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1 Introduction

We consider an auction model in which the object is a single indivisible asset
with symmetric independent private value (IPV). There is an entry cost for
each potential bidder, which can be interpreted as the cost of preparing a bid or
estimating the valuation of the asset, etc. There are a large number of potential
bidders, who randomize about entry so that the ex ante expected profit from
attending the auction is zero. Before entry, bidders know nothing except a
common prior (a distribution) about the valuation of the asset. After entry,
each bidder incurs an entry cost and then learns her private value (ti) and in
addition, a set of signals (s) that may lead to updated beliefs (distributions)
about entrant bidders’ valuations.1 In such a setup, we show that the Vickrey
auction (the second-price sealed bid auction) with free entry maximizes the
expected revenue. Furthermore, the Vickrey auction, up to its equivalent
class, is also the only optimal sealed-bid auction if the information potentially
available to bidders after entry is sufficiently rich, in the sense that the signal
system can generate a “complete class” of posterior distributions.
Our model extends the existing literature on auctions with costly entry.

In earlier work (e.g., Johnson (1979), French and McCormick (1984), McAfee
and McMillan (1987), Engelbrecht-Wiggans (1993), Levin and Smith (1994))
entry is usually formulated such that potential bidders do not possess private
information, and after incurring an entry cost, each entrant bidder learns a
private signal about the value of the object. Our model differs from these
formulations in one important respect: while beliefs (distributions about other
bidders’ valuations) are usually assumed to be fixed both before and after entry
occurs, in our model bidders can update their beliefs after entry. We believe
that this setup is not only theoretically more general, but also practically
more realistic. For example, in some procurement auctions in the construction
industry, contestants are usually not certain about their competitors’ identities
until they get into the final stage, which is a costly process to prepare blueprints
or detailed proposals. During this “due diligence” stage, they can in general
learn more about their rivals’ positions such as their capacities, overhead costs,
and even reputations regarding whether they are “tough” or “soft” in the
final bid tender, etc. This sort of “belief” updating can greatly enhance the

1Our setup is thus different from the traditional literature on optimal auctions and rev-
enue comparisons which generally assumes that there is a fixed set of bidders, and that
the bidders are endowed with information about their valuations (see, for example, Vickrey
(1961), Riley and Samuelson (1981), Myerson (1981), Milgrom and Weber (1982)).
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contestants’ information before the final auction is conducted.2

More specifically, in our analysis we focus on symmetric entry equilibria, in
which each potential bidder randomizes about entry with the same probability.
The symmetric entry equilibrium was first introduced by Milgrom (1981) and
received thorough analysis in Levin and Smith (1994). In any symmetric
entry equilibrium, the expected rent to the bidders is driven down to zero by
endogenous entry; hence the expected revenue to the seller is the same as the
expected total surplus generated from the sale. This implies that any optimal
auction must be efficient, which tremendously simplifies our job in searching
for optimal auctions. We first show that any optimal auction must be ex post
efficient. We then show that any efficient, incentive compatible (IC) direct
revelation mechanism (DRM) is equivalent to a Vickrey-Clarke-Groves (VCG)
mechanism from the interim perspective (i.e., at the point in time when each
bidder has just learned her private information). Finally, we show that if the
(belief) signal system generates a “complete class” for the payment rule space,
then the above equivalence also holds in an “almost everywhere” sense. In
other words, any optimal mechanism in this environment must be essentially
a VCG mechanism, which in turn implies that the optimal auction in our
setting can only be the Vickrey auction, up to its equivalent class.
Our result thus provides a new explanation for the prevalence of simple auc-

tions (English auctions and Vickrey auctions).3 It is well known that simple
auctions are not optimal in the usual IPV settings (Myerson, 1981). However,
by restricting to certain (narrower) classes of auction mechanisms, the opti-
mality of simple auctions can be established. For example, it has been shown
that English auctions are optimal among simple sequential auctions (Lopomo,
1998), and within the class of all posterior-implementable trading mechanisms
(Lopomo, 2000). Even in more general settings where simple auctions are
known to be not revenue-maximizing, Neeman (2003) shows that they can be
quite “close” to full optimality.4 In our model, by taking endogenous entry
into account, we show that the simple auctions themselves are optimal, and are

2Bid tabs provide company records of who bid what on construction contracts. The
bid tabs underlying the data analysis in Dyer and Kagel (1996) demonstrate the difficulty
of competing against a particular low overhead rival. Firms would know, from both their
sub-contractors and when they picked up the blueprints for a job, who else was bidding on
the job. In particular, if this low overhead rival was also bidding on the same job.

3Note that in the IPV setting, an English auction is outcome-equivalent, though not
strategically equivalent, to a Vickrey auction.

4Specifically, Neeman (2003) defines a concept of effectiveness as a measure of the prox-
imity to optimality, and shows that the effectiveness of the simple auctions can be quite
high for a wide range of distributions of valuations.
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uniquely optimal up to its equivalent class. This provides another explanation
for the prevalence of simple auctions.
Since our search for optimal auctions is reduced to the search within the

class of ex post efficient mechanisms, this relates our work to the recent lit-
erature on robust mechanism design which focuses on ex post implementa-
tion or dominant strategy implementation (see, for example, Dasgupta and
Maskin (2000), Perry and Reny (2002), Segal (2003) in auction settings, and
in particular, Bergemann and Morris (2004) in more general mechanism de-
sign settings).5 Our contribution to this literature is twofold. First, we suggest
an environment in which robust mechanism is not only relevant for efficiency,
but also important for revenue maximization. Our story is fairly simple: in
an auction environment with endogenous entry, the optimal auction is one
that maximizes ex ante expected total surplus, which is in turn one that is
ex post efficient. This also relates our work to Chung and Ely (2004), who
provide alternative rationales for employing dominant strategy mechanisms in
auction settings when the auctioneer’s goal is revenue maximization.6 Sec-
ond, the notion of complete classes developed in this research can be used to
identify conditions for the equivalence between Bayesian implementation and
dominant strategy implementation. The complete classes in our setting can
be interpreted as some tighter conditions compared to the conditions of all
common-prior type spaces suggested by Bergemann and Morris (2004).7

The paper is organized as follows. Section 2 presents the model. Section 3
shows the optimality of the Vickrey auction with free entry. Section 4 identifies
conditions under which the Vickrey auction, up to its equivalent class, is also
the unique optimal auction. Section 5 is a discussion and Section 6 concludes.

