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Abstract

In the current literature on competitive nonlinear income taxation, competition is usually modeled

as a game in which different tax authorities compete in tax schedules. An undesirable feature of

this traditional approach is that the resource constraint is required only in equilibrium: following a

deviation by one state, the resource constraints in other competing states are typically unbalanced.

We propose a new approach in which the tax authorities compete in marginal tax rates, with the poll

subsidies adjusting to satisfy budget balance. We show that our new approach in general leads to

an equilibrium outcome different from the traditional approach. Under certain regular conditions we

demonstrate that the new approach leads to increased competition, reducing the amount of income

redistribution from high-income to low-income workers.

1 INTRODUCTION

One of the important extensions of the original Mirrlees model of optimal income taxation has been to

include migration responses to changes in the tax schedule. Indeed, Mirrlees provided one of the early

contributions.1 This literature initially focused primarily on the optimal income tax for a single country,

treating as exogenous the tax schedules in other countries. More recent literature has begun to examine

the tax competition problem between governments, in which regions (countries or states) independent-

ly choose their income tax schedules, taking into account the resulting migration of workers. Regions

effectively compete for high-skilled residents, who provide the tax revenue that can be redistributed to

lower-skilled residents. In the absence of moving costs, this competition becomes severe enough to elim-

inate tax payments by the highest-skilled individuals. In fact, Bierbrauer, Brett, and Weymark (2013)
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show that, without moving costs, competition for the most highly-skilled individuals becomes so intense

that no region taxes them in equilibrium. There is also a race-to-the-bottom result for this model, where

competition to prevent low-skilled workers from moving to the region results in the subsidies they receive

going to zero. But with moving costs, redistribution becomes possible, and the equilibrium nonlinear in-

come taxes in this case have now been extensively studied. See, in particular, Lipatov and Weichenrieder

(2012) for competition between two regions for two types of workers, distinguished by productivity, and

Morelli, Yang, and Ye (2012) for competition for three types and continuous types.2 A main message from

these studies is that competition leads to less income redistribution and there is also too little redistri-

bution from the viewpoint of the system of regions as a whole. On the other hand, Gordon and Cullen

(2012) show that if income taxes are chosen by both the central government and lower-level governments

in a federal system, then the lower-level governments may engage in excess income redistribution, if

the federal government is not optimizing its tax system. The problem stems from the vertical external-

ities created by the use of an income tax at the federal level. A region essentially ignores the fact its

redistribution activities will impact other regions through required changes in the federal tax schedule.

Lehmann, Simula, and Trannoy (2014) work with a continuous type model allowing for correlations be-

tween worker productivity types and moving costs, and extend the well known Diamond-Saez formula to

the competitive income taxation setting. They also demonstrate that the shape of the optimal marginal

income tax schedule depends on the semi-elasticity of migration, defined as the percentage change in the

number of residents of a particular type caused by a dollar increase in their after-tax income. In par-

ticular, the shape of the schedule is sensitive to how this semi-elasticity varies across individuals with

different incomes.3

Although there has been considerable progress in our understanding of competitive income taxation,

this literature suffers from a fundamental shortcoming: a simultaneous-move Nash game for the compet-

ing regions is not properly modeled. More specifically, it is typically assumed that each region maximizes

its welfare, given the other region’s entire tax policy and exogenous public expenditure requirements. In

a rare discussion of the shortcoming inherent in this approach, Piaser (2007) explains, “. . . a government

does not anticipate that after a deviation from equilibrium the policy of the other government could not

be sustainable. The budget constraint depends on the proportions of both kinds of workers: after a mi-

gration from one country to the other induced by a change in the fiscal policy of one country, the other

country’s budget constraint is not balanced anymore.” Stated differently, it cannot be true that when one

region changes its tax policy, there will be no change in the other regions’ tax policies or public expendi-

tures, because the migration resulting from this change will throw the other regions’ government budgets

out of balance. A region should recognize the balanced-budget requirement for other regions and take

2The analysis of continuous types was published as an online appendix.
3Some recent empirical works have been devoted to the study of impacts of income taxation on mobility, see, for example,

Akcigit, Baslandze, and Stantcheva (2016), Alloza (2021), and Lĺőpez-Laborda and Rodrigo (2022).
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into account how other regions’ policies adjust.

Piaser (2007) gives two justifications for taking the usual approach: “First, there is no consensus

on an alternative definition of equilibrium. Second, we want to keep the Nash equilibrium concept to

be consistent with the usual assumption made in the economic literature.” But in traditional models

of competition for capital, there is a usual way of modeling tax competition as a simultaneous-move

Nash game: tax rates are the strategies and public good levels adjust to keep the government budgets

satisfied. For competition in income tax schedules, we could introduce public expenditures into the model.

Governments would then play a Nash game with tax schedules as strategies, or, as often assumed in this

literature, they would play a Nash game in direct mechanisms, which specify consumption and before-

tax income for each worker, subject to the constraint that there exists a tax schedule that supports this

choice. If one government deviated from its equilibrium strategy, it would recognize that changing its

tax schedule causes public good levels to change in other regions, given their tax policies, and these

changes would affect migration responses. We discuss this approach in our concluding remarks, but our

current paper follows much of the optimal income tax literature by assuming that governments choose

their optimal income tax policy, given exogenous public expenditures.

The problem resembles the well-known debate over Recardian approach vs. Non-Recardian approach

among macroeconomists. In part due to central banks’ tendency to choose an interest rate as the in-

strument of monetary policy, fiscal policy is thought to play a more fundamental role in price deter-

mination and control, which gives rise to the influential fiscal theory of the price level (FTPL, Leeper,

1991; Woodford, 1994, 1995; Sims, 1994; and Cochrane, 1998). While the FTPL offers a solution to

the well-known price determinacy puzzles, it is non-Ridardian as it only requires that the consolidated

government present value budget constraint hold in equilibrium. In part because of this, it has been

controversial and widely criticized (e.g., Buiter, 2002; Bassetto, 2002, 2005; and Niepelt, 2004). For ex-

ample, Buiter (2002) argues that the government present value budget constraint is a real constraint on

government behavior, both in equilibrium and along off equilibrium paths. The government must obey

its budget constraint just like households, and equilibria that suggest otherwise are invalid.

Our approach consists of dividing the tax schedule for each of two identical “states”, i = 1,2, into a

poll subsidy, A i, which every resident in state i receives, and a tax function, Ti(Q), where Q is before-

tax income and Ti(0) = 0. The tax function defines the schedule of marginal tax rates, T ′
i(Q) at income

Q, and the state’s income tax policy is completely described by the poll subsidy and the marginal tax

function. We utilize the common assumption of quasilinear utility functions, in which case labor supplies

for a state’s residents are independent of the poll subsidy. We may then model competition within the

federation as a Nash game between states, in which each state optimizes by choosing its marginal tax

function, given the other state’s marginal tax function, and the poll subsidies adjustment to satisfy each

state’s government budget constraint, taking into account the tax-induced migration that occurs between

states. The pattern of migration across individuals with different labor productivities depends on how
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the distribution of moving costs varies across worker abilities. The distribution of these costs determines

how a tax change in one state affects the other state’s budget-balancing poll subsidy. In contrast, the

traditional approach to modeling competitive taxation would be to treat both the marginal tax function

and poll subsidies combined as strategies in a Nash game, thereby ignoring budget balance.

We identify conditions under which the traditional approach and our new approach yield identical

symmetric equilibria, but these assumptions are quite restrictive. For example, if the income tax is

utilized only to redistribute income, then there must be a zero correlation across workers in their tax

payments and the semi-elasticity of migration at equilibrium. The basic argument behind this result

is that a small rise in state j’s poll subsidy from its equilibrium level has no impact on i’s tax revenue

under these assumptions because the resulting migration from state i to state j consists of individuals

with the same distribution of skills as those individuals currently residing in each state; the net tax

revenue obtained from these individuals equals zero. Thus, whether or not state i treats as fixed state

j’s poll subsidy is irrelevant for the choice of its tax policy; any migration resulting from a change in j’s

poll subsidy has no effect on i’s budget constraint.

It is usually the case, however, that our new approach yields equilibria that differ from those under

the traditional approach. Suppose again that the semi-elasticities of migration (or roughly speaking,

the migration propensities) are identical across individuals with different labor productivities, but each

government must finance a given public expenditure level, i.e., net tax revenue is positive. Starting from

a symmetric equilibrium, suppose now that state i raises the marginal tax rate by a small amount at

some high income level, Q′, where all individuals with equal or higher incomes are net taxpayers; that is,

their tax payments are positive, calculated net of the poll subsidy they receive. With tax payments now

increased for all individuals at Q′ and above, some of these individuals now migrate from state i to state

j, causing a rise in j’s net tax revenue. As a result, j’s budget-balancing poll subsidy rises, which makes

j even more attractive to current residents of i, inducing yet more migration to j. This latter migration

occurs across the entire range of incomes, since all residents receive the same poll subsidy, and it causes a

further decline in i’s tax revenue under our assumptions. This revenue loss reduces i’s potential welfare

gain from a rise in its tax rate, suggesting that the equilibrium tax systems will be less progressive under

our new approach than under the traditional approach, where government balance is ignored. In fact,

we show that this is the case, and we generalize our results to environments that imply a reasonable

equilibrium property, which is a counterpart of increasing average tax rates in the close economy. More

specifically, we show that there exists a cutoff income Q∗ (or cutoff productivity type θ∗) so that workers

with income above Q∗ pay less taxes while workers with incomes below Q∗ pay more taxes (or receive

less subsidies) under the new approach. Thus, our basic message is that tax competition leads to less

redistribution under our new approach than under the traditional approach.

The plan of the paper is as follows. The model is described in the next section, and then Section 3

presents the standard Diamond-Saez formula for optimal marginal tax rates in a closed economy. Sec-
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tion 4 then derives the optimal tax formula when there is competition for residents between states,

modeled using the traditional approach. Section 5 derives the formula under the new approach. In

Section 6, we compare the solutions under the traditional and new approaches, demonstrating that the

new approach leads to less redistribution under reasonable assumptions. Section 7 concludes.

