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We study how to orchestrate information acquisition in an envi-
ronment where bidders endowed with original estimates (“types”)
about their private values can acquire further information by in-
curring a cost. We consider both single-round and fully sequen-
tial shortlisting rules. The optimal single-round shortlisting rule
admits the set of most efficient bidders that maximizes expected
virtual surplus adjusted by the second-stage signal and informa-
tion acquisition cost. When shortlisting is fully sequential, at each
round, the most efficient remaining bidder is admitted provided
that her conditional expected contribution to the virtual surplus is
positive. (JEL D44, D80, D82)

In high-valued asset sales, buyers often need to go through a due diligence
process before developing final bids. Due diligence is usually a process to update
or acquire information about the value of the asset for sale or to prepare for the
bidding process (e.g., to establish qualifications to bid). This process is costly
and is usually modeled as entry as it is closely monitored by the auctioneer. For
a sale of an asset worth billions of dollars, the entry cost can run from tens of
thousands to millions of dollars.1

Given the substantial entry cost, how to coordinate agents’ costly information
acquisition becomes one central issue in optimal mechanism design. The impor-
tance of coordinating bidders’ entry for the purpose of enhancing seller revenue
as well as total surplus has been revealed as early as in Levin and Smith (1994),
who find that seller revenue and total surplus can decrease with the number of
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potential bidders when bidder entry is symmetric. Clearly, the success of a sale
very much depends on whether the adopted mechanism attracts the most qual-
ified bidders conducting the due diligence process and participating in the final
sale. Mainly motivated by the need for entry screening and coordination, vari-
ants of two-stage selling mechanisms have emerged in the real world. A leading
example of the two-stage auction procedure is known as indicative bidding, which
is commonly used in sales of complicated business assets with very high values.
It works as follows: the auctioneer actively markets the assets to a large group
of potentially interested buyers. The potential buyers are then asked to submit
non-binding bids, based on which a final set of bidders is shortlisted to advance
to the second stage. The auctioneer then communicates only with these final
bidders, providing them with extensive access to information about the assets,
and finally runs the auction (typically using binding sealed bids). The use of this
two-stage auction procedure is quite widespread. For example, in response to the
restructuring of the electric power industry in the U.S. – which was designed to
separate power generation from transmission and distribution – billions of dol-
lars of electrical generating assets were divested through this two-stage auction
procedure over the last two decades.2 This two-stage auction procedure is also
commonly used in privatization, takeover, and merger and acquisition contests.3

Finally, it is commonly used in the institutional real estate market, which has an
annual sales volume in the order of $60 to $100 billion.4

Ye (2007) studies this two-stage auctions based on the assumption of costly
information acquisition.5 Ye’s analysis suggests that the current design of indica-
tive bidding cannot reliably select the most qualified bidders for the final sale, as
there does not exist a symmetric, strictly increasing equilibrium bid function in
the indicative bidding stage. In a more recent paper, by restricting indicative bids
to a finite discrete domain, Quint and Hendricks (2018) show that a symmetric
equilibrium exists in weakly-monotone strategies. But again, the highest-value
bidders are not always selected, as bidder types “pool” over a finite number of
bids. Without safely selecting the most qualified bidders for the final sale, the
mechanism is unlikely optimal in maximizing expected revenue. What the opti-
mal mechanism is in this two-stage auction environment remains an open question
in the literature, and this paper seeks to provide an answer.

We model the situation as follows. Before entry, each potential bidder is en-
dowed with a private signal, αi, which can be regarded as her pre-entry “type.”
After entry (by incurring a common entry cost, c), each bidder i fully observes her
(private) value vi, which is positively correlated with her pre-entry type. Given

2A list of industry examples using this two-stage auction design can be found in Ye (2007).
3Leading examples include the privatization of the Italian Oil and Energy Corporation (ENI), the

acquisition of Ireland’s largest cable television provider Cablelink Limited, and the takeover contest for
South Korea’s second largest conglomerate Daewoo Motors.

4See Foley (2003) for a detailed account.
5Boone and Goeree (2009) provide an analysis of pre-qualifying auctions, which are similar to indica-

tive bidding.
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costly entry, it is not optimal for all potential bidders to be included in the fi-
nal sale. As such, a general mechanism must consist of an entry-right allocation
stage to shortlist bidders into the sale and the final stage to allocate the asset.
The entry-right allocation stage may potentially consist of multiple rounds, de-
pending on whether the shortlisting is conducted in one single round or multiple
rounds. The shortlisting rule in a subsequent stage would depend on all infor-
mation revealed in previous stages. Despite the potential complication due to
both sequential screening and endogenous information acquisition, we are able to
characterize the optimal revenue-maximizing selling mechanism with sequential
information acquisition. Our analysis benefits greatly from recent developments in
the literature of sequential screening (e.g., Courty and Li, 2000; Esö and Szentes,
2007; Pavan, Segal, and Toikka, 2014; and Bergemann and Wambach, 2015).6 In
particular, our model resembles that of Esö and Szentes and we follow their main
approaches including the orthogonalization technique in characterizing optimal
dynamic mechanisms. Our paper differs from theirs in that buyer information
acquisition is costly and endogenous in our model, and our analysis focuses on
identifying the shortlisting mechanism that optimally orchestrates information
acquisition of buyers.

Given the widespread use of two-stage auctions, we start our analysis with
the case where shortlisting is completed simultaneously in one single round. In
effect, we restrict our search of optimal mechanisms to the class of two-stage
mechanisms, with the first stage allocating entry rights (shortlisting) and the
second stage allocating the asset. We show that the optimal allocation rule of
the asset requires that the asset be allocated to the bidder with the highest
virtual value adjusted by the second-stage signal, same finding as identified by
Esö and Szentes. Our analysis thus suggests that the optimality of the generalized
Myerson optimal allocation rule (adjusted by second-round signals) is robust to
the dynamic auction setting with costly and endogenous entry. The first-stage
shortlisting mechanism is new to the original Esö-Szentes framework, and we show
that the optimal entry right allocation rule is to shortlist the set of bidders that
gives rise to the maximum expected virtual surplus (adjusted by both the second-
stage signal and entry cost). Alternatively, given the regularity assumption and
that buyers are ex ante symmetric in our model, the optimal entry rule is to
admit the bidders in descending order of their pre-entry “types”, the highest
type first, the second highest type second, etc., provided that their marginal
contribution to the expected virtual surplus is positive. Therefore, the optimal
number of shortlisted bidders typically depends on the reported type profile from
the potential bidders, which is endogenously determined. We then show that
specific payment rules can be constructed in each stage to implement both optimal
entry and allocation rules truthfully.

In Section III, we relax the restriction of single-round shortlisting and consider

6Early contributions on dynamic contracting with a single agent are due to Baron and Besanko (1984)
and Riordan and Sappington (1987).
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the case with potentially multiple-round sequential shortlisting. The seller may
now select a single bidder or any subset of bidders at each round to go through
due diligence and submit final bids, and if the seller is not satisfied with any offer,
he can go back to the unselected bidders and invite another bidder or another
subset of bidders to go through due diligence and submit final bids. This process
can then repeat itself, until the seller finds a satisfactory offer. Such mechanisms
can be more complicated. First of all, the seller will need to determine the order
of bidders to invite for conducting due diligence (i.e., who should be invited first
and who second, etc.). Given that bidders are heterogenous before entry, it is
desirable to make the optimal “ordering” or “sequencing” of entry contingent on
their pre-entry types. Our main results with such a general analysis are as follows.
First, the optimal final good allocation rule is the same as characterized previ-
ously, that is, the object is allocated to the shortlisted bidder with the highest
virtual value w(αi, si), provided that it is positive. The optimal shortlisting rule
should be modified, however, in a way that at each round, at most one bidder (the
one with the highest pre-entry type among all the bidders outside the auction) is
shortlisted, and a new bidder is shortlisted at a given round if and only if condi-
tional on all the information revealed up to this round, her expected contribution
to the virtual surplus is positive. The bidders are approached sequentially in the
order of their first stage types, starting from the highest type.

Other than the connection with sequential screening and dynamic auctions
mentioned above, our paper is related to the literature on auctions and mecha-
nism design with information acquisition.7 Papers in this literature either study
bidders’ incentives to acquire information in different specific auction formats or
consider single-stage optimal mechanism design. Our paper differs from theirs in
that we follow the normative approach to identify optimal dynamic mechanisms
with information acquisition. Our paper is also closely related to Krähmer and
Strausz (2011), who study procurement contracts with pre-project information
acquisition, and Halac, Kartik, and Liu (2016), who consider optimal dynamic
contracts with experimentation. Unlike in our model, information acquisition
in their models is unobservable and thus not contractible, so they have to deal
with both adverse selection and moral hazard in their analysis. In our model,
since information acquisition is modeled as entry, moral hazard is absent from
our analysis. Our paper differs from theirs also in that we work with multiple
agents/bidders, while there is only one agent in their models.

To the extent that information acquisition is modeled as entry, our paper is
closely related to the growing literature on auctions with costly entry.8 This
literature can be summarized into three branches. In the first branch, bidders
are assumed to possess no private information before entry and they learn their
private values or signals only after entry.9 In the second branch, it is assumed

7See, for example, Persico (2000), Compte and Jehiel (2001), Shi (2012), Rezende (2013), Li (2019),
Gershkov, Moldovanu and Strack (2018), and Zhang (2018).

8See Bergemann and Välimäki (2006) for a thoughtful survey of this literature.
9See, for example, McAfee and McMillan (1987), Engelbrecht-Wiggans (1993), Tan (1992), Levin and
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that bidders are endowed with private information about their values but have
to incur entry costs to participate in an auction.10 Finally, in the third branch,
bidders are endowed with some private information before entry, and are able to
acquire additional private information after entry (Ye, 2007; Quint and Hendricks,
2018). The framework in this current paper nests all the models mentioned above
as special cases. Our paper thus characterizes optimal mechanisms for a very
general framework in the literature on auctions with costly entry.

Our paper is related to a literature on search, which is originally inspired by
Weitzman (1979) who studies the so-called Pandora’s problem of infinite sequen-
tial search with recall and establishes the well-known Pandora rule. Crémer,
Spiegel, and Zheng (2009) extends this model to an auction context. In the envi-
ronment where bidders are not endowed with pre-entry private information, they
find that an ex post efficient auction with sequential entry is both ex ante efficient
and revenue maximizing. In our setting, bidders are endowed with both pre-entry
and post-entry private information, which dramatically complicates the analysis
due to the additional incentive compatibility conditions.11

Our research is also related to a small literature on auctions of entry rights.
Fullerton and McAfee (1999) introduce auctions for entry rights to shortlist con-
testants for a final tournament. Ye (2007) extends their approach to the setting
of two-stage auctions described above. Our current approach differs from theirs
in the way the set of finalists is determined: while in their approach the number
of finalists to be selected is fixed and pre-announced, in our entry right allocation
mechanism the selection of shortlisted bidders is contingent on the reported bid
profile, making the number of finalists endogenously determined. For this reason
the entry right allocation mechanism examined in this research is more general.12

In another relevant paper, Lu and Ye (2013) explore optimal two-stage mech-
anisms in an environment where bidders are characterized by heterogenous and
private information acquisition costs before entry. In that setting the pre-entry
“type” is the entry cost, which is neither correlated to nor part of the value of
the asset for sale. As such, there is no benefit to make the second-stage mecha-
nism contingent on the reports of the pre-entry types, resulting in a much simpler
characterization of optimal mechanisms. In our current setting, the optimal al-
location and payment rules in a subsequent stage depend on report(s) from the
previous stage(s). Therefore the characterization of optimal mechanisms is more
demanding, and the implementation of the optimal mechanism is also more so-
phisticated.

The rest of the paper is organized as follows. Section I presents the model.

Smith (1994), Ye (2004), and Jehiel and Lamy (2015).
10See, for example, Samuelson (1985), Stegeman (1996), Campbell (1998), Menezes and Monteiro

(2000), Tan and Yilankaya (2006), Cao and Tian (2009), and Lu (2009).
11Other related papers in the search literature include, e.g., Szech (2011), Lee and Li (2018), Olszewski

and Weber (2015), Doval (2018), and Kleiberg, Waggoner, and Weyl (2018).
12In fact, it resembles multi-unit auctions with endogenously determined supply (see, e.g., McAdams,

2007).
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Section II characterizes the optimal two-stage mechanism when shortlisting is
restricted to one single round. Section III characterizes the optimal multi-stage
mechanisms when multi-stage sequential shortlisting is allowed. Section IV ex-
tends our analysis to allow sale in the first stage and provide some numerical
examples. Section V concludes.

I. The Model

A single indivisible asset is offered for sale to N potentially interested buyers.
The seller and bidders are assumed to be risk neutral. The seller’s own valua-
tion for the asset is normalized to 0. Buyer i’s true valuation for the asset is vi.
However, initially she only observes a noisy signal of it, αi, which is her private
information and can be interpreted as her original “type.” After incurring a com-
mon information acquisition cost (or entry cost) of c(> 0), bidder i fully observes
her ex post value, vi. The pairs (αi, vi) are assumed to be independent across
i.13

Ex ante, αi follows distribution F (·) with its associated density f(·) on support
[α, α]. We assume that f is positive on the interval [α, α] and satisfies the mono-
tone hazard rate condition; that is, f/ (1− F ) is weakly increasing (the regularity
assumption). Given αi, the ex post value vi follows distribution Hαi ≡ H(·|αi)
with its density hαi ≡ h(·|αi) over support [v(αi), v(αi)] ⊂ R.14 The values N
and c and distributions F and Hαi are all common knowledge. We assume Hαi(·)
decreases with αi, i.e. Hαi(·) first order dominates Hα′i

(·) if αi > α′i.

Following the signal orthogonalization technique introduced by Esö and Szentes
(2007),15 there exist functions u and si, such that u(αi, si) ≡ vi, where u is strictly
increasing in both arguments, and si is independent of αi. In particular, si can
be constructed as follows:

si = H(vi|αi),
which is the percentile of the value realization to bidder i.16 Thus given type αi
and signal si, the valuation can be computed as

vi = H−1
αi (si) ≡ u(αi, si).

We will denote the c.d.f. of si by Gi.
17 Note u(αi, si) increases in both αi and si

in our model.

13As in Esö and Szentes (2007) and Pavan, Segal, and Toikka (2014), this assumption rules out the
possibility of full rent extraction (Crémer and McLean, 1988).