5Ex post implementation is equivalent to dominant strategy implementation in private
value settings. Bergemann and Morris (2004) consider more general settings with interde-
pendent values. In private value environments, the equivalence between Bayesian imple-
mentation and dominant strategy implementation for all-prior type space was observed in
Ledyard (1978,1979), Dasgupta, Hammond and Maskin (1979), and Groves and Ledyard
(1987).

6Roughly speaking, their idea is that if the auctioneer does not have reliable information
about the bidders’ beliefs, then under certain conditions, dominant strategy mechanisms
can be used against the worse scenario (maxmin foundation), or they can be justified as the
optimal choices with respect to some subjective beliefs consistent with Bayesian rationality
(Bayesian fundation).

7Bergemann and Morris allow for a full range of higher order beliefs, while in our analysis
it is enough to have a range of second order beliefs.
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2 The Model

We consider a mechanism through which a single indivisible asset is offered
for sale to N potentially interested buyers. Ex ante, the potential buyers are
symmetric and hold a common prior that their private values will be indepen-
dent draws from a distribution G(·). In contrast to the traditional auction
model, we augment the selling mechanism with an entry game in which infor-
mation acquisition is costly. Suppose that n potential buyers decide to attend
the auction. Then after incurring an entry cost c, each entrant bidder learns
her private value ti, and a signal vector s = (s1, · · · , sn), which, combined
with the initial belief G(·), will lead to updated beliefs about entrant bidders’
valuations. For example, suppose ex ante that each potential buyer holds a
belief that the valuation will be drawn from Uniform[0, 1]; after entry, bidder
i’s belief is updated such that entrant j’s value is drawn from Uniform[0, sj]
for all j ∈ E \ {i}, where E = {1, · · · , n} is the index set of entrant bidders.8

s is a set of public signals known to the entrant bidders. Since each bidder
knows her own valuation (ti), it is not essential to assume that she also learns
si. However, for ease of equilibrium analysis, we assume that each bidder (i)
knows her own signal si as well. In this way each bidder also knows what
other bidders think about her (in terms of beliefs about her valuation). We
assume that the conditional distribution of Si given the list of other variables
(t1, · · · , tn, s−i) depends only on ti. (A special case is the standard model in
which Si = ti; that is, the signals precisely identify the underlying types.) For-
mally, we assume that conditional on ti, Si is drawn from distribution F (·|ti).
With abuse of notation, we denote the support of Si given ti as Supp(F (·|ti)),
and the unconditional support of Si as Si.
For our main results to hold, we do not need to specify the exact structure

of belief updating, though Bayesian updating would be a natural way for the
formulation. We require only that the signal generating system (denoted as
{S}) be consistent, in the sense that it gives rise to the ex ante common prior
G(·).
The seller’s own valuation is normalized to be zero. Bidder i’s valuation

ti ∈ [0, t̄i](=: Ti), i ∈ E. Both the seller and the buyers are assumed to be
risk-neutral. In this paper, we also assume that N or c is large enough so that
if all potential buyers enter the auction with probability one, their expected

8In a recent paper, Fang and Morris (2004) analyze two-bidder auction games with
similar information structure, in which each bidder knows her own private value and a noisy
signal about the other bidder’s value. They characterize equilibria under both first-price
and second-price auctions.
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profits will be strictly negative. This assumption distinguishes our model from
traditional auction models that do not consider entry cost.
An auction mechanism consists of a set Bi of bids (messages) for each

bidder i = 1, · · · , n, an allocation rule p : B → [0, 1]n, and a payment rule
ξ : B → Rn. Each bidder will select a bid bi ∈ Bi, and given a bid profile
b = (b1, .., bn), pi(b) ∈ [0, 1] is bidder i’s probability of winning the object, and
ξi(b) is the monetary payment that bidder i makes to the seller.
In this paper, we shall restrict our search for optimal auctions within the

class of standard auctions, which is defined below:

Definition 1 (Standard auctions:) Standard auctions are sealed-bid auctions
in which: (1) bidders are required to submit nonnegative real numbers as their
bids; (2) the bidder with the highest bid wins the object; (3) payments de-
pend deterministically on bids; (4) the payment to the bidder with the lowest
possible type is zero.

(1) and (4) are common in the literature. (2) and (3) specify that both the
allocation and payment rules are functions of bids only, hence the rules of our
standard auctions, in particular, cannot be contingent on belief signal s. This
requirement is consistent with the spirit of Wilson’s Doctrine (Wilson, 1987),
who suggest that the trading rules not depend on particular “environments”
(e.g., common prior, bidders’ probability assessments about each other’s pri-
vate information). Indeed, real world auction rules typically process bids only
and rarely involve distributions. In our setting, since s is not realized when
the selling mechanism is announced, it would be more reasonable to assume
that feasible auctions are those not contingent on s.9

At the outset of the game the seller moves first by announcing the selling
mechanism (which includes the auction format that is consistent with Def-

9If we take into account some “costs” that are not modeled in this paper, restricting the
search for optimal auctions to the standard auctions is without loss of generality. First,
it would be costly for the seller to learn s directly; Second, though one may argue that
the seller can make the bidders reveal s and hence learn s indirectly (for example, through
forcing mechanism proposed by Cremer and McLean (1988), McAfee, McMillan, and Reny
(1989), and McAfee and Reny (1992)), in practice there are some relevant costs that fa-
vor mechanisms that reveal as little information as possible. For example, there is some
small probability of information leakage that would disadvantage a bidder in another set-
ting, say a bargaining environment, in which the other bargainer is uninformed about the
value distribution. Then, the seller would bear a cost of forcing information revelation by
discouraging entry. In either case above, the auctioneer may find it sub-optimal to make a
selling mechanism contingent on s given the optimality of the Vickrey auction established
in Section 3.
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inition 1, the reserve prices, the entry fees, and so on). Taking the selling
mechanism as given, the potential buyers make entry decisions. Finally the
entrant bidders submit sealed bids. The seller’s objective is to maximize ex-
pected revenue.
Since potential buyers are ex ante symmetric, in the following analysis we

will focus exclusively on symmetric entry equilibrium, in which each potential
buyer enters the auction with the same probability q∗, where q∗ is determined
by N , c, G(·) and the selling mechanism.10

3 The Optimality of the Vickrey Auction

Since the selling mechanism must be announced before s is realized, an optimal
auction in this context must maximize the expected revenue regardless of the
post-entry environment (or the realization of S). In this section we establish
that the Vickrey auction is one such optimal auction.

