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Abstract

In auctions with private information acquisition costs, we completely characterize efficient

and optimal two-stage selling mechanisms, with the first stage being the pre-screening or entry

right allocation mechanism, and the second stage being the traditional private good provision

mechanism. Both efficiency and optimality require the second stage mechanism to be ex post

efficient. For the first stage of entry allocation, both efficient and optimal mechanisms admit the

most efficient bidders (the bidders with the least information acquisition costs), while the optimal

mechanism admits fewer entrants. The efficient entry right allocation rule maximizes the expected

total surplus, while the optimal entry right allocation rule maximizes the expected “virtual” total

surplus, which is the total surplus adjusted for the information rent. We show that both efficient

and optimal entry right allocation rules can be truthfully implemented in dominant strategies. We

also demonstrate that the optimal entry right allocation mechanism can be implemented through

an all-pay auction.
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1 Introduction

The earlier literature on optimal auction design and revenue comparison (e.g., Vickrey, 1961; Riley

and Samuelson, 1981; Myerson, 1981; and Milgrom and Weber, 1982) generally assumes that there

is an exogenously specified set of bidders and that these bidders are endowed with information about

the object’s valuations. By taking into account endogenous entry, the nature of optimal auctions

changes dramatically (see, for example, French and McCormick, 1984; McAfee and McMillan, 1987;

Tan, 1992; Engelbrecht-Wiggans, 1993; Levin and Smith, 1994; Stegeman, 1996; Tan and Yilankaya,

2006; Ye, 2004, 2007; and Lu, 2009. Also see Bergemann and Välimäki, 2006 for a very insightful

survey of this growing literature). For example, in a standard symmetric independent private value

setting with fixed information acquisition cost, Levin and Smith (1994) show that the optimal auction

is characterized by a standard auction with free entry without imposing a reserve price strictly higher

than the seller’s own valuation. This is in stark contrast with the optimal auctions characterized in

the seminal work of Myerson (1981).

Most recently, Moreno and Wooders (2006) and Lu (2010) extend the analysis to a setting where

information acquisition costs are heterogeneous and privately known to the bidders. This setting is

not just a theoretical extension, but is also more relevant in many real world settings. For example,

in some complex and high-valued asset sales, many aspects of pre-bid information acquisition and

analyzation are privately known to bidders (Vallen and Bullinger, 1999). As Moreno and Wooders

(2006) point out, in Internet auctions a bidder’s value discovery cost is the opportunity cost of her

time, which also varies across bidders and is usually only known to herself.

More specifically, when potential bidders are endowed with private information about their in-

formation acquisition costs, Moreno and Wooders (2006) and Lu (2010) consider endogenous entry,

in which potential bidders decide on whether to enter the auction (and incur information acquisition

costs) independently and simultaneously. Their analysis is a direct extension of the important work

of Levin and Smith (1994), who provide a thorough analysis of an auction setting where bidders need

to incur a homogenous and publicly known information acquisition cost before learning about their

valuations. Since potential bidders are identical (in terms of both value distributions and information

acquisition costs) before entry, Levin and Smith (1994) focus on the symmetric entry equilibrium

in which each potential bidder enters the auction with the same probability. With heterogeneous

and private information acquisition costs, however, Moreno and Wooders (2006) and Lu (2010) show
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that a potential bidder enters the auction if and only if her entry cost is lower than some equilibrium

entry threshold, which is determined by the selling mechanism (i.e., the auction format, the reserve

price, the entry fee, etc.) and other commonly know parameters in the model. While Moreno and

Wooders (2006) focus on the characterization of optimal auctions when entry fees are not feasible, Lu

(2010) focuses on entry coordination issues and identifies conditions under which the desirable entry

can be uniquely induced. Both papers provide a nice purification of the mixed strategies identified

in Levin and Smith (1994).

In this research we take one step further trying to understand the nature of efficient and optimal

auctions with independent private values and costly entry. While Moreno and Wooders (2006) and

Lu (2010) consider endogenous entry where the seller does not exercise entry control, we consider

the case in which the seller can pre-screen the bidders through an entry right allocation mechanism.

As a result, we will effectively examine a two-stage selling mechanism, or a two-stage auction, with

the first stage being the entry right allocation mechanism and the second stage being the private

good provision mechanism (i.e., the traditional auction).

Exploring an optimal two-stage selling mechanism in this context is important for at least two

reasons. The first reason is that a two-stage selling mechanism can implement deterministic entry

to improve efficiency and expected revenue. As originally identified by Levin and Smith (1994),

endogenous entry would often lead to coordination failure. Since bidders coordinate entry through

their entry thresholds, the realized number of entrants is stochastic, which can be too high or too low.

While a low entry will reduce competition and pose a direct cost to the seller, the possibility of high

entry would reduce the entry incentive ex ante. As Levin and Smith (1994) demonstrate, the seller can

maximize efficiency and hence expected revenue by reducing the number of potential bidders until the

randomness in entry is completely eliminated.1 In fact, Milgrom (2004, pp. 225-227) demonstrates

that screening to minimize variance in participation, even if it is still random, increases expected

revenue. Therefore, employing a two-stage selling mechanism to exercise entry control to reduce

entry randomness is usually in the best interest of the seller. The second reason is that an optimal

1This will occur when the number of potential bidders is the same as the number of entrants in the efficient entry

equilibrium when bidders enter the auction sequentially, as analyzed in McAfee and McMillan (1987) and Engelbretch-

Wiggans (1993). Also note that in the symmetric equilibrium with a homogenous entry cost considered by Levin and

Smith (1994), bidders are ex ante identical and their rents are driven down to zero by endogenous entry. Consequently,

expected revenue is the same as expected total surplus.
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two-stage selling mechanism can uniquely implement efficient and optimal entry. As demonstrated in

Levin and Smith (1994) and Lu (2010), there are usually multiple equilibria in the entry stage with

endogenous entry, so potential bidders need to coordinate over different entry equilibria (which are

characterized by different entry threshold vectors). With a two-stage selling mechanism, however, we

show that efficient entry and optimal entry can be uniquely implemented. Thus a two-stage selling

mechanism does not only reduce entry randomness, but it also helps implement a desirable entry

equilibrium.