14The support of vi can depend on the first-stage signal αi; that is vi may have a moving support.
15The use of this technique has become standard in the literature (see, e.g., Pavan, Segal, and Toikka,

2014, and Bergemann and Wambach, 2015).
16It is easily seen that si is uniformly distributed over [0, 1], and is hence statistically independent of

the initial information αi.
17Gi could be assumed to be uniform on [0, 1]. More generally, all si’s satisfying u(αi, si) ≡ vi are

positive monotonic transformation of each other (Lemma 1 in Esö and Szentes).
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We maintain the following assumptions that are adopted in Esö and Szentes
(2007):

Assumption 1. (∂Hα(v)/∂α) /hα(v) is increasing in v.

Assumption 2. (∂Hα(v)/∂α) /hα(v) is increasing in α.

Esö and Szentes show that Assumption 1 is equivalent to u12 ≤ 0 and As-
sumption 2 is equivalent to u11/u1 ≤ u12/u2. Assumption 1 thus states that the
marginal impact of the new information on buyer i’s value is decreasing in her
type αi. Assumption 2 implies that an increase in αi, holding u(αi, si) constant,
weakly decreases the marginal value of αi. Assumptions 1 and 2 can thus be
interpreted as a kind of substitutability in buyer i’s posterior valuation between
αi and si.

Since information acquisition is modeled as entry, we consider a mechanism
design framework in which the seller exercises entry control. In Section II, we
restrict our analysis to two-stage mechanisms: the first stage is the entry right
allocation mechanism, and the second stage is the private good provision mech-
anism. In Section III, we will extend our analysis to multi-stage mechanisms
allowing for sequential shortlisting.

We restrict our analysis to direct mechanisms where agents report their types
truthfully at each stage on the equilibrium path. We assume that all shortlisted
bidders are disclosed and the first-stage reported profile α is revealed to all admit-
ted bidders so that the first-stage entry allocation and payments are immediately
verifiable.18 This revelation policy turns out to be “optimal,” in the sense that no
other revelation policy (e.g., not revealing or partially revealing α) can generate
a higher expected revenue to the seller. For this reason, our restriction to fully
revealing α is without loss of generality in our search for optimal mechanisms. In
our paper, the principal has no control over the ways in which new information
in a subsequent stage is revealed to bidders. A shortlisted bidder will be fully
informed about her true value vi after incurring the entry cost. As such, we are
not concerned about the discriminatory information disclosure issue studied in Li
and Shi (2017).

As in Esö and Szentes, we can focus on equivalent direct mechanisms that
require bidders to report si’s, rather than vi’s. Note that reporting (α′i, v

′
i) is

equivalent to reporting (α′i, s
′
i = Hα′i

(v′i)).
19

Let N = {1, 2, ..., N} denote the set of all the potential buyers and 2N denote
the collection of all the subsets (subgroups) of N, including the empty set, φ.

18In Esö and Szentes, there is no such need for interim verification, as their allocation and payment
rules are executed at the end of the mechanism.

19Alternatively we can derive optimal mechanisms based on buyers’ second-stage reported values as
in Pavan, Segal, and Toikka (2014). We choose to work with the orthogonalized signals instead as
that allows us to further study revelation policies regarding first-stage reports, which can be done by
establishing the revenue bound in a relaxed environment with public orthogonalized signal s.
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II. Analysis with Single-Round Shortlisting

A. Two-Stage Mechanisms

The first-stage mechanism is characterized by the shortlisting rule Ag(α) and
payment rule xi(α), i = 1, 2, ..., N . Given the reported profile α, the shortlisting

rule, Ag : [α, α]N → [0, 1], assigns a probability to each subgroup g ∈ 2N, where∑
g∈2N A

g(α) = 1. The payment rule xi : [α, α]N → R, specifies bidder i’s first-
stage payment given the reported profile α.

Given the first-stage reported profile α, and that group g is shortlisted, the
second-stage mechanism is characterized by pgi (α, s

g), the probability with which
the asset is allocated to buyer i ∈ g, and tgi (α, s

g), the payment to the seller made
by buyer i ∈ g,∀g ∈ 2N.

We will identify the revenue-maximizing selling mechanism in two steps. First,
we establish a revenue upper bound by considering a relaxed problem in which
the second-stage signals s are public information among the shortlisted buyers
and the seller. In this relaxed problem, we ignore the second-stage incentive
compatibility condition (IC) and individual rationality condition (IR). Second,
we will identify a feasible mechanism (satisfying IC and IR in both stages) in the
original setting, which achieves the above revenue bound.

B. A Revenue Upper Bound with Public s

In this subsection, we identify an upper bound for the expected revenue in a
relaxed setting with public s for the shortlisted buyers and the seller. We drop
the IC and IR constraints for the shortlisted bidders in the second stage so that
all shortlisted bidders must incur entry costs to learn their second-stage signals
as in our original setup, and regardless of their second-stage signals, they must
participate in the second-stage selling mechanism and report their second-stage
signals truthfully.

It is clear that the highest possible expected revenue achievable in this relaxed
setting imposes an upper bound for the expected revenue that can be obtained
in our original setup, where the bidders’ second-stage IC and IR must both be
satisfied. We will identify this upper bound first.

In this relaxed setting, the mechanisms are specified the same as in Section II.A.
All potential bidders report their types αi, giving rise to a reported type profile α.
The mechanism specifies the first-stage shortlisting rule Ag(α) and payment rule
xi(αi, α−i). Every shortlisted bidder j incurs cost c to discover her second-stage
signal sj . The second-stage selling mechanism specifies the winning probability
pgi (α, s

g) and payment rule tgi (α, s
g), ∀i ∈ g, ∀g ∈ 2N .

Given the announced α and si, we define the interim winning probability and
expected payment rule as P gi (α, si) = Esg−i

pgi (α, s
g) and T gi (α, si) = Esg−i

tgi (α, s
g),

where sg−i = sg\{si}, ∀i ∈ g and ∀g ∈ 2N. Let gi denote a shortlisted subgroup
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that contains bidder i. For shortlisted bidder i ∈ gi with type αi, her interim
expected payoff when she reports α̂i and others report truthfully is given by

(1) πi(αi, α̂i) = Eα−i


∑

gi
Agi(α̂i, α−i)

[
Esi((u(αi, si)P

gi
i (α̂i, α−i, si)

−T gii (α̂i, α−i, si))− c

]
−xi(α̂i, α−i)

 .

Standard arguments based on the envelope theorem (cf. Theorem 2 in Milgrom
and Segal, 2002) lead to the following result.

Lemma 1. With public s, first stage IC leads to the following expression for the
seller’s expected revenue:

ER(2)

= Eα
∑
g

Ag(α)

 Es

[∑
i∈g p

g
i (α, s

g)

(
u(αi, si)

−1−F (αi)
f(αi)

u1(αi, si)

)]
−|g|c




−
N∑
i=1

πi(α, α).

To maximize ER, the seller sets πi(α, α) = 0 for all i = 1, 2, ..., N ; i.e., no rent
should be given to the buyer with the lowest possible (pre-entry) type.

Define the virtual value adjusted by the second-stage signal as follows:

(3) w(αi, si) = u(αi, si)−
1− F (αi)

f(αi)
u1(αi, si).

Given the revealed α and the shortlisted group g, ∀sg,∀i ∈ g, we set20

(4) p∗gi (α, sg) =

{
1 if i = arg maxj∈g{w(αj , sj)} and w(αi, si) ≥ 0,

0 otherwise.

Define the expected virtual surplus (the virtual value less the entry cost) as
follows:

(5) w∗g(α) = Es

∑
i∈g

p∗gi (α, sg)w(αi, si)− |g|c

 .
20Ties occur with probability zero and are hence ignored.
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Given the revealed α, we set the first-stage shortlisting rule as follows:21 ∀g,

(6) A∗g(α) =

{
1 if g = arg maxg̃{w∗g̃(α)} and w∗g(α) ≥ 0,

0 otherwise.

Let

(7) ER∗ = Eα
∑
g

A∗g(α)Es

∑
i∈g

p∗gi (α, sg)w(αi, si)− |g|c

 .

It is clear that ER∗ provides an upper bound for the expected revenue in the
original setting.

C. Revenue-Maximizing Mechanisms in The Original Setting

In this section, we will establish that ER∗can be achieved by a feasible mecha-
nism (satisfying IC and IR in both stages) in the original setting.

To this end, we will first establish necessary conditions implied by IC conditions
in both stages. We start with the second stage. Suppose group g is shortlisted,
and the profile α̃ reported in the first stage is revealed as public information to
the shortlisted bidders.

First, suppose α is truthfully reported at the first stage and group g is short-
listed. Assume that they follow the recommendation and incur the information
acquisition cost c to discover sg.22

Bidder i’s second-stage interim expected payoff when she observes si but reports
ŝi is as follows:

π̃gi (α;si, ŝi) = Esg−i
[u(αi, si)p

g
i (α, ŝi, s

g
−i)− t

g
i (α, ŝi, s

g
−i)]

= u(αi, si)P
g
i (α, ŝi)− T gi (α, ŝi).

The second-stage incentive compatibility (IC) conditions require that

(8) π̃gi (α;si, ŝi) ≤ π̃gi (α;si, si), ∀g, α,si, ŝi.

It is standard in the traditional screening literature that when group g is short-
listed given truthful revelation of α, the second stage mechanism is IC if and only
if P gi (α, si), ∀i ∈ g is increasing.

21Again ties occur with probability zero and are hence ignored.
22As will be shown, the equilibrium expected profit from going forward is positive for a buyer upon

entry, so in equilibrium, a bidder does have an incentive to follow the recommendation to acquire (costly)
information and participate in the final auction once admitted (as dropping out only results in zero profit).
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According to Lemma 2 in Liu et al. (2020), in an incentive-compatible two-
stage mechanism, a buyer with first-stage type αi who reported α̂i and observed
signal si in the second stage will report ŝi = σi(αi, α̂i, si) such that: If α̂i < αi,
then

(9) σi(αi, α̂i, si) =

{
1 if u(αi, si) > u(α̂i, 1),

σ̃i(αi, α̂i, si) otherwise.

If α̂i > αi, then

(10) σi(αi, α̂i, si) =

{
0 if u(αi, si) < u(α̂i, 0),

σ̃i(αi, α̂i, si) otherwise.

Here, σ̃i(αi, α̂i, si) ∈ [0, 1] is first defined by Esö and Szentes (2007), which
is the unique signal such that u(αi, si) = u(α̂i, σ̃i(αi, α̂i, si)) when u(αi, si) ∈
[u(α̂i, 0), u(α̂i, 1)]. Reporting σ̃i(αi, α̂i, si) after a lie α̂i is equivalent to revealing
vi truthfully regardless of the first-stage report. The optimality of this strategy
has been established in general for Markov environments by Pavan, Segal, and
Toikka (2014). Our two-stage setting resembles the Markov environment defined
in Pavan, Segal, and Toikka since the agents’ payoffs depend only on their second-
stage true types (vi’s) and the allocation outcome, but not on their first-stage true
types. However, in our setting, due to shifting supports, it is not always possible
to fully correct the first stage lies. Whenever it is impossible, our lie correction
strategy specified in (9) and (10) requires the buyer to correct her first-stage lie
to the possible greatest extent.

Note that ŝi does not depend on α−i, g, or sg−i. Define

π̃gi (α,α̂i;si, ŝi) = Esg−i
[u(αi, si)p

g
i (α̂i, α−i, ŝi, s

g
−i)− t

g
i (α̂i, α−i, ŝi, s

g
−i)]

= u(αi, si)P
g
i (α̂i, α−i, ŝi)− T gi (α̂i, α−i, ŝi);

π̃gi (αi, α̂i;α−i) = Esi π̃
g
i (α,α̂i;si, ŝi = σi(αi, α̂i, si)).

π̃gi (αi, α̂i;α−i) is the expected second-stage payoff for the type-αi bidder if she
reported α̂i in the first stage (and everyone else reported truthfully) given her
opponents’ types α−i.

We are now ready to consider the implication of first-stage IC, provided that
second-stage IC holds upon the first-stage truthful revelation. Let πi(αi, α̂i) be
the expected payoff (net of the entry cost) for a type-αi bidder who reports α̂i in
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the first stage. By the lie correction strategy, we have

πi(αi, α̂i)(11)

= Eα−i

{∑
gi

Agi(α̂i, α−i)[π̃
gi
i (αi, α̂i;α−i)− c]− xi(α̂i, α−i)

}

= Eα−i

{∑
gi

Agi(α̂i, α−i) [Esi π̃
gi
i (α,α̂i;si, ŝi = σi(αi, α̂i, si))− c]

}
−xi(α̂i),

where ŝi = σi(αi, α̂i, si) and xi(α̂i) = Eα−ixi(α̂i, α−i). The first-stage IC requires
πi(αi, αi) ≥ πi(αi, α̂i).

Lemma 2. If the two-stage mechanism is incentive compatible, then buyer i’s
expected payoff (as a function of her pre-entry type) can be expressed as

ER(12)

= Eα
∑
g

Ag(α)

 Es

[∑
i∈g p

g
i (α, s

g)

(
u(αi, si)

−1−F (αi)
f(αi)

u1(αi, si)

)]
−|g|c




−
N∑
i=1

πi(α, α),

which coincides with the expected revenue with public s given by (2).

If allocation rule (A∗g(α), p∗gi (α, sg)) defined in (6) and (4) can be truthfully im-
plemented by some appropriately defined payment rule (x∗gi (α), t∗gi (α, sg)), under
which πi(α, α) = 0, then the revenue bound ER∗ in (7) can be achieved.

We will proceed to show such a payment rule (x∗gi (α), t∗gi (α, sg)) exists. Under
Assumptions 1 and 2, we can establish the following properties of the optimal
second-stage allocation rule:

Corollary 1. (i) p∗gii (α, sgi) increases in both αi and si, ∀i ∈ gi, ∀gi, α−i, and
sgi−i, which implies that P ∗gii (αi, α−i, si) increases in both αi and si, ∀gi, α−i;
(ii) If αi > α̂i, si < ŝi and u(αi, si) ≥ u(α̂i, ŝi), then p∗gii (αi, α−i, si, s

gi
−i) ≥

p∗gii (α̂i, α−i, ŝi, s
gi
−i), which implies P ∗gii (αi, α−i, si) ≥ P ∗gii (α̂i, α−i, ŝi),∀gi, α−i.

Property (ii) above suggests that whenever αi > α̂i, si < ŝi and u(αi, si) ≥
u(α̂i, ŝi), the allocation rule p∗gii (α, sgi) favors the “truth-telling” pair (αi, si).
Esö and Szentes (2007) first establish these properties for the case of u(αi, si) =
u(α̂i, ŝi) in an environment with common support. Liu et. al. (2020) extend
these properties to the environment with moving support.