Theorem 1 The Vickrey auction with free entry maximizes the expected rev-
enue.

Proof: Let ER,EΠ, and ES be the expected revenue to the seller, the ex-
pected profit to the bidders, and the expected total surplus generated from
the sale (net of entry cost), respectively. Then we have ES = ER + EΠ. In
any symmetric entry equilibrium, the randomization condition implies that
EΠ = 0. Therefore we have in equilibrium ES = ER, that is, the seller’s
expected revenue is the same as the expected surplus generated from the sale.
Hence it suffices to show that the Vickrey auction with free entry generates
the maximal possible expected surplus.
Let Sv be the surplus generated by a Vickrey auction, and Sa the surplus

generated by an alternative auction. The Vickrey auction is ex post efficient.11

10Note that despite the ex ante symmetry, the potential buyers’ entry decision could be
asymmetric. For example, there are equilibria where exactly n∗ buyers enter the auction
and N − n∗ buyers stay out (see, e.g., Johnson (1979), McAfee and McMillan (1987), and
Engelbrecht-Wiggans (1993)). Smith and Levin (2002) use an experimental approach to
test how people would coordinate with entry. Their results strongly reject the hypothesis
of asymmetric entry (deterministic entry) and tend to favor the alternative hypothesis that
entry is symmetric (stochastic entry).

11We assume that in equilibrium, each bidder employs the dominant strategy of bidding
her true valuation (see Blume and Heidhues (2004) for other equilibria under a Vickrey
auction).
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Thus conditional on n, the number of actual bidders, we have

Sv ≥ Sa (1)

Hence,

E(Sv|n) ≥ E(Sa|n) (2)

Note that when each potential buyer randomizes about entry with probability
q (recall that we focus on symmetric entry), the actual number of entrants n
is distributed as Binomial (N, q). Hence inequality (2) implies

E(Sv|q) ≥ E(Sa|q) ∀q ∈ (0, 1) (3)

Next we will show, following arguments paralleling those in Levin and
Smith (1994), that qv, the equilibrium entry probability under a Vickrey auc-
tion with free entry, maximizes E(Sv|q).
Given the entry probability q, define pn to be the probability that exactly

n bidders enter the auction, then

pn =

Ã
N

n

!
qn(1− q)N−n

We also let tj;n denote the jth highest order statistic among n iid valuation
samples. Under a Vickrey auction with entry fee e, the entry condition (zero
profit condition) is given by:

NX
n=1

pnE(t1;n − t2;n) = Nq(c+ e) (4)

In a symmetric IPV setting one can show the following identity:12

E(t1;n − t1;n−1) =
1

n
E(t1;n − t2;n) (5)

Substituting (5) into (4), and letting e = 0, we have

NX
n=1

pnn(Et1;n − Et1;n−1) = Nqc (6)

12The intuition is that drawing one more value from a distribution and adding it to the
previously drawn n− 1 values will enable this newly drawn value to be the highest one with
probability 1/n.
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On the other hand, the expected total surplus conditional on q is given by:

E(Sv|q) =
NX
n=1

pn(Et1;n − nc) =
NX
n=1

pnEt1;n −Nqc

Taking partial derivative with respect to q, and using (6), we have

∂E(Sv|q)
∂q

=
1

q(1− q)

"
NX
n=1

pnEt1;n(n− qN)− qNc(1− q)

#

=
1

q(1− q)

"
NX
n=1

pnEt1;n(n− qN)− (1− q)
NX
n=1

pnn(Et1;n −Et1;n−1)

#

=
1

q

"
NX
n=1

pnnEt1;n−1 −
N−1X
n=1

pn+1(n+ 1)Et1;n

#
= 0 (7)

This shows that qv, the equilibrium probability induced by free entry,
maximizes the expected total surplus under a Vickrey auction. Combin-
ing this with (3) we have E(Sv|qv) ≥ E(Sa|q) ∀q ∈ (0, 1). In particular,
E(Sv|qv) ≥ E(Sa|qa), where qa is the equilibrium probability of entry induced
by the alternative selling mechanism.
Hence the Vickrey auction with free entry maximizes the expected total

surplus. Q.E.D.

The Vickrey auction does not only achieve ex post efficient allocation, but
also induces “first best” entry with zero entry fee (in the sense of achieving
unconstrained optimal entry probability). Therefore it maximizes the expected
surplus (and hence the expected revenue) in this costly entry environment.
To understand the optimality of free entry under the Vickrey auction, let’s

consider the case of deterministic entry and ignore the integer constraint of n
for the moment. Given an entry fee e, bidders will enter the auction until the
expected rent is driven down to zero. That is

1

n
E(t1;n − t2;n) = c+ e (8)

Substituting Eq. (5) into (8), we have13

E(t1;n − t1;n−1) = c+ e (9)

13Note that this substitution is not “exact,” since identity (5) only makes sense when n
is an integer. We are being vague here in order to get a rough intuition.
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Therefore, when the entry fee e = 0, the marginal social gain of entry E(t1;n−
t1;n−1) is exactly equalized by the marginal social cost of entry (c) in equilib-
rium. This implies that zero entry fee induces efficient entry in the determin-
istic entry case.
Now when symmetric entry is assumed, the randomization of each bidder’s

entry decision serves to “smooth” the integer problem and the above intuition
still carries over. So the Vickrey auction with free entry is optimal.
The optimality of Vickrey auction with free entry is implied in Levin and

Smith (1994). Theorem 1 extends this result to the setting where beliefs can
also be updated throughout entry.
The proof of Theorem 1 also suggests the following Corollary, which will

be most helpful for the analysis in the next section.