In the traditional auction setting where bidders are passively endowed with private information

about their valuations, the analysis usually focuses on optimal elicitation of private values (or sig-

nals). When costly entry is taken into account and the information acquisition costs are privately

known, auction design has to additionally take into account information elicitation at the information

acquisition stage. Auction design in this case has to balance information acquisition and informa-

tion elicitation, which are interdependent: the second-stage selling mechanism has a direct effect on

how effectively an efficient or optimal set of entrants can be induced, and the first-stage entry right

allocation mechanism will in turn determine whether the final sale can be efficient or optimal.

Following a general mechanism design approach, we are able to completely characterize the

efficient and optimal two-stage selling mechanisms in our setting. We demonstrate that for both

efficiency and optimality, the second-stage selling mechanism must be ex post efficient; in particular,

the optimal reserve price should be set at the same level as the seller’s own valuation. For the entry

screening stage, we show that for both efficiency and optimality, bidders should be admitted one

by one according to their cost efficiencies, with the most efficient bidder being admitted first, the

second most efficient bidder being admitted second, and so on and so forth. While efficiency requires

that bidders be admitted to maximize the expected total surplus, optimality requires that bidders be

admitted to maximize the expected virtual total surplus, which is equal to the total surplus adjusted

for the information rent (in the spirit of Myerson’s optimal auction design). A direct implication is

that revenue-maximizing entry should be lower than the surplus-maximizing entry, reflecting a trade-

off between efficiency and information rent extraction. The entry right allocation mechanism in our

setting resembles a multi-unit auction with endogenously determined supply.2 By constructing a

VCG (Vickrey-Clark-Groves) payment rule in our setting with private information acquisition costs,

2See McAdams (2007) for an application of such an auction with uniform pricing rule.
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we show that the efficient entry can be implemented in dominant strategies. Somewhat surprisingly,

we are also able to construct an entry fee payment scheme to implement the optimal entry right

allocation rule in dominant strategies. Moreover, we can show that the optimal entry right allocation

mechanism can be implemented using an all-pay auction. Finally, we demonstrate that our optimal

two-stage selling mechanism indeed dominates the optimal auctions with endogenous entry (studied

in Moreno and Wooders, 2006; and Lu, 2010), and the optimal two-stage auction with fixed number

of entrants (studied in Ye, 2007).

The paper is organized as follows. Section 2 lays out the model. Section 3 characterizes the effi-

cient two-stage selling mechanism. Section 4 characterizes the optimal two-stage selling mechanism.

Section 5 concludes.

2 The Model

There are N potential bidders interested in a single item, where N is public information. Let

N = {1, 2, ..., N} denote the set of all the potential bidders, and 2N denote the collection of all the

subsets (subgroup) in N. The seller’s valuation is v0, which is public information. Bidder i has to

incur an entry cost of ci to discover her value or to prepare for a bid if she is granted the entry right.

We assume that ci is private information of bidder i, and it follows distribution G(·) with density g(·)

on support [cl, ch]. After incurring ci, each bidder observes her private value vi. The distribution of

vi is F (·) with a density f(·) on support [vl, vh]. We assume that vi is private information of bidder

i.

Both F (·) and G(·) are public information. We assume mutual independence across i for both

ci and vi. The seller and bidders are assumed to be risk neutral.

We consider a general mechanism design framework in which the seller also exercises entry control,

so that the mechanism is conducted in two stages. The first stage is the entry right allocation

mechanism, and the second stage is the private good provision mechanism.

In the first stage, given a profile of reports on their private entry costs, c = (ci) =(c1, c2, ..., cN ),

the mechanism specifies the entry right allocation rule and payment rule. More specifically, given

a reported profile of c, the entry right allocation rule specifies probabilities with which any given

subset of bidders is admitted, p = (pg(c)), ∀g ⊂ 2N, and the payment rule x(c)= (xi(c)) specifies
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the payment xi(c), i = 1, ..., N, that each bidder needs to pay.

We assume that once admitted, an entrant bidder must incur her entry cost before she can

participate in the second-stage selling mechanism. This is the case, for example, when the entry cost

represents some legal expenses to establish one’s eligibility to bid.3

In the second stage, a private good provision mechanism is conducted. Let this mechanism be

denoted as Ω, which is a standard auction in which the object is allocated to the bidder who submits

the highest bid.

Suppose a subgroup g ⊂ 2N is the set of entrants who are granted the entry rights with type profile

(cg). Since entrants are ex ante symmetric in terms of their private values, the expected profit to each

entrant is the same. Furthermore, given Ω, the expected revenue to the seller and the expected profit

to each entrant bidder will both depend on n, the number of bidders in g rather than g, the specific set

of entrants. For this reason, we can write the expected revenue to the seller πg0(Ω) = π0(n,Ω) and the

expected profit to each entrant bidder πg(Ω) = π(n,Ω), where n = #(g). The expected total surplus

generated from the second-stage auction is Sg(cg,Ω) = πg0(Ω) + n · πg0(Ω) = S(n,Ω). Taking entry

costs into account, the expected total surplus generated from the sale is TSg(cg,Ω) = Sg(cg,Ω)−P
j∈g

cj . For brevity of notation, Ω is often suppressed so that π0(n,Ω), π(n,Ω), and S(n,Ω) are

expressed as π0(n), π(n), and S(n), respectively.

As a benchmark case, we will first characterize efficient selling mechanisms that maximize the

expected total surplus of the sale.

3 Efficient Selling Mechanisms

Since the entry fee payments are monetary transfers from the bidders to the seller, the expected

total surplus is entirely determined by the entry right allocation rule and the second-stage selling

mechanism, which is given by

TS = Ec
P
g
pg(c)

"
Sg(cg)−

P
j∈g

cj

#
= Ec

P
g
pg(c)TSg(cg). (1)

3We will also show that in equilibrium, a bidder’s expected profit is greater than zero once admitted; thus on the

equilibrium path there is no incentive for a bidder to enter the auction only to withdraw immediately after. In reality,

the shortlisted are expected to participate. Their reputations may get hurt if they withdraw after being shortlisted.
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The social planner’s objective is to maximize TS subject to the usual individual rationality (IR) and

incentive compatibility (IC) conditions.