VOL. VOL NO. ISSUE ORCHESTRATING INFORMATION ACQUISITION 13

Given αi, let s(αi) be defined such that w(αi, s(αi)) = 0. To identify properties
of the shortlisting rule A∗g(α), we define a truncated random variable as follows:
∀i,

w+
i (αi, si) =

{
w(αi, si) if w(αi, si) ≥ 0 or equivalently si ≥ s(αi),
0 otherwise.

Note that conditional on α, w+
i ’s are independent across i ∈ g.

Let ∆S̃g(αi;α−i) denote buyer i’s marginal contribution to the expected virtual
value, i ∈ g, then

∆S̃g(αi;α−i) = S̃(αg)− S̃(αg−i), i ∈ g,∀α
g,

where αg−i = αg\{αi} and

S̃(αg) = Esg max
i∈g
{w+

i (αi, si)}, ∀g,∀αg.

Given our regularity assumption, the following two properties are obvious:

(1) ∆S̃g(αi;α−i) increases with αi, and decreases with αj , ∀j 6= i,∀i ∈ g,∀g.
(2) ∆S̃g(αi;α−i) ≥ ∆S̃g

′
(αi;α−i) , ∀α−i,∀i ∈ g,∀g ⊂ g′.

The optimal shortlisting rule can be alternatively described as follows. Given α,
we can rank all αi’s from the highest to the lowest. The seller admits bidders one
by one in descending order of αi’s as long as the bidder’s marginal contribution
to the expected virtual value is greater than c, i.e.

∆S̃g(αi;α−i) = S̃(αg)− S̃(αg−i) ≥ c,

where g denotes the group of bidders with the highest |g| types before entry.

The optimal shortlisting rule (6) described above resembles the greedy algo-
rithm proposed by Chade and Smith (2006). While Chade and Smith con-
sider simultaneous search with complete information, our setting is more com-
plicated as the seller’s payoffs depend on bidders’ pre-entry types which are pri-
vate information. Taking into account incentive compatibility, the payoff func-
tion in our setting should be defined in terms of the expected virtual surplus(

∆S̃g(αi;α−i)− c
)

. It is easily verified that given the regularity assumption, the

expected virtual surplus satisfies the downward recursive (DR) condition (with
respect to the sets of shortlisted bidders) as defined in Chade and Smith. As
such, it is not surprising that our optimal shortlisting coincides with the greedy
algorithm.23

23The greedy algorithm has nice computational properties and is also employed by Milgrom and Segal
(2020) in their analysis of incentive auctions.
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Let g∗(α) denote the set of bidders admitted under the optimal shortlisting
rule. Two properties of shortlisting rule A∗g thus follow:

Corollary 2. (i) Given α−i, if bidder i with αi is shortlisted, then she would
also be shortlisted with a higher type α̃i(> αi); (ii) Given α−i, bidder i will be
shortlisted as long as αi is higher than a threshold α̂i(α−i). As αi increases,
the shortlisted group weakly shrinks. As αi increases from α̂i(α−i), the bidders in
g∗(α)\{i} would be excluded one by one (with the lowest type originally shortlisted
being excluded first).

We are now ready to show that the optimal final good allocation and entry right
allocation rules (4) and (6) are truthfully implementable by some well constructed
payment rules in both stages.

Note that u(αi, si) increases with si and by Assumption 1, u1(αi, si) (weakly)
decreases with si. This implies that w(αi, si) increases with si. By the final good
allocation rule (4), the winning probability P ∗gi (α, si) is weakly increasing in si.
By Lemma 2 in Myerson (1981), the second-stage mechanism is incentive compat-
ible (given α and g). Thus, given the truthfully revealed α and shortlisted group
g, a second-stage payment rule, say, t∗gi (α, sg),∀i ∈ g,∀g, can be constructed to
truthfully implement the second-stage allocation rule p∗gi (α, sg),∀i ∈ g,∀g while
maintaining the second-stage IR constraints (to participate in the second-stage
mechanism), i.e. π̃gi (α,αi;si, si) ≥ 0 on equilibrium path.

We use π̃∗gii (αi, α̂i;α−i) to denote the second-stage expected payoff to buyer i
of type αi if she announces α̂i and is shortlisted in group gi, given that everyone
else announces α−i truthfully at the first stage. Construct the first-stage payment
rule as follows:

x∗i (α)(13)

=
∑
gi

A∗gi(αi, α−i)[π̃
∗gi
i (αi, αi;α−i)− c]

−
∫ αi

α

∫
u1(y, si) ·

∑
gi

[
Eα−iA

∗gi(y, α−i)P
∗gi
i (y, α−i, si)

]
dGi(si)dy

Note that by (11), we have

(14) π∗i (αi, αi) = Eα−i

{∑
gi

A∗gi(αi, α−i)[π̃
∗gi
i (αi, αi;α−i)− c]− x∗i (αi, α−i)

}
.

Substituting (13) into (14), we can verify that

π∗i (αi, αi)(15)

=

∫ αi

α

∫
u1(y, si) ·

∑
gi

[
Eα−iA

∗gi(y, α−i)P
∗gi
i (y, α−i, si)

]
dGi(si)dy.
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Note that we have π∗i (αi, αi) ≥ 0. In particular, π∗i (α, α) = 0.

Proposition 1. Under Assumptions 1 and 2, together with the payment rule
(x∗i (α), t∗gi (α, sg)) defined above, the optimal final good allocation and entry right
allocation rule (A∗g(α), p∗gi (α, sg)) described in (4) and (6) are IR and IC imple-
mentable. Moreover, π∗i (α, α) = 0.

In the discussions prior to the proposition, we have established the second-stage
IC and IR given the first-stage truthful revelation and IR. We have also shown
π∗i (α, α) = 0. To fully establish Proposition 1, we only need to show the first-
stage IC under payment rules x∗i and t∗gi . Our proof of the first-stage IC crucially
relies on the properties of allocation rule (A∗g(α), p∗gi (α, sg)), which are stated
in Corollaries 1 and 2. In particular, Corollary 2 shows that if a buyer i over-
reports her first-stage type, she will more likely be shortlisted, and more likely
be shortlisted in a smaller group; Corollary 1 shows that buyer i’s lie correction
strategy of (9) and (10) would let her win with a higher chance in the second stage
even if she is shortlisted in the same group. These properties together imply that
over-reporting increases players’ overall winning chances. Recall that in the single
stage setting of Myerson (1981), the monotonicity of winning chances is sufficient
for IC. Our first stage problem resembles that of Myerson (1981). The fact that
over-reporting increases players’ overall winning chances similarly leads to the
first-stage IC in our setting.

It is worth noting that Assumptions 1 and 2 are sufficient but not necessary
for the optimal shortlisting rule to be truthfully implementable: the necessary
and sufficient condition is that ∆ defined in (26) is non-positive, which is also
the integral monotonicity condition characterized by Pavan, Segal, and Toikka
(2014).

Proposition 1 reveals that allocation rule (A∗g(α), p∗gi (α, sg)) and payment rule
(x∗gi (α), t∗gi (α, sg)) constitute a feasible (both IC and IR) two-stage mechanism
which also ensures πi(α, α) = 0. Clearly, by (12) this mechanism achieves the rev-
enue bound ER∗ in (7). Therefore, these rules constitute the revenue-maximizing
two-stage mechanism in the original setting.

Proposition 2. Under Assumptions 1 and 2, allocation rule (A∗g(α), p∗gi (α, sg))
and payment rule (x∗gi (α), t∗gi (α, sg)) constitute the revenue-maximizing two-stage
selling mechanism in the original setting, which achieves revenue bound ER∗ in
(7).

So consistent with the results identified by Esö and Szentes, the asset should
be awarded to the bidder with the highest non-negative virtual value adjusted by
the second-stage signal, which is a generalization of the optimal allocation rule in
Myerson (1981). Our analysis thus shows that the generalized Myerson allocation
rule is robust to settings with costly entry, which affects the final allocation only
through its effect on the entry right allocation rule.

The optimal shortlisting rule A∗g(α) admits the set of bidders that gives rise
to the maximal expected virtual surplus. Alternatively, given our regularity as-
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sumption, the optimal shortlisting rule admits the bidders in descending order
of their marginal contribution to the expected virtual surplus – the bidder with
the highest contribution first, the bidder with the second-highest contribution
second, etc. – provided that their marginal contribution is positive. As a result,
the seller must shortlist a group of bidders with the highest first-stage types for
information acquisition.

Quint and Hendricks (2018) study how information acquisition of bidders can
be coordinated by indicative bidding in our two-stage setting. By restricting in-
dicative bids to a finite discrete domain, Quint and Hendricks (2018) show that a
symmetric equilibrium exists in weakly-monotone strategies. However, since bid-
der first-stage types “pool” over a finite number of bids, the highest-type bidders
are not always selected for information acquisition in the first stage. Without
safely selecting the most qualified bidders for the final sale, their mechanism is
thus not optimal in maximizing expected revenue.

In our preceding analysis of the revenue-maximizing two-stage mechanism, we
focus on the revelation policy whereby first-stage reports are fully revealed to
the shortlisted bidders. Given this particular revelation policy, one concern is
that there might be some loss of generality in identifying optimal mechanisms.
However, Proposition 2 shows that our derived mechanism with this disclosure
policy achieves ER∗, the revenue upper bound from the relaxed setting with public
s. In this relaxed setting, we drop the IC and IR constraints for the shortlisted
bidders in the second stage (all shortlisted bidders must incur entry costs to learn
their second-stage signals and regardless of their second-stage signals, they must
participate in the second-stage mechanism and report truthfully their second-
stage signals). Therefore, regardless of how to disclose the first-stage reports, the
highest possible expected revenue achievable in this relaxed setting (i.e. ER∗)
imposes an upper bound for the expected revenue that can be obtained in our
original setting, where the bidders’ second-stage IC and IR constraints must both
be satisfied. We thus have the following result:

Corollary 3. In maximizing expected revenue in our setting, there is no loss of
generality to assume that first-stage reports are fully revealed to the shortlisted
bidders.

Basically, we demonstrate that the virtual surplus in our original setting is the
same as in the relaxed setting. This observation goes back to Eso and Szentes
(2007), and it is used also by Pavan, Segal, and Toikka (2014) to derive the dy-
namic envelope formula more generally, which immediately yields their expression
for dynamic virtual surplus.24 So that observation per se is by now standard. The
question is just whether the allocation rule that maximizes the virtual surplus in
the relaxed setting is implementable in the original setting. Since this is verified,

24Eso and Szentes (2017) offer a general irrelevance result on this. They show that the maximal
expected revenue is the same as if the principal could observe the agent’s orthogonalized types after the
initial period. In this sense, the dynamic nature is irrelevant: the agent only receives information rents
for her initial private information.
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the bidders do not get any information rent on their new orthogonalized infor-
mation, and the principal’s payoff is the same as in the relaxed setting, which is
(weakly) greater than that in any setting where the agents have to report their
second-stage types. This is true irrespective of what the agents may learn about
the first-stage reports of the other agents.

D. Applications

Our optimal mechanism analysis is general enough to encompass many existing
models in the literature on auctions with costly entry. Below we demonstrate
how we can apply our general optimal mechanism to special models previously
studied.

1) Bidders do not have pre-entry types and only learn about their values after
entry (e.g., McAfee and McMillan, 1987; Tan, 1992; and Levin and Smith,
1994). In this case, u(αi, si) = si. Hence w(αi, si) = si, which implies that
the optimal auction is ex post efficient, and the optimal entry is to select
a set of bidders that results in the maximal expected social surplus. Since
bidders are identical before entry, optimal entry is entirely characterized
by n∗, the optimal number of bidders to be selected. The implementation
is somewhat simple: the second round is a standard auction (first-price,
second-price, or English auction). The first round (entry stage) is to select
exactly n∗ bidders, and whomever selected is required to pay an upfront
entry fee e∗, which is set so that no rent is left for the entrants ex ante.

2) Bidders know their values before entry, and entry is merely a bid preparation
process (without value updating) (e.g. Samuelson,1985; Stegeman, 1996;
Campbell, 1998; Menezes and Monteiro, 2000; Tan and Yilankaya, 2006;
Cao and Tian, 2009; and Lu, 2009). In this setting, u(αi, si) = αi and si ≡
0,25 and hence w(αi, si) = αi − (1− F (αi)) /f(αi). It is easily verified that
according to Proposition 1, the optimal allocation rules can be described
as follows: the bidder with the highest “type” (αi) is admitted as the sole
entrant to win the item, as long as her contribution to the virtual surplus
w(αi, si)− c is positive.

3) Each bidder is endowed with pre-entry type αi, and learns an additional
private value component si (e.g., Ye, 2007; Quint and Hendricks, 2018). The
total value is given by u(αi, si) = αi + si. We assume that αi is distributed
uniformly over [0, 1] and si follows an arbitrary continuous distribution, and
let c ∈ (0, 1). Hence w(αi, si) = αi + si − (1− F (αi)) /f(αi) = 2αi + si −
1. The optimal second-stage allocation rule thus requires that the asset
be allocated to the entrant bidder with the highest virtual value w(αi, si)
provided that it is nonnegative. The optimal entry rule requires that bidders

25Therefore, there is no issue of reporting si in the second stage.
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be admitted in descending order of their pre-entry types, as long as their
contribution to the expected virtual surplus is nonnegative. If only one
buyer (the one with the highest type α(1)) is admitted, the expected virtual

surplus is given by w1 = Esi1{
(
2α(1) + si1 − 1

)
∨ 0} − c.26 So the optimal

number of entrants n∗ ≥ 1 if w1 ≥ 0. If two top buyers are admitted, the
expected virtual surplus is given by

w2 = E(si1 ,si2 )

[
max

{
2α(1) + si1 − 1, 2α(2) + si2 − 1, 0

}]
− 2c.

So the optimal number of entrants n∗ ≥ 2 if the incremental expected virtual
surplus

w2 − w1

= E(si1 ,si2 )

[
max

{
2α(1) + si1 − 1, 2α(2) + si2 − 1, 0

}]
−Es(1){

(
2α(1) + si1 − 1

)
∨ 0}

> c.