Corollary 1 Any optimal auction must be (ex post) efficient.

4 The Uniqueness of the Optimal Auction

By Corollary 1, the (ex post) efficiency is necessary for a mechanism to be
optimal. Since beliefs can be updated after entry, the final auction is in general
an asymmetric one. This would impose a strong restriction on the class of
mechanisms that can induce efficient allocation. For example, under a first-
price auction the equilibrium would be very sensitive to the asymmetry among
bidders, and the outcome would often be inefficient.14 This may narrow down
the set of optimal auctions. On the other hand, as is well-known, a Vickrey
auction always induces ex post efficient allocation in private value settings.
This is true regardless of the asymmetry among bidders. (This is true even
when bidders possess inconsistent beliefs about one another’s valuations.) We
thus ask the following question: Is the Vickrey auction also the only sealed-bid
auction that achieves optimality in the class of standard auctions defined in the
previous section?15 It turns out that we can indeed identify exact conditions
under which the Vickrey auction, up to its equivalent class, is the unique
optimal sealed-bid auction.
The Revelation Principle implies that to identify the set of social choice

functions that are implementable (in dominant strategies or Bayesian Nash

14Usually “weak” bidders would bid more aggressively than “strong” bidders, as shown
in Griesmer et al. (1967), Plum (1992), Lebrun (1999), and Maskin and Riley (2000).

15Beyond the class of sealed-bid auctions, we know that the Vickrey auction cannot be
the unique optimal auction, since the English ascending bid auction is outcome-equivalent
to a Vickrey auction.
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equilibrium strategies), we need only identify those that are truthfully imple-
mentable. Without loss of generality, to identify optimal auctions we hence-
forth focus on the analysis of the incentive compatible (IC) direct revelation
mechanism (DRM). By Corollary 1 and Definition 1, we can further restrict
our attention to the IC efficient DRM that depends only on the report about
t. Note that the seller chooses the auction format which is a standard auction
defined in Definition 1, thus he may not know the induced DRM since he may
not know s. However, the bidders observe s and hence can infer the induced
DRM. For this reason we can still carry out DRM analysis.16

Given a report profile on types t = (ti, t−i), a DRM is described by an
allocation rule y(t) = {yi(t)}ni=1 and a payment rule x(t) = {xi(t)}ni=1, where
yi(t) ∈ [0, 1] is bidder i’s probability of winning the object, and xi(t) is the
monetary payment that bidder i makes to the seller when t is reported. Write
the social choice function f(t) = (y(t), x(t)).17

In any DRM characterized by allocation rule y(·) and payment rule x(·),
if bidder i reports t

0
i while all the other bidders report truthfully, then bidder

i’s payoff (or utility) is

Ui(t
0
i, t−i; ti) = ui(f(t

0
i, t−i); ti) = ti · yi(t0i, t−i)− xi(t

0
i, t−i) (10)

Define

qi(t
0
i|s−i) = Et−i(yi(t

0
i, t−i)|S−i = s−i) and

mi(t
0
i|s−i) = Et−i(xi(t

0
i, t−i)|S−i = s−i) (11)

to be, respectively, bidder i’s interim expected probability of winning and
interim expected payment by reporting t

0
i conditional on (ti, s−i) and everyone

else reporting t−i truthfully.
By standard arguments based on the Envelope Theorem, incentive com-

patibility implies18

mi(ti|s−i) = ti · qi(ti|s−i)−
Z ti

0
qi(z|s−i) dz (12)

16The rules of standard auctions are not contingent on the realization of s, but the in-
duced mechanisms may depend on s. For example, the rules of a first-price auction are not
contingent on s, but the induced IC mechanism depends on s if si’s are the same (in which
case the post-entry environment is symmetric).

17Again, we are considering DRMs that are induced by a standard auction, hence both
y(t) and x(t) may depend on s. To economize on notation, we do not explicitly recognize
the dependence on s here.

18A generalized version of the Envelope Theorem is given by Milgrom and Segal (2002).
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As can be seen from (12), the interim expected payment rule in any incentive
compatible DRM is completely determined by the interim expected allocation
rule q(·), which is in turn determined by the allocation rule x(·).
Since any two efficient allocation rules coincide almost everywhere, Eq. (12)

implies that any IC efficient DRM must be equivalent to a Vickrey-Clarke-
Groves (VCG) mechanism at the point in time when each entrant has just
learned (ti, s−i). We thus have the following lemma:

Lemma 1 Any optimal DRM is payoff-equivalent to a VCG mechanism at
the point in time when each entrant has just learned (ti, s−i).

Without the restriction that the payment to the lowest possible type is
zero, the above result holds more generally: from the interim perspective any
IC efficient DRM is payoff-equivalent to a Groves’ mechanism where the pay-
ment to the lowest type may vary arbitrarily (Mookherjee and Reichelstein,
1992. Also see Williams, 1999 for the equivalence under more general utility
functions).
Lemma 1 implies that under interim expectation, the payment rule of any

optimal DRM must be equivalent to the payment rule in a VCG mechanism.
We next show that if the signal system is so “rich” that it generates a “com-
plete class,” then the above equivalence result also holds (almost everywhere)
after removing the expectations. We formally introduce the definition of com-
plete classes for a functional space F (defined on T ) below:

Definition 2 (F-Complete classes:) A functional family H (defined on T ) is
a complete class for a functional space F if for f, g ∈ F , that R fh = R

gh for
all h ∈ H implies f = g a.e.

As an example, by standard dual space arguments, Lq is a complete class
for Lp (or Lq is a Lp-complete class), where 1 ≤ p < ∞, and 1/p + 1/q = 1.
In our problem, F is the payment rule functional space, and H is a condi-
tional distribution family that is generated from the post-entry signal system
(denoted as {S}). More specifically, let h(t|s) be t’s density function condi-
tional on the observed s, and let {H(t|S)} be the family containing all the
conditional densities arising from any possible signal s ∈ S. Then a (condi-
tional) distribution family {H(t|S)} forms a complete class for the payment
rule space F (defined on T ) if for f, g ∈ F , that E(f(t)|s) = E(g(t)|s) for all
s ∈ S implies f(t) = g(t) a.e.

