuous 

type cases, and demonstrate that the conditions are identical as we take the limit in the 

finite type case.  Intuitively, the conditions for an equilibrium to survive our LCT test 

require that a measure of signaling “effectiveness” is sufficiently high for every type and 

that the type distribution is not tilted upwards too much.  We then apply the 

characterization results to several signaling applications. 
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1.   Introduction 

  Since the seminal work of Cho and Kreps (1987), various refinement concepts 

have been proposed to rank different equilibria in signaling games in terms of their 

“reasonableness”. However, the mission is still far from being completed. In many 

applications, signals are “imperfect” in the sense that there is a positive yet imperfect 

correlation between the signal sender’s true type (e.g., signaling cost) and the signal 

receiver’s expected value (which then determines her response), see Riley (2001, 2002). 1 

Consider a situation in which two of the sender types have a same signaling cost but quite 

different values to the receiver. If these two types do not observe their values to the 

receiver, they are effectively the same type, so the existing refinement concepts, such as 

the Cho and Kreps Intuitive Criterion, apply in the usual way. However, if these two 

types do observe their different values to the receiver, then the Intuitive Criterion is 

unable to rank equilibria. The reason is that if one of the two types likes a deviation, the 

other also likes it, hence no deviation is credible by a single type. This is highly 

unsatisfactory because the two cases are observationally equivalent.  

The reason for the inconsistent solutions in the above example is that the existing 

refinement concepts focus on deviations by a single type only and do not consider 

deviations by a pool of types. Grossman and Perry (1986a,b), in a bargaining context, 

propose an equilibrium refinement concept strengthening the Cho-Kreps Intuitive 

criterion to allow pooling deviations. In this paper, in a general signaling model, we 

weaken the Grossman-Perry Criterion, and propose a “Local Credibility Test” (LCT) in 

which a possible deviation is interpreted as coming from one or more types whose 

equilibrium actions are nearby.  We consider only local pooling deviations, first because 

                                                 
1 Imperfect correlation between the signaling cost type and the receiver’s expected value naturally arises 
when the sender’s “physical” characteristics are multidimensional. The sender and the receiver may have 
similar preferences over the characteristics, but place different weights on its different dimensions. In the 
Spence education signaling model, a worker’s characteristics may consist of her analytical skills and social 
skills. Both skills can be important to her education cost as well as to her marginal product in the 
workplace, but their relative importance in the two clearly can differ. In the reserve price signaling model 
of Cai, Riley and Ye (2004), characteristics of an artwork in an auction include its quality, rarity, history, 
etc. The seller (who has private information about its characteristics and signals the information with 
reserve prices) may be mostly concerned with characteristics related to the artwork’s secondary market 
value, while potential buyers (who buy for self consumption) may care more about its impact in the setting 
for which it is intended. 
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they seem to us the most natural, second because they have much of the power of global 

pooling deviations, and third because they are more easily analyzed.  

Consider an equilibrium of a signaling game. Suppose an out-of-equilibrium 

signal is observed. By the Cho-Kreps Intuitive Criterion, if one sender type can be strictly 

better off deviating to this signal from his equilibrium signal but all other types cannot, 

then such a deviation is credible for this type. The equilibrium is said to fail the Intuitive 

Criterion if there exists such a credible deviation. In addition to the requirement of the 

Intuitive Criterion, the Local Credibility Test allows the possibility of pooling deviations. 

Specifically, imagine that those types whose equilibrium signals are nearby the observed 

out-of-equilibrium signal deviate to this signal from their equilibrium signals but all other 

types do not, and the receiver correctly “anticipates” such a pooling deviation and holds 

the right perception about the expected type of the pool. If under the receiver’s right 

perception, all the nearby types can be strictly better off from the deviation but all other 

types cannot, then such a pooling deviation is credible and we say that the equilibrium 

fails the LCT test. By allowing pooling deviations, the LCT test can be easily applied to 

situations with imperfect correlation between the signaling cost type and the receiver’s 

expected value.  

More importantly, the Local Credibility Test does not always rule out pooling 

equilibria in favor of separating equilibria.  We will argue that in some situations 

separating equilibria seem unreasonable while pooling equilibria can be rather appealing. 

Precisely in such situations, the LCT avoids selecting the unreasonable separating 

equilibria. Thus, unlike the existing refinement concepts that always rank separating 

equilibria above pooling equilibria, the LCT selects separating equilibria only when they 

are reasonable. Consider a simple two type education-signaling model, in which the high 

type must take a quite costly signal (e.g., many years of unproductive education) to 

separate from the low type. Now suppose there is only one low type agent in every 5 

million high type agents. In such a situation separation seems highly unreasonable, 

because without taking the costly signaling action an agent should not be perceived much 

differently from being the high type. By the LCT, it is easy to show that in any separating 

equilibrium a pooling deviation to some sufficiently low cost level of the signal is 

profitable to both types, so no separating equilibrium satisfies the LCT.   
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Many signaling applications are formulated in models with continuous types. 

Another advantage of the LCT is that it can be applied to both finite and continuous type 

cases equally well. We begin by formulating the concept of the LCT for the finite type 

models first, since the intuition is easier to present. Then we consider a discretization of 

the continuous type model, and take the limit as the discretization becomes finer.  Later 

we study a family of continuous type models of which many commonly studied signaling 

applications such as the Spence education signaling model are members. We demonstrate 

that the conditions for an equilibrium to satisfy the LCT are identical in these two cases. 

Another innovation of our analysis is to consider explicitly the sender’s decision 

to participate in signaling. Economically this is important because potential entrants can 

influence signaling behavior of active senders in real world applications. Analytically, the 

existence of potential entrants helps ensure that senders of types slightly above the 

minimum signaling type do not want to deviate collectively to the minimum signal. We 

show that the only candidate equilibrium that can survive the LCT is a separating 

equilibrium that satisfies simple “upward” constraints and has the “right” minimum 

signaling type and the associated minimum signal.  We then characterize conditions 

under which this equilibrium satisfies the LCT.  The required conditions are intuitive. As 

long as a measure of signaling “effectiveness” is sufficiently high for every type above 

the minimum signaling type and the type distribution is not tilted upwards too much, the 

candidate equilibrium can survive our LCT test.   

In the continuous type case, the set of equilibrium signals is dense so that out-of-

equilibrium signals can be only found outside the set of equilibrium signals. However, 

thinking of the continuous type case as the limiting case of the finite type case with many 

close types, it is natural to generalize the concept of the LCT to the continuous type case. 

An equilibrium survives the LCT if no change in perception is credible in the following 

sense: for any possible signal (on- or off-equilibrium), if the revised perception is that the 

signal is from types of a small neighborhood of the immediate equilibrium type, it is 

profitable for the types in this neighborhood to deviate to this signal, but unprofitable for 

types out of this neighborhood to do so. Another way of thinking about this credibility 

test in the continuous type case is the following. If, for an on-equilibrium signal, there is 

such a deviation-perception pair, then those nearby types can credibly deviate to the 
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particular on-equilibrium signal by throwing away ε  amount of money. Since no other 

types would be willing to do so, this could convince the receiver that the deviating sender 

is indeed one of those nearby types, thus making the deviation-perception credible.   

We derive conditions under which the LCT is satisfied by an equilibrium in the 

continuous type case. The conditions are exactly the same as in the limiting finite type 

case.  This is satisfactory, because models with continuous types and models with finitely 

many types are theoretical tools for analyzing the same kind of real world problems. Put 

differently, it would be highly unsatisfactory if an equilibrium refinement concept applies 

to one case but not the other, or gives different answers for the two cases.   

The paper is structured as follows. The next section uses simple examples to 

illustrate the basic idea of the LCT. Then Section 3 presents the general signaling model 

and formulates the concept of the LCT for the finite type case. We then provide a general 

characterization of the equilibrium satisfying the LCT. In Section 4, we derive conditions 

under which the LCT is satisfied by the candidate separating equilibrium in a limiting 

many type case. Section 5 generalizes the formulation of the LCT to the continuous type 

case, and shows that the conditions for the LCT are exactly the same as in the finite type 

case. Concluding remarks are in Section 6.  

 

2.  Examples 

A consultant ( , )i js v  has a signaling cost type is  and a marginal product of jv , 

where 1 2 ... ns s s< < <  and 1 2 ... mv v v< < < .  She can signal at level z at a cost of ( , )iC z s , 

where [0, ]z z∈ . We suppose that ( , ) 0C z s
s

∂
<

∂
 so that a higher type has a lower signaling 

cost.  If paid a wage w, her payoff is ( , , ) ( , )i iU s w z w C z s= − .  In a competitive labor 

market for consultants, her wage will be her marginal product perceived by the market.  

Activity z is a potential signal because the marginal cost of signaling, ( , )i
C z s
z

∂
∂

,  is a 

decreasing function of is .  The probability of each type, ( , )i js vπ , is positive and is 
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common knowledge.2  We suppose the two characteristics are affiliated. Then the 

conditional expectation ( ) { | }i iv s E v s= is an increasing function of is , that is, 

1 2( ) ( ) ... ( )nv s v s v s< < < .  

Initially we assume that each consultant observes her own signaling cost type but 

not her productivity.  There is a continuum of separating Nash equilibria in this signaling 

game. A separating Nash equilibrium with three signaling cost types is depicted in Figure 

2.1.  Each curve is an indifference curve for some signaling cost type.  A less heavy curve 

indicates a lower signaling cost type. In a separating equilibrium, the market can infer the 

consultant’s signaling cost is  from the signal she sends and thus pays her a wage equal to 

the expected marginal product ( )iv s . Note that the equilibrium choice for each type is  

(indicated by a shaded dot) is preferred over the choices of the other types.  

Such an equilibrium fails the Intuitive Criterion proposed by Cho and Kreps 

(1987).3  To see this, suppose a consultant chooses the signal ẑ  and argues that she is 

type 2s . Is this credible? If the consultant is believed, her wage will be bid up to 2( )v s  so 

she earns the same wage as in the separating equilibrium but incurs a lower signaling 

cost.  Moreover, 2ˆ( , ( ))z v s  is strictly worse than 1 1( , ( ))z v s  for type 1s  and strictly worse 

than 3 3( , ( ))z v s for type 3s .  Thus the claim is indeed credible, hence this separating 

equilibrium does not survive the Intuitive Criterion.    

 

 

 

 

 

                                                 
2 If ( , ) 0i js vπ =  for all i j≠ , the model reduces to the usual Spence model in which the negative 

correlation between signaling cost and value to receivers is perfect. While we assume ( , ) 0i js vπ >  for all 

 and  i j , the analysis applies generally.  
 
3 As noted by Cho and Kreps (1987), with more than two types, it is necessary to modify their original  
Intuitive Criterion or it loses much of its power. For the modified Intuitive Criterion the question is whether 
any particular type is uniquely able to benefit from some out-of-equilibrium signal if the signal receivers 
correctly infer the signaler’s type.  
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Similar arguments rule out any Nash equilibrium where different signaling cost 

types are pooled.  Thus the only equilibrium that satisfies the Intuitive Criterion is the 

Pareto dominant separating equilibrium (i.e., the Riley outcome) in which the lowest 

type chooses the smallest signal ( 0z = ) and each “local upward incentive constraint” is 

binding.  

 Next suppose that each consultant knows both her signaling cost type and her 

marginal product.  Again consider the separating Nash Equilibrium depicted above.  

Suppose in this equilibrium three different types are pooled at each signal level.  

Consider the three types 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v  pooled at 2z  with the expected 

marginal product 2( )v s .  Suppose a consultant chooses ẑ and claims to be type 2 3( , )s v . Is 

this credible?  If the claim is believed, the consultant’s wage will rise from 2( )v s  to  3v  

thus the consultant is indeed better off. But any offer that makes type 2 3( , )s v  better off 

also make types 2 1 2 2( , ) and ( , )s v s v  better off, since they have the same signaling cost.  

Thus there is no credible claim that type 2 3( , )s v  alone can make. A similar argument 

holds for each of the other types.  Thus any Nash separating equilibrium satisfies the 

Intuitive Criterion.  An almost identical argument establishes that any Nash Equilibrium 

with (partial) pooling satisfies the Intuitive Criterion as well. 

Fig: 2.1: Separating Nash Equilibria 

1( )v s  

2( )v s  

3( )v s  

z  

1 0z =  2z  
3z  ẑ

1I  

3I  
2I  
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 Since all the types with the same signaling cost are observationally equivalent, it 

seems to us that any argument for ranking the equilibria in the first model (productivity 

unknown) should also be applicable to the second model (productivity known) as well. 

The discussion also makes clear that a solution that achieves this goal should allow the 

possibility of pooling deviations in addition to deviations by single types. That is, if a 

pool of two or more types can credibly deviate to an out of equilibrium signal so that they 

can be better off while other types cannot, then the equilibrium fails the refinement test. 