For the time being, we ignore (IR) and (IC) conditions and ask what is the first best entry that

can be achieved. First, it is apparent that to maximize TS, the second-stage selling mechanism

must be ex post efficient (so that Sg(cg) is maximized given any g). A direct implication is that the

optimal reserve price, r∗, must be the same as the seller’s own value, v0; any other reserve price will

lead to an inefficient allocation of the asset for sale with positive probability. Conditional on entry,

the second-stage auction is a symmetric auction, so the revenue-equivalence theorem implies that

any standard auction with reserve equal to v0 is efficient. We thus fix the second-stage auction to be

a standard auction Ω∗ that has a reserve price v0.

Given the second stage selling mechanism Ω∗, we now consider the first best efficient entry right

allocation rule. Given an entry cost profile, c, the efficient entry right allocation rule that maximizes

TS should be defined as

p̃∗(g) = 1 if g = argmaxTSg(cg,Ω∗),∀c.

From equation (1), it is clear that given n, the number of entrants to be admitted, TSg(cg), is

maximized if the subset g consists of the most efficient bidders (i.e., the bidders with the lowest n

information acquisition costs).

It remains to determine ñ∗, the optimal number of entrants that maximizes the expected total

surplus. It has been established that under a second-price sealed bid auction with r∗ = v0, the

marginal contribution to the expected surplus from a new entrant equals the expected (private) gain

for that entrant, i.e., S(n) − S(n − 1) = π(n),4 which also holds under any standard auction due

to the payoff equivalence theorem. Since π(n) is decreasing in n, S(n) is concave in n, which in

turn implies that ñ∗ is uniquely determined. To summarize, the efficient entry right allocation rule,

denoted by p̃∗ = (p̃∗g(c)), is characterized as follows.

Theorem 1 (The Efficient Entry Right Allocation Rule:) To maximize expected total surplus, bid-

ders should be admitted one by one according to their cost efficiencies: The most efficient bidder

should be admitted first, the second most efficient bidder should be admitted second, and so on and

4See the proof of Proposition 1 in Engelbrech-Wiggans (1993). This result is also established in McAfee and

McMillan (1987) and Levin and Smith (1994).
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so forth. The last bidder admitted should be the last entrant that has positive contribution to the

expected total surplus.

When c is privately known, it turns out that the first-best entry right allocation rule characterized

in Theorem 1 can be truthfully implemented in dominant strategies by a Vickrey-Clark-Gloves (VCG)

payment rule.

Let g̃∗(c) denote the efficient set of entrants given a reported entry cost profile c (#(g̃∗(c)) = ñ∗),

and c(ñ
∗+1) denote the (ñ∗+1)st lowest reported cost, or the reported cost type possessed by the first

eliminated bidder.5 The VCG payment rule stipulates that each agent pays the negative externality

imposed to all the other agents by her presence. To pin down the VCG payment by each bidder i in

our setting, we need to consider the maximized expected total surplus among all bidders but bidder

i, both when bidder i is and is not present.

First we consider the case i /∈ g̃∗(c) (i is not admitted). In this case her presence does not affect

the expected surplus to the rest, so her VCG payment is zero. Second we consider the case i ∈ g̃∗(c)

(i is admitted). When she is present, the expected surplus to all the other bidders is given by

πg̃
∗

0 + (ñ
∗ − 1) · πg̃∗ −

P
j∈g̃∗\{i}

cj = S(ñ∗)− π(ñ∗)−
P

j∈g̃∗\{i}
cj ≡ A.

When she is absent, there are two subcases. In the first subcase, πg̃
∗
< c(ñ

∗+1), so the efficient set of

entrants is g̃∗(c)\{i}, in which case the expected surplus to all the other bidders is given by

S(ñ∗ − 1)−
P

j∈g̃∗\{i}
cj ≡ B1.

Thus in this case the VCG payment B1 − A = π(ñ∗) − (S(ñ∗)− S(ñ∗ − 1)) = π(ñ∗) − π(ñ∗) = 0.

In the second subcase, πg̃
∗
> c(ñ

∗+1), so the efficient set of entrants is (g̃∗(c)\{i}) ∪ {k}, where k is

the bidder with reported type c(ñ
∗+1).6 In this case the expected surplus to all the other bidders is

given by

S(ñ∗)−
P

j∈(g̃∗\{i})
cj − c(ñ

∗+1) ≡ B2.

Thus in this case the VCG payment B2 −A = π(ñ∗)− c(ñ
∗+1).

5When all potential bidders are admitted, we assume that the type of the first eliminated bidder is ch.

6Note that no bidder with reported type higher than c(ñ
∗+1) can be admitted when i is absent; otherwise it

contradicts the fact that #(g̃∗(c)) = ñ∗.
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The VCG payment rule in our setting can thus be summarized as follows:

x̃∗i (ci; c−i) =

⎧⎨⎩ πg̃
∗(c) −min{πg̃∗(c), c(ñ∗+1)} if i ∈ g̃∗(c)

0 if i /∈ g̃∗(c)
(2)

Since VCG payment rules implement efficient allocation rules in dominant strategies, the following

conclusion is obtained immediately:

Theorem 2 The first-best efficient entry right allocation rule p̃∗is truthfully implementable in dom-

inant strategies by payment rule (2) when c is private information.

In equilibrium, everyone who is admitted will end up with positive expected payoffs. Thus it is

indeed optimal for them to pay entry fees and enter the second stage when admitted; in this regard

our assumption of binding entry is not as stringent as it appears at the first glance.

4 Optimal Selling Mechanisms

Let gi denote a generic subset in 2N that includes bidder i. Given type ci and report c0i, bidder i’s

expected payoff is given by

πi(c
0
i; ci) = Ec−i

"P
gi

pgi(c0i; c−i)(π
gi − ci)− xi(c

0
i; c−i)

#
.

We focus on incentive compatible mechanisms in which bidders report their types truthfully, i.e.

c0i = ci. Thus in equilibrium,

πi(ci) = πi(ci; ci) = Ec−i

"P
gi

pgi(ci; c−i)(π
gi − ci)− xi(ci; c−i)

#
. (3)

By the envelope theorem, the incentive compatibility (IC) condition implies the following result:

π0i(ci) = −Ec−i
P
gi

pgi(c). (4)

Thus

πi(ci) = πi(ch) +

Z ch

ci

Qi(c̃i)dc̃i, (5)

where

Qi(ci) = Ec−i
P
gi

pgi(ci; c−i) (6)
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is the probability that bidder i is admitted with type ci.7

The following Lemma provides a necessary and sufficient condition for the IC condition.