Since t is bounded, the feasible payment rules are also bounded. More
generally, in this paper we will consider the payment rules that are essentially
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bounded. Formally, let x(t) and x
0
(t) be two payment rules under two given

mechanisms, then x, x
0 ∈ L∞(T ), where L∞(T ) is the space of all measurable

functions defined on T that are bounded except possibly on a subset of measure
zero.
Let {Sj} denote the signal system that can generate any possible signal

about tj ∈ Tj, j ∈ E. The following assumption about the post-entry signal
system is central for the proof of the uniqueness theorem:

Assumption (CC): For each entrant i ∈ E, the signal system {S−i} gener-
ates a complete class for L∞(T−i).

Two complete classes in this context are stated as follows:

Lemma 2 Assumption (CC) is satisfied if a dense collection of uniform dis-
tributions on Tj can be induced by {Sj}, or a dense collection of (truncated)
normal distributions on Tj can be induced by {Sj}, j ∈ E \ {i}.

Proof: See Appendix.

Note that the examples provided in Lemma 2 are merely sufficient and may
not be necessary for generating L∞-complete classes. More complete classes
can be found along the same line as in the proof of Lemma 2. For example,
one can show that as long as a signal system can generate distributions that
approximate uniform distributions in L1 on T , then such signal system also
induces a complete class for L∞.19

By Assumption (CC) and the interim equivalence result stated in Lemma
1, it is immediate that the payment rule in any optimal DRM must be essen-
tially a VCG payment rule. Before we give a formal proof for the uniqueness
result, we need one more definition, that is, the class of Vickrey-equivalent
auctions.

Definition 3 (Vickrey-equivalent auctions:) An auction is a Vickrey-equivalent
auction if it is a dominant strategy mechanism in which the bidder with the
highest valuation wins and pays the amount of the second-highest valuation,

19Theoretically speaking we can always identify the dual space as one of the complete
classes. However, the dual of L∞ is (strictly) larger than L1, which does not contain a
countable base. Given the difficulty in characterizing such a dual space, we turn to a
different approach to look for alternative complete classes, which results in Lemma 2.
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and all the other bidders pay zero.20

For example, let ϕ(·) be any nonnegative and strictly increasing function,
and b2;n be the second highest bid; then any auction in which the bidder with
the highest bid wins and pays ϕ(b2;n) is a Vickrey-equivalent auction.

Lemma 3 In any Vickrey-equivalent auction, if we eliminate strategies that
nobody ever plays, the resulting restricted mechanism is strategically equivalent
to a Vickrey auction.

Proof: See Appendix.

We are finally ready to state the uniqueness result:

Theorem 2 Under Assumption (CC), any optimal (sealed-bid) auction must
be (essentially) a Vickrey auction, up to its equivalent class.

Proof: By Lemma 1, any optimal DRM must be interim equivalent to a VCG
mechanism. By Assumption (CC), any optimal DRM must be (essentially) a
VCG mechanism. Therefore any optimal auction must be (essentially) a dom-
inant strategy mechanism in which the bidder with the highest valuation wins
and pays the amount equal to the second highest valuation, and all the other
bidders do not pay. By Definition 3, any optimal auction must be (essentially)
a Vickrey-equivalent auction. Q.E.D.

In view of Theorem 1 and Theorem 2, the Vickrey auction (up to its equiva-
lent class) with free entry, is the unique optimal sealed-bid auction in this costly
entry environment consistent with Definitions 1-3 and Assumption (CC).
As is clear by now, the driving force for this uniqueness result is the alloca-

tion efficiency. Due to endogenous entry, any optimal auction must induce (ex
post) efficient allocation. Since the bidders can update their beliefs after entry
so that the final auction is typically an asymmetric one, the only auction that
guarantees the efficient allocation is the Vickrey-equivalent auction, regardless
of the post-entry environment. In other words, the only auction that survives
“environment test” is the Vickrey auction, up to its equivalent class.

20By definition, a Vickrey auction is trivially a Vickrey-equivalent auction.
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5 Discussion

An alternative proof of the uniqueness result can be constructed by combin-
ing the complete class assumption and a result proven in Holmström (1979).
First, using a stronger version of the complete class assumption,21 any IC
DRM must use dominant strategies. Second, we apply Holmström’s result to
conclude that any dominant strategy DRM implementing an efficient outcome
must be a Groves mechanism. Specifically, Holmström shows that when the
agent’s valuation domain is smoothly connected (in particular, convex), then
any payment rule implementing an efficient outcome in dominant strategies is
a Groves scheme. In our case, each bidder’s valuation function does have a
convex domain, thus Holmström’s result applies and the optimal DRM must
be a VCG mechanism. Note that this alternative proof and the proof given in
the previous section are essentially the same in spirit.
Similarly to Holmström’s approach, earlier papers by Green and Laffont

(1977,1978), and Walker (1978) also identify conditions on the utility domain
under which the payment rule implementing an efficient outcome in dominant
strategies must be a Groves scheme. In this paper, we introduce an alternative
approach leading to a Groves mechanism: instead of identifying conditions on
the utility domain, we focus on conditions concerning the information system.
We are now ready to point out the role of restricting our attention to

standard auctions in our analysis. It turns out that if such restriction is not
imposed, the optimal auction will not be unique. Consider the following mech-
anisms in which the payment rules are contingent on s: If s1, · · · , sn are the
same (so that bidders are symmetric in terms of the beliefs about one another’s
valuations), then the highest bidder wins and pays what she bids (first-price
auction); if s1, · · · , sn are not the same (so that the bidders are typically asym-
metric in terms of the beliefs about one another’s valuations), then the highest
bidder wins and pays the amount of the second-highest bid (second-price auc-
tion). Since the payment rule of such a mechanism is contingent on s, the
proposed auction is not a standard auction considered in this research. Nev-
ertheless this s-contingent auction mechanism is optimal, as it can achieve ex
post efficient allocation regardless of the post-entry environment. The problem
with the above example, however, is that the seller needs to conduct an inter-
mediate mechanism to elicit the truthful report on s before the final auction is
conducted (otherwise the rules of the final auction cannot be made contingent