In the above example, if an out of equilibrium signal ẑ  is observed, the receiver should 

allow the possibility that the sender can be any of the three types 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v . 

The question is what belief should the receiver have? Consistent with Cho and Kreps’ 

original idea, one way to generalize their Intuitive Criterion (while allowing pooling 

deviations) is to suppose that the receiver has the most conservative belief that the sender 

is the lowest type from the pool. However, this generalization does not have power in the 

above example, because not all three types 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v would be better off 

deviating to ẑ  if the receiver’s belief is 1v .4  

Given that upon observing the out of equilibrium signal ẑ  the receiver thinks that 

it can be any of the three types 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v ,  it is natural that she uses the 

Bayes Rule so her expected marginal product should be 2( )v s . Under this belief, a 

deviation to ẑ  by the pool of 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v is clearly credible: any type in this 

pool is better off but types not in the pool are worse off from such a deviation. Then once 

again, the unique Nash Equilibrium satisfying this refinement test is the Pareto Dominant 

separating equilibrium. 

We now introduce the formal definition of the Local Credibility Test. 

                                                 
4  Similarly, it can be verified that the Cho and Sobel (1990)’s refinement concept of “divinity”, which is 
built on the idea of stability of  Kohlberg and Mertens (1986) and can be considered as a logic offspring of 
the Intuitive Criterion, does not have power either in the above example. Ramey (1996) extends the Cho 
and Sobel’s divinity concept to the case of a continuum of types. Like the Intuitive Criterion, divinity faces 
the same problem of distinguishing types 2 1 2 2 2 3( , ), ( , ), ( , )s v s v s v to interpret a possible deviation, while 
these types have the same incentives to deviate. Riley (2001) discusses in greater details these and other 
refinement concepts.  
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Local Credibility Test (LCT): 
Suppose that an out-of-equilibrium signal ẑ  is observed and that z−  is the largest Nash 

Equilibrium signal less than ẑ  and z+  is the smallest Nash Equilibrium signal greater 

than ẑ , if they exist.  Let Ŝ  be the subset of signaling cost types choosing z−  or z+  with 

positive probability. For each ˆS S⊂ , define ( ) [ | ]v S E v s S= ∈ .  Then the equilibrium 

passes the Local Credibility Test (LCT) if there is no ( ẑ , S ) such that ˆ( , ( ))z v S  is 

strictly preferred over the Nash Equilibrium outcome if and only if s S∈ . 

  

Heuristically, the sender who chooses the out of equilibrium signal ẑ  can make 

the following statement to the receiver: “I am in the subset S  and you should believe me,  

because if you do and apply the Bayes Rule to update your belief, every type in S  will be 

better off and all other types will be worse off than in the equilibrium.” If there exists 

such a pair ˆ( , )z S , the equilibrium fails the LCT.  

Note that if ẑ  is smaller (greater) than all equilibrium signals, then z−  ( z+ ) does 

not exist and z+  ( z− ) is the smallest (largest) equilibrium signal. By the above definition, 

Ŝ  is the subset of types choosing z+  ( z− ).  Also note that by considering a subset of Ŝ  

to be the singleton set of a single type choosing z+ or z− , the definition of the Local 

Credibility Test allows deviations by single types. It follows that the LCT test is stronger 

than the Intuitive Criterion and hence only the Pareto Dominant separating equilibrium 

can pass the LCT.  

On the other hand, the idea of the Local Credibility Test is weaker than the 

refinement concept proposed by Grossman and Perry (1986a,b) in bargaining models. For 

any out-of-equilibrium signal ẑ , their criterion considers any subset of types as a 

potential deviating pool.  An equilibrium fails the Grossman and Perry test if ẑ  is 

credible for one subset of types. In signaling models the Grossman and Perry test is often 

too strong because no equilibrium can pass the test, especially when the type space is 

large. Here we restrict attention to local deviations. This makes the analysis more 

tractable and, we believe, more plausible.  



 9

More importantly, we now argue that the Pareto Dominant separating equilibrium 

survives the LCT test only when it makes sense. To see that the Pareto Dominant 

separating equilibrium can sometimes defy common sense, consider the following 

example. Suppose there are two signaling cost types. For those with a high signaling cost 

( 1s s= ),  the cost of signaling is 1( )c z  with 1(0) 0c =  and 1 0c′ > , and the expected 

marginal product is 100.  For those with a low signaling cost 2( )s s= ,  the signaling cost 

is 2 1( ) (1 ) ( )
100

c z c zε
= −  and the expected marginal product is 200.  The Pareto dominant 

separating equilibrium is depicted below in Figure 2.2. 

The low type must be indifferent between 1(0, ( ))v s  and the choice of type 2s , that 

is 2 2( , ( ))z v s .  Therefore, 

  1 1 2100 200 ( )U c z= = −  and so 1 2( ) 100c z = . 

 
The payoff for type 2s  is therefore 

  2 2 2 2 1 2( ) ( ) 200 (1 ) ( ) 100
100

U v s c z c zε ε= − = − − = + . 

 

 

 

 

 

 

 

 

 

 

 

 

 

200 

100 

100 ε+  

1 1( , ) (0,100)U z w U=  

2 2 2( , ) ( , 200)U z w U z=  

z  

w 

Fig. 2.2: Separating equilibrium with a gain of ε  
2z  
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Suppose that only 1 in 100 consultants is of type 1s .  Then the unconditional mean 

marginal product is 199. Thus essentially all the social surplus generated by the high 

types is dissipated by signaling and both types have an income which is approximately 

half the income they would have in the Nash pooling equilibrium! We believe a good 

criterion for ranking equilibria should not rule out pooling equilibria in such 

circumstances. Applying the LCT test, it is easy to see that the Pareto dominant 

separating equilibrium does not survive the test. Consider a pooling deviation that both 

types deviate to an out of equilibrium signal ẑ  sufficiently close to zero. Then they both 

will be better off since the expected marginal product (and hence the wage) is 199 while 

the signaling cost is very small. Since no equilibrium survives the LCT, the more 

reasonable pooling equilibrium is not ruled out.    

 In this simple example, it is easy to determine when the Pareto dominant 

separating equilibrium passes the LCT. For concreteness, suppose 1( ) 100c z z= , 

2 ( ) (100 )c z zε= − , and the probability of a consultant being type 1s  is q .  It can be 

verified that the equilibrium survives the LCT if and only if 1 0.01q ε> − .5 Therefore, the 

larger the proportion of the low type is, or the greater the marginal cost difference 

between types is (i.e., the stronger the signal is), the more likely the Pareto dominant 

separating equilibrium passes the LCT test. 

 Another advantage of the LCT is that it can be applied consistently in both the 

finite type and the continuous type cases. To illustrate this, we now show in a simple 

Spence education signaling model how the LCT can be applied when there are many 

types and, in the limit, a continuum of types. Let the set of signaling cost types be 

1{ ,..., }nS s s=  where 1 0i is s δ+ − = > , with probabilities 1{ ,..., }ng g  where 1ii
g =∑  . 

                                                 
5 In the equilibrium, 1 0z = , 2 1z = , 1 100U =  and 2 100U ε= + .  By the definition of the LCT, 

consider 1 2
ˆ { , }S S s s= = . The average productivity of these two signaling cost types is 200 100v q= − .  

For ˆ (0,1)z λ= ∈ to be a credible deviation by S , both types must strictly prefer ˆ( , )z v . Note that 

1
ˆ( , ) 200 100 100U z v q λ= − −  and 2

ˆ( , ) 200 100 (100 )U z v q ε λ= − − − . Thus, if there exists a λ such that 

1 1
ˆ( , ) 200 100 100 100U z v q Uλ= − − > =  and  2 2ˆ( , ) 200 100 (100 ) 100U z v q Uε λ ε= − − − > + = , then 

both types are indeed better off choosing the out-of-equilibrium signal ẑ λ=  and the equilibrium will fail 
the LCT test. For the equilibrium to satisfy the LCT, it must be that 1 0.01q ε> − . 
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Suppose type is  has a signaling cost ( )( , )i
i

c zC z s
s

= . We also assume that those of type 

is  have an expected marginal product of ( )i iv s s= . 

We seek conditions under which the Pareto dominant separating equilibrium 

passes the LCT.  In this equilibrium, the local upward incentive constraints are binding.  

Therefore, as depicted below, those with signaling cost type 1is −  are indifferent between 

1 1( , ) and ( , )i i i iz s z s− − . (The indifference curve is labeled 1iI − .)  We construct the signal 

levels ẑ  and 1iz +  as follows.  Choose z  so that those with signal type 1is −  are indifferent 

between 1 1
12 2( , ) and ( , )i i i iz s z s s ++ .  In the Figure 2.3 below, these are the points 

andiC C .   

Then choose 1iz +  so that those with signal cost type 1is +  are indifferent between 

1 1
12 2( , )i iz s s ++  and 1 1( , )i iz s+ + . In Figure 2.3, these are the points 1and iC C + . We will 

argue that type is  must be indifferent between 1andi iC C +  as depicted.  That is, 1iC +  is 

the efficient separating contract for those with signaling cost type 1is + . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1( , )i iz s− −  

is  

iz  z 1iz +  

1is +  

1 1
12 2i is s ++  

1iI −  

1iI +  
iI  ˆˆ( , )z w  

z  

w  

1iC +  

iC  

C  

Fig. 2.3: Applying the LCT with many types 
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A type js  consultant is indifferent between ( , ) and ( , )z w z w′ ′  if and only if 

( ) ( )

j j

c z c zw w
s s

′
′− = − , that is, if 

( ) ( ) ( )jc z c z s w w′ ′− = −     (2.1) 

By construction, a type 1is −  consultant is indifferent between ( , )i iz s  and 

1 1
12 2( , )i iz z z ++ .  Appealing to (2.1), 

 
1 1 1

1 1 1 12 2 2( ) ( ) ( ) ( )i i i i i i i ic z c z s s s s s s s− + − +− = + − = − .   (2.2) 

Also, a type 1is +  consultant is indifferent between 1 1
1 1 12 2( , ) and ( , )i i i iz z z z s+ + ++ .  Again 

appealing to (2.1), 

 
1 1 1

1 1 1 1 1 12 2 2( ) ( ) ( ) ( )i i i i i i i ic z c z s s s s s s s+ + + + + +− = − − = − .  (2.3) 

Adding equations (2.2) and (2.3) and noting that, by hypothesis, 1 1
1 12 2i i is s s− += + , it 

follows that  

1 1( ) ( ) ( )i i i i ic z c z s s s+ +− = − . 

Appealing, finally, to (2.1), it follows that type is  is indeed indifferent between 

1 1( , ) and ( , )i i i iz s z s+ + . Thus the point 1iC +  is the Pareto dominant separating Nash 

Equilibrium contract for type 1is + .   

Note that for any wage ŵ  above 1 1
12 2i is s ++ , there is a signal ẑ  between z  and 

1iz +  that is strictly preferred by those with signaling cost type 1andi is s +  but is not 

preferred by type 1is −  (or lower types).  If 1i ig g +< , the expected marginal product of 

these two types, 1 1

1

i i i i

i i

g s g s
g g

+ +

+

+
+

 exceeds 1 1
12 2i is s ++  and, we can choose ŵ  to be equal to 

the expected marginal product.  Then if types is  and 1is +  choose the out-of-equilibrium 

signal ẑ , they can expect to be paid ŵ . The out-of-equilibrium signal is therefore 

credible and so the separating equilibrium fails the LCT.  Conversely if 1i ig g +> , the 
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expected marginal product of these two types is less than 1 1
12 2i is s ++ ,  the out-of-

equilibrium signal ẑ  by the two types is not credible.  If this holds for all i, that is 

1, 1,..., 1i ig g i n+> = − , the Pareto dominant separating equilibrium passes the LCT. 

 Note that this condition is independent of the step size δ  between signaling cost 

types. Treating the continuum of types as the limit when 0δ → , it follows that the Pareto 

dominant separating equilibrium passes the LCT if the density function ( )g s  is 

everywhere decreasing. This is exactly the same as in the Spence education signaling 

model with a continuum of types, which we discuss in Example 1 of Section 5. 

 

3.  A General Model and Characterization 
We consider the following signaling environment. A player, the sender, has a 

signaling cost characteristic 1 2{ , ,... }i ns S s s s∈ =  and a characteristic 1 2{ , ,... }j mv V v v v∈ =   

valued by a receiver, where 1i is s +<  and 1j jv v +< .   The joint probability distribution of 

signaling cost and value characteristic is given by ( , ) 0, 1,..., , 1,...,i js v i n j mπ ≥ = = , 

where , ( , ) 1i ji j s vπ =∑ . We shall refer to the sender with a specific vector of 

characteristics as type ( , )s v  and all those with a particular signaling cost as type s . Let 

the unconditional probability distribution of s  be ( )ig s , where ( ) 1i ig s =∑ , and let 

( )G ⋅  denote the associated cumulative distribution function. We assume that the two 

characteristics are affiliated. Thus, the conditional expectation ( ) [ | ]v s E v s=  is an 

increasing function. The standard signaling model usually considers the special case in 

which s  and v  are perfectly correlated. 