Lemma 1 A mechanism (pg,x) is incentive compatible if and only if (i) Qi(ci) decreases in ci, and

(ii) (5) holds.

Proof. See Appendix.

The seller’s expected revenue is

Eπ0 = Ec

"P
g
pg(c)πg0 +

P
i∈N

xi(c)

#
. (7)

From Lemma 1,

Eciπi(ci) = πi(ch) +

Z ch

cl

∙Z ch

ci

Qi(c̃i)dc̃i

¸
g(ci)dci

= πi(ch) +

Z ch

cl

G(ci)

g(ci)
Qi(ci)g(ci)dci

= πi(ch) +Ec

"
G(ci)

g(ci)

P
gi

pgi(c)

#
. (8)

Using (3), we have

Eciπi(ci) = Ec

"P
gi

pgi(c)(πgi − ci)− xi(c)

#
,

which gives P
i
Eciπi(ci) = Ec

"P
g
pg(c)

P
j∈g
(πg − cj)−

P
i
xi(c)

#
. (9)

Thus

Ec
P
i
xi(c) = Ec

P
g
pg(c)

P
j∈g
(πgj − cj)−

P
i
Eciπi(ci). (10)

From (10) and (8), we have

Ec
P
i
xi(c) = Ec

P
g
pg(c)

P
j∈g

∙
πg − G(cj)

g(cj)
− cj

¸
−
P
i
πi(ch). (11)

Combining (7) and (11), we have

Eπ0 = Ec
P
g
pg(c)

"
πg0 +

P
j∈g

µ
πg − G(cj)

g(cj)
− cj

¶#
−
P
i
πi(ch)

= Ec
P
g
pg(c)

"
Sg(cg)−

P
j∈g

µ
cj +

G(cj)

g(cj)

¶#
−
P
i
πi(ch). (12)

7 If the entry right allocation rule is not identity discriminating, that is, if the entry right allocation rule depends on

the profile of c only, we must have Qi(ci) = Q(ci).
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Next, we consider the maximization of (12) while temporarily ignoring the IC condition of the

first stage mechanism. Clearly, to maximize the expected revenue (12) while maintaining the IR

condition, we should set πi(ch) = 0 for all i (by (5)). Thus a bidder with the highest cost type

should receive zero expected profit. It is also apparent that to maximize expected revenue, the

second-stage selling mechanism must be (ex post) efficient; otherwise Sg(cg), and hence Eπ0, cannot

be maximized. A direct implication is that the optimal reserve price in the second-stage auction, r∗,

should be v0.

Lemma 2 For the selling mechanism to be optimal, the second-stage auction should be an ex post

efficient auction (i.e., a standard auction with reserve equal to v0).

Thus when entry is taken into account, the optimal auctions characterized by Myerson (1981) are

no longer optimal, while efficient auctions are optimal. This result is quite robust as it is also identified

in the settings with publicly known information acquisition costs (e.g., Engelbrecht-Wiggans, 1993,

and Levin and Smith, 1994).

By (12) and (5), revenue equivalence follows, which says that the expected revenue and the

expected payoff of bidders only depend on the entry right allocation scheme and the expected payoff

for the least efficient (i.e., highest cost) type but not the specific payment schemes.

Define

π(g, c) = Sg(cg)−
P
j∈g

µ
cj +

G(cj)

g(cj)

¶
= TSg(cg)−

P
j∈g

G(cj)

g(cj)
,

which is the expected total surplus generated from the sale less the informational rent to the bidders

given the set of entrants, g.

To maximize Eπ0, it is optimal to allocate the entry rights to the group g∗(c), such that

g∗(c) ∈ argmax
g

π(g, c),

given π(g∗(c), c) ≥ 0.

Note that the term
P
j∈g

G(cj)
g(cj)

reflects the informational rent provision. Thus the optimal set of

entrants should maximize the expected virtual total surplus in the spirit of Myerson (1981).

We denote this rule of granting entry rights by p∗ = (p∗g(c)). To facilitate our characterization of

the optimal entry right allocation rule, in what follows we maintain the following regularity condition:

Assumption 1 H(c) = c+ G(c)
g(c) increases with c.
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Note that for Assumption 1 to hold, it is sufficient to assume that the distribution has an in-

creasing hazard rate G(c)
g(c) , which is satisfied by most of the common distributions. The optimal entry

right allocation rule is characterized below.

Theorem 3 (The Optimal Entry Right Allocation Rule:) Under Assumption 1, the optimal entry

right allocation should admit the bidders according to their cost efficiencies: The most efficient bidder

should be admitted first, the second most efficient bidder should be admitted second, and so on and

so forth. The last bidder admitted should be the last entrant that has positive contribution to the

expected virtual total surplus, i.e., the expected total surplus (TSg(cg)) less the total information

rents (
P
j∈g

G(cj)
g(cj)

).

Proof. Suppose the entry rights are awarded to any group g with n bidders. Then the expected

virtual total surplus is given by

π(g, c) = Sg(cg)−
P
j∈g

H(cj) = S(n)−
P
j∈g

H(cj).

By Assumption 1, if any group with size n is admitted to maximize π(g, c), this group must

consist of the bidders with the n lowest costs. Thus in the optimal entry right allocation mechanism,

bidders should be admitted one by one according to their cost efficiencies. Furthermore, since the

contribution to the expected surplus from a new entrant is decreasing in n while H(c) is increasing

in c, there is an optimal number of entrants, say, n∗, such that if an additional bidder were admitted,

this additional entrant’s contribution to the expected virtual total surplus would be negative unless

n∗ = N .

We next explore the properties of this optimal entry right allocation rule.

Corollary 1 The least efficient type admitted must contribute positively to the total surplus TSg(cg);

In other words, optimal entry is lower than efficient entry: the seller never admits more than the

efficient number of bidders.

Proof. Each admitted bidder contributes πg−H(ci) to π(g, c). For πg−H(ci) to be positive, πg−cj
has to be positive, which is her contribution to the expected total surplus TSg(cg).

