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Abstract—We develop an approach to identify and test for bid rigging in
procurement auctions. First, we introduce a general auction model with
asymmetric bidders. Second, we study the problem of identi� cation in our
model. We state a set of conditions that are both necessary and suf� cient
for a distribution of bids to be generated by a model with competitive
bidding. Third, we discuss how to elicit a prior distribution over a � rm’s
structural cost parameters from industry experts. Given this prior distri-
bution, we use Bayes’s theorem to compare competitive and collusive
models of industry equilibrium. Finally, we apply our methodology to a
data set of bidding by construction � rms in the Midwest. The techniques
we propose are not computationally demanding, use � exible functional
forms, and can be programmed using most standard statistical packages.

I. Introduction

B ID rigging is a serious problem in many procurement
auctions. According to Engineering News-Record,

criminal bid-rigging cases have recently been � led in New
York City and Chicago for building public schools, bridge
repair, interior remodeling, paving, and many other types of
construction. A widely publicized instance of bid rigging
occurred in the New York cement industry in the 1980s,
where organized crime designed an elaborate scheme that
in� ated building costs, making the price of poured concrete
the highest in the nation.1 Developing effective and com-
putationally simple tools that can be used by regulators to
detect bid rigging might serve as a deterrent to future
collusion, and thereby lower prices and enhance ef� ciency
in some industries.

In this paper, we develop an approach to identify and test
for bid rigging in procurement auctions. We begin by
describing a model of competitive bidding for procurement
contracts. A unique aspect of our model is that bidders are

asymmetric, that is, ex ante, the costs of bidders may differ.
Asymmetries are commonplace in procurement and may
arise from the location of � rms, capacity constraints, or
familiarity with local rules and regulations.

Next, we study the problem of identi� cation in the asym-
metric auction model. We state a set of conditions that are
both necessary and suf� cient for a distribution of bids to be
rationalized by our model of competitive bidding, and we
discuss how these conditions can be tested. A � rst condition
that can easily be tested is conditional independence, which
implies that after controlling for all information about costs
that are publicly observed by the � rms, the bids must be
independent. If collusion is occurring, however, we might
expect to � nd correlated bids when cartel members submit
“phantom” bids meant to give the appearance of competi-
tion. A second condition is exchangeability, which implies
that costs alone should determine how � rms bid and that the
identities of a � rm’s competitors, holding information about
costs constant, should not change how a � rm bids. If
collusion is occurring, however, we might � nd that cartel
members do not bid against each other as aggressively as a
control group of noncartel � rms.2

Finally, we use the tools of statistical decision theory to
decide between competitive and collusive models of indus-
try equilibrium. We elicit from industry experts a prior
distribution over the structural cost parameters that enter our
models. Given this distribution, we use Bayes’s theorem and
the laws of conditional probability to decide between com-
petitive and collusive models of industry equilibrium. We
apply our methodology to a data set of bidding by construc-
tion � rms. The techniques needed for the computations are
not particularly complex and can be programmed using
standard statistical packages.

In our application, we begin by testing for conditional
independence and exchangeability. Although the vast ma-
jority of bidders appear to satisfy the conditions, two pairs,
(� rm 2, � rm 4) and (� rm 2, � rm 5), fail at least one of these
tests. The owners of all three of these � rms have previously
been sanctioned for bid rigging in this market. Our reduced
form testing suggests that there are three models of interest:
no collusion, (� rm 2, � rm 4) collude, and (� rm 2, � rm 5)
collude. We then compare these three models by computing
posterior probabilities for each model.

In empirical industrial organization, it is common to
consult with industry experts during a research project in
order to learn about the nature of demand, costs, and strategic
interactions in the marketplace. However, information
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1 In his biography, Ma� a informer Sammy (The Bull) Gravano, who
claims to have orchestrated collusion in the construction industry for the
Gambino crime family, is reported to have said, “If one of them [contrac-
tors] gets a contract for, say, thirteen million, the next thing you know,
after he knows he’s got it, he jacks up the whole thing before it’s over to
a sixteen- or seventeen-million-dollar job. Now he’s increased the cost
thirty-three percent. So our [the Ma� a’s] greed is compounded by the
greed of them so-called legitimate guys [contractors]” (Maas, 1997, p.
271).

2 As we discuss below, a clever cartel could submit collusive bids that
satisfy both of these conditions. We are unaware of any empirical example
of collusion where this has occurred. However, we do discuss empirical
examples of collusion where conditional independence and exchangeabil-
ity fail.
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garnered from industry sources is seldom formally incorpo-
rated into the estimation. A unique feature of our analysis is
that we elicit the beliefs of industry experts about the model
parameters and incorporate these beliefs into estimation and
testing.

Our two industry experts are leading owner-operators in
the seal coat industry with over 50 years of combined
experience. Because bidders typically receive quotes from
the same subcontractors and materials suppliers and because
all bids are publicly available after the contract is awarded,
a bidder will have a lot of information about the markups of
competing bidders. In our data set, over 100 � rms bid, but
only 7 of these � rms have a market share that exceeds 5%.
If our industry experts are not savvy in managing their own
costs and understanding the costs of their competitors, it is
unlikely that they will remain in business for very long.

Our estimates show that the markups implied by the
competitive model are much closer to the industry experts’
prior beliefs than the two collusive models, and thus the
competitive model has a posterior probability close to 1. We
do not take this, or any of our tests, as de� nitive proof of
competition or collusion. However, the collusive models
generate markups much higher than industry experts � nd
plausible. We argue that this is a meaningful piece of
evidence against the collusive models.

We do not advocate exclusively estimating models by
imposing priors from external sources such as industry
experts, consulting engineers, or internal cost records of
� rms. However, we believe that augmenting the data with a
prior distribution elicited from industry sources can be
helpful when other identifying information is not available,
the data are of poor quality, or the data are incomplete.
Moreover, using a prior distribution elicited from industry
experts will often improve the small-sample properties of
our estimators and our hypothesis tests. This is particularly
important in antitrust problems where both the quantity and
quality of the data may be limited, but where the market
regulators must make a decision regardless of the limita-
tions of the data. Finally, we found that eliciting a prior and
discussing the market with the industry experts helped us to
pick up on many subtleties of strategic behavior in this
industry.

There are a number of recent empirical papers on the
subject of bid rigging. The � rst set describe the observed
bidding patterns of cartels and compare cartel with noncar-
tel bidding behavior. Porter and Zona (1993, 1999) and
Pesendorfer (2000) analyze data sets where it is known that
bid rigging has taken place. These papers � nd the following
empirical regularities: First, cartel members tend to bid less
aggressively than non-cartel-members. Second, the bids of
cartel members tend to be more correlated with each other
than with the bids of non-cartel-members. Third, collusion
tends to increase prices over those of a noncollusive control
group.

The second set of empirical papers, such as Porter and
Zona (1993) and Baldwin, Marshall, and Richard (1997),
propose econometric tests designed to detect collusive bid-
ding. Baldwin et al. (1997) nest competition and collusion
within a single model to test for collusion. Their model is
applicable for oral or second-price auctions with private
values. Porter and Zona (1993) propose a procedure where
two models of bidding are estimated. The � rst model is a
logistic regression on the identity of the lowest bidder. The
second model is an ordered logit regression on the ranking
of all the bidders. Under the null hypothesis of no collusion,
the parameter values from the two models should be equal.
Our analysis sheds some new light on the analysis of Porter
and Zona (1993, 1999) and Baldwin et al. (1997) by dem-
onstrating how observable differences across � rms, such as
location and capacity, play a key role in the identi� cation of
collusion.

Our paper is also related to the literature on structural
estimation of the � rst-price auction model. This literature
began with Paarsch (1992). Most closely related to our
research is that of Guerre, Perrigne, and Vuong (2000), who
estimate the � rst-price auction model nonparametrically.
Also related is that of Bajari (1997), Campo, Perrigne, and
Vuong (2001), Flambard and Perrigne (2001), Hong and
Shum (1999), and Pesendorfer and Jofre-Bonet (2000), who
structurally estimate asymmetric models of the � rst-price
auction. Finally, our paper is related to a literature in
statistics on the elicitation of prior beliefs from experts
and its use in estimation and testing. See, for instance,
Cooke (1991), Garthwait and Dickey (1988, 1992),
Kadane and Wolfson (1998), Kadane et al. (1980), and
O’Hagan (1998).

We believe that the tests we propose are a useful diag-
nostic for detecting suspicious bidding behavior. No method
for detecting collusion is foolproof. Also, the economist
must exercise careful judgement to determine whether his
hypothesis tests are economically signi� cant, not just sta-
tistically signi� cant. Despite the limitations inherent in any
test for collusion, we believe that our methods can be used
as a � rst step in determining whether suspicious bidding
might have occurred and whether further investigation is
warranted.

II. The Model

We consider a procurement auction model in which N
� rms compete for a contract to build a single and indivisible
public works project. The � rms have independent private
cost estimates. Firm i knows its own cost estimate (c i), but
not the cost estimates of other � rms (c2i). We assume that
c i is drawn from a distribution with cumulative distribution
function F i[ and density function fi[. Both F i[ and fi[
are common knowledge among all � rms before bidding
starts. For technical convenience, we assume that c i has the
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same support [cI , c# ] for all i.3 As in other procurement
lettings, a � rst-price sealed-bid auction is conducted: � rms
submit sealed bids, and the lowest bidder wins the contract
at a price equal to the bid submitted by that bidder.

We assume that � rms are risk-neutral with respect to their
monetary income. Firm i’s strategy is a function B i[ : [cI ,
c# ] ? R1. Suppose there exists an increasing equilibrium
such that B i[ is strictly increasing and differentiable on the
support of c i for all i; then its inverse bid function, fi[, is
also strictly increasing and differentiable on the support of
the bids. Suppose that all the competing � rms follow strat-
egies B2i; then if � rm i bids b i, its probability of winning
is Pr(c j . fj(b i) for all j Þ i). Firm i’s expected pro� t can
thus be written as

p i~b i, ci; B2i! 5 ~b i 2 ci!Q i~b i!, (1)

where

Q i~b i! 5 P
jÞi

@1 2 F j~f j~b i!!# (2)

is the probability that � rm i wins the contract. As we can see
from equation (1), � rm i’s expected pro� t is a markup times
the probability that � rm i is the lowest bidder.

Since each � rm’s pro� t function depends only on its own
private information, this is a procurement auction model
with private values (costs). In the seal coat industry that we
are going to analyze, because labor and material costs are
mainly � rm-speci� c, we believe that the assumption of
private values (costs) is appropriate.4

Unlike most of the auction models in literature, our model
allows for asymmetric bidders. In procurement settings, the
symmetric-bidder assumption implies that private cost esti-
mates are independently and identically distributed. This
may not be the case in the seal coat industry as well as many
other procurement settings, because asymmetries can easily
arise from different locations, different capacity constraints,
different technologies, and different levels of managerial
ef� ciencies across � rms.