The sender knows her type and chooses an action, { }y Yφ∈ ∪ , where [ , )Y y= ∞  

is the set of feasible signals. When the sender chooses not to signal, y φ= .  The receiver 

does not know either characteristic of the sender but knows the distribution ( , )i js vπ . He 

observes the sender’s action and forms belief about her type.  We assume that the 

receiver’s payoff is linear in v  so that it is only the perceived expected value v̂  which 

determines the receiver’s response.  We can then write the sender’s payoff as a function 

ˆ( , , )U s v y  of her true type s , the receiver’s expected value v̂  and the sender’s signal y .   
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If the sender chooses not to signal, she gets her reservation payoff ( )RU s , and 

without loss of generality the receiver gets a payoff of zero. Most signaling models do not 

consider the sender’s incentives to participate in the signaling game. We believe the 

sender’s participation is an important issue. For example, suppose an MBA degree is the 

minimum signal required in the consulting industry (and degrees from more expensive 

MBA programs are higher signals). A worker who has a good job opportunity in other 

professions (e.g., accounting) can easily decide not to pursue an MBA degree at all. For 

simplicity, we assume that the sender’s reservation utility ( )RU s  is a function only of her 

signaling cost type and is non-decreasing. Furthermore, there exists a sender type *s  such 

that *( ) ( , , ( ))RU s U s s z s≤  if and only if *s s≥  and *( ) ( , , ( ))RU s U s s z s<  for all *s s> , 

that is, only types higher than *s  are willing to participate in the game under complete 

information.  

We make the following standard assumptions. The sender’s payoff ˆ( , , )U s v y is 

third order differentiable in all its elements and is increasing in s  and v̂ : 1 ˆ( , , ) 0U s v y > , 

2 ˆ( , , ) 0U s v y > . Furthermore, the sender’s payoff function under full information 

( , ( ), )U s v s y is quasi-concave in y , so that there is a unique optimal signal *
iz for each 

type is  if the sender’s type is known to the receiver.  To rule out trivial cases, we assume 

that * *
1 1( , ( ), ) ( , ( ), ),i i i i i iU s v s z U s v s z i+ + > ∀ . If this condition does not hold for every type, 

then it is a separating equilibrium in which each type chooses her complete information 

optimal signal.  This condition must be satisfied if the types are sufficiently close.6  The 

last standard assumption we make is the single crossing condition:  

 3 13 2 12 3
2

2 2

ˆ
0

U

U U U U Udv
s dy s U U

−∂ ∂
= − = − <

∂ ∂  

                                                 
6 Let 1 0i is s s+Δ = − → , then, since *

3 ( , ( ), ( )) 0,U s v s z s =  
* *

1 1 1 2[ ( , ( ), ) ( , ( ), )] '( ) 0i i i i i iU s v s z U s v s z s U U v s+ + − Δ → + > . 
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The slope of the indifference curve through any pair ˆ( , )v y  is 3

2

ˆ

U

Udv
dy U

= − . The single 

crossing condition requires that this should decrease with type.  

For simplicity, we make the following technical assumptions: 

B1: 12 0U =  for all ˆ( , , )s v y , 

B2: 22 0U =  for all ˆ( , , )s v y . 

 
B1 and B2 are satisfied by many signaling models. They are not crucial for our main 

results to hold. Assumption (B1) and the single crossing condition imply that 13 0U > . 

Note that senders with a same signaling cost s  and different value characteristics 

will always choose the same action in equilibrium.  Thus, without loss of generality, we 

can focus on sender strategies that vary only by signaling cost type. As discussed in 

Section 2, our analysis applies equally whether or not the sender knows her value 

characteristic v .   

A strategy for the type s  sender is a probability vector 1( ) ( ( ),..., ( ))Lp s p s p s= , 

where 1{ ,..., }LZ z z=  is the set of signals chosen with positive probability by at least one 

of the types, and ( )lp s  is the probability of the type s  sender choosing signal lz .7  If the 

sum of the probabilities is less than 1, type s  chooses her outside option (i.e., z φ= ) with 

probability 0
1

( ) 1 ( )
L

l
l

p s p s
=

= −∑ . Given the strategies of all types, the expected value for 

those sender types choosing each level of the signal is given by [ | ]l lv E v z z= = . 

                                                 
7 We do not consider mixed strategies by the senders that have a positive support over an interval of 
signals. As will be clear below, any equilibrium that can pass the LCT must be separating. In a separating 
equilibrium, a sender will not mix over different signals because he cannot be indifferent between them.   
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A Nash Equilibrium of the signaling game satisfies the following conditions: (i) 

Incentive Compatibility: (a) for any ,i l , if ( ) 0l ip s > , then ( , , ) ( , , )i l l i j jU s v z U s v z≥  for 

all {1,2,..., }j L∈ ; (b) for any i , if 0 ( ) 0ip s > , then ( ) ( , , )R
i i j jU s U s v z≥  for all 

{1,2,..., }j L∈ . (ii) Participation constraint:  for any ,i l , if ( ) 0l ip s > , then 

( , , ) ( )R
i l l iU s v z U s≥ . We define ( )EU s  to be the NE payoff of type s . 

 We restate the definition of the Local Credibility Test here.   

 

Local Credibility Test 
Suppose that an out-of-equilibrium signal ẑ Z∉  is observed and that z−  is the largest 

Nash Equilibrium signal less than ẑ  and z+  is the smallest Nash Equilibrium signal 

greater than ẑ , if they exist.  Let Ŝ  be the subset of signaling cost types choosing z−  or 

z+  with positive probability. For each ˆS S⊂ , define ( ) [ | ]v S E v s S= ∈ .  Then the Nash 

Equilibrium satisfies the LCT if there exists no ( ẑ , S ) such that (i) 

ˆ( , ( ), ) ( ),EU s v S z U s s S> ∈  and (ii) ˆ( , ( ), ) ( ),EU s v S z U s s S< ∉ .  

 

 It proves useful to partition the types into a subset ST  whose members choose to 

signal and a subset oT  of types that prefer their outside alternatives.  Proposition 1 gives 

necessary conditions for an equilibrium to pass the LCT.  The idea behind it should be 

clear from the discussions in Section 2.  

  

Proposition 1:  A Nash Equilibrium that passes the LCT test must have these properties:  

(1) There can be no pooling of signaling cost types St T∈ .  

(2) Binding  upward constraints:  For each type St T∈ , either the  upward 

incentive constraint is binding for the next lowest type in sT  or the participation 

constraint is binding for some type , os t s T< ∈ . 

(3) The payoff for the lowest type 1s  is the same as with full information: 1( )EU s  

equals *
1 1 1 1{ ( ), ( , ( ), )}RMax U s U s v s z , where *

1z maximizes 1 1( , ( ), )U s v s z . 
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Proof:  See the Appendix.  

 

 Let us call a separating equilibrium that satisfies the binding upward constraint 

condition a tight separating equilibrium. By Proposition 1, only tight separating 

equilibria can pass the LCT test.  An example of such an equilibrium is depicted in Fig. 

3.1 below.  Each of the square boxes is a reservation payoff.  Type 1 senders earn their 

marginal product and choose the smallest signal y .  Type 2 senders earn their marginal 

product and signal at 2z . Any lower signal would attract type 1 so the tightness property 

holds for type 2. The minimum signal for type 3 (see the unshaded dot) yields a lower 

utility than the reservation payoff 3
RU .  Thus type 3 senders do not signal. Type 4 senders 

must separate from all the lower types.  As depicted, type 4 senders should choose signal 

4z  so the participation constraint is binding for type 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Tight Separating Equilibrium 

 

1z y=  

1I  

4
RU  

1
RU  

3
RU  

2
RU  

2z  4z  
z  

1v  

2v  

3v  

4v  

2I  

4I  

3I  
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Within the class of tight separating equilibria, each equilibrium is identified by a 

minimum signaling type and a minimum signal this type chooses. The rest of the 

signaling schedule can be pinned down by the binding upward incentive constraints. 

Proposition 2 below characterizes the unique tight separating equilibrium that can 

possibly pass the LCT.  

   

Proposition 2: If an equilibrium satisfies the LCT test, it must be the tight separating 

equilibrium characterized as follows.  

(i) When *
1 1 1 1( ) ( , ( ), )RU s U s v s z≤ , the lowest type 1s is the minimum signaling type 

( 1is s=� ), who chooses her optimal signal under complete information *
1z .  

(ii) When *
1 1 1 1( ) ( , ( ), )RU s U s v s z> , the lowest type 1s  does not signal ( 1z φ= ). The 

minimum type to signal is the smallest is� such that there is a signal iz�  satisfying  

(a) 1 1( ) ( , ( ), )R
i i i iU s U s v s z− −=� � � �  and (b) ( ) ( , ( ), )R

i i i iU s U s v s z≤� � � � .   

(iii) Suppose that 1( , ( ), ( )) ( )RU s v s z s dU s ds≥  for is s≥ � . For 1,...,i i n= +� , type 

is chooses signal iz  such that 1 1( ) ( , ( ), )E
i i i iU s U s v s z− −= . 

Proof:  See the Appendix.  

 

Proposition 2 (i) and (ii) identify the minimum signaling type and associated minimum 

signal for the candidate equilibrium that can possibly survive the LCT. If the lowest type 

can get a payoff greater than her reservation payoff by choosing her complete 

information optimal signal, then she will participate in signaling and by definition will be 

the minimum signaling type. Otherwise, the minimum signaling type must choose a 

signal such that the type just below her must be indifferent between choosing the 

minimum signal to pretend to be the minimum signaling type and getting the reservation 

payoff. Of course, the minimum signaling type must get a payoff greater than her 

reservation payoff by choosing the minimum signal. An important fact to note is that 

when the lowest type does not signal, the minimum signaling type does not choose her 

complete information optimal signal because her signal must make the type just below 

her not willing to mimic.     
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The regularity assumption in (iii) guarantees that the local upward incentive 

constraints are binding, that is, if one type participates in signaling in the tight separating 

equilibrium, all higher types want to do so as well.8  Under this condition Part (iii) of 

Proposition 2 characterizes the equilibrium signaling schedule. In addition, it can be 

easily checked that a sufficient condition for the assumption to hold is 
*

1( , ( ), ( )) ( ) /RU s v s z s dU s ds≥ , where *( )z s maximizes ( , ( ), )U s v s z .  This says that the 

sender’s optimal payoff under complete information increases in types faster than her 

reservation payoff.  

Proposition 2 gives the only candidate equilibrium that can possibly pass the LCT 

test. We now investigate when this equilibrium indeed passes the LCT test. 

First consider the case where the lowest type 1s  chooses to signal. Her signal and 

type 2s ’s signal are depicted in Figure 3.2 below.   

 

                  
 
           
            
 
 
      
 
  
                                  
    

Figure 3.2 

 
Let 1( , )z v��  solve 

 1 1 1 1 2 2 2 2 2 2( , )
{ | ( , ( ), ) ( , ( ), ) and ( , , ) ( , ( ), )}

z v
Min v U s v s z U s v s z U s v z U s v s z= ≥  

That is, 1( , )z v�� is the lowest point on the indifference curve 2I  shown in Figure 3.2.  

For any 1is s> , the equilibrium signals for is  and 1is +  are depicted in Figure 3.3 

below. 
                                                 
8 The condition thus rules out situations as depicted in Figure 3.1 in which the participation constraints bind 
for arbitrary types. However, it does not raise any additional conceptual issues to apply the LCT to such 
situations.   

1I  

1v�  

2( )v s  

2z  *
1 1z z=  

1( )v s  

2I  

z�  
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    Figure 3.3 

 

Define ( , )i iv y�  to be the intercept of indifference curves 1iI − and 1iI + depicted in 

Figure 3.3.  Then  

 
1 1

1 1 1 1

1 1

( , , ) ( , ( ), )
( , , ) ( , ( ), )
( , ( ), ) ( , ( ), )

i i i i i i

i i i i i i

i i i i i i

U s v y U s v s z
U s v y U s v s z
U s v s z U s v s z

�
�

− −

+ + + +

+ +

⎧ =⎪⎪⎪⎪ =⎨⎪⎪⎪ =⎪⎩

                       (3.1) 

For all i , let iv  be the average type of 1and i is s + , that is,  

 

1 1 1

1 1

[ ( ) ( )] [ ( ) ( )]
( ) ( )

i i i i i i
i

i i

G s G s s G s G s sv
G s G s
− + +

+ −

− + −
=

−
     (3.2) 

 In the other case where the minimum signaling type is�  is greater than 1s , we 

define iv�  just as in (3.1)  for i i≥ � . For 1 1i i= − >� ,  iv�  can still be defined as in (3.1)

except that ( , ( ), )i i iU s v s z  in the last equation in (3.1) is replaced with ( )R
iU s .  For 

1i i< −� , we let i iv v=� .  If 1 1i i= − =�  , 1v�  is defined as in Fig. 3.2 except that the 

constraint for type 1s  is his participation constraint. Thus 1( , )z v��  solves 

 1 1 2 2 2 2 2 2( , )
{ | ( ) ( , ( ), ) and ( , , ) ( , ( ), )}R

z v
Min v U s U s v s z U s v z U s v s z= ≥  

iz  

( )iv s  

1( )iv s +  

1iz +  

iI  
1iI +  1iI −  

iy  

iv�  
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Theorem 1: The tight separating equilibrium characterized in Proposition 2 satisfies the 

LCT test if and only if for all 1i n≤ − , i iv v>� .  