So the revenue-maximizing entry is lower than the efficiency-maximizing entry, reflecting an

optimal balance between efficiency and information rent provision.
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Corollary 2 If a bidder with type ci is admitted, then she will remain to be admitted with a more

efficient type c0i < ci; If a bidder with type ci is not admitted, then she will remain not to be admitted

with a less efficient type c0i > ci.

Proof. Given c−i, a decrease in ci only affects H(ci), which increases in ci by Assumption 1. When

ci drops, π(g∗(c), c) remains positive. Moreover, a reduction in ci increases all π(gi; c) uniformly

without affecting any other π(g, c). Thus g∗(c) is still the group admitted. The second part of the

results follows analogously.

Corollary 3 Given c−i, whenever bidder i is admitted, she is admitted with the same group of

bidders.

Proof. Given c−i, suppose bidder i with c0i is admitted. We denote the admitted group by g∗(c0),

where #(g∗(c0)) = n. It must be true that the first (n−1) bidders with the lowest costs in N\{i} are

admitted. Bidder i’s cost is also among the first n lowest ones. Recall that the change in ci uniformly

changes all π(gi; c) without affecting any other π(g, c). When ci drops, π(g∗(c0), c) remains to be the

highest. Thus, bidder i is still included in the same group. When ci increases, all π(gi; c) uniformly

decrease but π(g∗(c0), c) remains to be the highest among all π(gi; c). Thus as long as bidder i is

included in any group gi, this group must be the original g∗(c0).

Corollary 4 Suppose i ∈ g∗(c) with #(g∗(c)) = n∗, and let ĉg
∗(c) be such that πg

∗(c)−H(ĉg∗(c)) =

0. Then bidder i remains in g∗(c) if and only if ci is lower than min{ĉg
∗(c), c(n

∗+1)}.8

Proof. Since i ∈ g∗(c) with #(g∗(c)) = n∗, we must have ci ≤ c(n
∗+1); otherwise, bidder i must be

excluded.

If ci ≤ c(n
∗+1) and ci ≤ ĉg

∗(c), then H(ci) ≤ πg
∗(c), which implies that bidder i’s contribution to

the virtual total surplus is positive should g∗(c) remain to be the group admitted. If ci ≤ c(n
∗+1)

and ci > ĉg
∗(c), then H(ci) > πg

∗(c), which implies that bidder i’s contribution to the virtual total

surplus is negative should g∗(c) remain to be the group admitted.

Next we explore the incentive compatible payment scheme that truthfully implements the optimal

entry right allocation rule. Given that πi(ch) = 0, we have from (5),

πi(ci) =

Z ch

ci

Qi(c̃i)dc̃i = Ec−i
P
gi

Z ch

ci

pgi(c̃i; c−i)dc̃i.

8When #(g∗(c)) = N, we define c(n
∗+1) = ch.
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On the other hand,

πi(ci) = Ec−i

"P
gi

pgi(ci; c−i)(π
gi − ci)− xi(ci; c−i)

#
.

Naturally, we select the payment rule x∗i (c) such that

x∗i (ci; c−i) =
P
gi

p∗gi(ci; c−i)(π
gi − ci)−

P
gi

Z ch

ci

p∗gi(c̃i; c−i)dc̃i, (13)

where p∗gi(c) is the optimal entry right allocation rule characterized above.

By (13) and Corollaries 2 — 4, when i ∈ g∗(c) with #(g∗(c)) = n∗, we have

x∗i (c) = [π
g∗(c) − ci]− [min{ĉg

∗(c), c(n
∗+1)}− ci] = πg

∗(c) −min{ĉg∗(c), c(n∗+1)}. (14)

Without loss of generality, we assume that ch is sufficiently large so that πgi −H(ch) < 0,∀gi.

Thus ĉgii = H−1(πgi) < ch, and

x∗i (c) ≥ πg
∗(c) − ĉg

∗(c) ≥ πg
∗(c) −H(ĉg

∗(c)) = 0.

When i /∈ g∗(c), by (13) and Corollaries 2 — 4,

x∗i (ci; c−i) = 0.

To summarize, we consider the following payment rule:

x∗i (ci; c−i) =

⎧⎨⎩ πg
∗(c) −min{ĉg∗(c), c(n∗+1)} if i ∈ g∗(c)

0 if i /∈ g∗(c)
. (15)

It is clear that all the admitted bidders pay a uniform entry fee that is contingent on c. Define

Q∗i (ci) = Ec−i
P
gi

p∗gi(ci; c−i),

which is bidder i’s probability of being admitted with type ci. We should show that the payment rule

specified in (15) can indeed truthfully implement the optimal entry right allocation rule specified in

Theorem 3. According to Lemma 1, we only need to verify (i) and (ii). Clearly (ii) is automatically

satisfied by the construction of x∗i (c). It remains to verify (i).

It is sufficient to show that for any c−i,
P
gi

p∗gi(ci; c−i) decreases in ci. Take c00i ≤ c0i, and consider

any given c−i. If reporting c0i results in bidder i being excluded, thenP
gi

p∗gi(c00i ; c−i) ≥
P
gi

p∗gi(c0i; c−i) = 0.

14



If reporting c0i and c00i both results in bidder i being admitted, then bidder i must be included in

the same group by Corollary 3, i.e.,
P
gi

p∗gi(c00i ; c−i) =
P
gi

p∗gi(c0i; c−i). Hence Q
∗
i (ci) is decreasing in

ci. We have thus shown that under Assumption 1, (p∗,x∗) constitutes an IC, optimal entry right

allocation mechanism. In fact, we can show that the payment rule x∗ even implements the optimal

entry right allocation rule p∗ in dominant strategies.

Theorem 4 Under Assumption 1, the optimal entry right allocation rule p∗ is truthfully imple-

mentable by payment rule x∗ in dominant strategies.

Proof. See Appendix.

So in our setting, both the efficient and optimal entry right allocation rules can be implemented

in dominant strategies. Next we consider the auction implementation of the optimal mechanism.

Define cs to be the infimum of all types (in terms of costs) that will never be admitted. Define

x∗i (ci) = Ec−ix
∗
i (ci, c−i).