A. Dynamic Bidding

Under certain assumptions, our model also allows for
nontrivial dynamics. We look for a stationary equilibrium
such that each � rm’s strategy only depends on the current
state of the industry. Let s denote a vector of state variables
that can be observed by all participants in the auction. This
vector may include, for example, capacities and locations of
all the participants and market prices of key materials. At

state s , let V i
W(s) be � rm i’s continuation value when it

wins, and V i, j
L (s) be its continuation value when some other

� rm, j, wins. In what follows we assume that V i, j
L (s) 5

V i
L(s), that is, the continuation value for a � rm when it fails

to win does not depend on the identity of the � rm that wins.5

We employ this simpli� cation to ensure that our model has
a unique equilibrium, which is essential for how we test for
collusion in the next sections. For an analysis of dynamic
bidding that does not employ this assumption, see Pesend-
orfer and Jofre-Bonet (2000).

With this assumption, � rm i’s expected pro� t at state s by
bidding b i while all its competing � rms follow an increasing
equilibrium B2i[ can be written as

p i~b i, ci; B2i! 5 @b i 2 ci 1 V i
W~s!#Qi~b i! 1 V i

L~s!

3 @1 2 Q i~b i!# (3)

5 @b i 2 ci 1 V i
W~s! 2 V i

L~s!#Qi~b i!

1 V i
L~s!,

(4)

where Q i(b i) is given by (2). Since V i
L(s) is a constant, we

can write the � rm’s maximization problem as follows:

max
bi

@bi 2 ci 1 Vi
W~s! 2 Vi

L~s!#Qi~bi!. (5)

As in equation (1), a � rm’s objective function is the
markup times the probability of winning, the only difference
being that a � rm’s cost estimate now re� ects the option
value of having free capacity available for future projects.
Therefore, the framework developed for the static model
above can be applied to the analysis of dynamic bidding
with capacity constraints.6

B. Collusion

Many elaborate schemes for collusion have been found in
industry. For example, bid rotation schemes like “phases of
the moon” are followed by cartel members to allocate
projects, side payments are made within a cartel to divide
spoils, and geographic territories are established as parts of
cartel arrangements.

It turns out that a collusive bidding model where the
cartel behaves ef� ciently can also be analyzed within the
framework developed above. An ef� cient cartel operates as
follows. First the cartel members communicate before an

3 If this assumption is violated, we may end up with nonessential
equilibria as discovered in Griesmer, Levitan, and Shubik (1967). The
same support assumption may sound restrictive, but if we can add an
arbitrarily small perturbation to any given distribution of the costs, then
we can always start with the assumption of common supports.

4 In Armantier, Florens, and Richard (1997) and Porter and Zona (1993),
the private-value model is also assumed in procurement auction analyses.

5 Vi, j
L (s) in general depends on the identity of the winner. However, our

data set suggests that our assumption may not be too restrictive. If a � rm’s
continuation value depended on which competitor won, it would bid
differently depending on the capacity of its competitors. However, in the
analysis of our data set, while � rm i’s own capacity was signi� cant, the
capacity of other � rms failed to be signi� cant. This � nding is consistent
with our assumption that � rm i is indifferent to which � rm wins the
contract.

6 When costs re� ect option values, the distributions of cost estimates
may not have the same supports across � rms. However, as discussed
earlier, as long as we can add arbitrarily small perturbation to the
distributions, assuming common supports is without loss of generality.
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auction is conducted and compare their cost estimates. Then
the member with the lowest cost estimate submits a serious
bid, and all the other members either refrain from bidding or
submit high bids (phony bids). Let C # {1, 2, . . . , N }
denote the cartel, and cc the cost of the cartel; then

cc 5 min
j[C

cj.

Because cc is an order statistic, its distribution can be easily
computed. Following the framework developed above, if
other bidders are aware of the identity of the cartel, then it
is straightforward to adapt our previous analysis to this case
with ef� cient collusion. If the cartel members bid against
each other with suf� cient frequency and if side payments
are possible, it can be shown using standard folk-theorem
arguments that ef� cient collusion can be sustained through
repeated play.

III. Properties of Equilibrium

For the asymmetric auction model described in the pre-
vious section, the equilibrium properties have been well
established in the theoretical literature. Following the liter-
ature, we maintain two regularity conditions regarding the
information structure:

c Assumption 1. For all i, the distribution of costs Fi[
has support [cI , c# ]. The probability density function
fi[ is continuously differentiable (in c i).

c Assumption 2. For all i, fi[ is bounded away from
zero on [cI , c# ].

We assume that � rms follow a Bayes-Nash equilibrium in
pure strategies. An equilibrium in pure strategies is a col-
lection of functions B1, . . . , BN such that B i(ci) maximizes
p(b i, c i; B2i) in b i for all i and ci in its support. Suppose
there exists an increasing equilibrium such that each � rm (i)
bids according to a strictly increasing function B i(ci) [de-
note the inverse bid function as fi(b i)]. Then the � rst-order
condition for such an equilibrium is

]

]bi
pi~bi, ci; B2i! 5 ~b i 2 c i!Q9i~b i! 1 Qi~b i! 5 0, (6)

where Q i(b i) is given by (2).
After simpli� cation, the � rst-order condition for the equi-

librium can be written as follows:

c i 5 b i 2
1

O
jÞi

f j~f j~b i!!f9j~b i!

1 2 Fj~f j~b i!!

, i 5 1, . . . , N. (7)

Alternatively, we can rearrange terms to obtain the follow-
ing system of N ordinary differential equations:

f9i~b i! 5
1 2 F i~f i~b i!!

~N 2 1! fi~f i~b i!!

3 F 2~N 2 2!

bi 2 fi~bi!
1 O

jÞi

1

bi 2 fj~bi!G , (8)

i 5 1, . . . , N.

Under the above two regularity assumptions, Lebrun
(1999) and Maskin and Riley (2000a) demonstrate that a set
of equilibrium bid functions exist and these functions are
strictly increasing and differentiable:

Theorem 1 (Lebrun, 1996; Maskin & Riley, 2000b).
Under assumptions 1 and 2, there exists an equilibrium in
pure strategies. Furthermore, the equilibrium bid function
for each bidder is strictly monotone and differentiable.

The equilibrium can also be characterized as the solution
to a system of N differential equations with 2N boundary
conditions:

Theorem 2 (Lebrun, 1999; Maskin & Riley, 2000a).
Under assumptions 1 and 2, the equilibrium inverse bid
functions can be characterized as the solutions to the system
of N differential equations (8) with the following boundary
conditions:

(i) For all i, f i(c# ) 5 c# .
(ii) For all i, fi(b) 5 cI for some constant b.

Finally, under the same set of assumptions, it is shown
that the equilibrium is unique:

Theorem 3 (Maskin & Riley, 1996; Bajari, 1997, 2001;
Lebrun (2000)). Under assumptions 1 and 2, the equilib-
rium (in pure strategies) is unique.

IV. Identi� cation

In this section we identify a set of conditions about a
distribution of bids that are implied from the model of
competitive bidding introduced in section 2. We also show
that under this set of conditions, we can construct a unique
set of latent cost distributions that rationalizes the distribu-
tion of bids in equilibrium under competitive bidding.

Assume that each � rm’s cost distribution can be param-
etrized by u, a vector of parameters, and zi, a set of
covariates that is unique to � rm i. We write the cumulative
distribution function of � rm i’s cost in the form F(ciuzi, u ).
As an example, suppose that a � rm’s cost estimate can be
written as follows:

c i 5 a 1 bd i 1 ei, i 5 1, . . . , N . (9)

In equation (9), a is a constant that captures the common
factors affecting all � rms identically, such as how many
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miles of highway must be seal-coated; d i is the distance
from � rm i’s location to the project site; and b re� ects � rm
i’s unit transportation costs. The idiosyncratic shock ei is
private information to � rm i. In this example we assume
that e i is distributed as Normal(0, s2); then the distribution
of costs depends on the vector of parameters u 5 (a, b, s2),
which are common to all � rms. Let zi 5 d i; then z 5
( z1, . . . , zN) is a set of covariates that is observable to
� rms. In what follows, for notational simplicity we shall
suppress the dependence of private information on the
parameters u, which we shall assume to remain � xed across
contracts. In Section 5.3, we shall extend our results to
allow for � rm-speci� c parameters.

Let G i(b; z) be the cumulative distribution of � rm i’s
bids, and g i(b; z) be the associated probability density
function. Note that the distribution of bids depends on the
entire vector z 5 ( z1, . . . , zN). Using the theorems from
the previous section, it is straightforward to show that the
following conditions must hold in equilibrium.

A1. Conditional on z, � rm i’s bid and � rm j’s bid are
independently distributed.

A2. The support of each distribution G i(b; z) is identical
for each i.

Conditional on z, each � rm’s signal, c i, is independently
distributed, and since bids are a function of c i, this implies
that A1 must hold in equilibrium. Although this condition
must hold when bidding is competitive, it may fail when
bidding is collusive. In Porter and Zona (1993, 1999), for
instance, cartel members submitted phantom bids meant to
give the appearance of competition. However, since the
cartel members colluded, their bids were correlated condi-
tional on z.7 The condition A2 must hold by the character-
ization theorem (theorem 2) stated in section III.

A third condition that must hold in equilibrium is that the
distribution of bids must be exchangeable in zi. Let p be a
permutation, that is, a one-to-one mapping from the set
{1, . . . , N } onto itself. The de� nition of exchangeability is
that for any permutation p and any index i the following
equality must hold:

G i~b; z1, z2, z3, . . . , zN!

5 Gp~i!~b; zp~1!, zp~2!, zp~3!, . . . , zp~N!!.
(10)

Equation (10) implies that if the cost distributions for the
bidders are permuted by p, then the empirical distribution of
bids must also be permuted by p. For instance, if we
permute the values of z1 and z2, holding all else � xed,
exchangeability implies that the distribution of bids submit-
ted by � rms 1 and 2, G1(b) and G2(b), also permute. If

collusion occurs, then bidding need not be exchangeable if
cartel members do not bid aggressively against each other as
compared to a control group of noncartel � rms. It is straight-
forward to show that exchangeability will hold in our
model, because the equilibrium is unique and therefore
permuting the cost distributions permutes the equilibrium
bid functions in a symmetric fashion.

A3. The equilibrium distribution of bids is exchangeable.
That is, for all permutations p and any index i, one has
G i(b; z1, z2, z3, . . . , zN) 5 Gp(i)(b; zp(1), zp(2), zp(3), . . . ,
zp(N)).

The fourth condition that must hold in equilibrium is
equivalent to the monotonicity of � rm i’s bid function in c i.
Note that from (7), we can rewrite the � rst-order conditions
as follows:

c i 5 b 2
1

O
jÞi

f~f j~b; z!uz j!f9j~b; z!

1 2 F~f j~b; z!uz j!

. (11)

Since equilibrium bid functions are strictly monotone, it
follows using a simple change-of-variables argument that
G i(b; z) and g i(b; z) must satisfy

G i~b; z! 5 F~f i~b; z!uz i!, (12)

g i~b; z! 5 f~f i~b; z!uz i!f9i~b; z!. (13)

Substituting equations (12) and (13) into equation (11), the
� rst-order conditions for equilibrium can be expressed as

f i~b, z! 5 b 2
1

O
jÞi

g i~b; z!