 

Proof:  Consider first the case where 1s  chooses the signal *
1 1z z= . Note that only points 

in the shaded area in Figures 3.2 are preferred by both types of 1 2and s s  to their 

respective equilibrium points. If 1 1v v>� , then there is no signal between 1z  and 2z  to 

which both types of 1s  and 2s  are willing to deviate if the receiver has the perception of 

1v . So the LCT is satisfied. On the other hand, if the LCT is satisfied, then it must be the 

case that 1 1v v>� . Otherwise, it is clear from Figures 3.2 that there are signals that both 

types of 1s  and 2s  are willing to deviate to but other types do not. The same argument 

applies to higher types except for a minor modification in the definition of iv� . In 

defining iv� , note that only points in the shaded areas in Figures 3.3 are preferred by both 

types of 1 and i is s + , but not preferred by type 1is − , to their respective equilibrium points.  

 The same argument also works when the minimum signaling type is not 1s . For 

those types who participate in signaling, the LCT test is exactly the same as above. The 

only minor difference arises around the minimum signaling type. Type is�  and type 1is −�  

(who does not signal in the equilibrium) could both be better off deviating to a signal 

1i iy z− <� �  as long as the receiver’s perception is at least 1iv −�� . When there are types lower 

than 1is −�  (i.e., 2i >� ),  this 1iv −��  is determined such that under this perception type 

2is −� would not be better off choosing 1iy −�  than her reservation payoff 2( )R
iU s −�  (in Figure 

3.3 the indifference curve 1iI −  should represent 2is −� ’s reservation payoff). When 2i =� , 

then 1v�  is determined as the minimum perception for type 2is s=�  to be better off 

deviating to *
1 1z z=   (Figure 3.2).       Q.E.D 

  

Theorem 1 gives a complete characterization of the existence of equilibrium 

satisfying the LCT in any finite type model.  The idea of Theorem 1 is simple. iv�  is the 

minimum perception by the receiver such that two types is  and 1is + can find a common 
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profitable deviation that is not attractive to any other types. The receiver’s correct 

perception about the pool of is  and 1is +  is iv . If i iv v< �  for all 1i n≤ − , then no pair of 

types can find a local pooled deviation such that under the correct perception by the 

receiver, it is profitable only to them but not any other type. If that is the case, the LCT is 

satisfied by the separating equilibrium.   

 
 
4.  The Limiting Case of Many Types 

One purpose of this research is to propose an effective equilibrium refinement that 

works for signaling models with continuous types. To make the connection to the 

continuous type case where the type space is [ , ]S s s=  and the cumulative probability 

distribution function is ( )G s  with ( ) 0G s′ > z for all s , we consider the following finite 

type version of the signaling model. Suppose there are N  types where 

1 1,  ,i is s s s δ+= = +   Ns s=  and 
1

s s
N

δ −
=

−
.  For this finite type case, given any δ  let 

( ) .{ }i iG s prob s s= ≤  so that when 0δ →  the cumulative probability distribution 

approximates the cumulative probability distribution in the continuous type case. We let 

2 1kN = −  for 2k ≥ , that is, as k  increases by one, each interval is divided into two even 

ones. We are interested in the limit case when k →∞ , or 0δ → , as an approximation of 

the continuous type case.   

To simplify notation, we suppose ( )v s s= . This is without loss of generality, 

because we can rewrite the sender’s payoff function ( , ( ), )i iU s v s z  as ( , , )i iu s s z  by a 

change of variable (recall that ( )v s  is strictly increasing in s ). Let ŝ  be the receiver’s 

perception of the sender’s type. The sender’s expected payoff is now ˆ( , , )U s s y . 

Without the participation constraints, a tight separating equilibrium ( )i iz z s=  

satisfies , 1, 1( , ) ( , )i i i i i iU s s z U s s z+ +=  for every is . Fix any is  and let 0δ → , it must be that 

1 2 1 3( ) ( ) 0i i i is s U z z U+ +− + − → . Thus, the equilibrium signaling schedule ( )i iz z s=  

satisfies 2 3'( ) ( , , ) ( , , )z s U s s z U s s z= − .  
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If *( ) ( , , )RU s U s s z≤ , where *z is the lowest type’s optimal signal under 

complete information, then by Proposition 2(i), the only candidate equilibrium that can 

satisfy the LCT is such that the lowest type chooses signal *z  and the equilibrium signal 

schedule as 0δ →  is given by 2 3'( ) ( , , ) ( , , )z s U s s z U s s z= − . 

If *( ) ( , , )RU s U s s z> , then the lowest type chooses not to signal. As before, let 

is� be the lowest type to signal. Applying Proposition 2 (ii) and taking the limit, we have 

 

Lemma 1: Suppose *( ) ( , , )RU s U s s z> . When 0δ → , the minimum signaling type s�  and 

her equilibrium signal z�  must satisfy 

( ) ( , , )RU s U s s z=                                     (4.1) 

and  

 
1( ) ( , , )Rd U s U s s z

ds
= .    (4.2)

 

Proof:  See the Appendix. 

  

 Note that by (4.1) and by the assumption that *( ) ( , , ( ))RU s U s s z s≤  if and only if 
*s s≥ , we have *

is s s≥ >� , that is, the minimum signaling type is greater than the 

minimum type that is willing to participate under complete information.   

To apply Theorem 1, for any k  and { , 1,...2 1}kn i i∈ + −� � , fix ns s= . As k  

increases, the nearest types to s , 1 ( )ns s kδ− = −  and 1 ( )ns s kδ+ = + , both get closer to s .  

Let 1( , ) [ |  or ]n n nv s v E s s s sδ += = =  as defined in (3.2), and  ( , ) nv s vδ = �  be the solution 

to (3.1).  

 

Lemma 2: When 0δ → , (i) ( , )v s sδ → ; (ii) 2
1( , )
2

v s δ → ; (iii) 22
( )( , )

2 ( )
G sv s
G s

δ
′′

→
′

. 

Proof:  See the Appendix. 
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Lemma 3: Suppose conditions B1 and B2 hold. When 0δ → , (i) ( , )v s sδ → ; (ii) 

2
1( , )
2

v s δ → ; (iii) 
2 2

2 13 33 2 3 133 3 13 23 3 113 3 13
22 2

3 13

2 2 4( , )
4

U U U U U U U U U U U U Uv s
U U

δ + + − +
→ − . 

  

Proof:  See the Appendix. 

 

We have our main characterization result for the limiting finite type case.    

 

Theorem 2: Suppose assumptions B1 and B2 hold.  When 0δ → , a tight separating 

equilibrium satisfies the LCT if and only if the following conditions hold 

(i) *( ) ( , , )RU s U s s z> .  

(ii) There is a solution ( , )s z� �  to (4.1) and (4.2) such that *s s≠� or *s s=� but 
* * * *

3 ( , , ( )) 0U s s z s ≠ , which defines the minimal signaling type and her signal. 

(iii) For all signaling types s s> � , suppose that 1( , , ( )) ( )RU s s z s dU s ds≥ .  The 

equilibrium signaling schedule is given by 2 3'( ) ( , , ) ( , , )z s U s s z U s s z= − .  

(iv) For any ( , ]s s s∈ � , 

 
2 2

2 13 33 2 3 133 3 13 23 3 113 3 13
2
3 13

2 2 4 ( )
2 ( )

U U U U U U U U U U U U U G s
U U G s

′′− + + − +
− >

′
.             (4.3)         

Proof:  See the Appendix. 

        

Theorem 2 gives a complete characterization of the conditions under which there 

exists an equilibrium satisfying the LCT test for the limiting case of many types. Parts (ii) 

and (iii) are the limiting version of the tight separating equilibrium of Proposition 2(ii). 

Part (i) says that for a tight separating equilibrium to satisfy the LCT, the lowest type 

must not participate in signaling. To understand why this must be the case, consider the 

lowest type 1s s=  and type 2s .  For simplicity suppose that 3 1 1( , , ) 0U s s z <  so that the 

optimal signal for the lowest type, *
1z y= . If the lowest type 1s  participates in signaling, 

in a tight separating equilibrium the local upward constraint for this type is binding.  

Hence *
1 1 1 1 2 2( , , ) ( , , )U s s z U s s z= . This is depicted below.  
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Both types strictly prefer the interior of the shaded area, where s�  satisfies the following 

constraint: *
2 1 2 2 2( , , ) ( , , )U s s z U s s z=� . Taking Taylor approximations of both constraints 

around 2 2( , )s z , 

                  *
2 1 2 2 2 1 3 1 2 2 2 1( , , )( ) ( , , )( ) 0U s s z s s U s s z z z− + − =  

and 

                 *
2 2 2 2 2 3 2 2 2 2 1( , , )( ) ( , , )( ) 0U s s z s s U s s z z z− + − =� . 

Substituting for 2 1z z− , 

                  3 2 2 22 2 1 2 2

2 1 3 1 2 2 2 2 2 2

( , , ) ( , , )
( , , ) ( , , )

U s s zs s U s s z
s s U s s z U s s z
−

=
−
�

. 

In the limit the right hand side approaches 1.  Hence 1 2

2 1 2 1

1s s s s
s s s s
− −

= −
− −
� �

 approaches zero 

and so for all sufficiently small differences in types, 1 2 1

2 1 1 2 2 1

( )
( ) ( )

s s g s s s
s s g s g s s s
− −

= >
− + −

�
.  

Then s s> � . This problem does not arise when the minimum signaling type is not the 

lowest type, because a credible deviation by the pool of the minimum signaling type and 

the type just above her must make the type just below her unwilling to join a deviation 

(see Figure 3.3).  The fact that the LCT test implies that the lowest type does not 

participate in signaling is not very restrictive. Once we explicitly take into account the 

1I  

2I  

2z  *
1 1z z=  

2s  

s�  

1s  

Fig. 4.1: The two lowest types 

z

ŝ  
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sender’s participation decisions in situations with a large set of potential sender types, it 

seems rather natural that some low types find it not worthwhile to signal. Then it is 

important to consider the effects of potential entrants on equilibrium signaling behavior 

of the active senders.    

The idea for Theorem 2(iv) is as follows. Consider the consulting example 

discussed in Section 2, where we showed that one reason for non-existence is that the 

type distribution is tilted upwards too much. Nonexistence also arises if the indifference 

curves differ too little across types. Since the marginal rate of substitution between signal 

z  and perception v  is similar for the different types in that example, the indifference 

maps are similar and so indifference curves are close together. As a result, both types are 

better off deviating to ẑ  if the receiver believes that both may be choosing to deviate, 

thus violating the requirement of no credible deviation.  However, if the marginal rate of 

substitution declines sufficiently rapidly with type, the indifference curve 1iI +  in Figure 

3.3 will be flat relative to the indifference curve iI  and 1iI − . Then the intercept of 1iI +  and 

1iI − , iv� , will be above v , the average type. In this case there is no deviation by types is  

and 1is +  such that they will be better off under the perception of v  but not any other 

types.  

Intuitively, the rate at which the marginal rate of substitution declines with s  is a 

measure of signaling effectiveness. Thus Theorem 2(iv) suggests that when signaling 

effectiveness is sufficiently large, the separating equilibrium will survive the LCT. This 

intuition is reflected in conditions (4.3).  Note that the slope of the indifference map is 

given by 3 2MRS U U= − ,  and by Assumption B1,  13

2

UMRS
s U

−∂
=

∂
.  The last term of the 

LHS of (4.3) (over the denominator), 13 13 2

3 3 2

2 2U U U
U U U

− = − , has exactly the same 

interpretation: a measure of how rapidly the MRS declines with s .  From Figure 3.3, the 

critical value of iv� depends on how rapidly the curve 1iI −  increases with z and how 

slowly the curve 1iI +  increases with z .  Note that 23

2
( , , ( ))

v s

UMRS s v z s
v U=

∂ −
=

∂
 by 
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Assumption B2 and 33 2 3 23
2

2
( , , )

( )
U U U UMRS s s z

z U
∂ − +

=
∂

.  The first and third terms of the 

LHS of (4.3) can be rewritten as  

 

13 3 23 2 33 3 13 23 3 23 2 33 23
2 2 2
3 13 3 3

( )
2 2 2

U U U U U U U U U U U U U MRS z MRS v
U U U U MRS MRS

− + − ∂ ∂ ∂ ∂
− = − − = − +  

 

Figuratively, when the curve 1iI −  is more straight-up (large MRS v∂ ∂ ) and the curve 

1iI + is more flat (small MRS z∂ ∂ ), there will be no credible deviation with the perception 

at v . The RHS of (4.3) is the concavity of the distribution function of s , ( )G s , 

normalized by its density function. Intuitively, the more concave ( )G s is (i.e., the smaller 

G′′ is), the more probability mass on smaller s  in any set of types, thus the smaller the 

expected value of any set of types. Consequently, the smaller G′′ is, the less likely a 

deviation is credible.  