2 THE MODEL

We consider two states in a potential federation, indexed by i = 1,2. This is the minimal situation in

which we can compare the progressivity of competitive state taxation versus that of a unified federal tax.

The federation has a total measure (population) of 2 citizens (or workers/consumers), which are evenly

split between two states (so each state has a total measure of 1 original citizens attached to it). The

state that a citizen is initially attached to is called her home state. By incurring a moving/migration

cost, each citizen may move from her home state to the other state. Each citizen is characterized by

three characteristics: her native state i ∈ {1,2}, her productivity (or skill) θ ∈ [0,+∞), and the moving cost

z ∈ [0,+∞) that she has to incur if she moves from her home state to the other state.4 The moving cost z

captures various material and psychic costs of moving, such as the costs in adapting to different culture,

landscape, food, political system, weather condition, etc.

We assume that consumers’ productivity types (θ’s) (in both states) are independently distributed

according to a distribution function F(·) over [0,∞) (with strictly positive density function f (·) over its

support). As in Lehmann et al. (2014), we allow correlations between skills and moving costs: for each

skill θ, the moving costs (z’s) are independently distributed according to a distribution function H(·|θ)

on the interval [0,+∞) (with density function h(·|θ)). The initial joint density of (θ, z) is thus given by

h(z|θ) f (θ). We assume dH (∆|θ) /dθ > 0, that is, the higher θ, the lower migration cost z in the first order

stochastic dominance sense.

Neither the ability θ nor the moving cost z is observable to the tax authority. The tax authority (the

federation or each state in our model) is also constrained to treat native and immigrant workers in the

same way. Therefore, the tax authority can only condition transfers on pre-tax income Q through a tax

schedule T(·) – it cannot base the tax on an individual’s skill type θ, moving cost z, or native state.

Given consumption (or after-tax income) c and labor supply l, following recent literature (e.g., Gordon

and Cullen, 2012, and Lehmann et al., 2014) we assume that a consumer’s preference can be represented

by the following quasi-linear utility function:5

U(c, l)= c−v(l). (1)

where v is increasing and convex. We assume that an individual of ability θ has a constant-returns-to-

4Those who are immobile are captured by z =+∞.
5The quasilinear preference is a good approximation given some recent empirical findings (e.g., Gruber and Saez, 2002).
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scale production function so that

Q = θl.

The productivity of this individual, θ, equals her hourly wage in a competitive labor market. In an

autarkic economy where every agent consumes the product of her own labor, her labor supply is given by

v′(l)= θ.

In an economy with taxation, c =Q−T(Q), where T(·) is the tax schedule set by the tax authority.

Suppose in the equilibrium induced by a tax policy T(·), a type-θ citizen chooses labor supply l(θ), and

hence pre-tax income Q(θ)= θl(θ) and consumption c(θ)= θl(θ)−T(θl(θ)). We will consider the “weighted

utilitarian” criterion (e.g., page 47, Salanie, 2005)so that the tax authority (the federation or each state)

maximizes the following weighted social welfare:∫ ∞

0
[c(θ)−v(l(θ))] g(θ)dθ, (2)

where g is a social weighting function, which is also a probability density, that typically differs from f in

so far as the tax authority has redistributive objectives. The tax authority puts a higher weight on lower

θ’s, so that G ≥ F, the cumulative distribution function of g first-order stochastically dominates that of f .

Note that when all the weights are given to the lowest type, i.e., when G(0) = 1, our objective is reduced

to maximin or Rawlsian, which is the criterion adopted by Lehmann et al. (2014). Our model hence nests

theirs as an important special case.

We will consider two taxation regimes. The first is unified taxation, in which the tax policies in both

states are chosen by the federation. The second is the independent (or competitive) taxation, in which

each state decides on its own tax policy. In the unified taxation regime, the federation aims to maximize

social welfare given by (2) among all the citizens residing in the federation. In the competitive taxation

setting, when making policy choices, each state takes as given the policies chosen by the other state and

maximizes (2) for the citizens who reside in its own state. As described in the introduction, there is an

issue regarding the solution concept. In the traditional approach, states compete in tax schedules, but

budget balance is required only in equilibrium. Under our new approach, states compete in marginal

tax rates, T ′
i(·), i = 1,2. A pair of these schedules,

{
T ′

1(·),T ′
2(·)}, constitutes a Nash equilibrium in the

competitive taxation setting if given T ′
−i(·), T ′

i(·) maximizes the weighted welfare for the citizens residing

in state i, with resource constraints (in both states) being maintained all the time (both on equilibrium

and off equilibrium paths) via poll subsidy adjustment processes, which will be made clear below.

Denoting net tax payments as a function of earnings as T (Q(θ))− A (where T(0) = 0 and A is a poll

subsidy that everyone receives). Note that given T(0)= 0, T(Q(θ)) and T ′(Q(θ)) are uniquely determined

by each other. So while the traditional approach considers the tax schedule T (Q(θ))− A as the strategic
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choice variable, the new approach considers the tax function T(Q(θ)) or the marginal tax rate T ′(Q(θ)) as

strategic choice variable.

3 UNIFIED TAXATION

Since the two states are identical in terms of the original composition of the population, we focus on the

symmetric solution in which each state offers the same tax policies and the resulting “market shares”

are symmetric.6 Given that both states offer the same tax schedules (the marginal tax rates and poll

subsidies), there is no migration, so all citizens stay in their home states. An aggregate budget constraint

on this maximization problem can be stated as∫ ∞

0
T (θl(θ)) f (θ)dθ ≥ A+R, (3)

where R is the required per-capital government net revenue (so the total revenue required is 2R for the

federation).

Consumption equals the difference between earnings and taxes, c(θ) = θl(θ)−T (θl(θ))+ A. A worker

with skill θ maximizes her utility:

u (θ)+ A =max
l′

{θl′−T
(
θl′

)+ A}−v
(
l′
)
. (4)

By the first-order condition and the envelope theorem, we have

u′ (θ)= (1−T ′ (θl(θ))) · l(θ)= v′ (l (θ))
l(θ)
θ

. (5)

More generally, the following lemma is standard:

Lemma 1. The tax function T(·) (and hence the marginal tax schedule T ′(·)) are incentive compatible if

and only if the following conditions hold:

1. Q(θ) or θl(θ) increases in θ;

2. The envelope formula (5) holds.

Note that choosing T ′ is equivalent to choosing u: Given u (θ), l(θ) can be recovered from u′ (θ) =
v′ (l (θ)) l(θ)

θ
; then T ′ (θl(θ)) can be further recovered from (1−T ′ (θl(θ))) = v′ (l (θ)) /θ. Given T ′ (θl(θ)), l(θ)

can be recovered from (1−T ′ (θl(θ))) = v′ (l (θ)) /θ, and T (θl(θ)) can be recovered by simply integrating

T ′ (θl(θ)) (as T(0) = 0). Hence u (θ) can be recovered from (4): u(θ) = θl(θ)−T (θl(θ))− v(l(θ)). For this

reason we can work with u(θ) instead of T ′ (or T) in our analysis throughout.

6We focus on the symmetric solution here for ease of comparison with the independent case, where we will focus on symmetric
equilibrium.
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Budget constraint (3) can be rewritten as∫ ∞

0
[θl(θ)−u (θ)−v(l (θ))] f (θ)dθ ≥ A+R.

The federation’s problem can now be formulated as follows:

max
l(θ),u(θ),A

∫ ∞

0
(u (θ)+ A) g (θ)dθ

s.t.
∫ ∞

0
[θl(θ)−u (θ)−v(l (θ))] f (θ)dθ ≥ A+R,

u′ (θ)= v′ (l (θ))
l(θ)
θ

d (θl(θ))
dθ

≥ 0.

Let the subscript “ f ” denote the (federation) solution. Then A f is the equilibrium poll subsidy, and the

equilibrium tax payment at θ is

T f (θ)= θl f (θ)−u f (θ)−v(l f (θ)).

With this notation, we have

Proposition 1. The optimal marginal tax rate under unified taxation is characterized by the following

condition:
T ′

f (θ)

1−T ′
f (θ)

=
1+ e−1

f (θ)

θ

G (θ)−F (θ)
f (θ)

=
(
1+ 1

e f (θ)

)
1−F (θ)
θ f (θ)

G (θ)−F (θ)
1−F (θ)

, (6)

where T ′
f (θ) = T ′(θl f (θ)) and e f (θ) = v′(l f (θ))

v′′(l f (θ))l f (θ) is the elasticity of labor supply (with respect to the

retention rate 1−T ′).

This proposition can be demonstrated following the standard point-wise maximization technique (e.g.,

pages 47-51, Salanie, 2005). Equation (6) suggests that the marginal tax rate depends on the elasticity

of labor supply, on the shape of the distribution of productivities, and on the government’s redistributive

objectives. Since these three terms are all positive, we have that under unified taxation, the marginal

tax rate T ′
f (θ)≥ 0.

4 INDEPENDENT TAXATION: THE TRADITIONAL APPROACH

We are now ready to consider independent taxation, where the federation lets two states make their

tax policy decisions independently. We first consider the traditional approach to modeling competition

between the two states, followed by our new approach.

With the traditional approach, states compete in taxation schedules simultaneously and indepen-

dently, with the requirement of budget balance being only satisfied in equilibrium. Following the same
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notation as in the previous section, Lemma 1 now holds for each state. The only difference is that each

state’s optimization problem now reflects the variable population. Given one state’s tax policy, the other

state will choose a tax policy, (T (·), A) to maximize the weighted average utility of the citizens residing in

its own state.7 We will focus on symmetric equilibria, in which the two states choose the same tax policy.