1 2 G i~b; z!

. (14)

In equilibrium, the bid functions must be strictly monotone.
An equivalent condition to the monotonicity of the bid
functions is the monotonicity of the function j i(b; z) in b,
where j i(b; z) is de� ned as

j i~b; z! 5 b 2
1

O
jÞi

g i~b; z!

1 2 G i~b; z!

. (15)

A4. For all i and b in the support of the G i(b; z), the
function j i(b, z) is strictly monotone.

Finally, from our characterization theorem, the following
boundary conditions should also hold:

A5. ji(b# ; z) 5 c# , ji(bI ; z) 5 cI for i 5 1, . . . , N.
We formalize the above observations into the following

theorem.

7 Why do cartel members submit phantom bids if this behavior can
possibly be detected? We conjecture that the failure of a � rm to bid at all
when it has a favorable cost distribution might be a more obvious sign of
collusion to procurement of� cials.
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Theorem 4. Suppose that the distribution of bids G i(b; z),
i 5 1, . . . , N, is generated from a Bayes-Nash equilibrium.
Then conditions A1–A5 must hold.

Next, we show that if conditions A1–A5 hold, then it will
be possible to construct a distribution of costs F(buzi) that
uniquely rationalizes the observed bids G i(b; z) as an
equilibrium. In other words, conditions A1–A5 are not only
necessary for an equilibrium, but also suf� cient.

Theorem 5. Suppose that the distribution of bids Gi(b; z)
satis� es conditions A1–A5. Then it is possible to construct
a unique set of distributions F i(c uzi) such that G i(b; z) is the
equilibrium distribution of bids when the costs are distrib-
uted F i(cuzi).

Proof. See appendix.

V. Testing

In this section, we discuss how conditions A1–A5 can be
used to test whether a given distribution of bids is consistent
with our model of competitive bidding. If the bids b 5
(b1, . . . , bN) are conditionally independent, then it should
be the case that

G~b1, . . . , bN; z! 5 P
i51

N

G i~b i; z!, (16)

where G(b1, . . . , bN; z) is the joint distribution of bids.
With unlimited data, to determine whether or not the bids
are conditionally independent, the econometrician would
ideally estimate G(b1, . . . , bN; z) and Gi(b i; z) nonpara-
metrically and then test (16). Similarly, to determine
whether or not the distribution of bids is exchangeable, the
econometrician could test (10) after nonparametrically esti-
mating the distribution of bids. Alternatively, the economist
can estimate G i(b i; z) using regression and following Porter
and Zona (1993, 1999), and test conditional independence
by testing whether the residuals to the bid function are
independent.

Regression-based methods can be used to test exchange-
ability as well. Exchangeability implies that, for any given
permutation p, equation (10) holds. As a simple example,
suppose that our model of costs is given by (9) and that
� rms bid on projects at varying locations, so that the
distance DISTi,t of � rm i from various projects t changes.
Let there be t 5 1, . . . , T auctions, and let zi 5 (b1,
DISTi,t, s). Suppose that we estimate the following regres-
sion:

b i,t 5 b0 1 b1,i DIST i,t 1 O
jÞi

hi, j DISTj,t 1 ei,t. (17)

If the distribution of bids is exchangeable, then it must be
the case that as T becomes in� nite,8

for all i Þ j, b1,i 5 b1, j; (18)

for all j, k, j Þ i, k Þ i, hi, j 5 hi,k; (19)

for all i Þ j and for all s, hi,s 5 hj,s. (20)

A. Distinguishing Competition and Collusion

If no variation in z is observed in the data, it will typically
not be possible to determine whether collusion has occurred.
This can be proved using an approach similar to theorem 5.
When there is no variation in z, the � rst-order condition (14)
implies that there is a one-to-one mapping between i’s bid b i

and i’s private information ci. Therefore, given a distribu-
tion of bids, G(b1, . . . , bN), which does not vary with any
observable variables z, we can rationalize the observed bids
with a competitive model by assuming that when i bids b i,
then i’s private information ci satis� es

c i 5 b i 2
1

O
jÞi

g i~b; z!

1 2 G i~b; z!

. (21)

Alternatively, we can rationalize the observed bids as the
outcome of collusive bidding by a cartel C # {1, . . . , N }
of � rms (as in section 2.2). Let Gc denote the distribution of
the lowest bid submitted by the � rms in the set C. Then if
a noncartel � rm i bids b i, let the � rm’s private information
satisfy

c i 5 b i 2
1

gc~b; z!

1 2 Gc~b; z!
1 O

jÞi, j¸C

g i~b; z!

1 2 Gi~b; z!

, (22)

and if the lowest cartel bid is bc, let the cartel’s private
information cc satisfy

cc 5 bc 2
1

O
jÞi, j¸C

g i~b; z!

1 2 G i~b; z!

. (23)

Using equation (21), it is possible to rationalize the data as
the outcome of noncollusive bidding. If, instead, we use
equations (22) and (23), we can rationalize the observed
bids as the outcome of bidding by a cartel C . The intuition

8 It is straightforward to show that if the econometrician projects T
randomly drawn bids from the two distributions Gi(b i; z) and G j(bj; z)
onto the same linear subspace using least squares, then the projections
should be the same as T tends to in� nity under the null hypothesis of
exchangeability. Note that this test is valid even if the linear regression
(17) is a misspeci� ed model of the bid function.
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behind this result is that the � rst-order condition just iden-
ti� es a bidder’s private information c i.

Theorem 6. If there is no variation in z and A1–A2 and
A4–A5 hold, then competition is observationally equivalent
to a cartel C that is not all inclusive.

Even if there is variation in z, it may still not be possible
to empirically distinguish collusion from competition. A
sophisticated cartel that includes all N � rms may be able to
construct a mechanism for collusion that satis� es conditions
A1–A5. For instance, suppose that the cartel operates by
� rst having each � rm compute its competitive bid and then
submit a bid 1.1 times its competitive bid. It is straightfor-
ward to show that conditions A1–A5 are satis� ed if the
cartel colludes in this fashion. In � gure 1, we present a
diagram that summarizes the relationship between A1–A5
and the hypothesis of competition and collusion.

As we can see from � gure 1, it is in some sense never
possible to reject the hypothesis of collusion by observing
only z and the distribution of bids. It is always possible to
construct a collusive model that satis� es A1–A5. However,
if we see that A1–A5 are violated, then we know that the
observed distribution of bids could not arise from a com-
petitive model. In previous empirical studies of cartel be-
havior such as Porter and Zona (1993, 1999), the cartels did
violate assumptions A1–A5.

B. Determining Which Firms Are in the Cartel

Even if a cartel is present in the industry, the bid functions
of � rms that do not collude must still satisfy a certain type
of exchangeability. Suppose that the cost structure for all
� rms in the industry is generated as in equation (9); then the
value of z i for all the � rms that do not collude must be z i 5
(b1, DISTi,t, s). If the � rst m � rms do collude, then the cost

distribution for the cartel, if it colludes ef� ciently as in the
model of section II, will have cost parameters zc 5 (b1,
DIST1,t, . . . , DISTm,t, s). The bid functions of the noncol-
luding � rms must be exchangeable in zi holding zc � xed.
Also, they clearly must not be correlated; for, holding zc and
the zi’s � xed, the noncartel � rms have not coordinated their
bids. This is important in our empirical analysis, because it
offers a criterion that will hold for � rms that do not collude
but will fail for � rms that do collude.

Theorem 7. Let NC # {1, . . . , N } be the set of � rms
that do not collude. Suppose that the colluding � rms jointly
maximize pro� ts as in Section 2.2. Then, conditional on zc,
the bid functions of the � rms in NC are exchangeable in the
z i’s and conditionally independent given zc and the zi’s.

The theorem above demonstrates that even if collusion is
occurring, those bidders that are not in the cartel still have
conditionally independent and exchangeable bids. If cartel
members are not sophisticated and use strategies that fail to
be conditionally independent or exchangeable, we should in
principle be able to identify the members of the cartel.

C. Unobserved Heterogeneity

Another challenge that the economist may face in prac-
tice is that he may not observe all relevant characteristics of
the � rm or of the project. Standard approaches to control for
this in a panel data context are to use � xed effects for the
project and � xed effects for the � rms.

Suppose that the cost draws for � rm i have the following
form:

c i 5 d i 1 d t 1 c̃ i, (24)

where

c̃ i , F~ z i!, (25)

where d i and d t are constants that are publicly observable to
all of the � rms in the auction. In the speci� cation above, we
allow for there to be a � rm � xed effect and a project � xed
effect in the costs.

Suppose that when d i 1 d t 5 0, a � rm with private
information bids bi(c̃i). When d i 1 d t Þ 0, it can easily be
shown that the new equilibrium is for � rm i to bid bi(c̃ i) 1
d i 1 d t. If we project our bids onto a linear econometric
model with � rm and project dummies, then as the number of
bids becomes suf� ciently large, exchangeability conditions
such as (18)–(20) must continue to hold in zi.9

VI. Competitive Bidding for Seal Coat Contracts

As an application of the methods introduced in the
previous sections, we test for collusion using a unique data

9 Of course, estimating these parameters precisely with common sample
sizes is not always possible.

FIGURE 1.—
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set of bidding by construction � rms for highway repair
contracts. The data set was purchased from Construction
Market Data (CMD), which sells information to general
contractors about upcoming construction projects. The data
set contains detailed bidding information for almost all the
public and private road construction projects conducted in
Minnesota, North Dakota, and South Dakota during the
years 1994–1998. Nearly 18,000 procurement contracts are
contained in this data set.10

In our empirical study we focus on contracts for seal
coating, which is a highway maintenance process designed
to extend the life of a road. By adding oil and aggregate
(sand, crushed rock, gravel, or pea rock) to the surface of a
road, seal coating gives the road a new surface to wear. The
added oil soaks into the underlying pavement, which also
slows the development of cracks in the highway. Compared
to resurfacing a highway, seal coating is a low-cost alterna-
tive.11

A. Contract Award Procedures

All public-sector seal coat contracts are awarded through
an open competitive bidding process. In seal coat projects,
contractors do not submit a single bid; rather they submit a
vector of bids. This is known as a unit price contract and has
the following form:

Contract item 1 Estimated quantity for item 1 Unit price for item 1
Contract item 2 Estimated quantity for item 2 Unit price for item 2
Contract item 3 Estimated quantity for item 3 Unit price for item 3
: : :

The contract items might include mobilization, gallons of
oil, and tons of aggregate. Both the contract items and the
estimated quantities are established by the owner of the
contract (typically a city government or state DOT), and the

unit prices are chosen by the contractor.12,13 If the contract
is awarded, it must be awarded to the lowest responsible
bidder. Public of� cials have the right to reject all bids, but
this occurs infrequently in practice.14

B. Reduced Form Bid Functions

We observe all public-sector seal coat contracts awarded
from January 1994 through October 1998 in our data set.
There are four types of owners: city, county, state, and
federal. Most of the contracts are owned by city or state
governments. Among all jobs, 230 (46.5%) are owned by
cities, 195 (39.3%) are owned by states, 68 (13.7%) are
owned by counties, and only 2 owned by the federal
government. The total value of contracts awarded in our
data set is $92.8 million. The identities of the � rms and their
market shares are summarized in tables 1 and 2.