Then we have x∗i (ci) = 0 when ci ≥ cs. When ci < cs, x∗i (ci) is strictly decreasing. To see this, note

that when ci decreases, the probability that i is admitted increases (by Corollary 2). For any given

c−i that leads to bidder i’s inclusion with her initial ci, Corollaries 2 and 3 imply that a lower ci

would result in her being included in the same g∗(c). Her payment thus would not change for those

given c−i. For those additional c−i that lead to bidder i’s inclusion due to her lower entry cost, she

has to pay a positive fee. Thus the expected payment x∗i (ci) is strictly higher with a lower entry

cost.

From Theorem 3, the entry right allocation rule is nondiscriminatory; that is, it depends on the

reported profile of c only. It is then easily verified that x∗i (ci, c−i) = x∗(ci, c−i) and x∗i (ci) = x∗(ci)

for all i. Define

β(ci) = Ec−ix
∗(ci, c−i) = x∗(ci), (16)

which is symmetric and strictly decreasing in ci.

In view of the above results, the optimal entry allocation mechanism can be implemented using

an all-pay auction.

Theorem 5 (Implementation of Optimal Mechanisms) In the (reduced) entry right allocation all-

pay auction game where bidders pay their bids regardless being admitted or not, it is a symmetric

15



monotone Bayesian Nash equilibrium for each potential bidder to bid according to β(·) defined in

(16). The costs can then be inverted from the bids and the optimal entry right allocation rule can be

implemented.9

Proof. See Appendix.

The idea of using an all-pay auction to implement entry right allocation is similar to Fullerton

and McAfee (1999), who analyze a research tournament model with multiple contestants competing

for a common prize. They show that the efficient entry can always be implemented through an

all-pay auction for entry rights. In their setting, the optimal number of entry rights is fixed (which

is two). This is different from our setting where the optimal number of entry rights is endogenously

determined. Similarly to Fullerton and McAfee (1999), it is also not clear in our setting whether

other auction formats, such as uniform-price and discriminatory-price auctions, can implement the

optimal entry.10

By Theorem 5, the optimal selling mechanism can be implemented through a two-stage auction,

with the first stage being an entry-right auction and the second stage being a standard single-object

auction. If the auctioneer does not exercise control over entry, potential bidders make their own

entry decisions independently and simultaneously. In that case equilibrium entry will be governed

by an entry threshold, ce, as analyzed by Moreno and Wooders (2006) and Lu (2010). Formally, the

admission rule can be characterized by an entry threshold ce ∈ (cl, ch) such that the equilibrium set

of entrants is g∗(c) = {i ∈ N|ci ≤ ce}; that is, bidder i is included if and only if her cost is lower

than the entry threshold ce.

We can derive a payment rule that truthfully implements this cutoff admission rule. It is easily

seen that the payment rule should take the same form as prescribed in (15) with min{ĉg∗(c), c(n∗+1)}

9We define β−1(∅) = ch for bidders who do not bid, and β−1(b) = cl for b > β(cl).

10For instance let’s consider a discriminatory-price auction, where only admitted bidders need to pay for entry and

each pays her own bid. Let βA(·) denote the equilibrium bid function under an all-pay auction and βD(·) denote the

equilibrium bid function should it exist. Then by the payoff equivalence (Myerson’s lemma), we must have

βD(c) = βA(c)/Pr(Being admitted with type c)

While both βA(c) and Pr(Being admitted with type c) are strictly decreasing, we are not sure whether their ratio, and

hence the candidate equilibrium bid function βD(c), is also strictly decreasing. Since we do not have specific expressions

for Pr(Being admitted with type c), it is hard to derive conditions under which βD(c) is strictly monotonic.
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being replaced by ce, i.e. each admitted bidder pays πg
∗(c) − ce, and bidders not admitted do not

pay. The entrants’ payment can be positive or negative depending on the size of the entrant set,

with negative payments meant to demand entry subsidies. As such, the direct mechanism associated

with the auction game with endogenous entry is a feasible mechanism considered in our two-stage

mechanism framework. A direct implication is that it is revenue-dominated by the optimal selling

mechanism that we characterize.11

In the two-stage auctions studied in Ye (2007), the number of bidders to be admitted is fixed and

pre-announced. Let this pre-announced number be n. Then the auctioneer would admit the first n

bidders with the n lowest costs. The payment rule that implements this entry admission rule can be

easily derived. We define x∗i (c) such that

x∗i (ci; c−i) =
P
gi

p∗gi(ci; c−i)(π
gi − ci)−

P
gi

Z ch

ci

p∗gi(c̃i; c−i)dc̃i,

where p∗gi(c) is the entry admission rule that admits the fixed n most efficient bidders. When

i ∈ g∗(c) with #(g∗(c)) = n, we have

x∗i (ci; c−i) = [πg
∗(c) − ci]− [c(n+1) − ci]

= πg
∗(c) − c(n+1),

which coincides with the highest losing bid in an all-pay auction (for entry rights) described in Ye

(2007). When i /∈ g∗(c) , we simply let x∗i (ci; c−i) = 0.

Thus the two-stage auction with the fixed-n admission rule is also feasible in our two-stage mech-

anism framework, and is hence dominated by the optimal selling mechanism that we characterize.

5 Concluding Remarks

This paper studies two-stage selling mechanisms with an emphasis on entry right allocation mecha-

nisms in a setting where bidders’ information acquisition costs are privately known to the bidders.

Our entry right allocation mechanism resembles multi-unit auctions with endogenously determined

supply. For both efficient and optimal selling mechanisms, we find that the second-stage auction

must be ex post efficient. In the entry allocation stage, both efficiency and optimality require that

11 In fact, by the revenue equivalence, only the admission rule matters for the revenue.
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the bidders with the most efficient types (least entry costs) be admitted. However, unlike in the

complete information benchmark where entry costs are publicly known, revenue-maximizing entry

diverges from efficiency-maximizing entry due to the information rent consideration. We show that

optimal entry is lower than efficient entry, which results from an optimal balance between efficiency

and information rent extraction.