21That is, H forms a complete class for F if ∀f, g ∈ F , R fh ≥ R gh for every h ∈ H,
h ≥ 0 implies that f ≥ g a.e. In the appendix we actually show that Lemma 2 holds for this
stronger version of complete classes.
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on s).22 Our restriction to standard auctions is thus equivalent to the as-
sumption that the seller cannot conduct an intermediate-stage mechanism to
learn s, or conducting such an intermediate mechanism is costly.23 Note that
Bergemann and Morris (2004) do not consider prior-contingent mechanisms
either, which is equivalent to our approach to explicitly restrict our attention
to standard auctions.24

In the preceding analysis we restrict our attention to symmetric entry equi-
librium. But as pointed out in Footnote 10 there are asymmetric entry equi-
libria as well. Such equilibria arise more naturally if the entry is sequential.
That is, if potential bidders enter the auction sequentially so that a bidder
enters the auction if and only if doing so yields an nonnegative expected profit
conditional on the assumption that she would be the last to enter.25 Given
the selling mechanism, the induced equilibrium number of entrants and the
equilibrium expected revenues are exactly the same in both the simultaneous
and sequential entry cases. Thus in what follows we will not make distinction
between these two cases and will simply refer both of them as deterministic en-
try (asymmetric entry), as opposed to the stochastic entry (symmetric entry)
that we analyzed in the previous sections.
It turns out that our main results are still valid after modifying the state-

ment regarding the optimal entry fee. Let n∗ be the number of entrants
induced by free entry under a Vickrey auction. Due to the integer problem
the entrants will usually end up with strictly positive expected profit. Let
e∗ be the entry fee (imposed to each entrant) that is needed to extract the
remaining rent. Then we can show that the Vickrey auction with entry fee e∗

is the optimal auction (the proof is analogous to the proof of Theorem 1, and

22Since the “costs” of eliciting reports on s discussed in Footnote 9 are not modeled in
this paper, we allow for the possibility that the seller can elicit truthful reports on s without
incentive problems.

23If conducting an intermediate mechanism to learn s is costly for the seller, the seller will
optimally choose not to learn s given the optimality of Vickrey auction. Thus restricting to
auctions not contingent on s is without loss of generality in the search for optimal auctions.

24If Bergemann and Morris allow for intermediate stages to elicit reports on true pri-
ors and consider prior-contingent mechanisms, then the equivalence problem addressed in
their paper may become less interesting. For example, in many settings prior-contingent
mechanisms may achieve efficiency through either Bayesian implementation or dominant
strategy implementation (depending on the true priors, like the example we constructed
above). But if that is the case the “equivalence” between Bayesian and dominant strategy
implementations becomes not even well defined.

25By symmetry, the expected profit to each entrant bidder is the same and no one who
has entered will have incentive to leave later.
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the optimality of entry fee e∗ can be shown by adapting the arguments from
Engelbrecht-Wiggans (1993), who analyze asymmetric entry under a second-
price auction). Since the seller still cares the full efficiency, the result about
the uniqueness of optimal auctions also remains unchanged.
But the expected revenue generated from the optimal auction with deter-

ministic entry will be higher than in the symmetric entry counterpart. To see
this, define S(n) to be the equilibrium expected total surplus generated from
a Vickrey auction conditional on the number of entrants n. It can be shown
that S(n) is concave in n.26 Now consider an optimal auction with symmetric
entry. Without loss of generality we assume that the expected number of en-
trants in equilibrium, En, is an integer. Define a mean-preserving mechanism
to be a Vickrey auction in which the entry fee is set so that bidders are just
willing to participate, and exactly En bidders enter the auction. By Jensen’s
inequality, we conclude that the optimal auction with symmetric entry is rev-
enue dominated by the mean-preserving mechanism constructed above. Since
the Vickrey auction with entry fee e∗ is optimal among all mechanisms with
asymmetric entry (including the mean-preserving mechanism), this in turn
implies that the optimal auction with symmetric entry is revenue dominated
by the optimal auction with asymmetric entry. Thus if the seller can influence
the entry process, he would prefer deterministic entry (asymmetric entry) to
stochastic entry (symmetric entry).27

Finally it is worth noting that the bidders’ ex ante symmetry is also crucial
for the uniqueness result to hold. A counter-example can be adapted from
Landsberger et al. (2001). In their paper, a first-price sealed bid auction with
two bidders is analyzed when the ranking of valuations is common knowledge
among bidders. They show that there exists an equilibrium in which each
bidder bids according to a strictly increasing function, with the lower bidder
bidding more aggressively than the higher bidder. As a result, the lower bidder
wins the object with some positive probability. Now introduce entry cost
into the model so that bidders have to incur a cost c in order to learn their
exact valuations, but suppose the ranking of the valuations is still common
knowledge before entry. Given the result in Landsberger et al. (2001), under
a first-price sealed-bid auction, it is obvious that if the entry cost is not too

26Since the Vickrey auction is efficient, we have S(n) = E(t1;n|n) − nc, which can be
verified to be concave in n.

27If En is not an integer, then we can consider the following modified mean-preserving
mechanism: with probability θ = [En] + 1− En, [En] bidders enter the auction, and with
probability 1− θ = En− [En], [En] + 1 bidders enter the auction. In either case, entry fee
is set to keep bidders being just willing to enter (making zero profit). It is easily seen that
all the arguments still go through.
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large, both bidders will still participate in the auction and the expected revenue
will be positive. However, if a Vickrey auction is conducted, the lower bidder
will never enter as long as the entry cost is positive (no matter how small it
is), since she would never win the object and the entry cost could never be
compensated in equilibrium.28 As a result, the auction will be conducted in the
presence of the higher bidder only. This example can be easily extended to the
n-bidder case. That is, only the highest bidder will enter a Vickrey auction,
leading to zero revenue for the seller. In this case, the Vickrey auction is not
revenue maximizing, but rather revenue minimizing! This example shows how
sensitive our result is to the environment.29