Suppose that state 2’s rent provision contract is given by u (θ)+ A. Then if state 1 offers the rent

provision contract, u (θ)+ A, the type-θ “market share,” or population, for state 1 is given by

η1(θ,∆)=
 f (θ)+ f (θ)H (∆|θ) if ∆> 0

f (θ) (1−H (−∆|θ)) if ∆≤ 0
(7)

where ∆= u (θ)+ A−u (θ)− A.

The type-θ “market share” or population for state 2, η2(θ,∆), can be analogously defined. We can show

η2(θ,∆)= η1(θ,−∆).

As in Lehmann et al., we define the semi-elasticity of migration (with respect to the after-tax income)

as follows:

ε(θ,∆)= ∂ logη1(θ,∆)
∂∆

=


h(∆|θ)
1+H(∆|θ) if ∆> 0
h(−∆|θ)

1−H(−∆|θ) if ∆≤ 0

In particular, we define ε(θ) ≡ ε(θ,0) = h(0|θ), which is the semi-elasticity of migration for type-θ worker,

evaluated at the symmetry equilibrium (∆= 0).

The budget constraint for state 1 can be stated as
∫ ∞

0 (T (θl(θ))− A)η1(θ,∆)dθ ≥ R, where R is the

total revenue required (or the per-capital net revenue requirement). Using l (θ) as the control variable

and u (θ) as the state variable, state 1’s maximization problem can be formulated as the following optimal

control program:

max
l(θ),u(θ),A

∫ ∞

0
(u (θ)+ A) g (θ)dθ

s.t.
∫ ∞

0
[θl(θ)−u (θ)−v(l (θ))− A]η1(θ,∆)dθ ≥ R,

u′ (θ)= v′ (l (θ))
l(θ)
θ

d (θl (θ))
dθ

≥ 0

Let the subscript “o” denote the (“old,” or traditional). Then Ao is the equilibrium poll subsidy, and

the equilibrium tax payment at θ is

To(θ)= θlo(θ)−uo (θ)−v(lo(θ)).

7It is well known that in the competitive mechanism design setting, it is no longer without loss of generality to apply the
revelation principle. To sidestep this issue, we restrict attention to deterministic tax schedules.

9



With this notation, we have –

Proposition 2. The symmetric equilibrium marginal tax rate under independent taxation is given by

T ′
o(θ)

1−T ′
o(θ)

=
(
1+ 1

eo (θ)

)
1−F (θ)
θ f (θ)

(
(1−F (θ))− 1

po
(1−G (θ))

1−F (θ)
−

∫ ∞
θ (To(t)− Ao)ε(t) f (t)dt

(1−F (θ))

)
, (8)

where T ′
o (θ)= T ′

o(θlo (θ)), po = 1
1−∫ ∞

0 (To(t)−Ao)ε(t) f (t)dt , Ao =
∫ ∞

0 To(t) f (t)dt−R, and eo (θ)= v′(lo(θ))
v′′(lo(θ))lo(θ) .

Proof. See Appendix.

Note that when G (θ)≡ 1 (the Rawlsian case), (8) becomes

T ′
o(θ)

1−T ′
o(θ)

=
(
1+ 1

eo (θ)

) ∫ ∞
θ [1− (To(t)− Ao)ε(t)] f (t)dt

θ f (θ)
,

which is exactly the same equilibrium marginal tax rate derived by Lehmann et al. (equation (13) of their

Proposition 1).

The variable po is the Lagrangian parameter for the budget constraint, which can be interpreted as

the welfare value of additional government revenue. In the unified taxation, p f = 1. Compared to (6), the

effect of competition is reflected by the term∫ ∞

0
(To(t)− Ao)ε(t) f (t)dt,

where ε(t)= h(0|t) is the measure of type-t consumers who are perfectly movable (with zero moving cost),

which is also the semi-elasticity of migration (evaluated at symmetric equilibrium ∆= 0). A sufficiently

small deviation from the proposed symmetric equilibrium (u = u = u∗) by a state only has a marginal

effect on the migration for the consumers with moving cost z = 0. This portion of consumers has a

measure/mass of ε(t) for each type t. For this reason we also refer to ε(t) as the mass of type-t marginal

consumers. As we will see, ε(t) plays an crucial role in our equilibrium characterization.

While the formal proof of Proposition 2 is a bit tedious, the driving force can be understood intuitively.

When the state lowers Ao to Ao−δA, there are three effects: the first is the loss in utility for all workers,

−δA ·∫ ∞
0 dG (θ); the second is the direct gain in tax revenue, δA ·po

∫ ∞
0 dF (θ); and the third is the indirect

loss in tax revenue due to excluding more workers, −δA · po
∫ ∞

0 (To(t)− Ao)ε(t) f (t)dt. Ao is optimal if

these three welfare effects sum to zero, implying that

po = 1
1−∫ ∞

0 (To(t)− Ao)ε(t) f (t)dt
.

Since po is the welfare value of additional government revenue (by the envelope theorem), we must
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have po ≥ 0. Thus in equilibrium we must have∫ ∞

0
(To(t)− Ao)ε(t) f (t)dt < 1. (9)

To see that (9) is a necessary condition for equilibrium, suppose in negation, the inequality in (9)

is reversed. In that case it can be verified that a (marginal) rise in the poll subsidy (A) increases tax

revenue, calculated net of the tax rate. That is, a higher poll subsidy creates a budget surplus, which

implies that increasing the poll subsidy is feasible. Since raising a poll subsidy increases all resident

utilities, the original tax policy could not have been in equilibrium. In the case with perfect mobility,

Bierbrauer et al. (2013) show that there does not exist any equilibrium in which the highest type pays a

positive amount of tax or the lowest type receives a positive amount of subsidy. This is consistent with

our result, as the perfect mobility case (h =+∞) clearly violates (9).

In general, po may exceed or fall short of one, depending on the shape of ε(t). If consumers with

higher income are generally more movable, then ε(t) would be relatively higher for higher types, which

would tend to put more weight on positive values of To(t)− Ao, leading to
∫ ∞

0 (To(t)− Ao)ε(t) f (t)dt > 0,

and hence po > 1. But if the most movable workers are predominantly low-income workers who are net

recipients of government revenue, then po can be less than one. In this latter case, the marginal social

value of government revenue is less than it would be under unified taxation, because another dollar of

revenue increases the poll subsidy by less than a dollar, due to the influx of these tax recipients.

In the traditional approach, consider raising the marginal tax rate by δT over the interval θ to

θ+ δθ. This tax change is equivalent to a lump sum tax of δTδθ on the 1− F (θ) individuals whose

skill is larger than θ, leading to a loss (− (1−G (θ)) · δTδθ) in utility for those individuals, and a loss

(−po
∫ ∞
θ (To(t)− Ao)ε(t) f (t)dt ·δTδθ) in revenue for the state government, due to emigration from those

individuals, but a gain in revenue for the state government (po (1−F (θ)) ·δTδθ) . However, the f (θ)δθ

individuals with skill between θ and θ+δθ now face a higher marginal tax rate, inducing a drop in their

labor supply and a resulting loss (−po
T ′

o(θ)
1−T ′

o(θ)
eo(θ)

1+eo(θ)θ f (θ) ·δTδθ) in tax revenue. The loss in tax revenue

varies directly with the elasticity of labor supply with respect to the after-tax wage rate for individuals

with labor skill of θ, denoted eo (θ).

The initial tax schedule is optimal if these four welfare effects sum to zero, implying that

{
− (1−G (θ))+ po (1−F (θ))− po

T ′
o(θ)

1−T ′
o(θ)

eo (θ)
1+ eo (θ)

θ f (θ)− po

∫ ∞

θ
(To(t)− Ao)ε(t) f (t)dt

}
δTδθ = 0.

Simplifying, we obtain condition (8), which can be rewritten as

T ′
o(θ)

1−T ′
o(θ)

=
(
1+ 1

eo (θ)

)
1−F (θ)
θ f (θ)

(
(1−F (θ))− 1

po
(1−G (θ))

1−F (θ)
−

∫ ∞
θ (To(t)− Ao)ε(t) f (t)dt

(1−F (θ))

)
, (10)
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or alternatively,

T ′
o(θ)

1−T ′
o(θ)

=
(
1+ 1

eo (θ)

)
1−F (θ)
θ f (θ)

·
[

G (θ)−F (θ)
1−F (θ)

+
(
1− 1

po

)(
1−G (θ)
1−F (θ)

−
∫ ∞
θ (To(t)− Ao)ε(t) f (t)dt/ (1−F (θ))∫ ∞

0 (To(t)− Ao)ε(t) f (t)dt

)]
. (11)

5 INDEPENDENT TAXATION: THE NEW APPROACH

The difference between the new and traditional approaches is that when a state chooses its tax policy,

it recognizes that the other state’s poll subsidy will adjust to prevent any migration from unbalancing

its government budget. In other words, each state is now choosing its marginal tax function, T ′ (·) ,

simultaneously and independently, with the poll subsidies being adjusted automatically to satisfy the

government budget constraints, requiring that each state generate net tax revenue, R.

The two states choose the marginal tax rate function, or equivalently, the rent provision function,

u (θ) and u (θ). After the poll subsidies are determined, suppose that state 2’s rent provision contract is

given by u (θ)+A. Then if state 1 offers rent provision contract, u (θ)+A, the measure (or “market share”

) of type-θ workers residing in states 1 is also given by (7) (and the measure of type-θ workers residing in

states 2 is analogously defined) .