Our analysis of two-stage selling mechanism can shed new light on the practice of two-stage

auctions, which is commonly used in high-valued and complex asset sales, procurements, takeovers,

and merger and acquisition contests.12 A feature common to all these two-stage auctions is that

there is a pre-qualifying stage to screen the bidders,13 which corresponds to the entry right allocation

mechanism analyzed in our framework. In our current setting, bidders are heterogeneous in terms of

their cost efficiencies in information acquisition. We can envision a different setting where bidders

are heterogeneous in terms of their “types” (say, αi’s) before information acquisition stage, and after

entry, each bidder draws a value from a distribution parameterized by her “type” αi. Suppose that

the higher this pre-entry “type”, the more likely that the bidder will draw a higher value for the

asset for sale. Then with costly information acquisition, the optimal selling mechanism will again

take the form of a two-stage procedure, with the first stage being the pre-screening or entry right

allocation mechanism. While our current model is somewhat special in the sense that the pre-entry

type is simply the information acquisition cost, we believe that the general insights obtained from

our current analysis are robust enough to carry over to that presumably more complicated setting.

A complete characterization of optimal selling mechanisms in that setting is not straightforward,

in part because the extension would introduce asymmetries in the post-entry value distributions.

Despite the technical challenges, future research should extend our current analysis to more general

settings.

12See Ye (2007) for industry examples using such a two-stage auction procedure.

13See Boone and Goeree (2009) for an interesting analysis of pre-qualifying auctions.
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6 Appendix

Proof of Lemma 1: The necessity. We have shown (5) must hold. We next show (i) must hold.

Define

πi(c
0
i; ci) = Ec−i

"P
gi

pgi(c0i; c−i)(π
gi − ci)− xi(c

0
i; c−i)

#
.

Note πi(ci) = πi(ci; ci). IC conditions require that

πi(ci; ci) ≥ πi(c
0
i; ci),∀ci, c0i.

Note that

πi(c
0
i; ci) = πi(c

0
i; c

0
i) +Ec−i

P
gi

pgi(c0i; c−i)(c
0
i − ci),∀ci, c0i.

Thus

πi(c
0
i; ci)− πi(c

0
i; c

0
i) ≥ Ec−i

P
gi

pgi(c0i; c−i)(c
0
i − ci),∀ci, c0i.

Similarly we have

πi(c
0
i; c

0
i)− πi(c

0
i; ci) ≥ Ec−i

P
gi

pgi(ci; c−i)(ci − c0i),∀ci, c0i.

These inequalities yield that

Ec−i
P
gi

pgi(ci; c−i)(c
0
i − ci)

≥ Ec−i
P
gi

pgi(c0i; c−i)(c
0
i − ci),∀ci, c0i.

or

Ec−i
P
gi

pgi(c0i; c−i)(ci − c0i)

≥ Ec−i
P
gi

pgi(ci; c−i)(ci − c0i),∀ci, c0i.

This implies that Qi(ci) decreases in ci.

The Sufficiency. Assume (i) and (ii) hold. For c0i < ci, we have

πi(c
0
i)− πi(ci) =

Z ci

c0i

Qi(c̃i)dc̃i

=

Z ci

c0i

Ec−i
P
gi

pgi(c̃i; c−i)dc̃i

≤
Z ci

c0i

Ec−i
P
gi

pgi(c0i; c−i)dc̃i

= Ec−i
P
gi

pgi(c0i; c−i)[ci − c0i].
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The inequality is due to (i). Thus

πi(ci) ≥ πi(c
0
i)−Ec−i

P
gi

pgi(c0i; c−i)[ci − c0i]

= Ec−i
P
gi

pgi(c0i; c−i)[π
gi − xgii (c

0
i; c−i)− c0i]

−Ec−i
P
gi

pgi(c0i; c−i)[ci − c0i]

= Ec−i
P
gi

pgi(c0i; c−i)[π
gi − xgii (c

0
i; c−i)− ci]

= πi(c
0
i; ci).

For c0i > ci, we have

πi(ci)− πi(c
0
i) =

Z c0i

ci

Qi(c̃i)dc̃i

=

Z c0i

ci

Ec−i
P
gi

pgi(c̃i; c−i)dc̃i

≥
Z c0i

ci

Ec−i
P
gi

pgi(c0i; c−i)dc̃i

= Ec−i
P
gi

pgi(c0i; c−i)[c
0
i − ci].

The last inequality is due to (i). Thus

πi(ci) ≥ πi(c
0
i) +Ec−i

P
gi

pgi(c0i; c−i)[c
0
i − ci]

= Ec−i
P
gi

pgi(c0i; c−i)[π
gi − xgii (c

0
i; c−i)− c0i]

−Ec−i
P
gi

pgi(c0i; c−i)[ci − c0i]

= Ec−i
P
gi

pgi(c0i; c−i)[π
gi − xgii (c

0
i; c−i)− ci]

= πi(c
0
i; ci).

Proof of Theorem 4: Given any c−i, a profile of reported types of all but bidder i, we will show

that bidder i has no incentive to misrepresent her type under the mechanism (p∗,x∗).

If by reporting truthfully bidder i will be admitted according to p∗, then by Corollary 4, ci <

min{ĉg∗(c), c(n∗+1)}. In this case bidder i will have a positive expected payoff. If she misreports a

cost lower than min{ĉg∗(c), c(n∗+1)}, she will still be included in the same group by Corollaries 3 and

4 and thus pay the same amount as in the truthful reporting case. Her payoff thus remains the same.
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If she misreports a cost higher than min{ĉg∗(c), c(n∗+1)}, she will be excluded and pay zero, which

results in a zero payoff. Therefore, if bidder i will be admitted by truthfully reporting her type, she

has no incentive to misrepresent her type.

If by reporting truthfully bidder i will be excluded according to p∗, then ci ≥ min{ĉg
∗(c), c(n

∗+1)},

and her payoff will be zero. If she misreports a cost such that she is still excluded (and thus pays

zero), her payoff remains zero. Suppose she reports a cost c0i that is low enough for her to be included

in g∗(c0i, c−i). We must have #(g
∗(c0i, c−i)) = #(g∗(c)) (the previously admitted bidder with type

c(n
∗) is crowded out) or #(g∗(c0i, c−i)) = #(g

∗(c)) + 1 (no previously admitted bidders are crowded

out). Note that these are the only two possible cases, as all the other bidders with costs higher than

c(n
∗+1) can never be admitted according to p∗.