 In summary, Theorem 2(iv) says that the tight separating equilibrium will satisfy 

the LCT if signals are effective in distinguishing types (i.e., MRS declining fast with 

types) and the type distribution is not too tilted upwards. 

  

5.  The Case of Continuous Types 
In this section we work with continuous types directly and derive conditions 

under which a signaling equilibrium satisfies the LCT.  Now the type space is [ , ]S s s=  

and the cumulative probability distribution function is ( )G s  with '( ) 0G s >  for all s . We 

will show that the conditions for a signaling equilibrium to satisfy LCT will be exactly 

the same as those derived in the limiting finite type case studied in the preceding section.   

As in the finite type case, we can focus on separating equilibria.  The standard 

result in the literature (Riley, 1979; Mailath, 1987) shows that a separating equilibrium 

satisfies the following differential equation for active senders who choose to signal: 

2

3

( , , )( )
( , , )

U s s zz s
U s s z

′ = −         (5.1) 

Note that this is identical to part (iii) of Theorem 2. 
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 As before, the lowest type s  chooses to signal if and only if *( ) ( , , )RU s U s s z≤ . 

For the same issue of credible deviations to the lowest boundary point as in the finite type 

case, part (i) of Theorem 2 is needed, that is, *( ) ( , , )RU s U s s z> .  When this holds, by 

continuity, the minimum signaling type s�  should satisfy ( ) ( , , ( ))RU s U s s z s= . Total 

differentiating this and using (5.1), we have 1( ) ( , , ( ))Rd U s ds U s s z s= . These two 

conditions give the minimum signaling type s�  and her signal .z�  This is identical to part 

(ii) of Theorem 2. 

A conceptual issue arises when equilibrium refinements are considered for 

continuous types. In the continuous type case, any signal [ , ]y z z∈ �   is “on-equilibrium,” 

which leaves no room for considering out of equilibrium beliefs in the conventional 

approaches to equilibrium refinements. However, thinking of the continuous type case as 

the limit of the finite type case with many very close types, it is easy to understand how 

an “on-equilibrium” signal can be alternatively interpreted as a deviating signal and how 

to check credibility of such deviations. Consider any “on-equilibrium” signal ŷ , and 

suppose the type of sender for this signal in the separating equilibrium is 0s . Suppose in a 

finite type version of the model, 0 1n ns s s +< <  where ns  and 1ns +   are two consecutive 

types.  Suppose the nearby types 0 1{ , }n ns S s s +∈ =  deviate to this signal, and this is 

correctly perceived by the receiver and so the perception of the average type is 

0ˆ [ | ]s E s s S= ∈ .  The LCT requires that if given the perception ŝ , all the deviating types 

in 0S can gain relative to their equilibrium payoffs while all other types cannot,  then 

those nearby types can credibly deviate to ŷ .  If a separating equilibrium does not allow 

any such credible deviations, then it satisfies the LCT.  Another way of thinking about 

on-equilibrium deviations is as follows. If for an on-equilibrium signal there is such a 

deviation-perception pair ˆ ˆ( , )y s  as described above, then those nearby types can credibly 

deviate to ŷ  by throwing away a small amount of money. Since other types will not gain 

by mimicking, throwing away money by types in 0S can convey to the receiver that they 

are the types deviating to ŷ .     

Formally, the LCT test in the continuous type case can be stated as follows 
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Local Credibility Test:   
 
Consider a separating equilibrium schedule ( ) :[ , ] [ , ]z s s s z z→� � . For any signal 
ˆ [ , ]y z z∈ � , let 0 ˆ( )z s y=  and consider a small neighborhood of 0s , 0S S⊂ .  Let 

0ˆ [ | ]s E s s S= ∈ .  If   

           ˆ ˆ( ) ( , , ) ( , , ( )), for all int oi U s s y U s s z s s S> ∈ , and  

           ˆ ˆ( ) ( , , ) ( , , ( )), for all oii U s s y U s s z s s S< ∉ . 

Then the signal-perception ˆ ˆ( , )y s  is credible. If the separating equilibrium ( )z s  survives 

the LCT, then there cannot exist any credible signal-perception pair. 

 

Since the continuous type case is viewed as an approximation of the case of many 

close finite types, we only need to check whether there are any credible deviations for 

very small intervals, in the sense that will be made precise below.  

For any two types  and s s′  where s s s′≤ <� , suppose those in the interval [ , ]s s′   

pool at a certain signal y . Let ( , )v s s′   be the expected type of this pool: 

'
( )

( , )
( ) ( )

s

s
xdG x

v s s
G s G s

′ =
′ −

∫ .  Let ( , ) [ , ]v s s s s′ ′∈   and ( , )y s s Y′ ∈   be a solution to 

 
( , , ) ( , , ( ))
( , , ) ( , , ( ))

U s v y U s s z s
U s v y U s s z s

′ ′ ′ ′=⎧
⎨ =⎩

 (5.2) 

The point ( ( , ), ( , ))y s s v s s′ ′  is depicted below in Figure 5.1.  Given this signal-perception  

pair, all those types in [ , ]s s′  prefer the pool to their separating equilibrium payoff.  

The types in [ , ]s s′  cannot find a credible deviation if and only if the signal-

perception pair of ( ( , ), ( , ))y s s v s s′ ′  is not credible.  Therefore, the separating equilibrium 

( )z s  satisfies LCT if for any [ , )s s s∈ � and s s′ > ,  ( , ) ( , )v s s v s s′ ′<  as s s′→ . Note that 

for any [ , )s s s∈ � , ( , ) ( , )v s s v s s s= = .  Furthermore, we have 

 

Lemma 4: For any  [ , )s s s∈ �  , (i) 2 ( , ) 1/ 2v s s = ; (ii) 22
1 ''( )( , )
6 '( )

G sv s s
G s

= . 

Proof:  See the Appendix. 
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Lemma 5: Suppose conditions B1 and B2 hold.   (i) 2 ( , ) 1 2v s s = ; (ii) 

2 2
2 13 33 2 3 133 3 13 23 3 113 3 13

22 2
3 13

2 2 4( , )
12

U U U U U U U U U U U U Uv s s
U U

− + + − +
= −  

Proof:  See the Appendix. 

 

Theorem 3 below shows that the characterization result of Theorem 2 applies 

equally well to the continuous type.    

 

Theorem 3: Suppose assumptions B1 and B2 hold. A separating equilibrium satisfies the 

LCT if and only if all the conditions of Theorem 2 hold. 

Proof:  See the Appendix. 

 

Therefore, Theorems 2 and 3 show that the concept of the LCT can be applied to 

the continuous type model exactly as in the finite type model. While the continuous type 

model is easier to work with analytically in terms of characterizing the separating 

equilibrium, it should be viewed as an approximation of the situation with many close 

finite types. Our position is that it should be subject to the same scrutiny of credibility as 

finite type models, even though signals are literally “on-equilibrium” in the continuous 

( ( ), )z s s  

z

s  

( , )y v  
( )z s  

( ( ), )z s s′ ′  

sI ′  sI  

Fig. 5.1: Pool of types in  [ , ]s s′   
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type model. The equivalence of Theorems 2 and 3 demonstrates that this approach is 

valid.  

 Below we use three examples to illustrate how to apply our results to signaling 

models.  

 

Example 1: The Spence education signaling model 

 A worker knows her own personal skill level or productivity, denoted by s . The 

labor market knows that s  is drawn from distribution ( )G s  on [0,1] . Her expected 

payoff is ˆ ˆ( , , ) ( , )U s s y s C s y= − , where s  is her productivity unknown to firms, ŝ  is her 

productivity perceived by firms and hence is also the wage offered to her by competing 

firms, and [0, ]y y∈  is the education signal the worker can choose. It is typically 

assumed that for all ( , )s y , (i) 1( , ) 0C s y < ; (ii) 2( , ) 0C s y > ; and (iii) 12( , ) 0C s y < . It can 

be verified that the single crossing and conditions B1 and B2 are satisfied.  

To further simplify things, suppose ( , ) , 0aC s y ys a−= > . The marginal cost of 

signaling is ( ) aMC s s−=  so the parameter a  is the elasticity of the marginal cost of 

signaling with respect to type. Note that under complete information, workers of all types 

choose the minimal signal 0y = . Suppose the worker’s reservation payoff 

is RU sα β= + , where , 0α β > . If 1α β+ ≥ , no type can be better off in a separating 

equilibrium than if she accepts her outside alternative. Thus we assume that 1α β+ < .  

Note that the lowest type in this case will not signal since ( ) 0 ( , , )RU s U s s yα= > = . 

Moreover, with complete information a worker chooses not to signal if and only if 

s sα β+ < , that is, * (1 )s s α β< = − .9 

To determine the minimum signaling type s�  and the corresponding signal y� , by 

part (ii) of Theorem 2 we have 1
1

aU aysβ − −= =  and as s ysα β −+ = − .  Thus, 

1/(1 ( ) )as
a

α β+
= −� . For 1s <� , we need to assume that 1a

a
α β1+
+ < , That is, the 

elasticity of the signaling cost with respect to type (the parameter a ) must be sufficiently 

                                                 
9 With complete information a worker will choose * 0y =  should she decide to signal. 
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large. Note that *s s>� , i.e., fewer types participate in the signaling market than under 

complete information. Moreover, the higher the elasticity of the marginal cost of 

signaling is (the larger a  is), the lower is the minimum type who signals.   

 By part (iii) of Theorem 2, a separating equilibrium satisfies 

 2

3 2

1'( ) aUz s s
U C

= − = =  

Thus the signaling schedule is given by
1

11( ) ( )
1 1

a
asz s s

a a a
β+

+= + −
+ +

� . Substituting for 

( )z s , it can be verified that for ( ,1]s s∈ � , 1
1( , , ( )) ( ) / aU s s z s az s s +=  is increasing in s , thus 

1( , , ( )) RU s s z s dU dsβ> = . Hence the participation constraint is satisfied for all 
( ,1]s s∈ � . 

Since ( , ) aC s y ys−= , it can be checked that condition (4.3) can be simplified to  

1 "( )
'( )

a G s
s G s
−

>  

Therefore, by Theorem 2, the LCT will be satisfied if the signal effectiveness measured 

by a  is sufficiently large and the type distribution is not tilted upward too much. When s  

is uniformly distributed, the right hand side is zero. Then when 1a > , the tight separating 

equilibrium satisfies the LCT.  

 

Example 2: The reserve price signaling model 

Cai, Riley and Ye (2004) study reserve price signaling in a fairly general auction 

environment allowing bidders’ signals to be affiliated. A simpler version of the model is 

as follows. A seller of an indivisible good has private information about certain 

characteristics of the good that potential bidders do not know. Let nRθ ∈Θ ⊆  be the 

seller’s private information. The seller’s own valuation of the good is ( )sγ θ , and the 

common value component of the bidders’ valuations is ( ) ( )t sθ θ= ,  where 0γ > .  We 

normalize the range of ( )s θ  so that [0,1]s∈ . Ex ante, the distribution of θ  induces a 

distribution, ( )G ⋅ , for s . 

Bidder i ’s valuation is it x+ , where [0, ]ix x∈  is the private value component that 

is known to himself only. The bidders’ private signals { }ix  are i.i.d. random variables 
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with a distribution function ( )F i  and an everywhere positive density function ( )f i .  

Suppose the seller uses a sealed-bid second-price auction to sell the good; and she sets a 

reserve price r  which determines m , the minimum type of bidder who enters the 

auction.  Let ŝ  be the perceived type of the seller, i.e., the perceived common value 

component in bidders’ valuations, then ˆm r s= − . Since the reserve price schedule can be 

recovered from the minimum type schedule through ( ) ( )r s m s s= + , Cai, Riley and Ye 

(2004) focus on the minimum type schedule ( )m ⋅  to characterize the signaling 

equilibrium. First, given the signal m  and the perceived common value ŝ ,  the seller’s 

expected payoff can be expressed as  

 

 (1) (1)ˆ ˆ( , , ) ( ) (1 ( )) ( )U s s m sF m s F m B mγ= + − +  (5.3) 

where (1) ( )F i  is the distribution function of the first order statistics, and 

(2) (1) (2)( ) ( ( ) ( )) ( )
x

m

B m m F m F m xdF x= − + ∫  and (2) ( )F i  is the distribution function of the 

second order statistics. Thus the model fits into the standard signaling framework.  It can 

be verified that the single crossing and B1 and B2 conditions are all satisfied.  