From u′ (θ)= v′ (l (θ)) l(θ)
θ

(Lemma 1), we can obtain l(θ)= ξ(
u′ (θ) ,θ

)
for some function ξ, and

ξu′
(
u′ (θ) ,θ

)= dl(θ)
du′ (θ)

= θ

v′ (l (θ))+v′′ (l (θ)) l(θ)
= θ

v′(ξ(u′ (θ) ,θ))+v′′(ξ(u′ (θ) ,θ))ξ(u′ (θ) ,θ)
. (12)

Define

M
(
θ,u(θ),u′(θ)

)≡ θξ(u′ (θ) ,θ)−u (θ)−v(ξ(u′ (θ) ,θ)). (13)

M
(
θ,u(θ),u′(θ)

)
is the tax revenue from type-θ workers. Using this notation, the budget constraint for

state 1 can be stated as∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η1

(
θ,u (θ)+ A−u (θ)− A

)
dθ ≥ R (14)

Similarly, state 2’s budget constraint is given by∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ ≥ R (15)

The timeline is as follows:

1. Two states announce marginal tax functions, or equivalently, the rent provision functions, u (θ) and

u (θ) simultaneously and independently;
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2. Given the marginal tax functions announced, each citizen decides on whether to stay in her home

state or to move to the other state. Note that citizens also know that resource constraints are

satisfied all the time. So poll subsidies A and A are automatically adjusted given the marginal tax

functions: A = A(u,u), A = A(u,u).

3. Citizens decide on their labor supply. Outputs are realized and taxes are determined according to

the announced marginal tax functions (and the implied poll subsidies).

Given state 2’s strategy u and its own poll subsidy adjustment rule A = A (u,u), state 1’s maximization

problem can be formulated as follows:

max
u(θ)

∫ ∞

0
(u (θ)+ A (u,u)) g (θ)dθ (16)

s.t.
d

(
θξ(u′(θ),θ)

)
dθ

≥ 0.

Let the subscript “n” denote the (new) solution. Then An is the equilibrium poll subsidy, and the

equilibrium tax payment at θ is

Tn(θ)= M
(
θ,un(θ),u′

n(θ)
)
.

With this notation, we have –

Proposition 3. The symmetric equilibrium marginal tax rate under the new approach is given by

T ′
n(θ)

1−T ′
n(θ)

=
(
1+ 1

en (θ)

)
1−F (θ)
θ f (θ)

·
(

(1−F (θ))− 1
pn

(1−G (θ))

1−F (θ)
−

∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt(

1−∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt

)
(1−F (θ))

)
,

where

pn = 1

1−
∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt
1−∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt

; An =
∫ ∞

0
Tn (t) f (t)dt−R;

T ′
n (θ) = T ′(θln(θ)); en (θ)= v′(ln (θ))

v′′(ln (θ))ln (θ)
.

Proof. See Appendix.

It is worth noting that in our objective function (16) the integrand is a function of not just u(θ), but also

the entire path u, exactly due to the poll subsidy adjustment rule A(u,u). It is not clear what can be used

as appropriate state variables for us to formulate our program as an optimal control problem. As such,
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we turn to the (presumably more basic) method of calculus variations to characterize the equilibrium

under our new approach. The proof also makes use of the Fréchet derivative.

To facilitate the comparison with the traditional approach, we reformulate state 1’s maximization

problem (16) into the following auxiliary program:

max
u(θ)

∫ ∞

0
(u (θ)+ A) g (θ)dθ

s.t.
∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η1

(
θ,u (θ)−u (θ)+ A− A (u,u, A)

)
dθ ≥ R; (17)

d
(
θξ(u′(θ),θ)

)
dθ

≥ 0.

Define

N2

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ.

Then we can compute the partial derivatives:

N ′
2A

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ,

N ′
2A

(
u,u, A, A

)
= −

∫ ∞

0
η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ

−
∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ,

N ′
2u

(
u,u, A, A

)
=

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

,

where N ′
2u

(
u,u, A, A

)
above is the Fréchet derivative (Luenberger, 1969) on [0,∞). By the implicit

function theorem,

A
′
A (u,u, A) = −

N ′
2A

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)

=
∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u(θ)+A−u(θ)−A

)
∂∆ dθ

∫ ∞
0 η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ+∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u(θ)+A−u(θ)−A

)
∂∆ dθ

;

A
′
u (u,u, A) = −

N ′
2u

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)
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=
[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u(θ)+A−u(θ)−A

)
∂∆∫ ∞

0 η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ+∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u(θ)+A−u(θ)−A

)
∂∆ dθ

.

As in the traditional approach, we let pn denote the Lagrangian parameter for the budget constraint,

which can be interpreted as the welfare value of additional government revenue. In the unified taxation,

p f = 1.

Now consider raising the marginal tax rate by δT over the interval θ to θ+δθ. This tax change is

equivalent to a lump sum tax of δTδθ on the 1−F (θ) individuals whose skill is larger than θ, leading to a

loss in utility, − (1−G (θ))·δTδθ, for those individuals; and a loss in revenue, −pn
∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt·

δTδθ, for the state government, due to emigration of those individuals; a loss (given below) in revenue

for the state government, due to emigration of those individuals (caused by the other state increasing its

poll subsidy),

pn

∫ ∞

0
[Tn(t)− An]ε(t) f (t)dt ·

∫ ∞

θ
Au (u, A)dt ·δTδθ

= pn

(∫ ∞

0
[Tn(t)− An]ε(t) f (t)dt

)
·
( ∫ ∞

θ [Tn(t)− An]ε(t) f (t)dt∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt−1

)
·δTδθ

= pn

(∫ ∞

θ
[Tn(t)− An]ε(t) f (t)dt

)
·
( ∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt−1

)
·δTδθ;

and a gain in revenue for the government, pn (1−F (θ)) ·δTδθ . However, the f (θ)δθ individuals with

skill between θ and θ+δθ now face a higher marginal tax rate, inducing a drop in their labor supply and

a resulting loss in tax revenue, −pn
T ′

n(θ)
1−T ′

n(θ)
en(θ)

1+en(θ)θ f (θ)·δTδθ. The loss in tax revenue varies directly with

the elasticity of labor supply with respect to the after-tax wage rate for individuals with labor skill of θ,

denoted en (θ).

The initial tax schedule is optimal if these five welfare effects sum to zero, implying that − (1−G (θ))+ pn (1−F (θ))− pn
T ′

n(θ)
1−T ′

n(θ)
en(θ)

1+en(θ)θ f (θ)

−pn

(
1−

∫ ∞
0 [Tn(t)−An]ε(t) f (t)dt∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt−1

)∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt

δTδθ = 0. (18)

Simplifying, we find the following expression determining the optimal marginal tax rate at any skill θ:

T ′
n(θ)

1−T ′
n(θ)

=
(
1+ 1

en (θ)

)
1−F (θ)
θ f (θ)

(
(1−F (θ))− 1

pn
(1−G (θ))

1−F (θ)
−

∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt(

1−∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt

)
(1−F (θ))

)
,

or alternatively,

T ′
n(θ)

1−T ′
n(θ)

=
(
1+ 1

en (θ)

)
1−F (θ)
θ f (θ)
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·
[

G (θ)−F (θ)
1−F (θ)

+
(
1− 1

pn

)(
1−G (θ)
1−F (θ)

−
∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt/ (1−F (θ))∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt

)]
. (19)

Now consider the case θ = 0, (18) can be rewritten as

 − (1−G (0))+ pn (1−F (0))− pn
T ′

n(0)
1−T ′

n(0)
en(0)

1+en(0)0 f (0)

−pn

(
1−

∫ ∞
0 [Tn(t)−An]ε(t) f (t)dt∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt−1

)∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt

δTδθ = 0.

Simplifying, we have

pn = 1

1−
∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt
1−∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt

(20)

Note that increasing T ′(0), the marginal tax rate for the lowest type, is equivalent to reducing the

poll subsidy for all types. So alternatively, we can understand the expression of pn as follows.

When the state lowers poll subsidy An to An−δA, there are four effects: the first is the loss in utility

for all workers, −δA · ∫ ∞
0 dG (θ); the second is the direct gain in tax revenue, δA · pn

∫ ∞
0 dF (θ); the third

is the indirect loss in tax revenue due to excluding more workers, −δA · pn
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt; and

the fourth is the indirect loss in tax revenue due to the other state attracting more workers by raising A

to react to the change of An, δA · pn
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt · AA. Note that when An reduces, the other

state will end up with revenue surplus. If
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt > 1, the other state can raise A to

increase revenue (leading to more surplus). In this case AA < 0. If
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt ≤ 1, on the

other hand, the other state will raise A (to reduce the surplus until the budget balances). In this case,

we have

AA =
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt−1

.

An is optimal if the above four welfare effects sum to zero. Note that this is impossible in the case

with
∫ ∞

0 [Tn(t)− An]ε(t) f (t)dt > 1 (as the first effect is negative, the combined second and third ef-

fect is negative, and the last effect is also negative due to AA < 0). So in equilibrium, we must have∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt ≤ 1, and the optimality leads to the expression of pn (20) as well.

By a similar argument in the previous section, pn ≥ 0, which implies that in equilibrium,∫ ∞

0
[Tn(t)− An]ε(t) f (t)dt < 1

2
(21)

6 COMPARISON: TRADITIONAL VS. NEW APPROACHES

The expressions for the equilibrium marginal tax rates (11) and (19) can be unified as follows:

T ′
i(θ)

1−T ′
i(θ)

=
(
1+ 1

e i (θ)

)
1−F (θ)
θ f (θ)
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·
[

G (θ)−F (θ)
1−F (θ)

+
(
1− 1

pi

)(
1−G (θ)
1−F (θ)

−
∫ ∞
θ [Ti(t)− A i]ε(t) f (t)dt/ (1−F (θ))∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt

)]
, i ∈ {o,n},(22)

where

T ′
i(θ) = T ′(θl i(θ)); e i (θ)= v′(l i (θ))

v′′(l i (θ))l i(θ)
; A i =

∫ θ

θ
Ti (t) f (t)dt−R;

pn = 1

1−
∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt
1−∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt

; po = 1
1−∫ ∞

0 [To(t)− Ao]ε(t) f (t)dt
. (23)

The marginal tax differs between the two approaches only through the Lagrange multiplier on the state

government’s budget constraint. This difference is due to an additional effect in our new approach,

compared to the traditional approach, when identifying the welfare value of additional state revenue

(the Lagrange multiplier). When state 1 uses revenue to raise its poll subsidy, it attracts residents from

state 2, and state 2’s poll subsidy then adjusts to keep its government budget balanced, which creates

more migration. For this reason, the new approach differs from the old approach via the responsiveness

of migration to a change in the poll subsidy. (22) can also be rewritten as follows:

T ′
i(θ)

1−T ′
i(θ)

=
(
1+ 1

e i (θ)

)G (θ)−F (θ)
θ f (θ)

+
(1−G (θ))

∫ ∞
0

Ti(t)−A i
αi

ε(t) f (t)dt−∫ ∞
θ

Ti(t)−A i
αi

ε(t) f (t)dt

θ f (θ)

 , (24)

where αo = 1 and αn = 1−∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt.