If #(g∗(c0i, c−i)) = #(g∗(c)), bidder i would pay πg
∗(c0i,c−i) − min{ĉg∗(c0i,c−i), c(n∗)} = πg

∗(c) −

min{ĉg∗(c), c(n∗)},14 which is higher than πg
∗(c) − ci. This results in a negative expected payoff for

her.

If #(g∗(c0i, c−i)) = #(g∗(c)) + 1, bidder i would pay πg
∗(c0i,c−i) − min{ĉg∗(c0i,c−i), c̃}, where c̃ =

c(n
∗+1) if ci > c(n

∗+1), and c̃ = c(n
∗+2) if ci = c(n

∗+1). Since the bidder with c(n
∗+1) is excluded when

bidder i reports truthfully, we must have c(n
∗+1) > ĉg

∗(c0i,c−i) when #(g∗(c0i, c−i)) = #(g
∗(c)) + 1. If

c̃ = c(n
∗+1) and ci > c(n

∗+1), clearlymin{ĉg∗(c0i,c−i), c̃} < ci, which results in a negative expected payoff

for bidder i. If c̃ = c(n
∗+2) and ci = c(n

∗+1), since c(n
∗+1) > ĉg

∗(c0i,c−i) we also havemin{ĉg∗(c0i,c−i), c̃} <

ci, which also results in a negative expected payoff for bidder i.

This shows that if bidder i is excluded when reporting truthfully, bidder i has no incentive to

misrepresent her type either, regardless of the reports from everyone else.

Proof of Theorem 5: Given that everyone else bids according to β(·) defined by (16), bidder i’s

problem is to maximize the following objective function by choosing her bid b:

Π(b, ci) = Ec−iI
©
i ∈ g∗(β−1(b), c−i)

ª
·
³
πg
∗(β−1(b),c−i) − ci

´
− b,

where the indicator function I
©
i ∈ g∗(β−1(b), c−i)

ª
= 1 if and only if i ∈ g∗(β−1(b), c−i).

We next apply the constraint simplification theorem15 to demonstrate that β(·) constitutes a

14Recall that πg
∗(c) and ĉg

∗(c) are solely determined by the size of the group g∗(c) admitted.

15See, e.g., Theorem 4.3 in Milgrom, 2004, pp. 105.
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symmetric increasing Bayesian Nash equilibrium in this reduced entry right allocation game. This

can be verified in the following steps:

1. β(·) is strictly decreasing as shown in the arguments preceding to the statement of the theorem.

2. Given that β(·) is strictly decreasing, ∂Π/∂ci = Pr
©
i ∈ g∗(β−1(b), c−i)

ª
is strictly increasing

in b, i.e., Π(b, ci) satisfies the strict and smooth single crossing differences property.

3. By construction, β(·) satisfies the following envelope formula:

Π(β(ci), ci)−Π(β(ch), ch) = −
Z ch

ci

Π2(β(s), s)ds.

4. It is also easily verified that bidding outside the range of β(·) cannot lead to higher expected

payoff.

Thus all the sufficiency conditions for the constraint simplification theorem are satisfied and β(·)

indeed constitutes a symmetric monotone BNE.

22



References

[1] Bergemann, D. and J. Välimäki, 2006. Information in Mechanism Design, in Advances in Eco-

nomics and Econometrics, ed. by R. Blundell, W. Newey, and T. Persson, pp. 186-221. Cam-

bridge University Press, Cambridge.

[2] Boone, J. and J. Goeree, 2009. Optimal Privatization Under Asymmetric Information. Economic

Journal. 119, 277-297.

[3] Engelbrecht-Wiggans, R., 1993. Optimal Auctions Revisited. Games and Economic Behavior.

5, 227-239.

[4] French, R.K. and R.E. McCormick, 1984. Sealed Bids, Sunk Costs, and the Process of Compe-

tition. Journal of Business. 57, 417-441.

[5] Fullerton, R. and P. McAfee, 1999. Auctioning Entry into Tournaments. Journal of Political

Economy. 107, 573-605.

[6] Levin, Dan and James Smith, 1994. Equilibrium in Auctions with Entry. American Economic

Review. 84, 585-599.

[7] Lu, J., 2009. Auction design with opportunity cost, Economic Theory, 38(1), 73-103.

[8] Lu, J., 2010. Entry coordination and auction design with private costs of information acquisition,

Economic Inquiry, 48(2), 274-289.

[9] McAfee, Preston and John McMillan, 1987. Auctions with Entry. Economic Letters 23, 343-347.

[10] McAdams, David, 2007. Adjustable Supply in Uniform Price Auctions: Non-Commitment as a

Strategic Tool. Economics Letters 95(1), 48-53.

[11] Milgrom, Paul, 2004. Putting Auction Theory to Work. Cambridge University Press.

[12] Milgrom, P. and R. Weber, 1982. A Theory of Auctions and Competitive Bidding. Econometrica.

50, 1082-1122.

[13] Moreno, Diego and John Wooders. 2006. Auctions with Heterogeneous Entry Costs. Universidad

Carlos III working paper 06-18.

23



[14] Myerson, R., 1981. Optimal Auction Design. Mathematics of Operations Research. 6, 58-73.

[15] Riley, J. and W. Samuelson, 1981. Optimal Auctions. American Economic Review. 71, 381-392.

[16] Samuelson, W.F., 1985. Competitive Bidding with Entry Costs. Economics Letters, 17: 53-57.

[17] Stegeman, M., 1996. Participation Costs and Efficient Auctions, Journal of Economic Theory,

71: 228-259.

[18] Tan, Guofu, 1992. Entry and R&D in Procurement Contracting. Journal of Economic Theory,

58, 41-60.

[19] Tan, G. and O. Yilankaya, 2006. Equilibria in Second Price Auctions with Participation Costs,

Journal of Economic Theory, 130, 205-219.

[20] Vallen, M. and C. Bullinger, 1999. The Due Diligence Process for Acquiring and Building Power

Plants. The Electricity Journal. October, 28-37.

[21] Vickrey, W., 1961. Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of

Finance. 16, 8-37.

[22] Ye, Lixin, 2004. Optimal Auctions with Endogenous Entry. The B.E. Journals: Contributions

to Theoretical Economics. 4, 1-27.

[23] Ye, Lixin, 2007. Indicative Bidding and a Theory of Two-Stage Auctions. Games and Economic

Behavior 58, 181-207.

24