Continuing this procedure of calculation, it can be verified that n∗ ≥ n if
wn − wn−1 > 0, or

(16)

{
E(si1 ,si2 ,...,sin )

[
(maxk=1,...,n

{
2α(k) + sik − 1

}
) ∨ 0

]
−E(si1 ,si2 ,...,sin−1

)

[
(maxk=1,...,n−1

{
2α(k) + sik − 1

}
) ∨ 0

] } ≥ c.
III. Analysis with Sequential Shortlisting

Now we move to the setting where the seller may conduct sequential shortlisting,
which consists of M (≥ 2) shortlisting rounds/stages and one final allocation stage
M + 1. Specifically, the procedure is described as follows.27

At stage 1, all bidders report their initial types of αi. Denote the reports by
m1 = (m1,i) where m1,i ∈ [α, α], ∀i ∈ N is i’s report. Let g0 = ∅. ∀g1 ⊂ 2N, the
probability that g1 is shortlisted is Ag1(m1|g0). The payment of i ∈ N is t1,i(m1).
All bidders in shortlisted group g1 incur their information acquisition cost c to
discover their ex post values, vi, i ∈ g1.

At stage 2, if group g1 is shortlisted and discover their values v’s at stage 1,
they are asked to report their si’s. The bidders’ second-stage reports about si’s
are denoted by m2 = (m2,i) where m2,i ∈ [0, 1] if i ∈ g1 and m2,i = φ if i /∈ g1.

∀g2 ⊂ 2N\g1 , the probability for g2 to be shortlisted is Ag2(m1,m2|g0, g1) and i’s
payment is t2,i(m1,m2) for any i ∈ N. All bidders in shortlisted group g2 incur
their information acquisition cost c to discover their ex post values, vi, i ∈ g2.

26Let ik be the index of bidder who possesses αk, the kth highest value of α.
27We again use the null message φ to denote a buyer’s report if she is not required to report her si.
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At stage 3, if group g2 ∈ 2Ω\g1 is shortlisted and discover their values vi’s at
stage 2, they are asked to report their si’s. The bidders’ stage-3 reports about
si’s are denoted by m3 = (m3,i) where m3,i ∈ [0, 1] if i ∈ g2 and m3,i = φ if i /∈ g2.

∀g3 ⊂ 2N\(g1∪g2), the probability for g3 to be shortlisted isAg3(m1,m2,m3|g0, g1, g2),
and i’s payment is t3,i(m1,m2,m3) for any i ∈ N. All bidders in shortlisted group
g3 incur their information acquisition cost c to discover their ex post values, vi,
i ∈ g3.

The procedure proceeds analogously up to stage M . At stage M , if group
gM−1 is shortlisted and the bidders in gM−1discover their values vi’s at stage
M − 1, they are asked to report their si’s. The bidders’ stage-M reports about
si’s are denoted by mM = (mM,i) where mM,i ∈ [0, 1] if i ∈ gM−1 and mM,i = φ

if i /∈ gM−1. ∀gM ⊂ 2N\(∪
M−1
j=1 gj), the probability for gM to be shortlisted is

AgM (m1,m2, ...,mM |g0, g1, g2, ..., gM−1), and i’s payment is tM,i(m1,m2, ...,mM )
for any i ∈ N. All bidders in shortlisted group gM incur their information acqui-
sition cost c to discover their ex post values, vi, i ∈ gM .

At the final stage, i.e. stage M + 1, if gM is shortlisted and discover their
values vis at the end of stage M , their reports are denoted by mM+1 = (mM+1,i)
where mM+1,i ∈ [0, 1] if i ∈ gM ; mM+1,i = φ if i /∈ gM . Denote the sequence of
shortlisting outcome by vector g =(g1, g2, ..., gM ) with |g| = M . Let Gg denote
the set of all agents shortlisted in sequence g. Given the final shortlisted groupGg,

let p
Gg

i (m1,m2, ...,mM+1) be agent i’s winning probability, for agent i ∈ Gg,28

and agent i’s payment is tM+1,i(m1,m2, ...,mM ,mM+1) for any i ∈ N.
We use {A,p, t,M} to denote the procedure specified above. Without loss

of generality, we can focus on the cases where M ≥ N . The mechanisms with
M̃(< N) can be trivially duplicated by a mechanism with M = N , in which case
the shortlisting stops at stage M̃ .

Our analysis proceeds as in Section II. We first consider a relaxed environment
where the agents are only endowed with private information α, where si’s become
public once they are discovered. The optimal solution for this relaxed environ-
ment provides an upper bound for the seller’s expected revenue in the original
environment where the discovered si’s are private information for the shortlisted
bidders. We will establish that this upper bound is actually achievable in the
original environment.

A. The Relaxed Environment

For a given mechanism {A,p, t,M}, and message sequence (mk, k = 1, 2, ...,M),
the probability of a shortlisting outcome g =(g1, g2, ..., gM ) is given by

Pr(g|(mi)
M
i=1) = ΠM

k=1A
gk(m1,m2, ...,mk|g0, g1, g2, ..., gk−1).

28We will show that in equilibrium, the agents who are shortlisted have incentives to incur their
information acquisition costs to discover their values.
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As si becomes public once discovered in the relaxed environment, we have for
k ≥ 2, mk,i = si, i ∈ gk−1,and mk,i = φ, i /∈ gk−1. We use ms

k, k ≥ 2 to denote
these true types from stages 2 toM+1.Define Pr(g|α, s) = Pr(g|α,ms

2, ...,m
s
M+1),

and for any G ∈ 2N , define

Pr(G|α, s) =
∑

∀g s.t. Gg=G

Pr(g|α, s),

where, as before, Gg denotes the set of all agents shortlisted in sequence g. Fol-
lowing standard procedure, we can establish the following lemma:

Lemma 3. For any {Pr(G),∀G ∈ 2Ω} derived from any shortlisting rule, to
maximize the expected revenue ER, the seller sets πi(α, α) = 0 and allocates the
object to the shortlisted bidder whose virtual value is the highest, provided that it
is positive. Ties are randomly broken. In this case, the expected revenue is given
by

ER = EαEs

∑
G∈2N

Pr(G|α, s)[max{w+
i (αi, si)}i∈G −

∑
i∈G

c]

 .

We now turn to the optimal sequential shortlisting rule. Before searching for
the optimal shortlisting rule, we first establish the following lemma:

Lemma 4. There is no loss of generality to consider shortlisting rules, under
which the only possible set of player(s) shortlisted at each stage is the single agent
who has the highest αi among the remaining bidders before the shortlisting process
is completed.

In the proof, we first show that there is no loss of generality to consider short-
listing rules, under which any possible set of players shortlisted at each stage must
be a singleton before the shortlisting process is completed. We then show that
we can focus on the rules where at each stage the seller either shortlists an agent
with probability 1 or stops shortlisting. Finally, we demonstrate that the agent
shortlisted should be the one with the highest αi among the remaining bidders.
Based on Lemma 4, we have the following optimal shortlisting rule.

Proposition 3. Without loss of generality, we assume αi decreases with i. ∀s,
for k = 1, 2, ..., N , bidder k is shortlisted if and only if

Esk [(w+
k (αk, sk)−max{w+

l (αl, sl)}1≤l<k) ∨ 0] ≥ c.

If bidder k is not shortlisted in stage k, then no buyer is shortlisted in subsequent
stages.

In stage 1, the seller considers whether he should shortlist agent 1. Recall the
expression for expected revenue in Lemma 3. If he does not shortlist agent 1,
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then the shortlisting process ends and he gets 0 revenue. If he shortlists agent
1 and simply ends the process, then his expected revenue is Es1 [w+

1 (α1, s1)]− c.
If he shortlists agent 1 and follows the optimal shortlisting strategy after that,
his expected revenue can be higher than Es1 [w+

1 (α1, s1)] − c. This means that
the seller should definitely shortlist agent 1 in stage 1 if Es1 [w+

1 (α1, s1)] ≥ c. If
Es1 [w+

1 (α1, s1)] < c, then we must have Esk [(w+
k (αk, sk)−max{w+

l (αl, sl)}1≤l<k)∨
0] < c,∀k = 2, ..., N . This means that for k = N,N−1, ..., 2, even if the first k−1
bidders are shortlisted, the next bidder should not be shortlisted. This further
implies that agent 1 should not be shortlisted in stage 1.

In stage 2, suppose agent 1 is shortlisted in stage 1, and s1 is revealed. If
the seller does not shortlist agent 2, he gets a revenue of w+

1 (α1, s1) − c. If
he shortlists agent 2 and simply ends the process, then his expected revenue is
Es2 max{w+

i (αi, si)}i∈{1,2} −
∑

i∈{1,2} c. We have Es2 max{w+
i (αi, si)}i∈{1,2} −∑

i∈{1,2} c ≥ w
+
1 (α1, s1)−c if and only if Es2 [(w+

2 (α2, s2)−w+
1 (α1, s1))∨0] ≥ c. If

he shortlists agent 2 and follows the optimal shortlisting strategy after that, his
expected revenue can be higher than Es2 max{w+

i (αi, si)}i∈{1,2}−
∑

i∈{1,2} c. This

means that the seller should definitely shortlist agent 2 in stage 2 if Es2 [(w+
2 (α2, s2)−

w+
1 (α1, s1))∨ 0] ≥ c. If Es2 [(w+

2 (α2, s2)−w+
1 (α1, s1))∨ 0] < c, then we must have

Esk [(w+
k (αk, sk)−max{w+

l (αl, sl)}1≤l<k)∨ 0] < c,∀k = 3, ..., N . This means that
for k = N,N − 1, ..., 3, even if the first k − 1 bidders are shortlisted, the next
bidder should not be shortlisted. This further implies that agent 2 should not be
shortlisted in stage 2. The reasoning for other stages is similar.

B. Incentive Compatibility in The Original Setting

Following the same procedure as in Section II, we next verify that the allocation
rules identified in the relaxed setting are implementable. We use (α̂,m2, ...,mM+1)
to denote the announcements of agents at different stages, A∗ = {A∗gk(α̂,m2, ...,
mk−1;g1, g2, ..., gk−1), k = 1, 2, ...,M, ∀g =(g1, g2, ..., gM )} to denote the shortlist-

ing rule described in Proposition 3, and p∗ = {p∗Gg

i (α̂, m2, ...,mM+1), i ∈ N, ∀g
=(g1, g2, ..., gM )} to denote the allocation rule specified in Lemma 3. In addition,

Pr ∗(g|(mi)
M
i=1) = ΠM

k=1A
∗gk(m1,m2, ...,mk|g0, g1, g2, ..., gk−1),

which is the probability that sequence g is shortlisted given messages reported
(mi)

M
i=1.

Then (A∗,p∗) imposes an upper bound for seller expected revenue in the re-
laxed environment where si’s are public information. While we assume truthful
reporting in stage 1 when deriving these rules, the stage-1 incentive compatibility
has not yet been established in the relaxed environment. In this section, we will
establish that these rules are indeed incentive compatible in the original environ-
ment where both (αi, si) are private information of agent i. For this purpose,
we will construct payment rules t∗ that together with (A∗,p∗) induce truthful
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information revelation on the equilibrium path. In addition, we will ensure that
πi(α,α) = 0,∀i.

Proposition 4. Under Assumptions 1 and 2, the optimal shortlisting and final
good allocation rules (A∗,p∗) are IR and IC implementable.

Note that by reporting a higher first-stage signal, a bidder would be shortlisted
with a higher probability, and would be shortlisted in a smaller group with a
higher probability, given (α−i, s). Given any shortlisted group, reporting a higher
first-stage signal and correcting the lie later would raise the bidder’s virtual value,
and thus the winning probability. We thus conclude that reporting a higher first-
stage type leads to a higher winning probability at the end. This suggests that the
monotonicity of the winning probability, which is typically required for incentive
compatibility, is also satisfied.

Given Proposition 4, we establish that the proposed mechanism (A∗,p∗, t∗)
achieves the revenue bound identified in the relaxed environment in Section III.A

Proposition 5. Mechanism (A∗,p∗, t∗) generates the same expected revenue as
in the relaxed environment of Section III.A, in which the bidders’ second-stage
additional information is public.

This result is clear since at the optima of both settings, the shortlisting rule
and the object allocation rule are exactly the same, and the expected payoffs
for bidders with the lowest type are set to be zero. This implies that the total
expected surplus in both environments is the same. In addition, given (28) and
(38) in the Appendix, a bidder with the same type enjoys the same expected payoff
across the two scenarios. Since the expected revenue is the difference between the
total expected surplus and expected bidder payoff, the seller revenue must be the
same in the two environments.

By Proposition 5, we conclude that mechanism (A∗,p∗, t∗) must be optimal
when there is M = N stages of shortlisting. Any M(>= N) would induce
the same expected revenue at the optimum, and any M(< N) is dominated by
M = N . We can thus set the optimal number of shortlisting stages M∗ = N .

IV. Extensions and Numerical Examples

A. Allowing Direct Sale in The First Stage

In our previous analysis we model information acquisition as entry, in the sense
that a bidder is not allowed to bid without going through the “due diligence”
process. This assumption is due to the specific institutional setup we are trying
to model.29 Given the complexity and high-stakes nature of the sale, it is unlikely

29In a typical electrical generating asset sale in the US as described by Vallen and Bullinger (1999),
before submitting a final bid, each bidder (more precisely, bidding team) usually needs to go through the
due diligence process to meet with senior management and personnel, study equipment conditions and
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that a seller would be comfortable accepting a bid from someone who did not go
through such an important information acquisition process. On the other hand,
buyers may not be willing to bid in the dark either, in particular due to the
potential shareholder lawsuits if the investment does not turn out well. As such,
we believe that it is appropriate to model information acquisition as mandatory
for making a bid in our environment. Nevertheless, from theoretical perspectives,
it would be interesting to identify optimal mechanisms in environments where
bidders are allowed to bid without having to go through information acquisition.
In this subsection, we allow for sale in the first stage, before bidders go through
due diligence to acquire more information about the object for sale. So some
bidders may submit their final bids based on their prior estimates only (without
incurring information acquisition costs), and the sale may be terminated as long
as some first-stage bid is accepted.

Analysis with Single-round Shortlisting. — The two-stage mechanism is the
same as specified in Section II except that in the first stage a buyer i obtains
the object with pi(α), i = 1, 2, ..., N , before a group of buyers is shortlisted for
information acquisition. If the object is unsold in the first stage, the shortlisting
rule, Ag : [α, α]N → [0, 1], assigns a probability to each subgroup g ∈ 2N for

information acquisition. The payment rule xi : [α, α]N → R, specifies bidder i’s
first-stage payment given the reported profile α.

Given the first-stage reported profile α, and that group g is shortlisted for
information acquisition, the second-stage mechanism is characterized by pgi (α, s

g),
the probability with which the asset is allocated to buyer i ∈ g, and tgi (α, s

g), the
payment to the seller made by buyer i ∈ g,∀g ∈ 2N.