The size of contracts varies greatly. In table 3, we provide
summary statistics for the winning bid (BID1), the second
lowest bid (BID2), and the difference between the two
(BID12). Of the 495 contracts in our data set, 7 contracts
were awarded for more than $1 million, 256 contracts were
awarded for less than $1 million but more than $100
thousand, and 232 contracts were awarded for less than
$100 thousand. A total of 98 � rms bid on at least one of
these 495 contracts, with 43 � rms never winning a contract
for the period reported. Note that BID12 is on average

10 Based on our conversations with general contractors, the Department
of Transportation (DOT), and CMD, we believe that almost all construc-
tion projects exceeding $10,000 are documented in this data set. Some of
the data � elds were not complete, so we phoned hundreds of county and
city governments throughout the midwest to � ll in those missing � elds.
For each project, the data contains detailed information about the project
location, the bid submission deadline, the identities of the bidders, the
locations of the bidders, the engineer ’s cost estimate, and the bonding
requirements.

11 There are two main reasons why we decided to focus on the seal-coat
industry: � rst, it is relatively easy to measure the total work done by any
contractor in a seal-coating process; second, the technology involved in
seal coating is simple compared to other types of highway construction. A
typical crew for a seal coat company consists of two workers on the chip
spreader, one distributor operator, four roller operators, four � ag persons,
one worker to drive a pilot car, one worker to drive the broom, and one
worker to set temporary pavement markings. On a typical project there
can be between 5 and 15 trucks hauling aggregate to the project site and
a loader operator to � ll the trucks with aggregate.

According to one company in the industry, who primarily works in the
Dakotas, a typical crew (excluding trucks) costs $1,500 per day in labor
and $1,000 per day in the implicit rental price for machinery. A crew can
typically expect to seal coat 7 to 15 miles of highway per day, depending
on conditions. The cost of trucking, according to the � rm, is $35 per hour
(including the driver’s wage).

12 In our analysis, we abstract away from the fact that the � rms make a
vector of bids instead of a single bid. As in Athey and Levin (2001), it
would be possible to model bidding as a two-stage procedure. In the � rst
stage, bidders choose a total bid, and in the second stage they choose unit
prices optimally.

13 The contractor is compensated according to the quantities that are
actually used on the job. DOT personnel monitor the � rm while the work
occurs and are responsible for verifying measurements of quantities of
material put in place. If actual quantities are 20% less or more than the
estimated quantities, the price will be renegotiated according to proce-
dures described in the contract.

14 Firms also have strong � nancial incentives to honor their contractual
obligations if they are the low bidders. Contractors usually must submit a
bid bond of 5% to 10% of their total bid, guaranteeing that they will not
withdraw their bid after the public reading of all bids. After the contract
is awarded, the low bidder must submit a performance bond and a pay
bond to guarantee the completion of the contract and that all subcontrac-
tors will be paid. For a more complete discussion of contract procedures
see Minnesota Department of Transportation (1995), Bartholomew
(1998), Clough and Sears (1994), and Hinze (1993).

TABLE 1.—IDENTITIES OF MAIN FIRMS

Firm
ID Name of the Company

Firm
ID Name of the Company

1 Allied Blacktop Co. 11 Asphalt Surfacing Co.
2 Astech 12 Bechtold Paving
3 Bituminous Paving Inc. 14 Border States Paving Inc.
4 Lindteigen Constr. Co. Inc. 17 Mayo Constr. Co. Inc.
5 McLaughlin & Schulz Inc. 20 Northern Improvement
6 Morris Sealcoat & Trucking Inc. 21 Camas Minndak Inc.
7 Pearson Bros Inc. 22 Central Specialty
8 Caldwell Asphalt Co. 23 Flickertail Paving & Supply
9 Hills Materials Co. 25 Topkote Inc.
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15,724, suggesting that bidders leave “money on the table”
due to asymmetric information.

Table 4 summarizes the distribution of the number of bids
per contract. The modal number of bids in this industry is 3,
so taking account of market power will clearly be important.

The owner of the largest � rm in the market, Astech (� rm
2), received a one-year prison sentence for bid rigging in the
mid-1980s. The owners of two other � rms, McLaughlin &
Schulz Inc. (� rm 5) and Allied Paving (� rm 1), were also
� ned for bid rigging with Astech in the seal coat industry.
The owners of all three � rms were, at one time, banned from
bidding for public-sector seal coat contracts.

One important control variable for our analysis will be
the engineer’s estimate. This is a cost estimate formed either
by civil engineers employed by the government or by
consulting engineering � rms. The engineer’s estimate is
supposed to represent a “fair market value” for completion
of the project.15 We found that estimates were available for
139 out of the 441 projects in the data set. Table 5 shows
that the engineer’s estimate is a useful control for project
costs. The normalized winning bid (winning bid divided by
the estimate) is almost exactly 1 and has a standard devia-
tion of 0.1573.

Another generated variable is distance, which we con-
struct using information about both the location of the � rms
and the location of the project.16 For jobs covering several

locations, we use the midpoints of the jobs to do the
calculation. Table 6 summarizes the distances of � rms based
on the rank of their bid, that is, DIST1 is the distance of the
low bidder, DIST2 is the distance of the second lowest
bidder, and so on. Firms with shorter distances from project
locations are more likely to win the job, because they will
have lower transportation costs.

Based on the winning bids and bidding dates, we con-
struct a new variable CAP, which is meant to measure each
� rm’s capacity utilization level. A � rm’s capacity at a
particular bidding time is de� ned as the ratio of the � rm’s
used capacity (measured by the � rm’s total of winning bids
up to that time) to the � rm’s total of winning bids in the
entire season.17

A � nal determinant of � rm i’s success in winning con-
tracts is familiarity with local regulators and local material
suppliers. We summarize the concentration of selected � rms
by state in table 7. Our results suggest that the majority of
the � rms in our data set work primarily in one state. For
instance, � rm 3 is located near the boundaries of Minnesota,
North Dakota, and South Dakota. Yet it does over 70% of its
dollar volume of seal coating in South Dakota. Firm 6 is
located near the Minnesota–South Dakota border, yet it has
won no contracts in South Dakota.

Next, we estimate a set of reduced-form bid functions to
measure the relationship between a number of variables and
the � rms’ observed bidding behavior. The variables we will
use in these regression are as follows:

c BIDi,t: Amount bid by � rm i on project t.
c ESTt: Engineer’s cost estimate for project t.
c DISTi,t: Distance between the location of the � rm and

the project.
c LDISTi,t: log (DISTi,t 1 1.0).
c CAPi,t: Used capacity measure of � rm i on project t.
c MAXPi,t: Maximum percentage free capacity of all

� rms on project t, excluding i.
c MDISTi,t: Minimum of distances of all � rms on project

t, excluding i.15 In conversations with engineers at Minnesota’s, North Dakota’s, and
South Dakota’s Departments of Transportation, the engineers stated that
they formed the estimates by gathering information on materials prices,
prevailing wage rates, and other relevant cost information.

16 The calculation is facilitated by using Yahoo’s map searching engine
http://maps.yahoo.com/ py/ddResults.py. Using city and state’s names as
input for both locations, the engine gives distances automatically. Doing
this manually would be too time-consuming, so we wrote an “electronic
spider” to do the job.

17 The season during which seal coating can take place lasts from late
May to mid-September; in our de� nition, the entire season starts on
September 1 and ends on August 31 of the following calendar year. This
measure of capacity was computed using the entire database of bidding
information, even though in our econometric analysis we will focus on a
subset of these projects.

TABLE 2.—BIDDING ACTIVITIES OF MAIN FIRMS

Firm
ID

No. of
Wins

Avg.
Bid

% Mkt.
Share

No. Bids
Submitted

%
Participation

1 92 82,790 8.2 145 29.3
2 102 191,953 21.1 331 66.9
3 20 363,565 7.8 69 14.0
4 35 241,872 9.1 114 23.0
5 29 283,323 8.9 170 34.3
6 40 77,423 3.3 84 17.0
7 45 62,085 3.0 121 24.4
8 16 87,231 1.5 134 27.1
9 10 237,408 2.6 14 2.8

11 4 328,224 1.4 28 5.7
12 3 317,788 1.0 8 1.6
14 4 754,019 3.2 25 5.1
17 5 1,018,578 5.5 8 1.6
20 13 355,455 5.0 38 7.7
21 2 903,918 1.9 5 1.0
22 2 903,953 2.0 8 1.6
23 2 439,619 1.0 4 0.8
25 3 382,012 1.2 13 2.6
Total 427 87.7

Average bid is the average of all bids that a particular � rm submitted, no. bids submitted is the total
number of bids that the � rm submitted, and % participation is the fraction of seal coat contracts the � rm
bid for.

TABLE 3.—FIRST AND SECOND LOWEST BIDS

Observations Mean Std. Dev. Min. Max.

BID1 466 191,355 227,427 3,893 1,772,168
BID2 466 207,079 244,897 4,679 1,959,928
BID21 466 15,724 29,918 33 352,174

TABLE 4.—BID CONCENTRATION

Number of bids 1 2 3 4 5 6 7
Number of contracts 29 87 190 118 44 22 5
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c LMDISTi,t: log (MDISTi,t 1 1.0).
c CONi,t: Proportion of work done (by dollar volume) by

� rm i in the state where project t is located prior to the
auction.

Summary statistics for these variables are reported in
table 5.

We assume that � rm i’s cost estimate for project t satis� es
the following structural relationship:

c i,t

ESTt
5 c~DISTi,t, CAPi,t, CONi,t, vi, dt, eit!. (26)

Equation (26) implies that � rm i’s cost in auction t can be
written as a function of its distance to the project, its
backlog, the previous experience that � rm i has in this
market (which we proxy for using CONi,t), a � rm i produc-
tivity shock v i, an auction-t-speci� c effect d t, and eit, an
idiosyncratic shock to � rm i that re� ects private information

it will have about its own costs. The results of section II
demonstrate that under certain simplifying assumptions
about dynamic competition, a dynamic model with capacity-
constrained bidders is equivalent to a static model where a
� rm’s cost is ci 1 V iL(s) 2 V iW(s): a sum of current project
costs ci plus a term V iL(s) 2 V iW(s) that captures the option
value of keeping free capacity. In practice, the measure of
backlog CAPi,t will be a good proxy for ViL(s) 2 V iW(s).
Mapping the structural cost function back to the framework
of section IV implies that z i 5 (DISTi,t, CAPi,t, CONi,t, v i, d t).