If the seller does not sell the item in the auction, she may sell the item by some 

other means such as posted price or bargaining. Suppose the payoff implied by the best 

outside option is given by ( )RU s sα β= + , where , 0,  and α β β γ> < . To determine the 

minimum signaling type s�  and the corresponding signal m� , by part (ii) of Theorem 2 we 

have (1) ( )F mβ γ=  and (1) (1)( ) (1 ( )) ( )s sF m s F m B mα β γ+ = + − + . Solving this equation 

system we have 1
(1) ( / )m F β γ−=�  and ( ) ( )11 / ( )s B mβ γ α−= − −� � . For (0,1)s∈� , we need to 

assume that ( ) ( )11 / ( ) (0,1)B mβ γ α−− − ∈� .   

By part (iii) of Theorem 2, a separating equilibrium satisfies 

 

  (1)2

3 (1)

1 ( )( , , ( ))( )
( , , ( )) ( ( ) ( 1) ) ( )

F mU s s m sm s
U s s m s J m s f mγ

−
′ = − =

− −
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where ( )( ) 1 ( ) / ( )J m m F m f m= − − . From (5.3), it can be verified that condition (4.3) in 

this reserve price signaling model amounts to  

( )
(1)

(1)

( )( ) ( )( ) (2 1)
2 ( 1) ( ) 1 ( ) ( )

f mJ m G sm s
s J m F m G s

γ
γ

⎡ ⎤′ ′′
′ + − >⎢ ⎥ ′− − −⎢ ⎥⎣ ⎦

.       (5.4) 

In the special case where there are two bidders, each bidder’s private value signal is 

distributed uniformly on [0,1], and (1,2)γ ∈ ,10 it can be verified that the solution to (4.1) 

and (4.2)  is given by m β γ=�  and ( ) 1 3/ 21 41 ( )
3 3

s β γ α β γ β γ− ⎡ ⎤= − − − +⎢ ⎥⎣ ⎦
� .  In this 

case, for 1s <� , it requires that 3/ 2( ) 1 3 4β γ α< − . Thus,  if either α  or /β γ  is too large, 

there is no signaling by any type, which is intuitive as then the outside option would be 

too attractive.  Since ( )F x  is uniform on [0, 1], by substituting 2
(1) ( ) ,F m m=  

(1) ( ) 2 ,f m m=  and ( ) 2 1J m m= −  into (5.4),  we have  

2

1 2 ( )( ) (2 1)
2 1 ( 1) 1 ( )

m G sm s γ
m γ s m G s

⎡ ⎤ ′′
⎢ ⎥′ − + − >⎢ ⎥ ′− − − −⎣ ⎦

 

If ( )G ⋅ is concave, then the above inequality holds if the LHS is strictly positive. It can be 

verified that for a fixed β , this holds for relatively small γ  within the relevant range (such 

that 1s <� ). Thus, else being equal, the smallerγ , the more likely that the signaling 

equilibrium can satisfy our LCT (when ( )G ⋅ is concave).  

 In the two examples above, both of the regularity conditions B1 and B2 hold so 

we can directly apply Theorem 2 (iv). Below we illustrate via an example that our 

approach is still applicable even when those regularity conditions fail.  

   

Example 3:  An advertising signaling model 
 

                                                 
10 Restricting γ  within (1, 2) ensures that the equilibrium signaling schedule would not be truncated (see 
Theorem 3 in Cai, Riley, and Ye (2004)). 
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This example is adopted from Milgrom and Roberts (1986). A monopolistic firm 

can produce a good with a constant marginal cost c . It sells to a unit mass of consumers. 

The firm knows its product quality, denoted by s . Among the consumers, 1a <  are 

informed about s . The rest 1 a−  of consumers are uninformed of s , and their belief is 

given by the distribution ( )G s  on [ , ]s s . For products of quality s , the consumers’ 

inverse demand function is p s bq= − , where b  is a positive parameter and q  is the 

quantity. So, given price p , the demand of an informed consumer is ( )Iq s p b= − , and 

that of an uninformed consumer is ˆ( )Uq s p b= − , where ŝ  is his perception of s . The 

total demand is then (1 )I Uq aq a q= + − .  

Suppose the firm spends z  on advertising, which leads to a perception of ŝ  by 

the uninformed consumers. By choosing an optimal price given ŝ , the firm’s maximum 

profit is 
2ˆ[ (1 ) ]

4
as a s cU

b
+ − −

= . Consider a possible separating signaling schedule ( )z s . 

The firm’s payoff function is  
2ˆ[ (1 ) ]ˆ( , , )

4
as a s cU s s z z

b
+ − −

= −  

Suppose the firm’s reservation payoff is RU sα β= + , where , 0α β > . When 
2( ) (4 )s s c bα β+ > − , the lowest type will not signal. The minimal signaling type in 

equilibrium can be solved from (4.2), which gives 1( , , ( )) ( ) (2 )U s s z s a s c bβ = = − , or 

2 /s c b aβ= +� . The associated minimum signal can be found from (4.1), 
2( ) (4 )z s c b sα β= − − −� �� . 

It can be checked that the single crossing condition holds.  From part (iii) of 

Theorem 2,  

2

3

( , , ( )) (1 )( )( )
( , , ( )) 2

U s s z s a s cz s
U s s z s b

− −′ = − =
 

Since 1( , , ( ))U s s z s is increasing in s , thus 1( , , ( )) RU s s z s dU dsβ> =  for ( ,1]s s∈ � . Hence 

the participation constraint is satisfied for all types above s� . 

From the firm’s payoff function, we have 12 (1 ) / 2U a a b= −  and 

2
22 (1 ) / 2U a b= − . Since this model does not satisfy conditions B1 and B2, we cannot 
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apply Theorem 2 (iv) directly.  However, using the same method that we follow in 

showing Theorem 2 (iv), it is not difficult to derive conditions under which the LCT is 

satisfied in this example. We summarize the conditions in the following proposition: 

 

Proposition 3:  In the advertising signaling model, the separating equilibrium satisfies 

the LCT if  ( ) 0G s′′ <  for [ , ]s s s∈ �  , where 2 /s c b aβ= +� is the minimal signaling type. 

Proof:  See the Appendix. 

 

 Because of the quadratic function form of the firm’s payoff function and other 

special features of this model (e.g., many cross derivatives are zero), the measure of 

signal effectiveness is constant and equals zero. So whether the tight separating 

equilibrium satisfies the LCT only depends on the type distribution. A special case 

commonly studied in applications is when the type is uniformly distributed. 

Then 0G′′ = for s s> . By our definition, however, the LCT is not satisfied. 

   

6.  Concluding Remarks 
Except in the special case of perfect correlation between the sender’s true type 

and the value to the signal receiver, standard refinements (Intuitive Criterion, Divinity, 

Stability) are not applicable.  We argue that to have any “bite” at all, a refinement is 

needed in which the signal receiver takes into account the way sender types are 

distributed and allows the possibility of deviations by a pool of sender types (in addition 

to single-type deviations).  We then propose a Local Credibility Test which is somewhat 

stronger than the Cho and Kreps Intuitive Criterion but milder than the Grossman-Perry 

Criterion.   Allowing deviations by a pool of “nearby” types, the LCT gives consistent 

solutions for any positive, though not necessarily perfect correlation between the signal 

sender’s signaling cost types and the receiver’s expected values.  Besides this, the LCT 

has two additional advantages. It avoids selecting separating equilibria when they do not 

make sense, thus providing economically sensible answers to the equilibrium selection 

problem in signaling models. Moreover, it applies equally well in cases of finite and 

continuous types, making it applicable to many signaling applications that are formulated 

in continuous type models.  In this paper we provide conditions under which a tight 
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separating equilibrium satisfies the LCT.  These conditions are the more likely to be met, 

(a) the less rapidly the density increases or the more rapidly the density decreases with 

type, and (b) the more rapidly the marginal cost of signaling decreases with type. We 

illustrate the applicability of the LCT in three examples of signaling models.  

What is the “right” equilibrium when our conditions are not met? This is a 

challenging question for which we have no satisfactory answer.  As can be seen from the 

example depicted in Figure 2.2, our LCT test shows that the Pareto dominant separating 

equilibrium is no longer more reasonable than other equilibria.  We conjecture 

that pooling or partial pooling must be a part of any more complete analysis of signaling. 
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Appendix:  Proofs 

Proof of Proposition 1:  (1) Suppose a group of types choose signal lz  with positive 

probability.  Let sG  be the largest in the group. Then the receiver’s conditional expected 

value { | }l lv E v z z= =  is smaller than ( ) [ | ]v s E v s=
G G . By the single crossing condition, 

there exists some signal higher than lz  such that only sG  in the group can be better off 

deviating to lz  when the receiver beliefs that the deviating sender is type sG . Thus, any 

equilibrium involving pooling on a signal fails the LCT. 

 

(2)  A separating equilibrium in which the local upward incentive constraint is not 

binding is depicted in Figure 2.1. As argued in Section 2, a type for whom none of the 

local upward incentive constraints are binding has an incentive to deviate to a signal 

lower than her equilibrium signal. There exists such a deviation such that only she will be 

better off, which fails the LCT.    

 

(3) With full information 1s  has a payoff of 1 1 1{ ( ), ( , , )}R

z
Max U s MaxU s s z . With 

asymmetric information she knows that beliefs about her type can never be lower than 1s .  

Thus her payoff is bounded from below by the full information payoff.  But to satisfy the 

LCT, the equilibrium must be separating. So this is also the upper bound.  Q.E.D 

 

Proof of Proposition 2: (i) The equilibrium payoff for type 1s  and the equilibrium 
signals by other types follow directly from Proposition 1.  
 

(ii) Suppose 1is −�  chooses not to signal. If type is�  wants to signal, then she should choose 

a signal satisfying (a). Type 1is −�  would deviate to iz�  if 1 1( ) ( , ( ), )R
i i i iU s U s v s z− −<� � � � . If 

1 1( ) ( , ( ), )R
i i i iU s U s v s z− −>� � � � , type is�  would be better off making a profitable deviation 

while keeping 1is −�  choose not to signal, violating the LCT test.  Condition (b) clearly 

must hold since it is the participation constraint for is� .  
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(iii). What needs to be checked here is whether all other types want to participate in 

signaling. Suppose 1is s=�  and consider type 2s . By the tightness requirement, 2z  satisfies  

     

 *
1 1 1 1 1 2 2( ) ( , ( ), ) ( , ( ), )EU s U s v s z U s v s z= =    (7.1) 

Since 1( , ( ), ( )) ( )RU s v s z s dU s ds≥ , 2 2 2 1 2 2 2 1( , ( ), ) ( , ( ), ) ( ) ( )R RU s v s z U s v s z U s U s− ≥ − .  

By (7.1) we have 2 2 2 1 2 1( , ( ), ) ( ) ( ) ( )E R RU s v s z U s U s U s− ≥ − .  Since 1 1( ) ( )E RU s U s≥ , we 

have 2 2 2 2( , ( ), ) ( )RU s v s z U s≥ .  The argument applies to all other types as well. Q.E.D 

 

Proof of Lemma 1: By the tightness requirement, 1 1( ) ( , , )R
i i i iU s U s s z− −=� � � � . By the 

participation constraint, we have ( ) ( , , )R
i i i iU s U s s z≤� � � � . Since ( )RU ⋅  is nondecreasing, we 

have 

 1 1( , , ) ( ) ( ) ( , , )R R
i i i i i i i iU s s z U s U s U s s z− −= ≤ ≤� � � � � � � �  (7.2) 

Letting 0δ → , the minimum signaling type satisfies ( ) ( , , ( ))RU s U s s z s= , which 

is (4.1).  (7.2) implies that 1 1( ) ( ) ( , , ) ( , , )R R
i i i i i i i iU s U s U s s z U s s z− −− ≤ −� � � � � � � � . Letting 0δ → , 

we have  

 1
( ) ( , , ( ))

RdU s U s s z s
ds

≤ . 

Since U  is quasi-concave in z , for any is  such that *( ) ( , , )R
i i i iU s U s s z≤ , there 

exists *R
i iz z≥  such that ( ) ( , , )R R

i i i iU s U s s z= . Since ( , , ) ( ) ( , , )R R
i i i i i i iU s s z U s U s s z= ≤� � � � � � � ,  

it must be that R
i iz z≥� � .  