In Section A of the online appendix, we fully characterize the following revenue-
maximizing two-stage mechanism allowing sale in the first stage. In the second
stage, given the revealed α and the shortlisted group g, ∀sg, p∗gi (α, sg) takes the
same form as in (4): ∀g,∀i ∈ g,

p∗gi (α, sg) =

{
1 if i = arg maxj∈g{w(αj , sj)} and w(αi, si) ≥ 0,

0 otherwise.

Recall that the expected virtual surplus w∗g(α) (the virtual value less the entry
cost) is defined in (5). At the first stage, given the revealed α, the optimal
shortlisting rule is specified in (6): ∀g,

A∗g(α) =

{
1 if g = arg maxg̃{w∗g̃(α)} and w∗g(α) ≥ 0,

0 otherwise.

operating history, evaluate supply contracts and employment agreements, etc. This process is strictly
controlled and closely monitored by the auctioneer (typically an investment banker serving as the financial
advisor for the selling party).
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Recall that g∗(α) denotes the set of bidders admitted under the optimal short-
listing rule. The highest expected revenue generated from the second-stage sale
is

R
g∗(α)
2 (α)

= Es

 ∑
i∈g∗(α)

p
g∗(α)
i (α, sg

∗(α))

(
u(αi, si)−

1− F (αi)

f(αi)
u1(αi, si)

)
− |g∗(α)|c

 ,
and the highest expected revenue generated from the first-stage sale is

R∗1(α) = Es

(
u(α(1), s)−

1− F (α(1))

f(α(1))
u1(α(1), s)

)
,

where α(1) denotes the highest first-stage type among all buyers, and s is uniformly
distributed over [0, 1].

Clearly, the optimal first-stage selling probability is given by: ∀i,

p∗i (α) =

{
1 if αi ≥ αj ,∀j and R∗1(α) ≥ Rg

∗(α)
2 (α),

0 otherwise.

In other words, given first-stage type profile α, the object is sold in the first
stage if and only if by doing so it generates higher expected revenue than that gen-
erated from the first-stage optimal shortlisting and second-stage optimal selling
mechanism.

Allocation rule (p∗gi (α, sg), A∗g(α), p∗i (α)) together with properly specified pay-
ment rules give rise to the following expected revenue:

ER∗∗(17)

= Eα

{ ∑
i [p∗i (α)Esiw(αi, si)] + [1−

∑
i p
∗
i (α)]

·
∑

g A
∗g(α)Es

[∑
i∈g p

∗g
i (α, sg)w(αi, si)− |g|c

] }
.

Analysis with Multi-round Shortlisting. — Now we allow for sequential short-
listing. The mechanism is specified the same way as in Section III except that a
first-stage selling probability pi(m1) is also specified, with

∑
i∈N pi(m1) ≤ 1;

and only if the object is unsold in the first stage, each subgroup g1 ∈ 2N

would be shortlisted with probability Ag1(m1|g0) for information acquisition, with∑
g∈2N A

g(m1|g0) = 1. We will continue to use the same notation as in Section
III.

In Section B of the online appendix, we fully characterize the following revenue-
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maximizing multi-stage mechanism allowing first-stage sale. The sequential short-
listing rule and the final-stage selling rule remain the same as in Section III.

We define

(18) R∗2(α) = Es

 ∑
G∈2N

Pr∗(G|α, s)

(
max{w+

i (αi, si)}i∈G −
∑
i∈G

c

) ,
where Pr∗(G|α, s) denotes the probability that the set of bidders G is admitted
under the optimal shortlisting rule described in Proposition 3.

The first stage selling rule is as follows: ∀i,

p̃∗i (α) =

{
1 if αi ≥ αj ,∀j and R∗1(α) ≥ R∗2(α),

0 otherwise.

In other words, given first-stage type profile α, the object is sold in the first stage
if and only if by doing so the expected revenue generated is higher than that from
the optimal sequential shortlisting and final-stage optimal selling mechanism.

Clearly, the revenue-maximizing mechanism gives rise to the following expected
revenue:

ER∗∗∗(19)

= Eα

{ ∑
i p̃
∗
i (α)Esiw(αi, si) +

[
1−

∑
i p̃
∗
i (α)

]
·Es

[ ∑
G∈2N

Pr∗(G|α, s)
(

max{w+
i (αi, si)}i∈G −

∑
i∈G c

)] } .
B. Revenue Comparisons: Numerical Examples

We present numerical examples in this section to compare expected revenues
among different mechanisms. First, we follow Quint and Hendricks (2018) to
consider the following example: αi is uniformly distributed over [0, 100], si follows
exponential distribution with λ = 0.12, and entry cost c = 5. We numerically
compute the expected revenue for the following cases: 1) unrestricted entry, where
bidders make their own entry decisions simultaneously and independently;30 2)
indicative bidding as cheap talk as analyzed by Quint and Hendricks (2018); 3)
two-stage mechanisms analyzed by Ye (2007); 4) single-round shortlisting without
allowing sale in the first stage; 5) sequential shortlisting without allowing sale in
the first stage; 6) single-round shortlisting allowing sale in the first stage; 7)
sequential shortlisting allowing sale in the first stage. Our simulations produce
expected revenues for all these mechanisms for the following varying numbers
of potential bidders: N = 3, 5, 7, 10, 20, 50, 200. Details are reported in Table 1

30In equilibrium, bidders enter the auction if and only if their pre-entry types are above some entry
threshold.
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below:

Table 1: αi ∼ U [0, 100], si ∼ exp(0.12), and c = 5

Potential bidders (N) 3 5 7 10 20 50 200

Unrestricted Entry 50.04 63.58 70.15 75.65 83.22 89.27 93.28

Q&H (2018) 50.50 65.63 73.42 79.98 88.77 95.20 99.50

Ye (2007) 50.90 65.72 73.63 80.81 90.63 97.23 101.05

Two-Stage w/o 56.11 70.72 78.56 85.31 93.81 99.40 102.34
1st stage sale

Multi-Stage w/o 56.12 70.75 78.59 85.35 93.90 99.59 102.84
1st stage sale

Two-Stage with 60.60 75.60 83.53 90.31 98.81 104.40 107.34
1st stage sale

Multi-Stage with 60.60 75.60 83.53 90.31 98.81 104.40 107.35
1st stage sale

As is clear from the table, the comparison is quite intuitive, which is consis-
tent with our expectation. First, compared to Ye (2007) and Quint and Hen-
dricks (2018), our current optimal mechanism design approach results in higher
expected revenue; Second, single-round shortlisting is revenue-dominated by se-
quential shortlisting. Note, however, the difference between these two mechanisms
is insignificant in our example, which renders one justification for the widespread
use of two-stage auctions; Third, allowing sale in the first stage further improves
expected revenue.

Also note that when the first-stage sale is allowed, single-round shortlisting and
sequential shortlisting generate basically the same expected revenue when N is
small (N ≤ 20 in our simulations). The reason is that when N is small, α(1) differs
much from α(2), which invalidates the need for shortlisting. Since sale occurs in
the first stage, sequential shortlisting does not improves the revenue. When N is
large, say, N ≥ 50, α(1) and α(2) are closer, hence shortlisting is desirable, which
leads to the superiority of sequential shortlisting over single-round shortlisting,
although in this example the difference continues to be quite small.

Intuitively, we might expect a shortlisting procedure to be more frequently
used in real settings when information updating is substantial after entry, or
when the information acquisition cost is not too big. To examine this intuition,
we next focus on the revenue comparison between single-round shortlisting and
sequential shortlisting, both when the first-stage sale is allowed and not allowed.
Table 2 is obtained by fixing αi ∼ U [0, 100], si ∼ exp(λ), c = 5, and varying λ
(λ = 0.06, 0.12, 0.24). Table 3 is obtained by fixing αi ∼ U [0, 100], si ∼ exp(0.12),
and varying information acquisition cost c (c = 1, 2.5, 5).

Since the expected value of S is 1/λ, a lower λ implies more substantial post-
entry value updating. As is clear from Table 2, when first-stage sale is not allowed,
sequential shortlisting revenue-dominates single-round shortlisting when λ = .06
and 0.12, but not when λ = 0.24: when post-entry value updating is not sub-
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Table 2: αi ∼ U [0, 100], si ∼ exp(λ), and c = 5

N 3 5 7 10 20 50 200

Two-Stage w/o λ = 0.06 63.76 78.46 87.50 93.79 103.14 109.59 113.72
1st stage sale λ = 0.12 56.11 70.72 78.56 85.31 93.81 99.40 102.34

λ = 0.24 52.18 66.55 74.40 81.01 89.70 95.23 98.17

Multi-Stage w/o λ = 0.06 63.92 78.76 87.89 94.38 104.25 111.51 117.18
1st stage sale λ = 0.12 56.12 70.75 78.59 85.35 93.90 99.59 102.84

λ = 0.24 52.18 66.55 74.40 81.01 89.70 95.23 98.17

Two-Stage with λ = 0.06 68.14 83.06 92.09 98.20 107.11 112.74 115.67
1st stage sale λ = 0.12 60.60 75.60 83.53 90.31 98.81 104.40 107.34

λ = 0.24 56.60 71.40 79.37 86.01 94.70 100.23 103.17

Multi-Stage with λ = 0.06 68.19 83.16 92.22 98.45 107.72 114.25 119.32
1st stage sale λ = 0.12 60.60 75.60 83.53 90.31 98.81 104.40 107.35

λ = 0.24 56.60 71.40 79.37 86.01 94.70 100.23 103.17

stantial, allowing sequential shortlisting does not improve sale revenue. When
first-stage sale is allowed, sequential shortlisting revenue-dominates single-round
shortlisting only when λ = .06; when λ = 0.12 and λ = 0.24, sales occur in the
first stage and shortlisting does not help.

Table 3: αi ∼ U [0, 100] and si ∼ exp(0.12)

N 3 5 7 10 20 50 200

Two-Stage w/o c = 5 56.11 70.72 78.56 85.31 93.81 99.40 102.34
1st stage sale c = 2.5 58.55 73.62 80.80 87.72 96.68 102.55 106.108

c = 1 60.41 74.81 82.66 89.82 99.05 105.95 111.33

Multi-Stage w/o c = 5 56.12 70.75 78.59 85.35 93.90 99.59 102.84
1st stage sale c = 2.5 58.58 73.69 80.90 87.89 96.96 103.18 107.520

c = 1 60.44 74.85 82.72 89.94 99.27 106.52 112.67

Two-Stage with c = 5 60.60 75.60 83.53 90.31 98.81 104.40 107.34
1st stage sale c = 2.5 60.74 75.98 83.18 90.07 98.89 104.44 107.34

c = 1 61.20 75.60 83.39 90.46 99.46 106.06 111.33

Multi-Stage with c = 5 60.60 75.60 83.53 90.31 98.81 104.40 107.35
1st stage sale c = 2.5 60.75 76.01 83.21 90.13 99.01 104.83 108.681

c = 1 61.24 75.67 83.50 90.64 99.79 106.82 112.86

As is clear from Table 3, when first-stage sale is not allowed, sequential short-
listing revenue-dominates single-round shortlisting for all the cases c = 1, 2.5, 5.
When first-stage sale is allowed, sequential shortlisting revenue-dominates single-
round shortlisting only when c = 1, 2.5; when c = 5, sales occur in the first
stage and shortlisting does not help. Our numerical example thus suggests that
shortlisting is more likely to occur when c decreases.
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V. Concluding Remarks

Our paper contributes to the literature on two fronts. First, it characterizes
optimal mechanisms, either when shortlisting is restricted or unrestricted to a
single round, for an environment of multi-stage auctions, which are commonly
employed in sales of complicated and high-valued business assets, procurements,
privatization, takeover, and merger and acquisition contests. Our analysis is gen-
eral enough to nest many existing studies in the literature of auctions with costly
entry. Second, our paper contributes to the literature on sequential screening by
introducing costly and endogenous information acquisition into a dynamic auc-
tion framework. Information acquisition makes the optimal mechanism design
more challenging, as now it must balance bidders’ information acquisition in-
centives and information elicitation in the final good allocation stage, which are
interdependent.

Since single-round shortlisting can be trivially replicated by sequential short-
listing, the optimal two-stage mechanism characterized in Section II must be
revenue-dominated by the optimal mechanism allowing for sequential shortlisting
characterized in Section III. This is true when there is no time discounting. When
time discounting is taken into account, however, an obvious drawback of running
a multi-stage mechanism is the potential of delay, which would be too costly and
therefore favors a more time-efficient two-stage mechanism.31 We believe that this
consideration, along with the practical difficulty in administering multiple rounds
of the due diligence process,32 leads to the “norm” of the two-stage auction format
widely used in the real world.

Implementation of the optimal mechanism characterized in this paper may face
some practical obstacles. First, the industry may not be comfortable with the
idea of paying entry fees before knowing the auction outcome, and this is the
major reason, we believe, that contributes to the common use of nonbinding
indicative bidding. Second, the optimal mechanism is so complicated that the
industry bidders might face great difficulties in developing bidding strategies for
different rounds (although such a concern is alleviated to some extent if profes-
sional or sophisticated experts are hired to help). For these reasons the nature of
our analysis is primarily normative, offering a “market design” approach to guide
a potential refinement of an extremely important transaction procedure widely
used in the industry. Despite this limitation, our analysis does conform to the
“norm” of business in at least two aspects. First, a defining feature of our op-
timal mechanism is the shortlisting rule, which is also central in the two-stage
auction practices. Second, we demonstrate that the optimal number shortlisted
is endogenously determined, which is also consistent with the fact that in real
sales, the number of finalists is often not pre-determined.33

31Our examples in Section IV.B illustrate that the revenue sacrificed by conducting a single-round
shortlisting can often be negligible.

32Just imagine, for example, the hassle of arranging multiple meetings with senior management.
33For example, in the sale of PGW (Philadelphia Gas Works), a recent application of two-stage auc-
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Our analysis offers a theoretical benchmark for evaluating various two-stage or
multi-stage auctions currently used in the real world. The information structure
modeled in this research has recently received attention not only from theorists
but also from econometricians and empiricists. For example, Marmer, Shneyerov,
and Xu (2013) and Gentry and Li (2014) have successfully proposed nonparamet-
ric specification tests on a so-called affiliated-signal (AS) model with entry, and
Roberts and Sweeting (2013) estimate a parametric variant of the AS model using
data on California timber auctions. The affiliated-signal models can be regarded
as a special case in the framework studied in our paper, and the optimal mecha-
nism characterized in this paper may potentially serve as a calibration benchmark
for counter-factual simulations for related empirical work to come.