Firm i’s bid function should depend on the entire param-
eter vector z 5 ( z1, . . . , zN). However, given the limited
number of data points in our sample, it will not be possible
to model the bid functions in a completely � exible fashion,
because z is a vector with many elements. We choose to
include a � rm’s own distance, capacity, and concentration.
From our conversations with � rms that actually bid in these
auctions, we believe that the most important characteristics
of the other � rms to include in the reduced-form bid func-
tion are the location of the closest competitor and the
backlog of the competitor that has the most free capacity.
Also, we computed and simulated the equilibrium of the
asymmetric auction model, using the techniques developed
by Bajari (2001). These simulations also suggest a similar
speci� cation is appropriate. To control for d t, we use � xed
effects for the auction, and to control for vi, we use � rm
� xed effects for the largest 11 � rms in the market. We are
able to identify both our auction � xed effect and � rm � xed
effects because we do not use � xed effects for all of the
� rms. This implies that � rms that are not the 11 largest have
an identical productivity shock v i, which is probably not an
unrealistic assumption in this industry.

Since there are 138 auctions, 11 main � rms, and one pooled
group of nonmain � rms in our restricted data set, we have 137
auction dummies and 11 � rm dummies.18 The set of regressors
thus contains a constant (C), 148 dummy variables, own
distance (DISTi,t), own capacity (CAPi,t), maximal free capacity

18 One auction with an abnormal bid was removed from our data set.

TABLE 5.—SUMMARY STATISTICS

Variable No. Obs. Mean Std. Dev. Min. Max.

Winning bid 441 175,000 210,000 3893 1,732,500
Markup: [(winning bid) 2 estimate]/estimate 139 0.0031 0.1573 20.3338 0.5421
Normalized bid: winning bid/estimate 139 1.0031 0.1573 0.6662 1.5421
Money on the table: (2nd bid) 2 (1st bid) 134 15,748 19,241 209 103,481
Normalized money on the table: [1st bid) 2 (2nd bid]/est. 134 0.0776 0.0888 0.0014 0.5099
Number of bidders 139 3.280 1.0357 1 6
Distance of winning � rm 134 188.67 141.51 0 584.2
Distance of second lowest bidder 134 213.75 152.01 0 555
Capacity of winning bidder 131 0.3376 0.3160 0 0.9597
Capacity of second lowest bidder 131 0.4326 0.3435 0 1
All bids (normalized) 450 1.0819 0.1837 0.6662 1.8347
Distances (LDIST) 450 4.9315 1.1299 0.0000 6.4593
Capacities (CAP) 450 0.4172 0.3573 0.0000 1.0000
Maximal capacities among rivals (MAXP) 450 0.7915 0.3048 0.0000 1.0000
Minimal distance among rivals (LMDIST) 450 4.5679 1.3081 0.0000 9.2104
Job Concentration (CON) 450 0.5967 0.3601 0.0000 1.0000

TABLE 6.—DISTANCES (IN MILES)

Mean Min Max Mean Min Max

DIST1 122.3 0 584.2 DIST5 160.3 13 555.2
DIST2 151.9 0 585.2 DIST6 177.9 63 484.4
DIST3 177.9 0 637.6 DIST7 91 44 128.9
DIST4 166.4 11.2 608.6

TABLE 7.—CONCENTRATION OF FIRM ACTIVITY BY STATE

Concentration

Firm MN ND SD

1 1 0 0
2 0.2781 0.7218 0
3 0 0.2377 0.7623
4 0 1 0
5 0.1246 0.5338 0.3414
6 0.8195 0.1804 0
7 0.9572 0.0427 0
8 0.7290 0.2709 0

11 0 0 1
14 0 1 0
20 0 1 0
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among competitors (MAXPi,t), minimal distance among com-
petitors (MINDISTi,t), and the job concentration variable (CONi,t).
To take care of the heteroskedasticity problem, we take the
ratio of the bid and the value (the engineer’s estimate) as the
dependent variable (BIDi,t /ESTt):

BIDi,t

ESTt
5 b0 1 b1 LDISTi,t 1 b2 CAPi,t 1 b3 MAXPi,t

1b4 LMDISTi,t 1 b5 CONi,t 1 eit.
(27)

The results from the regression, estimated using ordinary
least squares, are displayed in table 8.

The results from our reduced-form bid function are con-
sistent with basic economic intuition. Firm i’s bid is an
increasing function of � rm i’s distance from the project site
and � rm i’s capacity utilization. As � rm i’s distance in-
creases, so does i’s cost. So the positive coef� cient on own
distance is consistent with the model of competitive bidding
in section II. Note that the coef� cient on CAPi,t is also
positive and signi� cant. As � rm i’s backlog increases, all
else held constant, the option value of free capacity will
increase because once i becomes completely capacity-
constrained, � rm i will no longer have a chance to bid on
future projects. The coef� cient on CONi,t is negative, indi-
cating that if � rm i has more prior experience in the state,
� rm i will tend to bid more aggressively.

Our reduced-form bid function also produces results that
are consistent with the strategic interactions implied by the
asymmetric auction model. As the distance of � rm j Þ i
increases or as the capacity utilization of � rm j Þ i
increases, competition will soften and � rm i will raise its
bid. However, the reaction to MAXPi,t is not signi� cant at
conventional levels.

C. Testing Conditional Independence

In this section, we test the conditional independence
assumption A1 in section IV. We use a reduced-form bid
function as in the previous subsection; however, we will

allow the model to be more � exible. If � rm i is one of the
largest 11 � rms in the industry, we use equation (28) with
� rm-varying coef� cients as its bid function. If � rm i is not
one of the largest 11 � rms in the industry, we use equation
(29) to model its bid function. We pool equations (28) and
(29) in the estimation and include auction � xed effects:19

BIDi,t

ESTt
5 b0,i 1 b1,i LDISTi,t 1 b2,i CAPi,t 1 b3,i MAXPi,t

1b4,i LMDISTi,t 1 b5 CONi,t 1 eit,
(28)

BIDi,t

ESTt
5 a0 1 a1 LDISTi,t 1 a2 CAPi,t 1 a3 MAXPi,t

1a4 LMDISTi,t 1 a5 CONi,t 1 eit.
(29)

Suppose the coef� cient of correlation between the resid-
ual to � rm i’s bid function and � rm j’s bid function, e i,t and
e j,t, is r ij. The test of conditional independence is then
equivalent to the test of the following null hypothesis:

H0 : r ij 5 0. (30)

We � rst report the number of pairwise simultaneous bids
and the correlation coef� cients (computed when the number
of simultaneous bids is no less than 4) in table 9. Simulta-
neous bids are reported in the lower part of the matrix, and the
correlation coef� cients in the upper part. We use the Fisher test
to test the hypothesis (30). Suppose the correlation coef� -
cient between two � rms’ bids is r. Let r be the correlation
coef� cient calculated from sample data (as reported in table
9); then the Fisher Z transformation is given by

Z 5
1

2
ln

1 1 r

1 2 r
. (31)

Let n be the number of samples; then the distribution of Z
is approximately normal with

mZ 5
1

2
ln

1 1 r

1 2 r
and sZ 5

1

Î n23
. (32)

Hence z 5 (Z 2 mZ)=n23 has approximately the stan-
dard normal distribution. In our case, under the null hypoth-
esis, r 5 0, mZ 5 0. The test statistic is Z=n23 for each
pair of � rms whenever n . 3. The results are reported in
table 10.

Among all 23 pairs which have at least four simultaneous
bids, the null hypothesis cannot be rejected except for four
pairs of � rms at 5% signi� cance level. These four pairs are
(� rm 1, � rm 2), (� rm 2, � rm 4), (� rm 5, � rm 14), and (� rm
6, � rm 7). However, of these pairs, only the pair (� rm 2,

19 Note that in equation (28) we force the coef� cient on concentration to
be equal for all � rms in our sample. This is because there was not
suf� cient variation in concentration within a single � rm to identify a
� rm-speci� c parameter for this coef� cient.

TABLE 8.—REDUCED-FORM BID FUNCTION

Variable OLS

C (constant) 0.6809
(5.95)

LDISTi ,t (own distance) 0.0404
(3.45)

CAPi ,t (own used capacity) 0.1677
(8.51)

MAXPi,t (maximal free capacity among rivals) 0.0255
(0.713)

LMDISTi,t (minimal distance among rivals) 0.0240
(1.81)

CONi ,t (job concentration) 20.0590
(21.866)

Sample size 450
R2 0.8480

The regression also includes a � xed effect for each project t and one for each of the largest 11 � rms
in the market.
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� rm 4) bid against each other more than a handful of times.
The pairs (� rm 1, � rm 2), (� rm 5, � rm 14), and (� rm 6, � rm
7) bid against each other on average no more than two or
three times a year in the data set.

D. Test for Exchangeability

In this section we use our regression model (28) and (29)
to test whether the empirical distribution of bids is ex-
changeable. Exchangeability implies that capacities and
distances should enter the � rm’s bidvalue function in a
“symmetric” way. Formally, in the reduced-form bid func-
tion, let bi1, b i2, b i3, b i4 be the coef� cients of LDIST1, CAP1,
MAXP, LMDIST for � rm i, one of the largest 11 � rms. Then
exchangeability is equivalent to the following hypothesis:

H0 : b ik 5 b jk for all i, j, i Þ j, and for all k 5 1, . . . , 4.

(33)

We use the F-test to test for exchangeability. Let SSRU and
SSRC be the sums of squared errors in the unconstrained and
constrained models, respectively. Also let T be the number
of observations (T 5 450 in our data set), m be the number
of regressors, and n be the number of constraints implied by
H0. Then the statistic

F 5
~SSRC 2 SSRU!/n

SSRU/~T 2 m!
(34)

has an F-distribution with parameters (n, T 2 m) under the
null hypothesis. Note that the F-test is also a variation of the
quasi-likelihood-ratio (QLR) test on nonlinear two- and
three-stage least squares.