Inspecting the expression of (24), it is clear that replacing the traditional approach with the new

approach has the same effect on the marginal tax function T ′
n(θ) as a change in the semi-elasticity

of migration from ε(θ) to ε(θ)/
(
1−∫ ∞

0 [Tn(θ)− An]ε(θ)dF (θ)
)
. In particular, replacing the traditional

approach with the new approach is equivalent to reducing (increasing) ε(θ) by the same percentage

amount at each θ, if
∫ ∞

0 [Tn(θ)− An]ε(θ)dF (θ) is negative (positive). In particular, there is no differ-

ence between the two approaches if
∫ ∞

0 [Tn(θ)− An]ε(θ)dF (θ) = 0. Note that
∫ ∞

0 [Tn(θ)− An]ε(θ)dF (θ) =
R ·Eε(θ)+ cov (Tn (θ)− An,ε(θ)). As such, we have

Proposition 4. There is no difference between the traditional and new approaches if the income tax is

purely redistributive (R = 0) and there is no correlation between the tax payment and semi-elasticity of

migration in equilibrium, e.g., when ε(θ)= h, a constant.

The more relevant case, however, is where R > 0 or ε(θ) varies with θ. As such, our new approach

generally yields equilibria that differ from those under the traditional approach. In order to explore

the exact differences between two approaches, in what follows we will assume that the primitives of the
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model, i.e., F(θ), G(θ), and ε(θ), are given such that the following property holds:

0<
∫ ∞

0
[Ti(t)− A i]ε(t) f (t)dt <

∫ ∞
θ [Ti(t)− A i]ε(t) f (t)dt

1−F (θ)
, for ∀θ > 0. (25)

Property (25) should be regarded as a regular property in equilibrium. To see this, note that in close

economy with unified taxation, by (6) we have T ′
f (θ) ≥ 0 with equality only at θ = 0. This implies the

following property:

0< R =
∫ ∞

0

[
T f (t)− A f

]
f (t)dt <

∫ ∞
θ

[
T f (t)− A f

]
f (t)dt

1−F (θ)
, for ∀θ > 0, (26)

i.e., the average net tax payment over types [θ,+∞) increases in θ. Property (25) should be regarded as

a counterpart of Property (26) in the open economy taking into account competition and migration. Note

that when ε(θ) is a constant, Property (25) is exactly Property (26).

We will now identify a set of conditions under which Property (25) holds. Given F(θ) and G(θ), we

introduce the following bounding functions:

Mi (θ) = max

d logh (θ)
dθ

|d log

1− pi
g(θ)
f (θ)

h (θ)

 /dθ ≥ 0

 , (27)

mi (θ) = min
{

d logh (θ)
dθ

|d log[(Ti (θ)− A i)h (θ)] /dθ > 0 and
∫ ∞

0
(Ti (θ)− A i)h (θ)dF (θ)> 0

}
, (28)

where pi, Ti (θ), and A i are defined in (23) with ε(θ) being replaced by a generic (positive) function h (θ)

here. Note that Mi and mi are functionals of F and G.

Lemma 2. Property (25) holds if g(θ)/ f (θ) is nonincreasing and mi (θ) ≤ d logε(θ)
dθ ≤ Mi (θ) for θ ∈ (0,+∞),

where mi ≤ 0≤ Mi, i ∈ {o,n}.

Proof. See Appendix.

That g(θ)/ f (θ) is nonincreasing (likelihood ratio dominance) is a sufficient condition for G(θ) ≥ F(θ)

(first-order stochastic dominance), which can be regarded as a stronger redistributive objective for the

government. In the close economy (where ε(t) = 0), G(θ) ≥ F(θ) is sufficient to induce T ′(θ) ≥ 0. In the

open economy with tax competition, a stronger government redistributive objective is required to insure

that T ′(θ)≥ 0. In addition, some restriction on the shape of the semi-elasticity of migration function ε(θ)

is also needed. The above proposition suggests that as long as ε(θ) does not vary too much with θ (neither

increasing nor decreasing too sharply), our Property (25) should hold. Since mi ≤ 0 ≤ Mi, in particular,

Property (25) holds if g(θ)/ f (θ) is nonincreasing and ε(θ)= h, a constant.

Next we examine taxes on high incomes. In particular, we look at the optimal asymptotic marginal

tax rate, which is the limit of marginal tax rates as θ goes to ∞. In the case of unified taxation, recent
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research has shown that at high incomes, marginal tax rates increase with income, converging to a high

level that Diamond and Saez (2012) calculate to be T ′
f (∞) = .73. An important assumption behind this

calculation is that the social marginal utility of income goes to zero as income goes to infinity. Similarly,

we assume that limθ→∞ g(θ)/ f (θ) = 0. In addition, we assume that ε(θ) converges to some constant h.

With these assumptions in addition to Property (25), we have:

Lemma 3. Suppose F(θ), G(θ), and ε(θ) are given such that Property (25) holds. In addition, we assume

that limθ→∞ g(θ)/ f (θ) = 0 and both lim
θ→∞

1−F(θ)
θ f (θ) and lim

θ→∞
ε(θ) are finite and positive. Then the asymptotic

marginal tax rate in the independent regime equals zero, using either the traditional or new approaches.

Proof. See Appendix.

Our finding that competition for residents reduces the asymptotic tax rate to zero may be simply

explained. If the rate stayed bounded above some positive number, then tax payments would grow with

income without bound. Unless 1/ε(θ) similarly grew, which is ruled out by our assumptions, the tax

payment that a state could obtain by lowering marginal taxes at high incomes would also grow without

bound. Thus, states compete the asymptotic tax rate down to zero. This result shows that the effects of

competition on marginal tax rates can be especially strong at high incomes.

Consider now the taxes paid by individuals with abilities above some level θ∗. The average taxes paid

by these individuals are

ATi
(
θ∗

)= ∫ ∞

θ∗
(Ti (t)− A i)

f (t)
1−F (θ∗)

dt.

We can let θ∗ go to infinity and compute the asymptotic average tax payment. Although the asymptotic

marginal tax rate is zero under both approaches, the asymptotic average tax payments differ:

Lemma 4. Under the assumptions listed in Lemma 3, the asymptotic average tax payment is lower

under the new approach than under the traditional approach.

Proof. See Appendix.

This lemma tells us that for an ability θ∗ sufficiently high, average tax payments for individuals with

abilities above θ∗ will be lower under new approach than under the traditional approach. For budget

balance, the reverse will be true for individuals with abilities below θ∗.

We are now ready to state our central comparison result.

Proposition 5. Under the assumptions listed for Lemma 3, there exists θ̂ ∈ (0,+∞) such that Tn (θ)−
An > To (θ)− Ao when θ ∈ [0, θ̂); Tn (θ)− An = To (θ)− Ao when θ = θ̂; and Tn (θ)− An < To (θ)− Ao when

θ ∈ (θ̂,+∞). So compared to the traditional approach, under the new approach the rich pay less taxes and

the poor receive less subsidies; in other words, the extent of income redistribution is lower under our new

approach.
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Proof. See Appendix.

The key intuition of our comparison result can be understood based on the effect of the other state’s

poll subsidy response to a change in a state’s marginal tax rate. As argued before, when raising the

marginal tax rate by δT over the interval θ to θ+δθ, this tax change is equivalent to a lump sum tax

of δTδθ on the 1−F (θ) individuals whose skill is larger than θ. This leads to a reduction in the rent

provision u(t) for all types above θ. In our new approach, the other state will respond by changing its poll

subsidy A. This effect is captured via the Fréchet derivative, which equals∫ ∞
θ [Tn (t)− An]ε(t) f (t)dt∫ ∞

0 [Tn (t)− An]ε(t) f (t)dt−1
.

Since
∫ ∞

0 [Tn (t)− An]ε(t) f (t)dt < 1/2, this effect is negative, which means that A will increase. As A

increases, more citizens would emigrate from the state under consideration (compared to the situation

under the traditional approach without poll subsidy adjustment). This suggests that the ex ante incentive

to raise the marginal tax rate will be reduced, leading to less redistribution under the new approach in

equilibrium.

That the income redistribution is reduced under our new approach can also be understood intuitively:

moving from traditional approach to new approach is equivalent to a change from ε(θ) to

ε(θ)/
(
1−

∫ ∞

0
[Tn(θ)− An]ε(θ)dF (θ)

)
.

Since ε(θ) captures the degree of competition between two tax authorities, our new approach implies

more intense competition and hence lower level of income redistribution under the new approach. Since

the unified tax regime can be regarded as an extreme case with ε(θ) = 0, a direct corollary is that the

income redistribution under unified regime will be higher than the independent tax regime (under either

traditional or new approaches).

To gain some feel about how the comparison of tax schedules looks like, we provide an illustration

based on numerical computations. We consider two symmetric states, which design the tax system to

maximize the welfare of the worst-off individuals (Rawlsian, or G (θ) = 1). Adopting similar numerical

environments as used in Lehmann et al., we assume that the income distribution is a Pareto distribution

with α= 2.011, so that the top 1% of the population gets 20.9% of total income (to proxy the US economy,

per the 2022 Current Population Survey (CPS)). The disutility of effort is given by v (l)= l1+1/e. This spec-

ification implies a constant elasticity of gross earnings with respect to the retention rate e, as in Diamond

(1998) and Saez (2001). We choose e = 0.25, which is a reasonable value based on the survey by Saez et

al. (2012). The semi-elasticity of migration ε (θ) is constant throughout the whole skill distribution and

is 10−6; The required per-capital government net revenue R is 0.265×106 dollars. The comparison of the

tax schedules Tn(θ)− An and To(θ)− Ao is illustrated by the following figure:
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Figure 1: An Illustration of The Comparison of Tn(Q)− An (solid) and To(Q)− Ao (dashed)

As is clear, the poll subsidy is positive under both old and new approaches, but is much less under

the new approach, suggesting that the poor receive much less subsidies. From the figure, it is also clear

that the rich pay much less taxes. We can thus tell that the difference between two tax schedules is quite

significant, implying that the change in approaches clearly lowers the extent of the income redistribution.