Define ẑ  such that 2 2 1 ˆ( ) ( , , )R
i i iU s U s s z− − −=� � � . Then it must be that  

 

                                        1 1 1 1 1 1 ˆ( , , ) ( ) ( , , )R R
i i i i i iU s s z U s U s s z− − − − − −= ≥� � � � � �                              (7.3) 

Otherwise, by Proposition 2(ii), type 1is −�  should signal by choosing ẑ . Thus, 1 ˆR
iz z− ≤� . On 

the other hand, since type 2is −� stays out, we have 
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2 2 1 2 2 1ˆ( ) ( , , ) ( , , ) ( , , )R
i i i i i i i i iU s U s s z U s s z U s s z− − − − − −= ≥ ≥� � � � � � � � � . Thus, ˆ iz z≤ � . Summarizing, 

we have 1 ˆR R
i i iz z z z− ≤ ≤ ≤� � � . In the limit, ˆ iz z→ � . 

 From (7.3),  we have 

 

             1 2 1 1 2 1 1 2 1ˆ ˆ ˆ( ) ( ) ( , , ) ( ) ( , , ) ( , , )R R R
i i i i i i i i iU s U s U s s z U s U s s z U s s z− − − − − − − − −− ≥ − = −� � � � � � � � �  

Letting 0δ → , and using ˆ ( )z z s→ , we have 

1
( ) ( , , ( ))

RdU s U s s z s
ds

≥  

Therefore, in the limit, the minimum signaling type should satisfy 1
( ) ( , , ( ))

RdU s U s s z s
ds

= , 

which is (4.2).          Q.E.D 

 

Proof of Lemma 2:  Using 1 1,  ,  n n ns s s s s sδ δ− += = − = + , we rewrite (3.2) as follows: 

 

1 1 1 1 1( , )( ( ) ( )) [ ( ) ( )] [ ( ) ( )]
          

n n n n nv s G s G s G s G s s G s G s sδ + − − + +− = − + −  

Differentiating with respect to δ  on both sides, we have 

 

2 1 1 1 1 1 1 1 1( , )[ ( ) ( )] ( , )[ ( ) ( )] ( ) ( ) ( ) ( )n n n n n n n nv s G s G s v s G s G s sG s s G s G s G sδ δ+ − + − − + + +′ ′ ′ ′− + + = + + −
           

22 1 1 2 1 1 1 1

1 1 1 1

( , )[ ( ) ( )] 2 ( , )[ ( ) ( )] ( , )[ ( ) ( )]

               ( ) ( ) 2 ( )
          

n n n n n n

n n n n

v s G s G s v s G s G s v s G s G s

sG s s G s G s

δ δ δ+ − + − + −

− + + +

′ ′ ′ ′− + + + −

′′ ′′ ′=− + +  

222 1 1 22 1 1

2 1 1 1 1

1 1 1 1

( , )[ ( ) ( )] 3 ( , )[ ( ) ( )]

          3 ( , )[ ( ) ( )] ( , )[ ( ) ( )]

       ( ) ( ) 3 ( )

n n n n

n n n n

n n n n

v s G s G s v s G s G s

v s G s G s v s G s G s

sG s s G s G s

δ δ

δ δ
+ − + −

+ − + −

− + + +

′ ′− + +

′′ ′′ ′′′ ′′′+ − + +

′′′ ′′′ ′′= + +

                                

Letting 0δ →  we obtain: 2 22
"( )( , ) ;  ( , ) 1/ 2;  ( , )

2 '( )
G sv s s v s v s
G s

δ δ δ→ → → .   Q.E.D 
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Proof of Lemma 3:  First according to our new notation let’s rewrite (3.1) into the 

following: 

 

 
1 1

1 1 1 1

1 1

( , , ) ( , , )
( , , ) ( , , )
( , , ) ( , , )

n n n n

n n n n

n n n n n n

U s v y U s s z
U s v y U s s z
U s s z U s s z

− −

+ + + +

+ +

⎧⎪ =⎪⎪⎪ =⎨⎪⎪⎪ =⎪⎩

                                                                       (7.4) 

By the continuity of U  we have ( ,0)v s s=  from (7.4). Differentiating (7.4) with respect 

toδ , we have  

 

1 1 2 1 3 1 1 1( , , ) ( , , ) ( , , ) ( , , )n n n n n n
dv dyU s v y U s v y U s v y U s s z
d dδ δ− − − −− + + = −   (7.5) 

1 1 2 1 3 1

1
1 1 1 1 2 1 1 1 3 1 1 1

( , , ) ( , , ) ( , , )

         ( , , ) ( , , ) ( , , )

n n n

n
n n n n n n n n n

dv dyU s v y U s v y U s v y
d d

dzU s s z U s s z U s s z
d

δ δ

δ

+ + +

+
+ + + + + + + + +

+ +

= + +
  (7.6) 

1
2 1 1 3 1 10 ( , , ) ( , , ) n

n n n n n n
dzU s s z U s s z
dδ

+
+ + + += +       (7.7) 

 

To save on notation, let 1 /nz dz dδ+′ = . From (7.7) we have  

2 1 1

3 1 1

( , , )
( , , )

n n n

n n n

U s s z
z

U s s z
+ +

+ +

′ =−       (7.8) 

We can obtain the higher order derivatives for 1nz + : 

2
1 2 2 33 3 23

2 3
3

( 2 )nd z U U U U Uz
d Uδ

+ −′′ = = −        (7.9) 

3
2 2 2 2 2 21 2
3 23 2 3 23 33 2 33 2 3 233 2 3 3333 5

3

6 9 3 3nd z Uz U U U U U U U U U U U U U U
d Uδ

+′′′ ⎡ ⎤= = − − + + −⎣ ⎦  (7.10) 

where 1 1( , , )n n nU U s s z+ += . 

Write 2/ ( , )v dv d v sδ δ′ = =  and 2/ ( , )y dy d y sδ δ′ = = . From (7.5) and (7.6) we have  

1v Δ′ =
Δ

   and 2y Δ′ =
Δ

  where      (7.11) 

2 1 3 1 2 1 3 1( , , ) ( , , ) ( , , ) ( , , )n n n nU s v y U s v y U s v y U s v y− + + −Δ = −      
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1 3 1 1 1 1 1

3 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1

( , , )[ ( , , ) ( , , )]
       ( , , )[ ( , , ) ( , , ) ( , , ) ( , , ) ]

n n n n n

n n n n n n n n n n n

U s v y U s v y U s s z
U s v y U s s z U s v y U s s z U s s z z

+ − −

− + + + + + + + + + +

Δ = −
′− − + +

 

2 2 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1

2 1 1 1 1 1

( , , )[ ( , , ) ( , , ) ( , , ) ( , , ) ]
        - ( , , )[ ( , , ) ( , , )]

n n n n n n n n n n n

n n n n n

U s v y U s s z U s v y U s s z U s s z z
U s v y U s v y U s s z

− + + + + + + + + + +

+ − −

′Δ = − + +
−

           

 Differentiating the above equations, and using B1, B2 and (7.8) - (7.10), we can 

derive the following derivatives evaluated at 0δ = :  

 0 2 13| 2d U U
d δδ =
Δ′Δ = =          

2

0 13 23 2 1332 | 4( )d U U U U y
d δδ =

Δ′′ ′Δ = = +    

1
1 0 3 13 2 13| 2 2d U U y U U

d δδ =
Δ′ ′Δ = = ⋅ +        

2
1

1 0 13 23 33 13 3 113 113 133 132

13 23 33 13 23 13 23 33 3

3 113 113 133 13 11

| 2( ) [ ( ) ]

         2( )[ ( ) ( ) ]

         [ ( ) ( ) (

d U U v U y U y U U y U U y y U y
d

U U v U y U z y U z U U U z z U z

U U z y U U z z U z U

δδ =
Δ′′ ′ ′ ′ ′ ′ ′ ′′Δ = = + + ⋅ + − + − + +

′ ′ ′′ ′ ′ ′ ′′− − + + − + + + + +

′′ ′ ′ ′′− − + + + − 3 133 13
2

233 23 13 23 33
2

113 133 233 333 33 3 13 23 33

)

         ( )

         ( 2 2 ) ( ) ]

U y y U y

U z U z U U U z z

U U z U z U z U z z U z U U U z z

′ ′ ′′+ −

′ ′′ ′ ′′+ + + + +

′ ′ ′ ′′ ′ ′′′ ′ ′′+ + + + + + + + +
2

2 2 13
2 0 2 13

3

| 2 2d U U U U v
d Uδδ =
Δ′ ′Δ = = − −         

     

2

2 0 23 13 23 33 3 132

2 113 133 233 333 33 13 23 33

2 2
3 133 13 233 23 2 3

| 2 [(2 2 ) 2 ]

           [(3 (3 3 ) ) (3 3 2 )

           2 2 ] ( )( )

d U y U U U z z U z U y
d

U U U U U z z U z z U U U z z

U z U y U y U y U y U U z

δδ =

Δ′′ ′ ′′ ′ ′′Δ = = + + + −

′ ′ ′′ ′ ′ ′′+ + + + + + + +

′ ′′ ′ ′′′′′ ′+ − − + + +

 

 

Using L’Hopital’s rule, we have  

 

1 3 13 2 13 3

2 13 2

2
2 2 13 2 13 2

2 13 3

2 2 1
2

2 2
2

U U y U U Uv y
U U U

U U U U y Uy y
U U U

⎧ ′ ′Δ +′ ′= = = +⎪
′Δ⎪

⎨
′ ′Δ − −⎪ ′ ′= = = − −⎪ ′Δ⎩
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which implies 2 ( ,0) 1/ 2v v s′ = =  and 2 2 3( ,0) / 2y y s U U′ = = − .   Taking second order 

derivatives, we have  

 
2

1 1
2

/ ( / ) ( / )d v d d d dv d d d
d d

δ δ δ
δ δ

Δ Δ − ⋅ Δ⎛ ⎞= =⎜ ⎟Δ Δ⎝ ⎠
 

2
2 2

2

/ ( / ) ( / )d y d d d dy d d d
d d

δ δ δ
δ δ

Δ Δ − ⋅ Δ⎛ ⎞= =⎜ ⎟Δ Δ⎝ ⎠
 

 

Using L’Hospital’s rule again we have 

 

2
1

22 02

2
2

22 02

( ,0) |

( ,0) |

d v v vv s
d

d y y yy s
d

δ

δ

δ

δ

=

=

⎧⎪ ′′ ′′ ′ ′ ′′Δ − ⋅Δ − ⋅Δ⎪⎪ = =⎪⎪ ′Δ⎪⎨⎪ ′′ ′′ ′ ′ ′′⎪ Δ − ⋅Δ − ⋅Δ⎪ = =⎪⎪ ′⎪ Δ⎩

 (7.12) 

Substituting the expressions of 1 2, , , , ,v y′ ′ ′ ′′ ′′ ′′Δ Δ Δ Δ  derived above into (7.12), we can 

solve for values of 22 ( ,0)v s  as follows: 

2 2
2 13 33 2 3 133 3 13 23 3 113 3 13

22 2
3 13

2 2 4( ,0)
4

U U U U U U U U U U U U Uv v s
U U

− + + − +′′ = = −   Q.E.D. 

  
 
Proof of Theorem 2: (i) If   *( ) ( , , )RU s U s s z≤ , then the lowest type s  chooses the 

signal *z .  By Proposition 2(i) and Figure 3.2, let 1( , )v s vδ = �  be the solution to 

*( , ( , ), )U s v s zδ δ+ = 2( , , )U s s zδ δ+ + , where 2z  is such that 

*
2( , , ) ( , , )U s s z U s s zδ= + . Note that since ( ) 0G s = ,  

( , )v s δ =
( ) ( )[ ( ) ( )]

( )
sG s s G s G s

G s
δ δ

δ
+ + + −

+  
s δ= + , which means that in the limit 

( , ) ( , )v s v sδ δ= and hence the condition of Theorem 1 is violated if s  participates in 

signaling. This proves part (i).   

 Lemma 1 establishes that the minimum signaling type and her signal must satisfy 

(4.1) and (4.2).  If these two questions do not have a solution, then the LCT cannot be 
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satisfied. If the solution happens to be * *, ( )s s z z s= =� �� , then we need to require that 
* * * *

3 ( , , ( )) 0U s s z s ≠  (e.g., signals are unproductive), otherwise the equilibrium signaling 

schedule ( )z s′  and condition (4.3) will be un-defined.  When the solution is interior 

(i.e., *( , )s s s∈� ), then by (4.1), *( ) ( , , ) ( , , ( )),RU s U s s z U s s z s= <� � � � � ��  hence *( )z z s> �� . This 

guarantees that at s s= � , 3 0U ≠ . This proves Part (ii). 11 

 Part (iii) is shown in the main text. Part (iv) follows directly from Lemmas 2 and 

3. The only thing remains to be checked is that for s s> � , 3 0U ≠ ; otherwise 22 ( , )v s δ�  is 

not well defined. At s� , since ( ) ( , , ( ))RU s U s s z s= , we have  
 

1 2 3
( ) '( )

RdU s U U U z s
ds

= + +  

By (4.2), 2 3 '( ) 0U U z s+ = . Since 2 0U < , it must be that 3 0U <  at s� .      Q.E.D. 
 