We conduct two tests of exchangeability in this subsec-
tion. The � rst set is to test exchangeability for the whole
market, that is, the constrained regression that pools all the
11 main � rms together. The second set is to test the ex-
changeability on a pairwise basis, that is, the constrained
regression pools two of the main � rms together at each test
(hence the number of constraints is 4). That is, we test
whether empirically exchangeability holds on a pairwise
basis for the � rms in our data set. We perform this set of
tests for each pair of � rms with at least four simultaneous
bids. Table 11 summarizes the test results. It shows that for

TABLE 9.—SIMULTANEOUS BIDS AND COEFFICIENTS OF CORRELATION

Firm 1 2 3 4 5 6 7 8 11 14 20

1 2.744
2 15 2.5897 2.5247 2.1512 .1330 2.3010 .0909 .4260 .1304
3 0 9 2.6374 .2439 2.2345
4 0 67 4 2.1910 2.3197
5 0 76 8 63 2.3365 .5742 .8854 2.6963 .3588
6 1 17 3 3 8 2.7850 .2327
7 2 9 3 0 3 7 2.2711
8 2 12 3 2 5 12 6

11 1 2 7 0 4 0 0 0
14 0 9 0 8 10 0 0 0 0 .5768
20 0 5 1 2 5 1 1 1 0 6

TABLE 10.—FISHER TEST FOR CONDITIONAL INDEPENDENCE

Firms n r z Firms n r z

(1, 2) 15 2.744 23.3234 (4, 5) 63 2.1910 21.4979
(2, 3) 9 2.5897 21.6588 (4, 14) 8 2.3197 20.7408
(2, 4) 67 2.5247 24.6624 (5, 6) 8 2.3365 20.7829
(2, 5) 76 2.1512 21.3018 (5, 8) 5 .5742 0.9246
(2, 6) 17 .1330 0.5006 (5, 11) 4 .8854 1.4002
(2, 7) 9 2.3010 20.7609 (5, 14) 10 2.6963 22.2756
(2, 8) 12 .0909 0.2734 (5, 20) 5 .3588 0.5310
(2, 14) 9 .4260 1.1145 (6, 7) 7 2.7850 22.1165
(2, 20) 5 .1304 0.1855 (6, 8) 12 .2327 0.7111
(3, 4) 4 2.6374 20.7538 (7, 8) 6 2.2711 20.4816
(3, 5) 8 .2439 0.5566 (14, 20) 6 .5768 1.1391
(3, 11) 7 2.2345 20.4779

TABLE 11.—EXCHANGEABILITY TEST

Firm Pair n m F-Statistics Upper Tail Area Firm Pair n m F-Statistics Upper Tail Area

(1, 2) 4 194 1.2188 .3033 (4, 5) 4 194 1.0799 .3669
(2, 3) 4 194 2.1080 .0803 (4, 14) 4 194 0.9756 .4214
(2, 4) 4 194 1.0187 .3982 (5, 6) 4 194 1.2014 .3107
(2, 5) 4 194 3.9254 .0041 (5, 8) 4 194 1.2209 .3024
(2, 6) 4 194 0.7856 .5354 (5, 11) 4 194 0.2643 .9007
(2, 7) 4 194 2.3709 .0530 (5, 14) 4 194 2.3162 .0578
(2, 8) 4 194 0.6211 .6478 (5, 20) 4 194 1.2151 .3048
(2, 14) 4 194 2.1288 .0777 (6, 7) 4 194 2.2728 .0619
(2, 20) 4 194 1.6844 .1541 (6, 8) 4 194 0.1123 .9781
(3, 4) 4 194 1.8656 .1170 (7, 8) 4 194 2.0983 .0815
(3, 5) 4 194 1.5582 .1860 (14, 20) 4 194 1.1022 .3560
(3, 11) 4 194 1.1202 .3474 All pooled 40 158 1.4506 .0474
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almost all the tests, we just fail to reject the null hypothesis
at 5% signi� cance level. In fact, we only reject the null
when we pool all the 11 main � rms and when we pool � rm
2 and � rm 5.

E. Discussion

The results of our tests of exchangeability and conditional
independence imply that there are � ve pairs of � rms that
exhibit bidding patterns that are not consistent with our
characterization of competitive bidding. The four pairs (� rm
1, � rm 2), (� rm 2, � rm 4), (� rm 5, � rm 14), and (� rm 6, � rm
7) fail the conditional independence test, and the pair (� rm
2, � rm 5) fails the exchangeability test. However, of these
pairs, only the pairs (� rm 2, � rm 4) and (� rm 2, � rm 5) bid
against each other more than a handful of times. The other
three pairs—(� rm 1, � rm 2), (� rm 5, � rm 14), and (� rm 6,
� rm 7)—bid against each other on average no more than
two or three times a year in the data set. Also, according to
industry participants, these � rms function in different sub-
markets and would have no reason to view each other as
principal competitors. Therefore, we take the view that the
� rms we should be most concerned about colluding are
(� rm 2, � rm 5) and (� rm 2, � rm 4).

Overall, bidding in this industry appears to conform to the
axioms A1–A5. This observation is important to policymak-
ers since there is a history of bid rigging in the seal coat
industry. Several of the largest � rms in the industry were
colluding in the early to mid-1980’s and paid damages for
bid rigging. Our analysis suggests that currently most bid-
ding behavior in the industry is consistent with our model of
competitive bidding.

We are aware of the following three limitations to our
approach. First, our tests for conditional independence and
exchangeability depend on the functional form for the
reduced-form bid functions. In our analysis, we used a
number of different functional forms for the reduced-form
bid function, and the results in the tests for conditional
independence and exchangeability were robust across these
alternative speci� cations. Firm i’s bid function depends on
the vector z, which has a large number of elements. Given
that we have only 138 auctions in our data set, we can never
be certain that our independence and exchangeability results
were not in� uenced by a poor choice of functional form.

Second, our results might be incorrect if there are omitted
variables. If there are elements of z that the � rms see but
that are not present in our data set, our regression coef� -
cients will be biased. In our analysis, we use � xed effects for
each contract and for the largest 11 � rms. Therefore, we
should be most worried about omitted variables that are
elements of z, but not collinear with the � rm or contract
� xed effects. This could happen, for instance, when there
are three � rms among which � rm 1 and � rm 2 always use a
quote from a particular subcontractor when computing their
cost estimates while � rm 3 does not. If this quote is publicly
observed, it will then induce positive correlation between

the residuals to the bid functions of � rms 1 and 2.20 A
similar critique could be made to our test of exchangeability.
Omitted cost variables could lead us to falsely conclude that
� rm 2 and � rm 5 fail to have an exchangeable distribution
of bids.21

Third, if a sophisticated cartel is operating in this market,
then, as we mentioned in section V, the cartel could satisfy
assumptions A1–A5 by generating phony bids in a clever
fashion. Therefore, from our tests, we shall not be able to
identify whether those � rms who passed the conditional
independence and exchangeability tests are competitive or
are smart colluders. In recent empirical papers that docu-
ment cartel behavior, such as Porter and Zona (1993, 1999)
and Pesendorfer (2000), the authors know from court
records and investigations the identity of the cartel. In all
these papers, both exchangeability and conditional indepen-
dence fail. To the best of our knowledge, there is no
documented case of cartel bidding where the cartel inten-
tionally submitted phony bids that were still both condition-
ally independent and exchangeable.

Therefore, although collusion is certainly one reason why
the tests of conditional independence and exchangeability
fail, it is certainly not the only reason. The restrictions of the
competitive bidding model are quite stringent and there are
a variety of reasons, other than collusion, for our failure to
accept the competitive model. Therefore, we shall interpret
� rm pairs (2, 4) and (2, 5) as merely a candidate set of
cartels.

In interpreting the results of tests of exchangeability and
conditional independence, it is important for the economist
to exercise judgement about whether the results are eco-
nomically signi� cant, not just statistically signi� cant. For
instance, if the residuals to the bid functions have a corre-
lation coef� cient of 0.8, we should be more concerned that
the competitive model is not working than if the coef� cient
is 0.2. As we discussed in section V C, the forms of
unobserved heterogeneity that we can allow for in our
reduced-form tests are quite limited and must enter in a

20 However, in our test for conditional independence, we found that the
residuals between � rms 2 and 4 are negatively correlated. If this is due to
omitted cost variables, then the omitted variables must induce negative
correlation between the costs of these two � rms. So far, we have not been
able to come up with a scenario that would generate this type of cost
shock. However, if � rm 2 and � rm 4 engaged in a scheme of submitting
phony bids, this might induce a negative correlation in the residuals, since
phony bidding implies that when � rm 2 bids high � rm 4 must bid low.

21 In deciding on the correct covariates, we worked closely with con-
tractors in the industry. In our � rst set of estimates, we did not include
CONi,t, and we noticed a large number of failures of conditional indepen-
dence and exchangeability. We then spoke with contractors and explained,
in layman’s terms, the pattern of correlation among the residuals. The
contractors immediately suggested that we had failed to control for the
importance of being familiar with state-level regulations, which suggested
constructing the variable CONi ,t. The tests for exchangeability and condi-
tional independence therefore helped us to learn about the correct cost
variables that need to be included in our regressions. The contractors that
we spoke with were not able to suggest an omitted variable that could
explain the observed bidding patterns of the pairs (� rm 2, � rm 5) and (� rm
2, � rm 4).
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linear fashion. If our model of unobserved heterogeneity is
not suf� ciently rich, then a naive interpretation of hypoth-
esis tests may lead to falsely accusing � rms of collusion.
The economist should then consult with industry experts to
make sure that these failures of the competitive model are
not due to his ignorance of the industry cost structure.

VII. Structural Econometric Models

In this section, we describe how to estimate and decide
between three alternative structural models of industry equi-
librium. We shall refer to the three models as M1, M2, and
M3. In the � rst model all � rms determine their bids com-
petitively as in the model outlined in sections II and III. In
the second model, � rms 2 and 4 collude in an ef� cient
manner. Before the bidding begins, � rm 2 and � rm 4
compute cost estimates c2,t and c4,t respectively for project
t. The cartel operates ef� ciently, so that only the � rm with
the lowest cost submits a bid. That is, the cost to the cartel
is cc,t 5 min {c2,t, c4,t}. The other cartel member either
refrains from bidding or submits a phantom bid. The cost
distribution for the cartel is the minimum of c2,t and c4,t.
This distribution has a probability density function f2(cc,tuz ,
u ) [1 2 F4(cc,tuz , u )] 1 f4(cc,tuz, u ) [1 2 F2(cc,tuz, u )].
In model M2, we can treat the cartel as a single � rm that has
cost cc,t. In computing expected utility, it is suf� cient for
noncartel � rms to concern themselves only with the low bid
among all of the cartel members. Therefore, as we men-
tioned in section IIB, ef� cient cartels are a special case of
our asymmetric auction model. The third model, M3, is
analogous to M2, with � rm 2 and � rm 5 being the cartel
members.

We believe that the assumption of an ef� cient cartel is
reasonable for the seal coat industry in the midwest. Ac-
cording to industry of� cials and insiders we have spoken
with, before the early 1980s, collusion occurred (and was
prosecuted) in the industry. Firms frequently made side
payments to each other. Many side payments were made
directly in cash, but some were through the use of falsi� ed
invoices. For instance, � rm A would rent equipment from
� rm B on paper. However, the equipment would not actually
be rented. The payment that � rm A made to � rm B for this
phantom equipment rental would serve as a side pay-
ment.22,23

Let g i(b; u, z, M) be the pdf of � rm i’s equilibrium bids,
and G i(b; u, z, M) be the cdf in the model M [ {M1, M2,

M3}. In the competitive model M1, each � rm makes a best
response to the distribution of the bids of all other � rms. In
the collusive model M2 or M3, each noncartel � rm needs to
make a best response only to the minimum bid of the cartel
and to the bids of all the other noncartel � rms.

If we assume that the � rms in the industry are pro� t-
maximizing, then it can be shown that, as in Guerre et al.
(2000), by rewriting (7), � rm i’s private cost c i

M in model M
must satisfy

c i
M 5 b 2

1

O
jÞi

g j~b; u, z, M!

1 2 Gj~b; u, z, M!

. (35)

This relationship must hold for models M 5 M1, M2, and
M3.