More generally, the difference between two tax schedules Tn(θ)−An and To(θ)−Ao depends on the val-

ue of
∫ ∞

0 [T(θ)− A]ε (θ)dF (θ). Given that
∫ ∞

0 [Tn(θ)− An]ε (θ)dF (θ)< 1
2 , the bigger is

∫ ∞
0 [Tn(θ)− An]ε (θ)dF (θ),

the larger is the difference between Tn(θ)− An and To(θ)− Ao. We can thus evaluate the comparison un-

der three scenarios by varying the semi-elasticity function ε (θ) (but maintaining Eε (θ) = h). First we

have ∫ ∞

0
[Tn(θ)− An]ε (θ)dF (θ) = R ·Eε (θ)+ cov (Tn (θ)− An,ε (θ))

= R ·h+ cov (Tn (θ)− An,ε (θ))

In the first scenario, we assume that ε (θ) is decreasing (e.g., it is zero up to the top centile and then

decreasing) so that cov (Tn (θ)− An,ε (θ)) < 0; in the second scenario, we assume that ε (θ) is a constant;

in the third scenario, we assume that ε (θ) is increasing so that cov (Tn (θ)− An,ε (θ))> 0. We thus have∫ ∞

0

[
T1

n(θ)− A1
n
]
ε1 (θ)dF (θ) = R ·h+ cov

(
T1

n (θ)− A1
n,ε1 (θ)

)< R ·h∫ ∞

0

[
T2

n(θ)− A2
n
]
ε2 (θ)dF (θ) = R ·h+ cov

(
T2

n (θ)− A2
n,ε2 (θ)

)= R ·h∫ ∞

0

[
T3

n(θ)− A3
n
]
ε3 (θ)dF (θ) = R ·h+ cov

(
T3

n (θ)− A3
n,ε3 (θ)

)> R ·h

The difference between the two tax schedules is smaller in the first scenario than in the second
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scenario. The difference between the two tax schedules is bigger in the third scenario than in the second

scenario.

Figure 1 is an illustration of the second scenario. By Lemma 2, ε (θ) cannot decrease or increase

too much. So cov (Tn (θ)− An,ε (θ)) must be small. As such the two tax schedules in the first and third

scenarios will be very similar to the two schedules in the second scenario.

7 CONCLUSION

In this paper, we have developed a model of competition between states in marginal income tax schedules,

where poll subsidies adjust to achieve budget balance, taking into account interstate migration responses

to tax changes. In contrast, the traditional literature typically assumes that strategies are the entire

tax policies, including poll subsidies. In this case, when one state deviates from its equilibrium tax

policy, the competing states’ government budgets are typically left unbalanced. Under certain regular

conditions, we demonstrate that requiring budget balance (both on and off equilibrium paths) is similar

to an increase in migration propensities, causing competition to be more intense, in which case there is

less redistribution of income to low-income individuals.

Our model uses a utility function under which there are no income effects in the supply of labor.

Although the assumption of no income effects has become common in the optimal income tax literature,

it is particularly important in the current model. With income effects, changes in the poll subsidy will

affect labor supplies, given the chosen marginal tax schedules. These labor supply effects will change tax

revenue, complicating the determination of the budget-balancing poll subsidies. For example, suppose

that country 1 redistributes more income to high-income taxpayers. Some of them move to country 2,

generating more tax revenue. Country 2’s budget-balancing poll subsidy rises, but that causes labor

supplies to decline, assuming leisure is a normal good. The resulting revenue loss reduces the budget-

balancing rise in 2’s poll subsidy. These complications increase the complexity of our new approach,

but they still do not justify ignoring budget balance for out-of-equilibrium moves, except maybe as a

pragmatic shortcut. But the assumption of no income has been similarly justified.

An alternative method of budget-balance would be to use a public good, G, that is separable between

private consumption and labor in the utility function (i.e., U(c, l,G)= u(c, l)+h(G) ). We can then model

competition between states as a Nash game in income tax policies (including the poll subsidy), with the

public good used to balance the government budgets. Adjustments in the public good will induce the same

pattern of migration as a change in the poll subsidy, under the assumption of identical preferences for

the public good. The separability assumption implies that the public good does not affect labor supplies,

regardless of whether there are income effects in the supply of labor. Thus, in the case of income effects,

this approach will be simpler to analyze than when the poll subsidy is used for budget balance. Allowing

public good preferences to vary with worker ability would alter the equilibrium, since this variation
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would now affect the distribution of movers resulting from a given change in one state’s public good

supply. But we already know from the literature on capital tax competition that the choice of strategy

variables affects the equilibrium tax policy (see Wildasin (1988)).

Building on our new approach, we can now move on to the debate of which components of a state’s tax

and expenditure policies should serve as strategies in the Nash game between states, and which should

be used to achieve budget balance. An important consideration will be how best to model important

institutional features of the process of tax policy design.

8 APPENDIX

Proof of Proposition 2: We work with the relaxed program by ignoring the monotonicity constraint.

Denoting p the Lagrangian parameter and λ (θ) the co-state variable, the Hamiltonian is:

H (u (θ) , l (θ) ,λ (θ) ,θ, A, p)= (u (θ)+ A) g (θ)+ p [θl(θ)−u (θ)−v(l (θ))− A]η1(θ,∆)+λ (θ)v′ (l (θ))
l(θ)
θ

The maximization conditions are:

p
[
θ−v′(l (θ))

]
η1(θ,∆)=−λ (θ)

(
v′ (l (θ))

1
θ
+v′′ (l (θ))

l(θ)
θ

)

−λ′ (θ)= g (θ)− pη1(θ,∆)+ p [θl(θ)−u (θ)−v(l (θ))− A]
∂η1(θ,∆)

∂∆

The trasversality conditions are given by

λ (0)= 0, lim
θ→∞

λ (θ)= 0

By symmetry of the equilibrium, uo (θ)= u (θ) and Ao = A (and hence ∆= 0), we have

po
[
θ−v′(lo (θ))

]
η1(θ,0)=−λo (θ)

(
v′ (lo (θ))

1
θ
+v′′ (lo (θ))

lo (θ)
θ

)

−λ′
o (θ)= g (θ)− poη1(θ,0)+ po [θlo (θ)−uo (θ)−v(lo (θ))− Ao]

∂η1(θ,0)
∂∆

Or

po
[
θ−v′(lo (θ))

]
f (θ)=−λo (θ)

(
v′ (lo (θ))

1
θ
+v′′ (lo (θ))

lo (θ)
θ

)
(29)

−λ′
o (θ)= g (θ)− po f (θ)+ po [θlo (θ)−uo (θ)−v(lo (θ))− Ao]ε(θ) f (θ) (30)

Integrating (30) from 0 to ∞ and using the transversality conditions, we obtain:

0=
∫ ∞

0
{g (θ)− po f (θ)+ po [θlo (θ)−uo (θ)−v(lo (θ))− Ao]ε(θ) f (θ)}dθ
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Or

po = 1
1−∫ ∞

0 [To (θ)− Ao]ε(θ) f (θ)dθ

Integrating (30) from θ to ∞ and using the transversality conditions, we obtain:

λo (θ)=
∫ ∞

θ
{g (t)− po f (t)+ po [To (t)− Ao]ε(t) f (t)}dt (31)

Plugging (31) into (29), we have

po
[
θ−v′(lo (θ))

]
f (θ)=−

(
v′ (lo (θ))

1
θ
+v′′ (lo (θ))

lo (θ)
θ

)∫ ∞

θ
{g (t)− po f (t)+ po [To (t)− Ao]ε(t) f (t)}dt

Using (1−T ′
o (θlo (θ)))·lo (θ)= v′ (lo (θ)) lo(θ)

θ
and eo (θ)= v′(lo(θ))

v′′(lo(θ))lo(θ) , the above equation can be rewritten

as

po

[
1− v′(lo (θ)

θ
)
]
θ f (θ)=−v′(lo (θ)

θ

(
1+v′′ (lo (θ))

lo (θ)
v′(lo (θ)

)∫ ∞

θ
{g (t)− po f (t)+ po [To (t)− Ao]ε(t) f (t)}dt

Or [
1− v′(lo(θ)

θ
)
]

v′(lo(θ)
θ

θ f (θ)=
(
1+v′′ (lo (θ))

lo (θ)
v′(lo (θ)

)∫ ∞

θ

{
− 1

po
g (t)+ f (t)− [To (t)− Ao]ε(t) f (t)

}
dt

Or

T ′
o(θ)

1−T ′
o(θ)

=
(
1+ 1

eo (θ)

)
1−F (θ)
θ f (θ)

(
(1−F (θ))− 1

po
(1−G (θ))

1−F (θ)
−

∫ ∞
θ (To(t)− Ao)ε(t) f (t)dt

(1−F (θ))

)

Proof of Proposition 3: We work with the relaxed program by ignoring the monotonicity constraint.

The problem is to find a function u on the interval [0,∞) to maximize

J =
∫ ∞

0
(u (θ)+ A (u,u)) g (θ)dθ

Starting with a given admissible vector u, we consider vectors of the form u+h that are admissible.

The necessary condition for the extremum problem is that for all such h, δJ (u;h)= 0, or equivalently,

∫ ∞

0

(
g (θ)+ A′

u (u,u)
)
h (θ)dθ = 0,for all h

We will next find A′
u (u,u).
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Let

N1

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η1

(
θ,u (θ)+ A−u (θ)− A

)
dθ.