VI. Appendix

Proof of Lemma 2: The first-stage IC requires πi(αi, αi) ≥ πi(αi, α̂i). Note
that if we replace ŝi by truth type si in (11), we still have πi(αi, αi) ≥ πi(αi, α̂i),
which leads to

dπi(αi, αi)

dαi
=

∂πi(αi, α̂i)

∂αi
|α̂i=αi

=

∫
u1(αi, si) ·

∑
gi

[
Eα−iA

gi(αi, α−i)P
gi
i (αi, α−i, si)

]
dGi(si).

which leads to the following result: if the two-stage mechanism is incentive com-
patible, then buyer i’s expected payoff (as a function of her pre-entry type) can
be expressed as

πi(αi, αi)(20)

= πi(α, α) +

∫ αi

α

∫
u1(y, si) ·

∑
gi

[
Eα−iA

gi(y, α−i)P
gi
i (y, α−i, si)

]
dGi(si)dy.

Thus

N∑
i=1

Eπi(αi, αi)(21)

=
N∑
i=1

πi(α, α) + Eα

∑
g

Ag(α)Es

∑
i∈g

pgi (α, s
g)

1− F (αi)

f(αi)
u1(αi, si)

 .

tions, a “smaller number” of firms were invited to submit final bids after the first round – although this
number was neither pre-announced nor disclosed (CBS Phily, November 19, 2013, “Sell-off of Philadel-
phia’s Natural Gas Utility Goes To Binding Bidding,” by Mike Dunn).
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The total expected surplus from the two-stage mechanism is

(22) TS = Eα
∑
g

Ag(α)Es

∑
i∈g

pgi (α, s
g)u(αi, si)− |g|c

 .

The seller’s expected revenue is thus given by

ER

= TS −
N∑
i=1

Eπi(αi, αi)

= Eα
∑
g

{
Ag(α)

[
Es

[∑
i∈g p

g
i (α, s

g)
(
u(αi, si)− 1−F (αi)

f(αi)
u1(αi, si)

)]
−|g|c

]}

−
N∑
i=1

πi(α, α),

which coincides with the expected revenue with public s given by (2). �

Proof of Proposition 1: The second-stage IC and IR given the first-stage
truthful revelation and IR have been established in the discussions prior to the
proposition. We will next show the first-stage IC under payment rule x∗i , together
with the second-stage payment rule t∗gi .

Suppose that all buyers except i report their types α−i truthfully. Consider
buyer i with αi contemplating to misreport α̂i < αi. The deviation payoff is

∆ = π∗i (αi, α̂i)− π∗i (αi, αi) = [π∗i (αi, α̂i)− π∗i (α̂i, α̂i)] + [π∗i (α̂i, α̂i)− π∗i (αi, αi)].

Since (15) is satisfied by the construction of x∗i (α), we have

π∗i (α̂i, α̂i)− π∗i (αi, αi)

= −
∫ αi

α̂i

∫
u1(y, si) ·

∑
gi

[
Eα−iA

∗gi(y, α−i)P
∗gi
i (y, α−i, si)

]
dGi(si)dy.

Recall the definition of π∗i (αi, α̂i) in (11) and that gi denotes a group including

bidder i. Note that
∂π̃

gi
i (α,α̂i;si,ŝi=σi(αi,α̂i,si))

∂ŝi
∂ŝi
∂αi

= 0 since either ∂ŝi
∂αi

= 0 (bound-
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ary ŝi) or
∂π̃

gi
i (α,α̂i;si,ŝi=σi(αi,α̂i,si))

∂ŝi
= 0 (interior ŝi). This observation implies

dπ̃gii (α,α̂i;si, σi(αi, α̂i, si))

dαi

=
∂π̃gii (α,α̂i;si, ŝi)

∂αi
|ŝi=σi(αi,α̂i,si) = u1(αi, si)P

gi
i (α̂i, α−i, σi(αi, α̂i, si)).

We thus have

(23)
∂π̃gii (αi, α̂i;α−i)

∂αi
= Esiu1(αi, si)P

gi
i (α̂i, α−i, σi(αi, α̂i, si)),

which leads to the following result.34

Suppose α−i is truthfully revealed from the first stage and the second-stage
mechanism is incentive compatible given truthfully revealed α. If buyer i of type
αi who reported α̂i in the first stage is shortlisted in group gi, her expected payoff
from the second stage is given by

π̃gii (αi, α̂i;α−i)(24)

= π̃gii (α̂i, α̂i;α−i) +

∫ ∫ αi

α̂i

u1(y, si)P
gi
i (α̂i, α−i, σi(y, α̂i, si))dydGi(si).

Therefore, we have

π∗i (αi, α̂i)− π∗i (α̂i, α̂i)(25)

= Eα−i

{∑
gi

Agi(α̂i, α−i)[π̃
gi
i (αi, α̂i;α−i)− π̃gii (α̂i, α̂i;α−i)]

}

=

∫ αi

α̂i

∫
u1(y, si) ·

∑
gi

[
Eα−iA

∗gi(α̂i, α−i)P
∗gi
i (α̂i, α−i, σi(y, α̂i, si))

]
dGi(si)dy.

Therefore, we have

∆(26)

=

∫ αi

α̂i

Eα−i
∑
gi

 A∗gi(y, α−i)
·
∫
u1(y, si)[P

∗gi
i (α̂i, α−i, σi(y, α̂i, si))

−P ∗gii (y, α−i, si)]dGi(si)

 dy
+

∫ αi

α̂i

Eα−i
∑
gi

[
[A∗gi(α̂i, α−i)−A∗gi(y, α−i)]

·
∫
u1(y, si)P

∗gi
i (α̂i, α−i, σi(y, α̂i, si))dGi(si)

]
dy.

34This procedure is followed by Liu et. al (2020) when establishing their Lemma 3.
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From Corollary 1 (ii), we have P ∗gii (α̂i, α−i, σi(y, α̂i, si))− P ∗gii (y, α−i, si) ≤ 0,
which implies that the first term in ∆ is negative.

We now consider the second term in ∆ when y > α̂i. By Corollary 2, the
optimal shortlisting rule implies that given α−i, when buyer i is admitted with a
higher αi, she must be admitted to a group with a weakly smaller size. If y and
α̂i are admitted in the same group, then A∗gi(α̂i, α−i) = A∗gi(y, α−i) and this
term in ∆ is zero.

We now turn to the case where g∗(α̂i, α−i) ⊃ g∗(y, α−i) ⊃ {i}. Note that
A∗gi(·, α−i) is 1 for the shortlisted group, and 0 for all other groups. Therefore,∑

gi

[A∗gi(α̂i, α−i)−A∗gi(y, α−i)]u1(y, si)P
∗gi
i (α̂i, α−i, σi(y, α̂i, si))

= u1(y, si)
[
P
∗g∗(α̂i,α−i)
i (α̂i, α−i, σi(y, α̂i, si))− P ∗g

∗(y,α−i)
i (α̂i, α−i, σi(y, α̂i, si))

]
≤ 0,

which implies that the second term in ∆ is negative. Since g∗(α̂i, α−i) ⊃ g∗(y, α−i) ⊃
{i}, we must have P

∗g∗(α̂i,α−i)
i (α̂i, α−i, σi(y, α̂i, si)) ≤ P ∗g

∗(y,α−i)
i (α̂i, α−i, σi(y, α̂i, si)),

i.e. entrant i wins with a smaller probability if a strictly bigger group is short-
listed.

A similar argument can be used to rule out deviating to α̂i > αi. �

Proof of Lemma 3: Agent i’s expected payoff when i is endowed with αi but
announces α̂i is given by:

πi(αi, α̂i)

= Eα−iEs


−
∑
∀g

[
Pr(g|(α̂i, α−i),m

s
2, ...,m

s
M+1)

∑M
k=1 tk+1,i((α̂i, α−i),m

s
2, ...,m

s
k+1)

]
+
∑
∀g s.t. i∈Gg

 Pr(g|(α̂i, α−i),m
s
2, ...,m

s
M+1)

·
[
u(αi, si)p

Gg

i ((α̂i, α−i),m
s
2, ...,m

s
M+1)

−c

] 


−Eα−i [t1,i((α̂i, α−i))].

Incentive compatibility together with the envelop theorem gives:

dπi(αi, αi)

dαi
(27)

= Eα−iEs

 ∑
∀g s.t. i∈Gg

∂u(αi, si)

∂αi

[
Pr (g|(αi, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((αi, α−i),m
s
2, ...,m

s
M+1)

] .

Thus, we have
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πi(αi, αi) = πi(α, α)(28)

+Eα−i

∫ αi

α
Es

 ∑
∀g s.t. i∈Gg

 u1(y, si)

·
[

Pr (g|(y, α−i),ms
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

]  dy.

The expected social surplus given α is as follows:

TS(α)

= Es

∑
∀g

[
Pr(g|α,ms

2, ...,m
s
M+1)

·
∑

i∈Gg

(
p
Gg

i (α,ms
2, ...,m

s
M+1)u(αi, si)− c

) ] .

The seller seeks to maximize the expected revenue:

ER = Eα

[
TS(α)−

∑
i∈N

πi(αi, αi)

]
.

Note we have ∑
∀g s.t. i∈Gg

Pr(g|α, s) =
∑

∀G s.t. i∈G
Pr(G|α, s).

By the standard procedure, we can rewrite the seller’s objective as follows:

ER

= EαEs

∑
∀g

[
Pr (g|α,ms

2, ...,m
s
M+1)

·
∑

i∈Gg

[
p
Gg

i (α,ms
2, ...,m

s
M+1)w(αi, si)− c

] ]
−
∑
i

πi(α,α),

where w(αi, si) =u(αi, si)− u1(αi, si)
1−F (αi)
f(αi)

.
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Note that

Eαi [πi(αi, αi)]

= πi(α, α) +

Eα−iEαi

∫ αi

α
Es

 ∑
∀g s.t. i∈Gg

u1(y, si)

[
Pr(g|(y, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

] dy

= πi(α, α) +

Eα−i

∫ α

α

∫ αi

α
Es

 ∑
∀g s.t. i∈Gg

u1(y, si)

[
Pr(g|(y, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

] dyf(αi)dαi

= πi(α, α) +

Eα−i

∫ α

α

∫ α

y
Es

 ∑
∀g s.t. i∈Gg

u1(y, si)

[
Pr(g|(y, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

] f(αi)dαidy

= πi(α, α) +

Eα−i

∫ α

α
Es

 ∑
∀g s.t. i∈Gg

u1(y, si)

[
Pr(g|(y, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

] [

∫ α

y
f(αi)dαi]dy

= πi(α, α) +

Eα−i

∫ α

α
Es

 ∑
∀g s.t. i∈Gg

u1(y, si)

[
Pr(g|(y, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((y, α−i),m
s
2, ...,m

s
M+1)

] 1− F (y)

f(y)
f(y)dy

= πi(α, α) +

Eα−iEαiEs

 ∑
∀g s.t. i∈Gg

u1(αi, si)

[
Pr(g|(αi, α−i),m

s
2, ...,m

s
M+1)

·pGg

i ((αi, α−i),m
s
2, ...,m

s
M+1)

] 1− F (αi)

f(αi)

= πi(α, α) + EαEs

 ∑
∀g s.t. i∈Gg

u1(αi, si)

[
Pr(g|(α,ms

2, ...,m
s
M+1)

·pGg

i (α,ms
2, ...,m

s
M+1)

] 1− F (αi)

f(αi)
.

Therefore, the seller’s expected revenue is given by

ER = Eα

TS(α)−
∑
i∈N

πi(αi, αi)


= EαEs

∑
∀g

Pr(g|α,ms
2, ...,m

s
M+1)

∑
i∈Gg

(
p
Gg

i (α,ms
2, ...,m

s
M+1)u(αi, si)− c

)
−
∑
i

πi(α, α)− EαEs

∑
i

∑
∀g s.t. i∈Gg

u1(αi, si)

[
Pr(g|(α,ms

2, ...,m
s
M+1)

·pGg

i (α,ms
2, ...,m

s
M+1)

]
1− F (αi)

f(αi)


= EαEs

∑
∀g

Pr(g|α,ms
2, ...,m

s
M+1)

∑
i∈Gg

(
p
Gg

i (α,ms
2, ...,m

s
M+1)u(αi, si)− c

)
−EαEs

∑
∀g

[
Pr(g|c,ms

2, ...,m
s
M+1)

·
∑
i∈Gg

[
p
Gg

i (α,ms
2, ...,m

s
M+1)u1(αi, si)

1−F (αi)
f(αi)

] ]−∑
i

πi(α, α)
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= EαEs

∑
∀g

Pr(g|α,ms
2, ...,m

s
M+1)

∑
i∈Gg


 p

Gg

i (α,ms
2, ...,m

s
M+1)

·
[
u(αi, si)− u1(αi, si)

1−F (αi)
f(αi)

] − c


−
∑
i

πi(α, α)

= EαEs

∑
∀g

Pr(g|α,ms
2, ...,m

s
M+1)

∑
i∈Gg

[
p
Gg

i (α,ms
2, ...,m

s
M+1)w(αi, si)− c

]
−
∑
i

πi(α, α).

Lemma 3 thus follows. �

Proof of Lemma 4: First we show that there is no loss of generality to consider
shortlisting rules, under which any possible set of players shortlisted at each stage
must be a singleton before the shortlisting process is completed.

Consider any given sequential shortlisting rule. By Lemma 3, the expected
revenue is determined by the derived {Pr(G|α, s),∀G ∈ 2N, α, s}. We next show
that any {Pr(G|α, s),∀G ∈ 2N, α, s} can be generated by an one-agent-per-stage-
until-the-last shortlisting rule as described in the first paragraph of this proof.

Let G+(α, s) = {G|Pr(G|α, s) > 0, G ∈ 2N}. ∀G+ ∈ G+(α, s) and G+ 6= ∅,
there are at most N agents in it. We can rank these agents in G+ in ascending
order by their indexes.