Let ĝ i(b; u, z, M) and Ĝ i(b; u, z, M) denote the
estimated values of g i(b; u, z, M) and G i(b; u, z, M). Let
c i,t

M,EST denote an estimate of the cost of � rm i in project t,
and let cM,EST denote the estimated vector of the ci,t

M,EST.
Following Guerre et al. (2000), we estimate � rm i’s private
cost by evaluating equation (35) using ĝ i(b; u, z, M) and
Ĝ i(b; u, z, M):

c i,t
M,EST 5 b 2

1

O
jÞi

ĝj~b; u, z, M!

1 2 Ĝj~b; u, z, M!

. (36)

In our problem, the distribution g i(b; u, z, M) depends
on a large number of parameters and covariates. Obviously,
kernel estimation of g i(b; u, z , M) is not practical in our
application. We begin by estimating equations (28) and (29).
As we mentioned previously, in the case of M2 we estimate
the cartel’s bid as the minimum of the bids of � rm 2 and
� rm 4, and in the case of M3, the cartel’s bid is the
minimum of the bids of � rm 2 and � rm 5. In all three
models, we shall assume that the distribution of � rm i’s bid
satis� es

b i,t 5 ~OLS fitted value of bi,t! 1 ei,t,

where e i,t is modeled as a mixture of four normal distribu-
tions. We use the mixture-of-normals speci� cation because
it allows us to � exibly model the distribution of b i,t and to
compute ĝ i(b; u, z , M) and Ĝ i(b; u, z, M) in a simple
manner. To estimate the mixture of normal distributions we
used maximum likelihood estimation. The estimated distri-
butions of the residuals in M1, M2, and M3 appear to
closely match the empirical distributions of the residuals.

In general, the vector of costs cM,EST cannot be estimated
exactly. The econometrician will have uncertainty about the
value of cM,EST. A joint density of cM,EST can be derived
using standard econometric methods, and we shall refer to
this density as p ĉ(cM,EST).

22 There are many possible models of collusion. For instance, the
economist could include the fear of detection in his model of collusion.
Ultimately, the choice of which model of collusion is appropriate must be
based on an analysis of conditions within a particular industry.

23 Another assumption of the model is that collusion is common knowl-
edge among industry participants. We believe that this is a reasonable
assumption in the seal coat industry and many other industries. Some
contractors we spoke with claimed that they entered the industry in the
early 1980s because they knew it was collusive and hence pro� table for
them to enter. Similarly, in the New York construction industry as
described by Porter and Zona (1993), the industry participants seemed to
be quite aware of the collusion that was taking place.
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VIII. Testing For Collusion: A Bayesian Framework

In the previous section, we demonstrated how to estimate
the joint distribution of the latent costs p ĉ(cM,EST) for three
alternative models of industry equilibrium. In this section,
we will suggest a Bayesian framework for computing a
posterior probability for each of our three models.

Each of our three models of industry equilibrium implies
a different distribution over structural cost parameters. Let
pc(ci,tuzt, u i, M) for M [ {M1, M2, M3} denote the
probability density function for the cost distribution of � rm
i in auction t conditional on covariate zt, parameters u i, and
model M. For instance, in the collusive model M2, the cost
distribution for the cartel is f2(cc,tuz, u ) [1 2 F4(cc,tuz , u )] 1
f4(cc,tuz, u ) [1 2 F2(cc,tuz, u )]. In model M3, the proba-
bility density function of the cost distribution of the cartel is
f2(cc,tuz, u ) [1 2 F5(cc,tuz, u )] 1 f5(cc,tuz, u ) [1 2
F2(cc,tuz , u )]. Using the fact that bids are independent
across auctions, it is straightforward to compute p(cM,ESTuzt,
u, M), the probability density function for all the costs in all
the auctions:

pcM,EST~cM,ESTuz, u, M! 5 P
t51

T P
i

pc~ci,tuzt, ui, M!. (37)

In Bayesian statistics, it is necessary to specify a prior
distribution over structural parameters. As we shall explain
below, we elicit the prior distribution of the parameters,
pu(u ), from industry experts. Given the likelihood function
for each model (37), we de� ne the marginalized likelihood
of model M as follows:

MLM 5 ** pcM ,EST~cM,ESTuz, M, u!pu~u!pĉ~cT
M,EST! (38)

That is, the marginalized likelihood is the expected value of
the likelihood function after marginalizing out the distribu-
tion of u and the distribution of cM,EST.

In a Bayesian framework, we must specify a prior prob-
ability for each model. Let pM(Mi) denote the prior belief
(probability) that M 5 Mi, and let MLi denote the value of
likelihood function conditional on M 5 M i. Then according
to Bayes’s theorem, we can compute the posterior probabil-
ity of M 5 M i, which we denote by p*(M i), as follows:

p*~M i! 5
pM~Mi! z ML i

pM~M1! z ML1 1 pM~M2! z ML2 1 pM~M3! z ML3

(39)

In the following section, we describe how we elicit the prior
distribution over structural cost parameters p(u ) from in-
dustry experts. Given this distribution and a (� exible) func-
tional form for the likelihood pcM,EST(cM,ESTuz, u, M), to
compute the posterior probability of each model, we only
need to evaluate the integral (38) and apply Bayes’s theorem
as in equation (39).

A. Eliciting Prior Beliefs

In this section, we specify a � exible functional form for
the distribution of pcM,EST(c i,tuzt, u i, M), and we demonstrate
how we elicit a prior distribution of beliefs pu(u ) from
industry experts. We will model the cost (normalized by the
estimate) as follows:

c i,t

ESTt
5

c# i,t~u, zt!

ESTt
1 hit. (40)

In equation (40), the normalized cost is a function of a � tted
value c# i,t(u, zt) which depends on the structural parameters
u, a set of auction t covariates zt, and an idiosyncratic error
term h it. In order to model the error distribution � exibly, we
allow it to be a mixture of four normal distributions, that is,

h it , p1N~m1, s1! 1 p2N~m2, s2! 1 p3N~m3, s3!

1 p4N~m4, s4!.
(41)

What remains to be speci� ed is how to use the expert
information to compute c# i,t(u, zt), the � tted value of the
cost, and how to determine the vectors of parameters p 5
(p1, p2, p3, p4), m 5 (m1, m2, m3, m4), and s 5 (s1, s2, s3,
s4).

To construct our prior distribution pu, we elicited the
views of two experienced bidders in the market on the
distribution of markups. Using this prior over markups, we
induce a prior over the structural cost parameters u. We
believe that these experts (both of which are among our 11
large � rms) should have fairly reliable information about
markups in the industry. At state DOT bid lettings, contrac-
tors typically congregate at a single hotel. The Associated
General Contractors and the DOT circulate a list of plan
holders for each projects, that is, the set of � rms that have
asked to receive the contract and the bidding documents
from the DOT. Also, a list of contractors’ room numbers is
circulated. The materials suppliers and the subcontractors
will then either telephone the contractors or knock on the
contractors’ doors and deliver quotes to contractors who are
plan holders for a particular project. As a result, the con-
tractors have a fairly good idea about their own costs and
the costs of their competitors for materials. Also, labor costs
and bonding costs are fairly well known throughout the
industry, because contractors purchase these services in the
same market.

Another factor that allows contractors to learn about their
competitors’ markups is the public reading of bids. Shortly
after the deadline for submitting bids, all of the bids are
posted on DOT Web pages, and the contractors can receive
faxed copies of the bids. Contractors typically study the unit
prices bid by competing contractors with great interest.
There are a large number of small, fringe � rms in the
construction industry, because entry costs are quite low.
Contractors who are unable to learn about costs and manage
their own costs effectively will simply not survive in this
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market. As a result, we believe that successful bidders will
have very useful information about the overall distribution
of markups.24

Let m i,t be the markup of player i in auction t, and let
pm(m i,t) be the prior density function. After extensive dis-
cussions with the experts, we elicited their beliefs about the
25th, 50th, 75th, and 99th percentiles of the distribution of
markups of auctions in our sample. The views of the experts
were quite close, and we average them in the equations
below:

25th percentile 5 3%,

50th percentile 5 5%,
(42)

75th percentile 5 7%,

99th percentile 5 15%.

We assume that markups were independently and identi-
cally distributed; then (42) implies the following distribu-
tion:

pm~m i,t! 5 5
8.3333 if 0 , mi,t , 0.03,

12.5 if 0.03 , mi,t , 0.05,
12.5 if 0.05 , mi,t , 0.07,
3.125 if 0.07 , mi,t , 0.15.

(43)

Given the prior over markups, we now describe how to
induce a prior distribution over u, the structural cost param-
eters. If the markup on project t is m i,t and the observed bid
in project t is b i,t, it follows that the cost c i,t must satisfy

c i,t 5 ~1 2 m i,t!b i,t. (44)

Next, given the probability density function pm(mi,t) in
equation (43), draw a random vector of markups mT for all
projects t 5 1, . . . , T and all bidders i who bid on the t th

project. Then using equation (44) we can compute a set of
latent costs c i,t. We then estimate the following equations
using OLS to � nd a � tted value c# i,t(u , z t) for all i and t:

c i,t

ESTt
5 b0,i 1 b1,i LDISTi,t 1 b2,i CAPi,t 1 b3,i LMDISTi,t

1b4 CONi,t 1 eit,
(45)

c i,t

ESTt
5 a0 1 b1 LDISTi,t 1 a2 CAPi,t 1 a3 LMDISTi,t

1a4 CONi,t 1 eit.
(46)

We include � rm- and auction-speci� c � xed effects in order
to capture unobserved heterogeneity across projects and
� rms. Just as in our estimation of the bid functions in
equations (28) and (29), we use equation (45) for the main
� rms, allowing the coef� cients to be � rm-speci� c, and
equation (46) for the nonmain � rms. From equations (45)
and (46) we can also � nd an estimated value ŝ for the
standard deviation of e it. We must next compute the value
of p 5 (p1, p2, p3, p4), m 5 (m1, m2, m3, m4), and s 5 (s1,
s2, s3, s4). We shall assume that the parameters of the
mixture of normals are drawn uniformly from all of those
distributions satisfying

p1m1 1 p2m2 1 p3m3 1 p4m4 5 0,

p1s1
2 1 p2s2

2 1 p3s3
2 1 p4s4

2 5 ŝ2,

p1 1 p2 1 p3 1 p4 5 1, (47)

20.2 # mi # 0.2,

0.01 # s i # 0.2.

We assume that 20.2 # m i # 0.2 and 0.01 # s # 0.2, so
that the supports of the mi and s i are compact. We believe
that this assumption is appropriate because we have found
that the � tted residuals from equations (45) and (46) fall
outside the interval (20.2, 0.2) very infrequently. We also
found that ŝ is seldom above 0.2 or below 0.01; therefore
the restriction that 0.01 # s i # 0.2 is of small conse-
quence.