Then we have the partial derivatives

N ′
1A

(
u,u, A, A

)
= −

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η1

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ,

N ′
1A

(
u,u, A, A

)
= −

∫ ∞

0
η1

(
θ,u (θ)+ A−u (θ)− A

)
dθ

+
∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η1

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ,

N ′
1u

(
u,u, A, A

)
= [

M
(
θ,u(θ),u′(θ)

)− A
] ∂η1

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

+M′
u(θ)

(
θ,u(θ),u′(θ)

)
η1 (θ,∆)−

dM′
u′(θ)

(
θ,u(θ),u′(θ)

)
η1 (θ,∆)

dθ
, (32)

where N ′
1u

(
u,u, A, A

)
above is the Fréchet derivative (Luenberger, 1969) on [0,∞).

Let

N2

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
]
η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ.

Then we have the partial derivatives

N ′
2A

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ,

N ′
2A

(
u,u, A, A

)
= −

∫ ∞

0
η2

(
θ,u (θ)+ A−u (θ)− A

)
dθ

−
∫ ∞

0

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

dθ, (33)

N ′
2u

(
u,u, A, A

)
=

[
M

(
θ,u(θ),u′(θ)

)− A
] ∂η2

(
θ,u (θ)+ A−u (θ)− A

)
∂∆

,

where N ′
2u

(
u,u, A, A

)
above is the Fréchet derivative (Luenberger, 1969) on [0,∞).

Equations (14) and (15) can be rewritten as
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N1

(
u,u, A, A

)
= R (34)

N2

(
u,u, A, A

)
= R (35)

Differentiating (34) and (35) with respect to u, we have

N ′
1u

(
u,u, A, A

)
+N ′

1A

(
u,u, A, A

)
A′

u (u,u)+N ′
1A

(
u,u, A, A

)
A
′
u (u,u) = 0

N ′
2u

(
u,u, A, A

)
+N ′

2A

(
u,u, A, A

)
A′

u (u,u)+N ′
2A

(
u,u, A, A

)
A
′
u (u,u) = 0

which can be written as

 N ′
1A

(
u,u, A, A

)
N ′

1A

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)  A′
u (u,u)

A
′
u (u,u)

=−
 N ′

1u

(
u,u, A, A

)
N ′

2u

(
u,u, A, A

) 
By Cramer’s rule, we have

A′
u (u,u)=−

 N ′
1u

(
u,u, A, A

)
N ′

1A

(
u,u, A, A

)
N ′

2u

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

) 
 N ′

1A

(
u,u, A, A

)
N ′

1A

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)
N ′

2A

(
u,u, A, A

)  (36)

Since g (θ)+A′
u (u,u) is continuous, it readily follows (see Lemma1, Page 180, Luenberger, 1969) that it

must vanish on [0,∞). Thus we concluded that the extremal u must satisfy the Euler-Lagrange equation

g (θ)+ A′
u (u,u)= 0 (37)

In the equilibrium, equations (14) and (15) can be rewritten as

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η1

(
θ,un (θ)+ An −un (θ)− An

)
dθ = R∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η2

(
θ,un (θ)+ An −un (θ)− An

)
dθ = R

By symmetry of the equilibrium, un (θ)= un (θ), we have

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η1

(
θ, An − An

)
dθ = R
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∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η2

(
θ, An − An

)
dθ = R

Recalling the definition of η1(θ,∆) (7) and η2(θ,∆)= η1(θ,−∆), we get

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η1

(
θ, An − An

)
dθ = R∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
η1

(
θ, An − An

)
dθ = R

Or

2
∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
H

(∣∣∣An − An

∣∣∣ |θ)
dF (θ)= 0

Recalling the definition of H (∆|θ), i.e., dH(∆|θ)
dθ > 0 and H (0|θ)= 0, we obtain

An = An

Evaluating the partial derivatives (32) and (33) at u (θ)= un (θ)= un (θ) and A = An = An, we have

N ′
1A

(
u,u, A, A

)
= −

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ) ,

N ′
1A

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)−1,

N ′
1u

(
u,u, A, A

)
= [

M
(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)

+M′
un(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)−
dM′

u′
n(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)

dθ
,

N ′
2A

(
u,u, A, A

)
= −

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ) ,

N ′
2A

(
u,u, A, A

)
=

∫ ∞

0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)−1,

N ′
2u

(
u,u, A, A

)
= −[

M
(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ) ,

Then evaluating A′
u (u,u) (36) on equilibrium,
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A′
u (u,u) = −


[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)

+M′
un(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)−
dM′

u′n (θ)(θ,un(θ),u′
n(θ)) f (θ)

dθ

−X

−[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ) X −1


 X −1 −X

−X X −1



=

 [X −1]
[

M′
un(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)−
dM′

u′n (θ)(θ,un(θ),u′
n(θ)) f (θ)

dθ

]
−[

M
(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)


2X −1

where X = ∫ ∞
0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)

Now the Euler-Lagrange equation becomes

g (θ)+


[∫ ∞

0
[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)−1

][
M′

un(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)−
dM′

u′n (θ)(θ,un(θ),u′
n(θ)) f (θ)

dθ

]
−[

M
(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)


2

∫ ∞
0

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)−1

= 0

Define pn = 1

1−
∫∞
0 [M(t,un (t),u′n (t))−An]ε(t) f (t)dt

1−∫∞
0 [M(t,un (t),u′n (t))−An]ε(t) f (t)dt

. We have

g (θ)
pn

+M′
un(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)−
dM′

u′
n(θ)

(
θ,un(θ),u′

n(θ)
)

f (θ)

dθ
=

[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)∫ ∞

0
[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ)dF (θ)−1

which further implies

d{Mu′
(
θ,un(θ),u

′
n(θ)

)
f (θ)}

dθ
= 1

pn
g (θ)+Mu

(
θ,un(θ),u

′
n(θ)

)
f (θ)

−
[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)∫ ∞

0
[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)dθ−1

;

−Mu′
(
θ,un(θ),u

′
n(θ)

)
f (θ) =

∫ ∞

θ
{

1
pn

g (t)+Mu
(
t,un(t),u′

n(t)
)

f (t)}dt

−
∫ ∞

θ

[
M

(
t,un(t),u′

n(t)
)− An

]
ε(t) f (t)∫ ∞

0
[
M

(
θ,un(θ),u′

n(θ)
)− An

]
ε(θ) f (θ)dθ−1

dt;

Mu′
(
θ,un(θ),u

′
n(θ)

)
= −

1
pn

(1−G (θ))− (1−F (θ))−
∫ ∞
θ [M(t,un(t),u′

n(t))−An]ε(t) f (t)dt∫ ∞
0 [M(θ,un(θ),u′

n(θ))−An]ε(θ) f (θ)dθ−1

f (θ)
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=
(1−F (θ))− 1

pn
(1−G (θ))+

∫ ∞
θ [M(t,un(t),u′

n(t))−An]ε(t) f (t)dt∫ ∞
0 [M(θ,un(θ),u′

n(θ))−An]ε(θ) f (θ)dθ−1

f (θ)
. (38)

Since {θξ
(
u′

n(θ),θ
)−un(θ)−v(ξ

(
u′

n(θ),θ
)
)}= M

(
θ,un(θ),u

′
n(θ)

)
, we have Mu

(
θ,un(θ),u

′
n(θ)

)
=−1, and

Mu′
(
θ,un(θ),u

′
n(θ)

)
= {θ−v′(ξ[u′

n(θ),θ])}ξu′
n(θ)[u′

n(θ),θ]

= {θ−v′(ξ[u′
n(θ),θ])}

θ

v′{ξ[u′
n(θ),θ]}+v′′{ξ[u′

n(θ),θ]}ξ[u′
n(θ),θ]

= {
θ

v′{ξ[u′
n(θ),θ]}

−1}
θ

1+ v′′{ξ[u′
n(θ),θ]}ξ[u′

n(θ),θ]
v′{ξ[u′

n(θ),θ]}

.

Define

Tn(θ)= M
(
θ,un(θ),u

′
n(θ)

)
.

With this notation, we have ln(θ)= ξ[u′
n(θ)] and v′ (ln(θ)) ln(θ)

θ
= (1−T ′ (θln(θ)))·ln(θ). Let en (θ)= v′[ln(θ)]

v′′[ln(θ)]ln(θ) .

Then

Mx′
(
θ, xn(θ), x′n(θ)

)= T ′ (θln(θ))
1−T ′ (θln(θ))

θ

1+ e−1
n (θ)

.

Equation (38) implies:

T ′ (θln(θ))
1−T ′ (θln(θ))

θ

1+ e−1
n (θ)

=
(1−F (θ))− 1

pn
(1−G (θ))+

∫ ∞
θ [Tn(t)−An]ε(t) f (t)dt∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt−1

f (θ)
.

So

T ′
n(θ)

1−T ′
n(θ)

=
(
1+ 1

en (θ)

)
1−F (θ)
θ f (θ)

·
(

(1−F (θ))− 1
pn

(1−G (θ))

1−F (θ)
−

∫ ∞
θ [Tn(t)− An]ε(t) f (t)dt(

1−∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt

)
(1−F (θ))

)
,

where

T ′ (θln(θ)) = T ′
n(θ), en (θ)= v′[ln(θ)]

v′′[ln(θ)]ln(θ)
;

pn = 1

1−
∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt
1−∫ ∞

0 [Tn(t)−An]ε(t) f (t)dt

;

An =
∫ ∞

0
Tn(t) f (t)dt−R.

Proof of Lemma 2: Define

Ωi (θ)=αi
1− 1

pi

g(θ)
f (θ)

ε(θ)
,
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where αi and pi are given previously. We can rewrite (24) into

T ′
i(θ)

1−T ′
i(θ)

=
(
1+ 1

e i (θ)

)
1

αiθ f (θ)

∫ ∞

θ
[Ωi (t)− (Ti (t)− A i)]ε(t) f (t)dt.