If ∅ ∈ G+(α, s), we letAg1=∅(α|g0) = Pr(∅|α, s) and further letAgk=∅(α,ms
2, ...,

ms
k|g0, g1, g2, ..., gk−1) = 1 for gk−1 = ∅, k = 2, ...,M , which says that if no one

is shortlisted in stage k ≥ 1, then no one will be shortlisted in subsequent stages.
∀i ∈ N, let Ag1={i}(α|g0) =

∑
∀G s.t. j≥i,∀j∈G Pr(G|α, s). In other words, the

probability that agent i is shortlisted at stage 1 is the sum of the probabilities of all
the final shortlisted groups that contain i as the smallest indexed within the group.
If agent i does not belong to any final shortlisted group with him as the smallest
indexed, then we let Ag1={i}(α|g0) = 0. Note by the above constructions, we must
have Ag1=∅(α|g0) +

∑
i∈NAg1={i}(α|g0) = 1. Therefore, we let Ag1={i}(α|g0) = 0

for any group g1 that contains more than two agents.
We now move to constructing the stage-2 shortlisting rule. We only need to

focus on the nonempty single-element g1’s that have positive chances of being
shortlisted at stage 1, since any group g1 with more than two agents is never
shortlisted in stage 1, and when no agent is shortlisted in stage 1, then the future
shortlist rule has been fully pinned down. Take any of these g1’s and focus on
all G+’s that contain the single agent in g1 as the smallest indexed. Let G+(g1)
denote this set of G+’s. We are now ready to define Ag2(α,ms

1|g0, g1),∀g2 ∈
2N\g1 . For g2 = ∅, we define Ag2=∅(α,ms

1|g0, g1) = 0 if g1 /∈ G+(g1), and

Ag2=∅(α,ms
1|g0, g1) = Pr(G+=g1|α,s)

Ag1 (α|g0) if g1 ∈ G+(g1). We let Ag2(α,ms
1|g0, g1) = 0

for any group g2 ∈ 2N\g1that contains more than two agents. We use N(g1) to
denote the pool of the second smallest indexed agents in the G+’s in G+(g1). If
N(g1) is empty, then we let Ag2={j}(α,ms

1|g0, g1) = 0, ∀j ∈ N\g1. If N(g1) is not
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empty, we let

Ag2={j}(α,ms
1|g0, g1) =

{ ∑
G+∈G+(g1) s.t. k≥j,∀k∈G+\g1

Pr(G+|α,s)
Ag1 (α|g0) ∀j ∈ N(g1),

0 ∀j /∈ N(g1).

In words, for any agent j ∈ N(g1), the probability that j is shortlisted condi-
tional on that g1 has been shortlisted is simply the ratio between the sum of
probabilities of G+’s that contain the single agent in g1 as the smallest indexed
and j as the second smallest indexed and the sum of probabilities of G+’s that
contain the single agent in g1. By construction, we have Ag2=∅(α,ms

1|g0, g1) +∑
j∈N(g1)A

g2={j}(α,ms
1|g0, g1) = 1.

Similarly, for stage 3, we only need to consider these shortlisting histories
(g1, g2) where both g1 and g2 are nonempty single-element groups. We de-
fine G+(g1, g2) as the set of all G+’s that contain the single element in g1 as
the smallest indexed, and the single element in g2 ∈ G+(g1)\∅ as the second
smallest indexed. We are now ready to define Ag3(α,ms

1,m
s
2|g0, g1, g2), ∀g3 ∈

2N\{g1∪g2}. For g3 = ∅, we define Ag3=∅(α,ms
1,m

s
2|g0, g1, g2) = 0 if g1 ∪ g2 /∈

G+(g1, g2) and Ag3=∅(α,ms
1,m

s
2|g0, g1, g2) = Pr(G+=g1∪g2|α,s)

Ag1 (α|g0)·Ag2 (α,ms
1|g0,g1) if g1 ∪ g2 ∈

G+(g1, g2). We let Ag3(α,ms
1,m

s
2| g0, g1, g2) = 0 for any group g3 ∈ 2N\{g1∪g2}

that contains more than two agents. We use N(g1, g2) to denote the pool of
the third smallest indexed agents in the G+s in G+(g1, g2). If N(g1, g2) is
empty, then we let Ag3={j}(α,ms

1,m
s
2|g0, g1, g2) = 0, ∀j ∈ N\{g1 ∪ g2}. If

N(g1, g2) is not empty, then ∀j ∈ N(g1, g2), we let Ag3={j}(α,ms
1,m

s
2|g0, g1, g2) =∑

G+∈G+(g1,g2) s.t. k≥j,∀k∈G+\(g1∪g2)
Pr(G+|α,s)

Ag1 (α|g0)·Ag2 (α,ms
1|g0,g1) ; and ∀j /∈ N(g1, g2), we letAg3={j}(α,ms

1,

ms
2|g0, g1, g2) = 0. By construction, Ag3=∅(α,ms

1,m
s
2|g0, g1, g2) +

∑
j∈N(g1,g2)

Ag3={j}(α,ms
1,m

s
2|g0, g1, g2) = 1.

This process continues analogously until we exhaust all agents in every group
G+ ∈ G+(α, s). By construction, it is clear that this process of shortlisting one
agent at each stage generates the same probabilities of {Pr(G|α, s),∀G ∈ 2N, α, s}.
As a result, the above constructed shortlisting rule would generate the same
expected revenue for the seller.

Note that the shortlisting rule established above allows for the possibility that
each of the remaining bidders is shortlisted with a different probability at a par-
ticular stage. The point is that we can focus on shortlisting rules under which the
seller shortlists one agent at each stage before stopping the shortlisting. It further
implies that to search for the optimal shortlisting rule, without loss of generality,
we can focus on the rules where at each stage the seller either shortlists an agent
with probability 1 or stops shortlisting. The reason is as follows. At stage 1, the
principal has N+1 choices: shortlisting no one or shortlisting some i. Shortlisting
no one implies that the shortlisting process stops at stage 1. According to Lemma
3, we have ER = 0. If the seller opts to shortlist agent i, he would continue to
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adopt the best shortlisting decisions in all subsequent stages. Suppose this leads
to an optimal expected revenue of ERi, i = 1, 2, ..., N . Clearly, there is no loss of
generality for the seller to adopt an option which delivers the maximum revenue
with probability 1. If this option is ∅, then the shortlisting process stops. If it
is to shortlist agent i, then we move to the next stage with the new information
revealed by i. At stage 2, similarly, the seller has N options: shortlisting no one
or shortlisting any j ∈ N\{i}. Similarly, the seller should go for an option that
delivers the maximum revenue with probability 1. The process continues until
the seller runs out of agents or he decides to stop shortlisting. We are now ready
to prove the lemma.

Consider any given α and any shortlisting rule as described above

Agk(α,ms
1,m

s
2, ...,m

s
k−1;g0, g1, g2, ...gk−1).

Pr(G|α, s) denotes the conditional shortlisting probability of group G. Without
loss of generality, we assume αi decreases with i. In stage k ≥ 1, which agent ik is
shortlisted with probability 1 depends on (α,ms

1,m
s
2, ...,m

s
k−1;g0, g1, g2, ...gk−1).

Note signals si, i ∈ N are i.i.d. and they are independent of αi, i ∈ N. We
construct a new shortlisting rule under which the seller shortlists one agent at
each stage before stopping the shortlisting, as follows. In stage 1, when i1 is
shortlisted, we replace her by agent 1. In stage 2, we use the same shortlist-
ing rule Ag2(α,ms

1|g0, g1) treating as if g1 = {i1}, however, ms
1 now stands for

agent 1’s type instead. Because si1 and s1 follow the same distribution, the rule
Ag2(α,ms

1|g0, g1) would generate the same agent i2 ∈ N\{i1} to be shortlisted in
stage 2 while which i2 is shortlisted might depend on the realization of ms

1. When-
ever an i2 is shortlisted in stage 2, we replace her by agent 2. In stage k ≥ 3, we
use the same shortlisting rule Agk(α,ms

1,m
s
2...,m

s
k−1|g0, g1, ..., gk−1) treating as if

gh = {ih}, 1 ≤ h < k, however, ms
i now stands for agent i’s type instead. Because

sih and sh follow the same distribution, the rule Agk(α,ms
1,m

s
2...,m

s
k−1|g0, g1, ...,

gk−1) would generate the same agent ik ∈ N\∪k−1
h=1{ih} to be shortlisted in stage k

while which ik is shortlisted might depend on the realization of (ms
1,m

s
2, ...,m

s
k−1).

Whenever an ik is shortlisted in stage k, we replace her by agent k. We use
P̂r(G|α, s) to denote the conditional shortlisting probability of group G under the

new rule. Let Gk = {1, 2, ..., k}, k = 1, 2, ..., N . Note that P̂r(G|α, s) = 0 for any
G ∈ 2N\{∅, Gk, k = 1, 2, ..., N}.

Based on the above construction, ∀α, ∀k = 1, 2, ..., N such that Es
∑
∀G s.t. |G|=k

Pr(G|α, s) > 0, we must have EsP̂r(Gk|α, s) = Es
∑
∀G s.t. |G|=k Pr(G|α, s). There-
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fore,

Es

∑
G∈2N

Pr(G|α, s)

[
max{w+

i (αi, si)}i∈G −
∑
i∈G

c

]
= Es


N∑
k=1

∑
∀G s.t. |G|=k

Pr(G|α, s)
[
max{w+

i (αi, si)}i∈G − kc
]

≥ Es


N∑
k=1

∑
Gk

P̂r(Gk|α, s)[max{w+
i (αi, si)}i∈Gk − kc]


= Es

∑
G∈2N

P̂r(G|α, s)[max{w+
i (αi, si)}i∈G −

∑
i∈G

c]

 .

Therefore, by Lemma 3, the constructed shortlisting rule generates higher ex-
pected revenue. �

Proof of Proposition 4: Given stage-1 report α̂, we use ik to denote the agent
whose report is ranked the kth highest. We first look at the reporting incen-
tive at stages k ≥ 2. Let gk,h = (g1 = {i1}, g2 = {i2}, ..., gk−1 = {ik−1}, ..., gh =
{ih}, gh+1 = ∅, ..., gM = ∅), h ≥ k ≥ 2 be a sequence of shortlisted where h agents
(including ik) are shortlisted in total. Let m̂k denote the stage-k announcement
(so its ik−1−th element is ŝik−1

and all the other elements are ∅). Given the an-
nouncement in the history (α̂,m2, ...,mk−1), assuming agents il, l ≥ k truthfully
reveal their information at stage l+ 1, agent ik−1’s conditional expected payoff is

πik−1
(sik−1

, ŝik−1
|α̂,m2, ...,mk−1)

= E(sik
,...,siN )



−
∑N
∀h=k

[
Pr ∗(gk−1,h|α̂,m2, ...,mk−1, m̂k,m

s
k+1...,m

s
M+1)

·
∑M
l=k+1 tl,ik−1

(α̂,m2, ...,mk−1, m̂k,m
s
k+1, ...,m

s
l )

]
+u(αik−1

, sik−1
)

·
∑N
∀h=k−1

[
Pr ∗(gk−1,h|α̂,m2, ...,mk−1, m̂k,m

s
k+1...,m

s
M+1)

·p
∗Ggk−1,h

ik−1
(α̂,m2, ...,mk−1, m̂k,m

s
k+1...,m

s
M+1)

]


−tk,ik−1
(α̂,m2, ...,mk−1, m̂k).

We next identify the tk,i(α̂,m2, ...,mk−1, m̂k), i ∈ N that induces truthful rev-
elation at stage k whenever α̂il = αil , l ≥ k − 1, i.e. whenever these first stage
announcements are truthful. In particular, tk,ik−1

can be constructed following the
standard Myersonian procedure with πik−1

(0, 0|α̂,m2, ...,mk−1) = 0, and ∀k ≥ 3,
tk−1,ik−1

can be set at −c to induce information discovery of the shortlisted agent
ik−1 at stage k − 1. All other tk,i are set to zero for i 6= ik−1, ik,∀k ≥ 2. This
means at each stage k ≥ 2, transfers are nonzero only for the agents shortlisted
in stages k − 1 and k
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We first consider stage N + 1. Suppose iN is shortlisted in stage N . At stage
N , we have

πiN (siN , ŝiN |α̂,m2, ...,mN )(29)

= u(αiN , siN )p∗NiN (α̂,m2, ...,mN , m̂N+1,m
s
N+2...,m

s
M+1)

−tN+1,iN (α̂,m2, ...,mN , m̂N+1).

By the envelop theorem, optimality of truthful revelation requires

dπiN (siN , siN |α̂,m2, ...,mN )

dsiN
= u2(αiN , siN )p∗NiN (α̂,m2, ...,mN ,m

s
N+1,m

s
N+2...,m

s
M+1).

Recall that we set πiN (0, 0|α̂,m2, ...,mN ) = 0. We thus have

πiN (siN , siN |α̂,m2, ...,mN )(30)

=

∫ siN

0
u2(αiN , y)p∗NiN (α̂,m2, ...,mN ,m

s
N+1(y),ms

N+2...,m
s
M+1)dy,

where in ms
N+1(y), siN is replaced by y.

Given (29) and (30), we define

t∗N+1,iN
(α̂,m2, ...,mN ,m

s
N+1)(31)

= u(αiN , siN )p∗NiN (α̂,m2, ...,mN ,m
s
N+1,m

s
N+2...,m

s
M+1)

−
∫ siN

0
u2(αiN , y)p∗NiN (α̂,m2, ...,mN ,m

s
N+1(y),ms

N+2...,m
s
M+1)dy.

Therefore,

t∗N+1,iN
(α̂,m2, ...,mN ,m

s
N+1) = 0 if agent iN loses;

and t∗N+1,iN
(α̂,m2, ...,mN ,m

s
N+1) = u(αiN , s̃iN ) if she wins,

where s̃iN (> 0) is agent iN ’s minimum winning type in stage N based on winning
rule p∗. Note that under Assumptions 1 and 2, we have that w(αik , sik) increases
with both αik and sik , ∀k. Thus s̃iN is well defined, which is determined by

u(αiN , s̃iN )− u1(αiN , s̃iN )
1− F (αiN )

f(αiN )
=

[
0 ∨ max

ik,k<N

{
u(α̂ik , sik)− u1(α̂ik , sik)

1− F (α̂ik )

f(α̂ik )

}]
.

It is clear that (1) πiN (siN , ŝiN |α̂,m2, ...,mN ) satisfies the strict and smooth sin-
gle crossing differences property in (siN , ŝiN ); (2) p∗NiN (α̂,m2, ...,mN , m̂N+1,m

s
N+2,

...,ms
M+1) increases in ŝiN ; (3) t∗N+1,iN

defined above verifies the envelope the-

orem. By the constraint simplification theorem,35 truthful revelation at stage

35A version of the constraint simplification theorem can be seen from Theorem 4.3 in Milgrom (2004,
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N + 1 is incentive compatible for (p∗, t∗N+1,iN
).