To summarize, given a random vector of markups mT, we
compute a vector of � tted costs c# i,t using equations (45) and
(46), and we draw the values of p 5 (p1, p2, p3, p4), m 5
(m1, m2, m3, m4), and s 5 (s1, s2, s3, s4) using equation
(47). The likelihood for a vector of costs for the competitive
model M1 conditional on u is then

pcM,ESTS ci,t

ESTt
Uz, u, M1D 5 p1NSci,t 2 c# i,t~u, zt!

ESTt
, m1, s1D

1 p2NSci,t 2 c# i,t~u, zt!

ESTt
, m2, s2D

1 p3NSci,t 2 c# i,t~u, zt!

ESTt
, m3, s3D

1 p4NSci,t 2 c# i,t~u, zt!

ESTt
, m4, s4D .

(48)

24 Other sources that might have information about markups are con-
sulting engineering � rms and bonding companies. Consulting engineers
prepare cost estimates for projects and need to keep abreast of current
market price for labor and major inputs in order to construct cost estimates
reliably. Bonding companies are liable for the completion of the project if
the contractor goes bankrupt. The bonding companies, as a result, fre-
quently ask contractors to turn in daily pro� t-and-loss statements for each
project that they bond and therefore have fairly detailed knowledge of
contractor pro� ts in the industry. (If a contractor is found to be very
dishonest with a bonding company, it will be unlikely that he will be able
to get bonds in the future and hence be able to bid for public contracts.)
We chose to use information elicited from the contractors because we
thought that they were probably the most reliable among the three sources.
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The likelihood for the vector of costs from models M2 and
M3 is computed similarly, except we assume that the cost
for the cartel is the order statistic of its members’ costs.

B. Putting It All Together

We now summarize all of the steps needed to compute a
simulated value of the likelihood function for model M:

1. Draw a random vector cT
M,EST over the distribution of

cost estimates from the distribution p ĉ(cT
M,EST) that

was estimated in section VII.
2. Draw a random vector mT from the distribution (43).
3. Given mT, compute � tted values c# i,t for all auctions t

and all � rms i.
4. Draw the parameters of the mixture of normal distri-

bution p, m, s according to the distribution in equa-
tion (47).

5. Compute the value of the likelihood function, pcM,EST

(ci,t/ESTtuz , u, M1) as in equation (48).

Using standard simulation methods, it is possible to evalu-
ate (38).

Using equation (39), we can compute the posterior beliefs
for the three competing models. The posterior beliefs can be
useful for decision-making. For instance, these beliefs will
be used to determine whether to investigate and prosecute
the suspected cartel. Suppose that the antitrust authority
possesses a loss function u(a, M), where M [ {M1, M2,
M3}, and a is the action the authority must take, such as to
prosecute or not. The authority’s expected loss for an action
a, conditional on the data, is

p*~M1!u~a, M1! 1 p*~M2!u~a, M2!

1 p*~M3!u~a , M3!.
(49)

Given the posterior probabilities over models M1, M2, and
M3, it is then straightforward for the antitrust of� cial to
choose a loss-minimizing action.

A difference between using equation (49) and classical
methods for model selection is that equation (39) explicitly
takes into account the preferences of the decision-maker.
For instance, an antitrust authority may only want to inves-
tigate when the posterior probability of collusion is quite
large.

IX. Results

Using equation (36), we can compute an implied distri-
bution of markups under the three alternative models, which
we summarize in table 12. It is clear from table 12 that
markups are consistently higher under the collusive models
M2 and M3. The difference between these models becomes
particularly striking near the 80th and 90th percentiles. In
model M2, 20% of the projects have a markup in excess of
15%, and 10% have markups in excess of 33%. In model
M3, 20% of the projects have markups in excess of 17%,
and 10% have markups in excess of 58%. Models M2 and
M3 generate a much higher frequency of markups greater
than 15% than the prior beliefs of our industry experts.

Another difference between models M1, M2, and M3 is
the percentages of costs that are found to be negative, which
we summarize in Table 13. This occurs when the right-hand
side of (36) is negative at the estimated distribution of bids.
In the seal coat industry, contractors frequently read the plan
and speci� cation strategically. They search for items where
the estimated quantities will not agree with the actual quanti-
ties. When this occurs, the � nal compensation to the contractor
will exceed the total bid, as described in section VI A. If
contractors anticipate large adjustments to the � nal compen-
sation, either from discrepancies in the estimate or actual
quantities or from change orders, they will shade their bid
downwards. This behavior could account for low bids that
cannot be rationalized by positive costs. See Athey and Levin
(2001) for a description of similar behavior in timber auctions.

We believe that it is inappropriate for us to censor the
observations in which costs are negative. We interpret the
fact that model M3 is unable to assign positive costs to 7%
of the bids as evidence in favor of model M1 over M3.
However, we do need to modify our likelihood function
slightly to allow for negative costs. In computing the mar-
ginalized likelihoods, we modi� ed the model of the previ-
ous section so that, with 95% probability, the likelihood
function was constructed as in section VII. With 5% prob-
ability, however, we assume that c i,t/ESTt is uniformly dis-
tributed between 0.0 and 210. This simple modi� cation of
the likelihood function allows costs to be negative.

Using the procedure described in the previous section, we
compute the marginalized likelihoods associated with each
of the three competing models. These computations were
done using approximately 5 hours of CPU time on a Sun Ul-
tra 60 workstation. We summarize our results in table 14.25

As we can see from table 14, the competitive model M1

25 All con� dence intervals are based on 500,000 simulated values of the
likelihood function.

TABLE 12.—DISTRIBUTION OF MARKUPS UNDER ALTERNATIVE MODELS

Percentile M1 M2 M3

10 0.01229 0.01273 0.0114
20 0.01597 0.01818 0.0182
30 0.02077 0.02422 0.0256
40 0.02536 0.03201 0.0343
50 0.03329 0.04126 0.0447
60 0.04227 0.05434 0.0584
70 0.05692 0.0754 0.0930
80 0.1000 0.1621 0.1756
90 0.2381 0.3354 0.5826

TABLE 13.—PERCENTAGE OF COST ESTIMATES FOUND TO BE NEGATIVE

Model Percentage Negative

M1 3%
M2 5%
M3 7%
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strongly dominates the other two alternatives. This is be-
cause, as we saw in tables 12 and 13, M1 agrees more
closely with the beliefs of our industry experts about mark-
ups in the industry. A large fraction of the markups gener-
ated in the collusive models are implausible a priori, given
the beliefs of our industry experts. Also, the collusive
models generate a much larger fraction of costs that are
negative. Since the marginalized likelihood of the compet-
itive model is much larger than those of the collusive
models, we can be con� dent that our results will be robust
to small perturbations of our prior distribution and to other
aspects of our speci� cation.

As an aside, we note that it is straightforward to simulate
the posterior distribution of the structural parameters using
Gibbs sampling. If we impose the prior beliefs elicited from
our industry experts, our speci� cation is just a linear model
with a � exible error term. This is an alternative to the
methods proposed by Guerre et al. (2000). In small samples,
such as in our data set, there are often not enough data to
implement nonparametric procedures. We would expect a
Bayesian approach to have much better small-sample prop-
erties, because it utilizes information from industry experts
and does not depend on asymptotic approximations.26

X. Conclusion

Most current research in industrial organization focuses
on a single industry. Economists often speak informally to
industry experts and read publications written by them in
the course of doing research. Absorbing the views of indus-
try experts is viewed by most empirical industrial organi-
zation economists as an essential step in conducting thor-
ough research.

However, almost no formal use is made of expert opinion
in estimation. A contribution of this paper is to make formal
use of the prior beliefs of industry experts in order to decide
between nonnested models of industry equilibrium. We
believe that using the prior beliefs of our industry experts is
a powerful tool that is potentially useful in many circum-
stances. In fact, our view is that if an economist’s results
strongly disagree with the prior beliefs of several industry

experts, it would be wise for the economist to double-check
her work. In the seal coat industry, there are nearly 100
� rms who bid at some point in our data set. However, only
seven of the � rms have a market share that exceeds 5%. In
such a competitive environment, it is hard to understand
how a � rm can have wildly inaccurate views about markups
and still manage to be one of the seven leading � rms.

The views of industry experts are particularly useful
when the economist only has a small sample. Economists
are often forced to make decisions between alternative
models or to make predictions with only a handful of data
points. We believe that in many cases, using the a priori
beliefs of experts will result in improved small-sample
properties. It is possible to extend the approach we have
developed to other problems in industrial organization. If it
is possible to elicit a prior distribution over parameters or
induce a prior distribution over parameters (in our case by
using beliefs about markups), the tools of Bayesian statistics
can be used to form a posterior distribution over parameters
that take into account the beliefs of industry experts.

To summarize, in this research we have analyzed a model
that allows for asymmetric bidders and nontrivial dynamics,
which are important strategic considerations in many pro-
curements. We stated a set of conditions that are both
necessary and suf� cient for a distribution of bids to arise
from competitive bidding in the asymmetric auction model.
Two of these conditions, conditional independence and
exchangeability, can be tested in a straightforward fashion.
We also argued that deciding between competitive and
collusive bidding can be naturally formulated as a statistical
decision problem. We developed techniques for structurally
estimating asymmetric auction models and for computing
the posterior probability of competitive and collusive mod-
els. Although no empirical techniques for detecting collu-
sion are likely to be � awless, we believe that the tests we
propose, taken together, can be a useful � rst step in detect-
ing suspicious bidding patterns.
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APPENDIX

PROOF OF THEOREM 5. To construct the distribution of costs that ratio-
nalizes the distribution of bids, note that by A4 the function j i(b, z) is
strictly increasing, and thus we can de� ne the distribution of costs F(cuzi)
as follows:

F~c uzi! 5 Pr~ji~b, z! # c! 5 Gi~ji
21~c, z!; z!. (50)

By A2, A5, and (15), the cumulative distribution functions F(cuz i) all have
the same support. By the existence theorem and uniqueness theorem of the
previous section, a unique equilibrium exists when � rms i 5 1, . . . , N
have costs independently distributed according to the construction in
equation (50). Let fi(b, z) denote the equilibrium bidding strategies. By
our uniqueness theorem there is one and only one set of inverse bid
functions that satis� es the differential equations

f i~b, z! 5 b 2
1

O
jÞi

f~f j~b; z! uz j!f9j~b; z!

1 2 F~f j~b; z!uz j!

(51)

and the boundary conditions fi(b# , z) 5 c# , fi(bI , z) 5 cI . By our
construction (50) it follows that

F~j i~b, z!uz i! 5 G i~b; z!,
(52)

f~j i~b, z!uzi! 5 gi~b; z!j9i~b, z!.

Using (52), it is easily veri� ed that fi(b, z) 5 ji(b, z) solves (51). By
A5, ji(b, z) also satis� es the boundary conditions. This shows that ji( z , z)
is the unique equilibrium strategy when the distributions of the bidders’
private costs are given by F( z uz i) as constructed in (50). In other words,
the constructed cost distributions (50) give rise to the given distributions
of bids in our model with asymmetric bidders.

Finally, such a latent cost distribution must be unique, because it must
satisfy (50) where j i( z , z) is the unique equilibrium strategy. Q.E.D.
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