Proof of Lemma 4:  By definition, ( , ) 1 [ ( ) ( )] ( )
s

s

v s s G s G s xdG x
′

′ ′= − × ∫ .  Multiplying 

both sides by ( ) ( )G s G s′ −  and then differentiating by s′ , we have 

2( , )( ( ) ( )) ( , ) ( ) ( )v s s G s G s v s s G s s G s′ ′ ′ ′ ′ ′ ′ ′− + = . 

Differentiating by s′again,   

          22 2( , )( ( ) ( )) 2 ( , ) ( ') ( , ) ( ) ( ) ( )v s s G s G s v s s G s v s s G s G s s G s′ ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′′ ′− + + = +     (7.13) 

Setting s s′ = , it follows immediately that 2 ( , ) 1/ 2v s s = . 

Differentiating (7.13) by s′  again, 

222 22 2( , )( ( ) ( )) 3 ( , ) ( ) 3 ( , ) ( ) ( , ) ( ) 2 ( ) ( )v s s G s G s v s s G s v s s G s v s s G s G s s G s′ ′ ′ ′ ′ ′ ′′ ′ ′ ′′′ ′ ′′ ′ ′ ′′′ ′− + + + = +

Since ( , )v s s s=  and 2 ( , ) 1/ 2v s s = , setting s s′ =  we obtain 22
1 ( )( , )
6 ( )

G sv s s
G s
′′

=
′

.    Q.E.D. 

 

Proof of Lemma 5: Total differentiating (5.2) gives 

                                                 
11 It is easy to find sufficient conditions that guarantee the existence of an interior solution to (4.1) and 
(4.2). Let 1z be the solution to ( ) ( , , )RU s U s s z= , 2z  be the solution to *

* *
1( ) | ( , , )R

s
dU s ds U s s z= , 

and 3z  be the solution to 1( ) | ( , , )R
sdU s ds U s s z= . Then an interior solution exists when * *

2 ( )z z s>  

and 3 1z z< .  
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1 2 3 1

2 3

( , , ) ( , , ) ( , , ) ( , , ( ))
                           ( , , ) ( , , ) 0
U s v y ds U s v y dv U s v y dy U s s z s ds

U s v y dv U s v y dy
′ ′ ′ ′ ′ ′ ′ ′+ + =

+ =
 

Solving the equations, we have 

1 2dy,    dv
ds ds

Δ Δ
= =

′ ′Δ Δ  
where 

2 3 2 3

1 3 1 1

2 2 1 1

( , , ) ( , , ) ( , , ) ( , , ),
( , , )[ ( , , ( )) ( , , )],          

( , , )[ ( , , ( )) ( , , )].

U s v y U s v y U s v y U s v y
U s v y U s s z s U s v y

U s v y U s s z s U s v y

′ ′Δ= −
′ ′ ′ ′Δ = −
′ ′ ′ ′Δ =− −

 

Under Assumption B1, we have 

2 1 1

3 3

( , , ) ( , , ( ))
( , , ) ( , , )

dy U s v y U s s z s
ds U s v y U s v y

′ ′ ′ ′Δ −
= =

′ ′Δ −
                           (7.14)  

Fix any ,  as s .s s′ →  It must be that ,   ( ) ( ),  and ( )v s z s z s y z s′→ → → . For the 

simplicity of notation, write 2 2( ) ( , ) and ( ) ( , )v s v s s y s y s s′ ′ ′ ′ ′ ′= = . Applying the 

I’Hopital’s rule, as s ,s′→ we get 

11 12 13 11 12 13

23 33 23 33 13

( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ( )) ( , , ( )) ( , , ( )) ( )lim
( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , ,

s s

s s

dy
ds

U s v y U s v y v s U s v y y s U s s z s U s s z s U s s z s z s
U s v y v s U s v y y s U s v y v s U s v y y s U s v

′→

′→

′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − − −

=
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − − −

13 13

13

)
( , , ) ( ) ( , , ( )) ( )=lim

( , , )

( )

s s

s s

y
U s v y y s U s s z s z s

U s v y
dyz s
ds

′→

′→

′ ′ ′ ′ ′ ′ ′ ′−
′−

′= −
′

 

Hence as s ,s′→ 0.5 ( )dy z s
ds

′→
′

 as long as 2 3( ) ( , , ( )) ( , , ( ))z s U s s z s U s s z s′ = −  is defined 

at s , or 3 ( , , ( )) 0U s s z s ≠  at s .            

Since  

                                   11 11 3

21 2

( , , )
( , , )

dv dy U s v y dy
ds ds U s v y ds

Δ Δ
= = = −
′ ′ ′Δ Δ

                          (7.15) 

we have 
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3 3

2 2

3

2

( , , ) ( , , ( ))lim lim
( , , ) ( , , ( ))

( , , ( ))          = 0.5 ( ) 0.5
( , , ( ))

s s s s
s s

dv U s v y dy U s s z s dy
ds U s v y ds U s s z s ds

U s s z s z s
U s s z s

′ ′→ →
′→

= − = −
′ ′ ′

′− =
 

for any s  such that 3 ( , , ( )) 0U s s z s ≠ . This proves part (i).            

 For part (ii), first note that from 2 3( ) ( , , ( )) ( , , ( ))z s U s s z s U s s z s′ = − , 

22 13 23 33

3 3

2 ( )( ) ( )U U U U z sz s z s
U U

′+ +′′ ′= − −  

From (7.14), and by Assumption B1, we have 

 

2 11 13 11 13

2
3 3

33 33 13

3 3

11 11

( , , ) ( , , ) ( , , ( )) ( , , ( )) ( )

( , , ) ( , , )

( , , ) ( , , ) ( , , )
          

( , , ) ( , , )

( , , ) (      

dyU s v y U s v y U s s z s U s s z s z sd y ds
ds U s v y U s v y

dy dyU s v y U s v y U s v y dyds ds
U s v y U s v y ds

U s v y U

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − −
′=

′ ′−

′ ′− −
′ ′−

′ ′−

′ ′−
=

2
33 33

3 3 3 3

, , ( )) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )

s s z s U s v y U s v y dy
U s v y U s v y U s v y U s v y ds

′ ′ ′ − ⎛ ⎞+ ⎜ ⎟′ ′ ′− − ⎝ ⎠

 

 

                  
13 13

3 3

2 ( , , ) ( , , ( )) ( )

( , , ) ( , , )

dyU s v y U s s z s z s
ds

U s v y U s v y

′ ′ ′ ′ ′ ′−
′+

′−
                                               (7.16) 

 Let ( , )iL s s′  be the ith term on the right hand side of the above equation. For any 

s  such that 3 ( , , ( )) 0U s s z s ≠ , it can be checked that  

113
1

13

2133
2

13

2 2
133

3 2
13

1 ( , , ( )) ( )lim
2 ( , , ( ))

1 ( , , ( ))lim [ ( )]
4 ( , , ( ))

( , , ( ))[ ( )]lim ( ) 2 0.5
( , , ( ))

s s

s s

s s
s s

U s s z s z sL
U s s z s

U s s z sL z s
U s s z s

d y U s s z s z sL z s
ds U s s z s

′→

′→

′→
′→

′
=

′= −

′
′′= − +

′

 

Therefore, 

        
2

113 133
2

13

( , , ( )) 0.5 ( , , ( )) ( )6 2 ( ) ( )
( , , ( ))s s

d y U s s z s U s s z s z sz s z s
ds U s s z s′→

′+′′ ′= +
′
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From (7.15), and using Assumption B2, we have 

      
22 2

3 33 3 23
2 2 2

2 2 2

( , , ) ( , , ) 2 ( , , ) ( , , )
( , , ) ( , , ) ( , , )

d v U s v y d y U s v y U s v y U s v y dy
ds U s v y ds U s v y U s v y ds

⎡ ⎤ ⎛ ⎞= − − − ⎜ ⎟⎢ ⎥′ ′ ′⎝ ⎠⎣ ⎦
              (7.17) 

 As s ,s′→ we know that 0.5dv
ds

→
′

 and 3 3 2( , , ) 0.5 ( ) 0.5dyU s v y U z s U
ds

′→ = −
′

. So,  

2 2
3 23 33

2 2
2 2

2

2
23 33

2

13 23 33 11

3

( , , ( )) ( , , ( )) 0.5 ( , , ( )) ( )0.5 ( )
( , , ( )) ( , , ( ))

0.5 ( )           0.5 ( )
( )

2 ( )1 1           [ ]
3 6

s s s s

s s

U s s z s U s s z s U s s z s z sd v d y z s
ds U s s z s ds U s s z s

d y
ds U U z s z s

z s U
U U U z s U

U

′ ′→ →

′→

′+ ′= − −
′ ′

′ ′+ ′= −
′

′+ +−
= + 3 133 23 33

13 2

13 23 33 113 133 23 33

2 13 2

2113 13 23 133 33

13 2 13 2

0.5 ( ) 0.5 ( )0.5 ( )

2 ( ) 0.5 ( ) 0.5 ( )1 1          [ ( )] 0.5 ( )
3 6

4 21 1 1         [ ] ( ) [ ( )]
6 12 12

   

U z s U U z s z s
U U

U U U z s U U z s U U z sz s z s
U U U

U U U U Uz s z s
U U U U

′ ′+ + ′−

′ ′ ′+ + + +′ ′= + −

+ ′ ′= + + +

2 2
2 13 33 2 3 133 3 13 23 3 113 3 13

2
3 13

2 2 4      
12

U U U U U U U U U U U U U
U U

− + + − +
= −

 
This proves part (ii).          Q.E.D. 

Proof of Theorem 3: In the continuous type case, part (iv) of Theorem 2 follows directly 

from Lemmas 4 and 5. The only thing remains to be checked is part (i) that the lowest 

type does not signal if the separating equilibrium satisfies the LCT. Suppose the lowest 

type signals. For any type s s′ > , suppose those in the interval [ , ]s s′  all choose ( )z z s= , 

the equilibrium signal by s . Let ( , )v s s′  be the expected type of this pool. Define
                '

( )
( , )

( )

s

s
xdG x

v s s
G s

′ =
′

∫ . Let ( , ) [ , ]v s s s s′ ′∈  be a solution to ( , , ) ( , , ( ))U s v z U s s z s′ ′ ′ ′= . In 

order for the separating equilibrium characterized by ( )z s  to satisfy the LCT, it must be 

that for s′  close to s , any such signal-perception pair of ( , ( , ))z v s s′  is not credible. That 

is, ( , ) ( , )v s s v s s′ ′<  as s s′→ . Note that ( , ) ( , )v s s v s s s= = .  However, it can be 

verified that as s s′→ , 2 ( , ) 0v s s′ →  while 2( , ) 0.5v s s′ → . So in the neighborhood of s , 
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( , ) ( , )v s s v s s′ ′> . Therefore, there is always a credible boundary deviation at the lowest 

signal ( )y z s= . This proves part (i) of Theorem 2 for the continuous type case. Q.E.D.
  

Proof of Proposition 3:   For [ , ]s s s∈ � , following the same notation as before, we have 

 

3 1 111

2 3 2 3

( , , )[ ( , , ( )) ( , , )]
( , , ) ( , , ) ( , , ) ( , , )

( / 2 )(1 )( ) -                 
(1 ) / 2 ( ) -

U s v y U s s z s U s v ydv
ds U s v y U s v y U s v y U s v y

a b a s v s v
a b a s s s s

′ ′ ′ ′−Δ
= =

′ ′ ′Δ −
′ ′− − −

= =
′ ′− − ⋅ −

          (7.18) 

Using L’Hospital’s rule, we have 2 ( , ) lim 1 lim
s s s s

dv dvv s s
ds ds′ ′→ →

= = −
′ ′

, which implies 

2 ( , ) 1/ 2.v s s =  Differentiating (7.18) with respect to s′ , we have  

 
2

2 2
(1 / )( ) ( )

( )
d v dv ds s s s v
ds s s

′ ′ ′− − − −
=

′ ′−
 (7.19) 

Using L’Hospital’s rule again, we have 

 
2 2 2 2

2 2
/ ( ) 1lim lim lim ,

2( ) 2s s s s s s

d v d v ds s s d v
s sds ds′ ′ ′→ → →

′ ′− −
= =−

′′ ′−
 

which implies 22 ( , ) 0v s s = . Thus, there is no credible deviation if 0 ( ) / ( )G s G s′′ ′> , or if 

( )G ⋅  is strictly concave.             Q.E.D. 
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