6 Conclusion

Optimality and efficiency are central to both auction design and practice.
While closely related, optimality and efficiency do not always coincide. Rev-
enue maximization typically involves a trade-off between efficiency and rent
extraction, and hence is technically complicated and could even be informa-
tionally infeasible. In the symmetric entry equilibrium, these two goals coin-
cide. This greatly simplifies the job faced by a mechanism designer. Since any
mechanism achieving optimality must award the good to the bidder with the
highest valuation, the mechanism designer can restrict the search for optimal
auctions to the class of efficient mechanisms. Taking entry into account ap-
pears to complicate the setup at the outset, but the optimal auction design
problem turns out to be simpler in the sense that a simple auction itself is
optimal.
There are several reasons why the Vickrey auction is appealing.30 For

example, under a Vickrey auction, truthful reporting is induced as a dominant
strategy regardless of the beliefs bidders possess about one another’s private
values, the auctioneer may feel fairly confident that a rational bidder will
indeed play the dominant strategy, and the outcome is ex post efficient in
dominant strategy equilibrium. This research suggests one more reason to

28Again, assume that both bidders use their dominant strategies and bid their values
truthfully.

29Besides the ex ante symmetry, bidders’ payoff structure also matters for the optimality
of Vickrey auctions. For example, Vickrey auctions may fail to be revenue-maximizing if
values are interdependent, as efficiency may not be guaranteed in such an environment even
under a Vickrey auction.

30Due to the (outcome) equivalence between a Vickrey auction and an English auction in
private value environment, the following statement also applies to English auctions.
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appreciate the Vickrey auction, that is, within the whole class of auctions that
we consider, the Vickrey auction, up to its equivalent class, is not only optimal,
but also the only optimal auction if the information potentially available to
bidders after entry is sufficiently rich.
Our research suggests one new motivation for looking for robust mecha-

nisms design. Besides, our research provides a new approach to derive con-
ditions under which Bayesian implementation leads to dominant strategy im-
plementation. It has long been conjectured that the conditions identified in
Bergemann and Morris (2004) are merely sufficient, and some tighter con-
ditions can be found. The complete class condition proposed in this paper,
can be viewed as one such tighter condition, though the “tightening” is more
technical rather than about economics.
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Appendix

Proof of Lemma 2: Let H be a family of nonnegative functions on T .
That H forms an L∞- complete class is equivalent to the following statement:
∀f, g ∈ L∞,

R
fh =

R
gh for any h ∈ H ⇒ f = g a.e. By the linearity of

integration, H forms an L∞-complete class if
R
fh = 0 for any h ∈ H⇒ f = 0

a.e. Since h ≥ 0, to show that H is an L∞-complete class, it suffices to show
that

R
fh ≥ 0 for all h ∈ H ⇒ f ≥ 0 a.e. Let d = |E|− 1, where |E| denotes

the number of entrant bidders. The proof will be completed by establishing
the following five steps.

Step 1: The class (denoted asH1) of all indicator (or characteristic) functions
1A, where A is some measurable subset of T−i and 0 < m(A) < ∞, forms a
complete class for L∞(T−i).
Suppose not, then

R
fh ≥ 0 for all h ∈ H1, but m({f < 0}) > 0. Since

{f < 0} = ∪∞n=1{f < − 1
n
}, this implies that m({f < − 1

n∗}) > 0 for some n∗.
Now choose a subset A, A ⊂ {f < − 1

n∗} ⊂ T−i, such that 0 < m(A) <∞. Let
h = 1A. Obviously h ∈ H1, but R fh = R

A f < − 1
n∗m(A) < 0, a contradiction.

Step 2: The class (denoted as H2) of all indicator functions 1B, where B is
some d-dimensional “rectangle” in T−i, forms a complete class for L∞(T−i).
Given any indicator function 1A, where A is a subset of T−i defined in Step

1, it can be approximated by step functions on T−i in L1. Hence,

nX
i=1

ci1Bi → 1A in L
1 (13)

for some ci and Bi, where ci > 0 and Bi’s are disjoint d-dimensional “rectan-
gles.”
Therefore,

|
Z
f
X

ci1Bi −
Z
f1A| ≤

Z
|f(X ci1Bi − 1A)|

≤ kfk∞ · k
X

ci1Bi − 1Ak1 (by Hölder’s Inequality)
→ 0 (by (13) and that f ∈ L∞)

On the other hand, we haveZ
f
X

ci1Bi =
X

ci

Z
f1Bi ≥ 0 (by hypothesis)

Therefore,
R
f1A ≥ 0. Since 1A is an arbitrary indicator function in H1, we

must have f ≥ 0 a.e. by the conclusion in Step 1. This implies that H2 is a
complete class for L∞.
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Step 3: The class (denoted asH3) of all functions Qj∈E\{i} uj on T−i, where uj
is some uniform density function defined on Tj, is a complete class for L

∞(T−i).
This step follows from Step 2 trivially since any function 1B defined in Step

2 can be normalized to be a product of d uniform density functions.
Note that H3 can do the job as long as it contains a dense collection of

the uniform density functions described above. Moreover, in our model, the
joint density function on t−i induced by {S−i} is the product of |E| − 1 one-
dimensional density functions (by conditional independence). This completes
the proof for the first part of the claim in Lemma 2.
Step 4: Any one-dimensional uniform density function on Tj can be approx-
imated in L1 by a finite mixture of (truncated) normal density functions on
Tj.
First, it is well-known that the approximation can be achieved by a finite

mixture of normal density functions on the real line.31 Specifically, given any
uniform density function h(x) = 1

b−a1(a,b)(x), where (a, b) ⊂ Tj, it can be
approximated in L1 by the equi-weighted mixture of n normal densities over
R, with means µn,k = (b− a)k−0.5

n
+ a for k = 1, · · · , n, and common standard

deviation σn =
1
n
. Thus if we define

hn(x) =
nX

k=1

1

n

1√
2πσn

· e−
(x−µn,k)2

2σ2n ,

we have hn(x)→ h(x) in L1 for any x ∈ R. We next show that the approxima-
tion can be achieved by a finite mixture of truncated normal density functions
on Tj.
Define

Cn,k =
Z
Tj

1√
2πσn

· e−
(x−µn,k)2

2σ2n dx

Then the truncated normal density function of N(µn,k, σ
2
n) on Tj is given by

ϕn,k(x) =
1

Cn,k

1√
2πσn

· e−
(x−µn,k)2

2σ2n (14)