We now turn to stage N . First note that, given t∗N+1,iN
constructed above,

iN would reveal truthfully at stage N + 1 if shortlisted, regardless of iN−1’s
announcement at stage N . Let m̂N denote the stage-N announcement with the
iN−1−th element being ŝiN−1 and all other elements being ∅. Given announcement
in the history (α̂,m2, ...,mN−1), agent iN−1’s conditional expected payoff is

πiN−1
(siN−1

, ŝiN−1
|α̂,m2, ...,mN−1)(32)

= EsiN


u(αiN−1

, siN−1
)

·
∑N
∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mN−1, m̂N ,m

s
N+1...,m

s
M+1)

·p
∗GgN−1,h

iN−1
(α̂,m2, ...,mN−1, m̂N ,m

s
N+1...,m

s
M+1)

] 
−tN,iN−1

(α̂,m2, ...,mN−1, m̂N ).

By the envelop theorem, optimality of truthful revelation requires

dπiN−1
(siN−1

, siN−1
|α̂,m2, ...,mN−1)

dsiN−1

= u2(αiN−1
, siN−1

)EsiN


N∑

∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

· p
∗GgN−1,h

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

] .

Recall that we set πiN−1(0, 0|α̂,m2, ...,mN−1) = 0. We thus have

πiN−1
(siN−1

, siN−1
|α̂,m2, ...,mN−1)(33)

=

∫ siN−1

0


u2(αiN−1

, y)

·EsiN

{∑N
∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,m

s
N (y), ...,ms

M+1)

· p
∗GgN−1,h

iN−1
(α̂,m2, ...,m

s
N (y), ...,ms

M+1)

]}  dy,

where in ms
N (y), siN−1 is replaced by y.

Based on (32) and (33), we define

t∗N,iN−1
(α̂,m2, ...,mN−1,m

s
N )(34)

= EsiN


u(αiN−1

, siN−1
)

·
∑N
∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mN−1,m

s
N ,m

s
N+1, ...,m

s
M+1)

·p
∗GgN−1,h

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1, ...,m

s
M+1)

] 
−
∫ siN−1

0


u2(αiN−1

, y)

·EsiN

{∑N
∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,m

s
N (y), ...,ms

M+1)

· p
∗GgN−1,h

iN−1
(α̂,m2, ...,m

s
N (y), ...,ms

M+1)

]}  dy.

page 13).
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Let

Φ(siN−1) ≡
N∑

∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

·p
∗GgN−1,h

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

]

be the probability that iN−1 is shortlisted and wins the asset at the end. We first
show in Lemma 5 that this probability is increasing in siN−1 .

Lemma 5. Φ(siN−1) increases in siN−1.

Proof of Lemma 5: Given (α̂,m2, ...,mN−1,m
s
N ,m

s
N+1...,m

s
M+1), let

α1(siN−1) ≡ Pr ∗(gN−1,N−1|α̂,m2, ...,mN−1,m
s
N ,m

s
N+1...,m

s
M+1),

α2(siN−1) ≡ Pr ∗(gN−1,N |α̂,m2, ...,mN−1,m
s
N ,m

s
N+1...,m

s
M+1),

P1(siN−1) ≡ p
∗GgN−1,N−1

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1),

P2(siN−1) ≡ p
∗GgN−1,N

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1).

In addition, we let α0(siN−1) be the probability that iN−1 is not shortlisted
given
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1). So α0(siN−1) = 1−α1(siN−1)−α2(siN−1).

We have

Φ(siN−1) ≡
N∑

∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

·p
∗GgN−1,h

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

]

=

[
Pr ∗(gN−1,N−1|α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

· p
∗GgN−1,N−1

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

]

+

[
Pr ∗(gN−1,N |α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

·p
∗GgN−1,N

iN−1
(α̂,m2, ...,mN−1,m

s
N ,m

s
N+1...,m

s
M+1)

]
= α1(siN−1)P1(siN−1) + α2(siN−1)P2(siN−1).

When siN−1 increases, α1(siN−1) increases, α2(siN−1) decreases, and α0(siN−1)
also decreases. That is, the probability that iN−1 will be shortlisted as the last
one shortlisted increases, while the probability that iN−1 and iN will be both
shortlisted decreases and the probability that iN−1 will not be shortlisted also
decreases. It is also clear that P1(siN−1) and P2(siN−1) are both increasing in
siN−1 . Besides, we have P1(siN−1) ≥ P2(siN−1) (iN−1 has a better chance of
winning with a smaller set of entrants). Thus, given s′iN−1

, s′′iN−1
, s′′iN−1

> s′iN−1
,

we have
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Φ(s′′iN−1
)− Φ(s′iN−1

)

= α1(s′′iN−1
)P1(s′′iN−1

)− α1(s′iN−1
)P1(s′iN−1

)

+α2(s′′iN−1
)P2(s′′iN−1

)− α2(s′iN−1
)P2(s′iN−1

)

≥
[
α1(s′′iN−1

)− α1(s′iN−1
)
]
· P1(s′iN−1

) +
[
α2(s′′iN−1

)− α2(s′iN−1
)
]
· P2(s′iN−1

)

≥
[
α1(s′′iN−1

)− α1(s′iN−1
) + α2(s′′iN−1

)− α2(s′iN−1
)
]
· P2(s′iN−1

)

=
[
α0(s′iN−1

)− α0(s′′iN−1
)
]
· P2(s′iN−1

)

≥ 0.

�

Thus we have (1) πiN−1(siN−1 , ŝiN−1 |α̂,m2, ...,mN ) satisfies the strict and smooth
single crossing differences property in (siN−1 , ŝiN−1); (2) Φ(siN−1) increases in
ŝiN−1 ; (3) t∗N,iN−1

defined above verifies the envelope theorem. By the constraint

simplification theorem again, it is incentive compatible for agent iN−1 to reveal
siN−1 truthfully at stage N .

Following the same procedure and going backward stage by stage, for k =
N −2, N −3, ..., 3, 2, we can construct payment rules for the corresponding stages
to establish that agent ik−1 would reveal her type sik−1

truthfully given allocation
rules (A∗,p∗) and the constructed payments rule t∗ as long as α̂il = αil , for
l ≥ k + 1. In particular, the constructed transfers are given by

t∗k,ik−1
(α̂,m2, ...,mk−1,m

s
k)(35)

= E(sik+1
,...,siN )


u(αik−1

, sik−1
)

·
∑N
∀h=k−1

[
Pr ∗(gN−1,h|α̂,m2, ...,mk−1,m

s
k,m

s
k+1...,m

s
M+1)

·p
∗Ggk−1,h

ik−1
(α̂,m2, ...,mk−1,m

s
k,m

s
k+1...,m

s
M+1)

] 
−
∫ sik−1

0


u2(αiN−1

, y)

·EsiN

{∑N
∀h=N−1

[
Pr ∗(gN−1,h|α̂,m2, ...,m

s
k(y), ...,ms

M+1)

·p
∗Ggk−1,h

ik−1
(α̂,m2, ...,m

s
k(y), ...,ms

M+1)

]}  dy,

where in ms
k(y), siN−1 is replaced by y.

In fact, in the preceding arguments we show that so long as α̂il = αil , l ≥ k+ 1,
truthful revelation for stages l ≥ k + 1 also follows. We now turn to stage 1. We
will show that given α̂−i = α−i, under shortlisting and allocation rule (A∗,p∗)
, we can construct stage-1 payments such that agent i reveals αi truthfully and
πi(α,α) = 0,∀i. In addition, the shortlisted agent has the incentive to incur cost
c.

By the same logic as in Lemma 2 of Liu et. al. (2020), when agent i reports α̂i
at stage 1, she will report σi(αi, α̂i, si) when she is shortlisted later and asked to
report her second type, where σi(αi, α̂i, si) is defined in (10). By the argument in
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the proof of Corollary 1 in Esö and Szentes (2007), we have that if σi(αi, α̂i, si) is
interior, then wi(αi, si) ≶ wi(α̂i, σi(αi, α̂i, si)) if and only if αi ≶ α̂i. The result
also holds when σi(αi, α̂i, si) is at boundaries of interval [0, 1] since wi(αi, si)
increases with si.

Let r(α̂i, α−i) denote the rank of α̂i in (α̂i, α−i), and mσi
r(α̂i,α−i)+1 denote the

stage r(α̂i, α−i) reports in which agent i’s report is σi(αi, α̂i, si). Further assume
that all shortlisted agents get a subsidy of c from the seller besides the stage-
1 transfer t1,i(·) to make sure that they have the incentive to conduct the due
diligence. At stage 1, agent i’s expected payoff when i is of type αi but announces
α̂i is:

πi(αi, α̂i)(36)

= Eα−iEs



−
∑N
∀h=r(α̂i,α−i)

 Pr ∗(g1,h|(α̂i, α−i),m
s
2, ...,m

σi(αi,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

·
(
t∗
r(α̂i,α−i)+1,i

((α̂i, α−i),m
s
2, ...,m

σi(αi,α̂i,si)
r(α̂i,α−i)+1

)− c
) 

+
∑N
∀h=r(α̂i,α−i)


Pr ∗(g1,h|(α̂i, α−i),m

s
2, ...,m

σi(αi,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

·

 u(αi, si)

·p
∗Gg1,h

i ((α̂i, α−i),m
s
2, ...,m

σi(αi,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

−c





−Eα−i [t1,i((α̂i, α−i))].

We are now ready to pin down the transfer t∗1,i(·) (net of the entry subsidy c)
that induces truthful revelation in stage 1.

By the envelop theorem, optimality of truthful revelation requires

dπi(αi, αi)

dαi
(37)

= Eα−iEsu1(αi, si)

N∑
∀h=r(αi,α−i)

 Pr ∗(g1,h|(αi, α−i),m
s
2, ...,m

s
r(αi,α−i)+1

, ...,ms
M+1)

· p
∗Gg1,h

i ((αi, α−i),m
s
2, ...,m

s
r(αi,α−i)+1

, ...,ms
M+1)

 .

Recall that we set πi(α, α) = 0. We thus have

πi(αi, αi)(38)

=

∫ αi

α
Eα−iEsu1(y, si)

N∑
∀h=r(y,α−i)

 Pr ∗(g1,h|(y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

 dy.
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By (36) and (38), we define

t∗1,i(α̂)(39)

= Es



−
∑N
∀h=r(α̂i,α̂−i)

[
Pr ∗(g1,h|(α̂i, α̂−i),m

s
2, ...,m

s
r(α̂i,α̂−i)+1

, ...,ms
M+1)

·t∗
r(α̂i,α̂−i)+1,i

((α̂i, α̂−i),m
s
2, ...,m

s
r(α̂i,α̂−i)+1

)

]

+
∑N
∀h=r(α̂i,α̂−i)


Pr ∗(g1,h|(α̂i, α̂−i),m

s
2, ...,m

s
r(α̂i,α̂−i)+1

, ...,ms
M+1)

·
[

u(α̂i, si)

·p
∗Gg1,h

i ((α̂i, α̂−i),m
s
2, ...,m

s
r(α̂i,α̂−i)+1

, ...,ms
M+1)

] 


−
∫ α̂i

α
Esu1(y, si)

N∑
∀h=r(y,α−i)

 Pr ∗(g1,h|(y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

 dy.

To show that it is incentive compatible for agent i to reveal truthfully at stage
1 under (A∗,p∗, t∗), we need to show

πi(αi, αi) ≥ πi(αi, α̂i), ∀αi, α̂i.

It is not readily clear that πi(αi, α̂i) satisfies the single crossing property. As
such, to establish IC we will turn to an alternative argument other than the
constraint simplification theorem.

Provided that the mechanism is truthful after stage 1 if stage-1 reports are
truthful, similar to (25), we have

πi(αi, α̂i)− πi(α̂i, α̂i)

=

∫ αi

α̂i

Eα−iEsu1(y, si)
N∑

∀h=r(α̂i,α−i)

 Pr ∗(g1,h|(α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

 dy.

Consider

∆

= πi(αi, αi)− πi(αi, α̂i)
= [πi(αi, αi)− πi(α̂i, α̂i)] + [πi(α̂i, α̂i)− πi(αi, α̂i)]

=

∫ αi

α̂i

Eα−iEsu1(y, si)
N∑

∀h=r(y,α−i)

 Pr ∗(g1,h|(y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

 dy
−
∫ αi

α̂i

Eα−iEsu1(y, si)
N∑

∀h=r(α̂i,α−i)

 Pr ∗(g1,h|(α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

 dy

=

∫ αi

α̂i



Eα−iEsu1(y, si)

∑N
∀h=r(y,α−i)

 Pr ∗(g1,h|(y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

· p
∗Gg1,h

i ((y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)


−
∑N
∀h=r(α̂i,α−i)

 Pr ∗(g1,h|(α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

· p
∗Gg1,h

i ((α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)






dy.
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Note that

P̃ (y, α−i, s) =

N∑
∀h=r(y,α−i)

 Pr ∗(g1,h|(y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((y, α−i),m
s
2, ...,m

s
r(y,α−i)+1

, ...,ms
M+1)


is agent i’s winning probability given her type y and that she reports truthfully;
and

P̃ (α̂i, α−i, s) =

N∑
∀h=r(α̂i,α−i)

 Pr ∗(g1,h|(α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)

·p
∗Gg1,h

i ((α̂i, α−i),m
s
2, ...,m

σi(y,α̂i,si)
r(α̂i,α−i)+1

, ...,ms
M+1)


is agent i’s winning probability given her type y and that she reports α̂i in stage
1 and corrects her lie when shortlisted. Recall that wi(y, si) ≶ wi(α̂i, σi(y, α̂i, si))
if and only if y ≶ α̂i. ∀α−i, s, by definition of (A∗,p∗), ∀α−i, s, we conclude that
the P̃ (y, α−i, s) ≥ P̃ (α̂i, α−i, s) if and only if y ≥ α̂i because in the latter case a
(weakly) bigger group is shortlisted, and i’s winning probability is smaller even
when the group remains the same. Thus we must have ∆ ≥ 0. �
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[12] Crémer, Jacques, Yossi Spiegel, and Charles Zheng (2009), Auctions with
Costly Information Acquisition, Economic Theory, 38(1): 41–72.

[13] Doval, Laura (2018), Whether or Not to Open Pandora’s Box, Journal of
Economic Theory 175, 127-158.

[14] R. Engelbrecht-Wiggans (1993), Optimal Auctions Revisited, Games and
Economic Behavior 5, 227-239.



VOL. VOL NO. ISSUE ORCHESTRATING INFORMATION ACQUISITION 47
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