Let Cn =
R
Tj
hn(x) dx, then

Cn =
1

n

nX
k=1

Cn,k

31For example, this result is mentioned in the introduction of Ferguson (1983).
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Since Tj is a subset of R, that
R
R |hn(x)−h(x)| dx→ 0 implies that

R
Tj
|hn(x)−

h(x)| dx→ 0, which in turn implies
R
Tj
hn(x) dx→ R

Tj
h(x) dx = 1, i.e., Cn →

1.
Define new weights ωn,k = Cn,k/(nCn), and form a mixture of truncated

normal densities:

gn(x) =
nX

k=1

ωn,kϕn,k(x)

=
nX

k=1

Cn,k

nCn

1

Cn,k

1√
2πσn

· e−
(x−µn,k)2

2σ2n

=
1

Cn
· hn(x)

ThenZ
Tj
|gn(x)− h(x)| ≤

Z
Tj
|gn(x)− hn(x)|+

Z
Tj
|hn(x)− h(x)|

= | 1
Cn
− 1|

Z
Tj
hn(x) +

Z
Tj
|hn(x)− h(x)|

→ 0.

This completes the proof for Step 4.
Step 5: The class (denoted asH4) consisting of all functions {Qj∈E\{i} ϕj(xj)},
where ϕj(·) is some truncated normal density function on Tj defined in (14) is
a complete class for L∞(T−i).
We show a lemma first.

Lemma A Let uj be a uniform density function on Tj, then given any functionQ
j∈E\{i} uj, there exists {Ψ(j)nj }j∈E\{i}, where each Ψ(j)

nj
is a mixture of nj trun-

cated normal densities on Tj, such that
Q

j∈E\{i}Ψ(j)
nj
(xj)→ Q

j∈E\{i} uj(xj) in
L1 as nj →∞ for all j ∈ E \ {i}.

Proof: Let’s consider the case d = 2. As shown in Step 4, given any two one-
dimensional uniform density functions u1(x1) and u2(x2), there exist two finite
mixtures of (truncated) normal density functions Ψn1(x1) on T1 and Ψn2(x2)
on T2 such that kΨnj − ujk1 → 0 for j = 1, 2.Z

|Ψn1(x1)Ψn2(x2)− u1(x1)u2(x2)| dx1 dx2
≤

Z
[|Ψn1(x1)− u1(x1)|Ψn2(x2) + u1(x1)|Ψn2(x2)− u2(x2)|] dx1 dx2

≤
Z
[|Ψn1(x1)− u1(x1)| · (|Ψn2(x2)− u2(x2)|+ u2(x2))
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+u1(x1)|Ψn2(x2)− u2(x2)|] dx1 dx2
=

Z
|Ψn1(x1)− u1(x1)| dx1 ·

Z
(|Ψn2(x2)− u2(x2)|+ u2(x2)) dx2

+
Z
u1(x1) dx1 ·

Z
|Ψn2(x2)− u2(x2)| dx2

→ 0

Using the method of mathematical induction, the generalization to an ar-
bitrary d-dimensional case is straightforward. Q.E.D.
Now given any h ∈ H3, by Lemma A, we can find mixtures of (truncated)

normal densities {Ψ(j)
nj
}j∈E\{i} such that Qj∈E\{i}Ψ(j)

nj
→ h in L1. By Hölder’s

Inequality again, we have Z
f · Y

j∈E\{i}
Ψ(j)
nj
→

Z
fh (15)

On the other hand,

Z
f · Y

j∈E\{i}
Ψ(j)
nj
(xj) =

Z
f · Y

j∈E\{i}
(

njX
k=1

ωnj ,kϕ
(j)
nj,k
(xj))

=
Z
f ·

Q
j∈E\{i} njX
k=1

ωkΩk

=

Q
j∈E\{i} njX
k=1

ωk

Z
fΩk

≥ 0 (since
Z
fΩk ≥ 0 by hypothesis) (16)

In the above expressions Ωk is a product of d (truncated) normal densities
and ωk is a product of d non-negative weights. By (15) and (16),Z

fh ≥ 0

This holds for arbitrary h ∈ H3, by the conclusion in Step 3, f ≥ 0 a.e., which
implies that H4 is a complete class for L∞.
This completes the proof for the second part of the claim in Lemma 2.

Q.E.D.

Proof of Lemma 3: Let Γ(W, g(·)) be the resulted mechanism from a
Vickrey-equivalent auction, after eliminating strategies that nobody use, where
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W is the resulted strategy set, and g(·) is the outcome function, mapping a
bid profile to an assignment decision and payments. To show that Γ is strate-
gically equivalent to a Vickrey auction, we need to show that there exists
an isomorphism (a one-to-one mapping) between W and T which preserves
payoffs.
Define the social choice function f(t) = (y(t), x(t)) where y(t) is an efficient

assignment rule and x(t) is the Vickrey payment rule. By Definition 3, there is
a dominant strategy B∗(·) in mechanism Γ that implements f(t). We therefore
have

g(B∗(t)) = f(t) (17)

where B∗(t) = (b∗1(t1), b
∗
2(t2), · · · , b∗n(tn)) ∈W .

First, Definitions 1 and 3 imply that B∗(·) has to be symmetric and strictly
increasing; otherwise the outcome may not be efficient for some realizations
of t. Therefore b∗i (·) = b∗(·) ∀ i ∈ E and b∗(·) is strictly increasing. Hence
B∗ : T →W is a one-to-one mapping.
It remains to show that the mapping B∗ is payoff-preserving. Given a

report profile t̂ = (t̂i, t̂−i) ∈ T , i’s utility derived from a Vickrey auction can
be written as Vi(t̂; ti) = ui(f(t̂); ti). Given a report profile B

∗(t̂) ∈ W , bidder
i’s utility derived from mechanism Γ is given by

V̂i(B
∗(t̂); ti) = ui(g(B

∗(t̂)); ti)

= ui(f(t̂); ti) (by (17))

= Vi(t̂; ti)

Therefore, the one-to-one mapping B∗ is indeed payoff-preserving. Q.E.D.
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