By adapting the proof of Proposition 3 in Lehmann et al.,8 we can show that if dΩi (θ) /dθ ≥ 0 then

T ′
i(θ)> 0.

Since d
(

g(θ)
f (θ)

)
/dθ ≤ 0 and pi > 0, we have d log

[
1− 1

pi

g(θ)
f (θ)

]
/dθ ≥ 0. Since d logε(θ)/dθ ≤ Mi (θ), by the

definition of Mi (θ) we have Mi (θ) ≥ 0 and d log
[

1− 1
pi

g(θ)
f (θ)

ε(θ)

]
/dθ ≥ 0. Hence dΩi (θ) /dθ ≥ 0 (as αi > 0). Us-

ing the result mentioned above, we have T ′
i(θ) > 0, and hence d (Ti (θ)− A i) /dθ > 0. Since d logε(θ)/dθ ≥

mi (θ), by the definition of mi (θ) we have mi (θ)≤ 0, d log[(Ti (θ)− A i)ε(θ)] /dθ > 0, and
∫ ∞

0 (Ti (θ)− A i)ε(θ)dF (θ)>
0. Given that [(Ti (θ)− A i)ε(θ)] is strictly increasing, it is easily verified that Property (25) holds.

Proof of Lemma 3: Let βi = lim
θ→∞

(
1+ 1

e i(θ)

)
1−F(θ)
θ f (θ) . Then

lim
θ→∞

T ′
i(θ)

1−T ′
i(θ)

= lim
θ→∞

(
1+ 1

e i (θ)

)
1−F (θ)
θ f (θ)

·
G (θ)−F (θ)

1−F(θ)
+

(
1− 1

pi

)1−G (θ)
1−F(θ)

−
∫ ∞
θ [Ti(t)− A i]ε(t)

f (t)
1−F(θ) dt∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt


= βi

1+
(
1− 1

pi

)
lim
θ→∞

1−G (θ)
1−F (θ)

−
∫ ∞
θ [Ti(t)− A i]ε(t)

f (t)
1−F(θ) dt∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt


= βi

1−
(
1− 1

pi

)
lim
θ→∞

∫ ∞
θ [Ti(t)− A i]ε(t)

f (t)
1−F(θ) dt∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt


= βi

[
1−

1− 1
pi∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt
lim
θ→∞

∫ ∞

θ
[Ti(t)− A i]ε(t)

f (t)
1−F (θ)

dt

]

= βi

[
1−

1− 1
pi∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt
lim
θ→∞

(Ti (θ)− A i)ε(θ)

]
(39)

Given the expressions of po and pn, and the Properties (21) and (25), it is easily verified that

1− 1
pi∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt
> 0

If T ′
i(θ) stays bounded above some positive number as income goes to infinity with θ, then tax payments

for individuals with ability θ, Ti (θ), will go to infinity. But then the RHS of (39) must be negative, a con-

tradiction. This shows that limθ→∞ T ′
i(θ) ≤ 0. Symmetric reasoning rules out the case limθ→∞ T ′

i(θ) < 0.

8The proof is tedious, which is available upon request.
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We thus have limθ→∞ T ′
i(θ)= 0.

Proof of Lemma 4: Using the finding that the asymptotic marginal tax rate is zero, (39) and the formu-

las for po and pn give

lim
θ→∞ [(To (θ)− Ao)ε(θ)]= 1

and

lim
θ→∞ [Tn(θ)− An]ε(θ)= 1−

∫ ∞

0
[Tn(t)− An]ε(t) f (t)dt

Thus,

lim
θ→∞ [(Tn(θ)− An)ε(θ)]< lim

θ→∞ [(To (θ)− Ao)ε(θ)] .

Under the assumption that ε(θ) converges to a positive number as θ goes to infinity, this inequality gives

lim
θ→∞ [Tn (θ)− An]< lim

θ→∞ [To (θ)− Ao] , (40)

which can be used to conclude that ATn (θ∗)< ATo (θ∗) for sufficiently high θ∗.

Proof of Proposition 5: First, by Lemma 4, there exists θ∗ sufficiently large so that ATn (θ∗)< ATo (θ∗).

We proceed in the following steps:

Step 1: By (40), there exists θ′ > θ∗ s.t. Tn(θ)− An < To (θ)− Ao for all θ ≥ θ′.

Step 2: An < Ao, i.e., the equilibrium poll subsidy is lower under the new approach.

From the tax rule (22), we have

T ′
i(θ)

1−T ′
i(θ)

=
(
1+ 1

e i (θ)

)(
G (θ)−F (θ)

θ f (θ)
+ 1
αi

(1−G (θ))
∫ ∞

0 [Ti(t)− A i]ε(t) f (t)dt−∫ ∞
θ [Ti(t)− A i]ε(t) f (t)dt

θ f (θ)

)
,

where αo = 1 and αn = 1−∫ ∞
0 [Tn(t)− An]ε(t) f (t)dt < 1.

Define function Φ (z)≡ z
1−z over (0,1), and Ψi:

Ψi (θ,T(θ))≡
(
1+ 1

e (θ)

)(
G (θ)−F (θ)

θ f (θ)
+ 1
αi

(1−G (θ))
∫ ∞

0 [T(t)− A]ε(t) f (t)dt−∫ ∞
θ [T(t)− A]ε(t) f (t)dt

θ f (θ)

)

over [0,θ∗]×
[
0,T

]
, where T is an upper bound of To(θ∗) and Tn(θ∗), A = ∫ ∞

0 T(t) f (t)dt, e (θ) =
v′(l(θ))

v′′(l(θ))l(θ) , and i = o,n.

Since Φ is monotone increasing, Φ−1 over (0,1/2) is also monotone increasing.
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Since G (θ)Ê F(θ), Property (25) implies

(1−G (θ))
∫ ∞

0
[Ti(t)− A i]ε(t) f (t)dt−

∫ ∞

θ
[Ti(t)− A i]ε(t) f (t)dt < 0 for θ > 0.

We thus have Ψn (θ,T(θ))<Ψo (θ,T(θ)) for θ ∈ (0,θ∗] (since αn <αo).

Define Γi (θ,T(θ))≡Φ−1 (Ψi (θ,T(θ))) over [0,θ∗]×
[
0,T

]
. Then T ′

n(θ)=Γn (θ,Tn(θ)), T ′
o(θ)=Γo (θ,To(θ)).

Since Φ−1 is monotone increasing, we have

Γn (θ,T(θ))<Γo (θ,T(θ)) for θ ∈ (
0,θ∗

]
.

It can be verified that Γi is continuously differentiable in the bounded closed convex domain D =
[0,θ∗]×

[
0,T

]
. By Lemma 1 (Birkhoff and Rota,1989, pp. 26), Γi satisfies the Lipschitz condition

(with L = supD |∂Γi/∂T(θ)|).
We also have Tn(0) = To(0) = 0. We can thus invoke a variant of Theorem 8 in Birkhoff and Rota

(page 30, the comparison theorem) to conclude that Tn(θ)< To(θ) for θ ∈ (0,θ∗], which also implies

∫ θ∗

0
Tn(θ)dF (θ)<

∫ θ∗

0
To(θ)dF (θ) . (41)

Given ATn (θ∗)< ATo (θ∗), i.e.,∫ ∞

θ∗
[Tn (t)− An]

f (t)
1−F (θ∗)

dt <
∫ ∞

θ∗
[To (t)− Ao]

f (t)
1−F (θ∗)

dt,

which implies

F
(
θ∗

)∫ ∞

θ∗
Tn(θ)dF (θ)−(

1−F
(
θ∗

))∫ θ∗

0
Tn(θ)dF (θ)< F

(
θ∗

)∫ ∞

θ∗
To(θ)dF (θ)−(

1−F
(
θ∗

))∫ θ∗

0
To(θ)dF (θ)

(42)

(41) and (42) imply ∫ ∞

0
Tn(θ)dF (θ)<

∫ ∞

0
To(θ)dF (θ) ,

which in turn implies An < A0.

Step 3: ∃θ̂ ∈ (
0,θ′

)
s.t. Tn(θ̂)− An = To(θ̂)− Ao.

Since Tn (0) = To (0) = 0, we also have Tn (0)− An > To (0)− Ao by Step 2. Combining this with Step

1, there exists θ̂ ∈ (
0,θ′

)
s.t. Tn(θ̂)− An = To(θ̂)− Ao (by the continuity of function Ti (θ)− A i).

Step 4: ∀θ′′ > θ′, Tn (θ)− An > To (θ)− Ao if θ ∈ [0, θ̂) and Tn (θ)− An < To (θ)− Ao if θ ∈ (θ̂,θ′′].

Let wi (θ)≡ Ti (θ)− A i, i.e., wi (θ) is the net tax from type-θ agent, i = o,n.
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The tax rule (22) can be rewritten as

w′
i(θ)

1−w′
i(θ)

=
(
1+ 1

e i (θ)

)(
G (θ)−F (θ)

θ f (θ)
+ 1
αi

(1−G (θ))
∫ ∞

0 wi (t)ε(t) f (t)dt−∫ ∞
θ wi (t)ε(t) f (t)dt

θ f (θ)

)
,

where αo = 1, αn = 1−∫ ∞
0 wn (t)ε(t) f (t)dt < 1.

Define Υi:

Υi (θ,w(θ))≡
(
1+ 1

e (θ)

)(
G (θ)−F (θ)

θ f (θ)
+ 1
αi

(1−G (θ))
∫ ∞

0 w (t)ε(t) f (t)dt−∫ ∞
θ w (t)ε(t) f (t)dt

θ f (θ)

)
,

over
[
0,θ′′

]×[
w,w

]
where w is a lower bound of wo(0) and wn(0) and w is an upper bound of wo(θ′′)

and wn(θ′′), and e (θ)= v′(l(θ))
v′′(l(θ))l(θ) .

Also define Λi (θ,w(θ))≡Φ−1 (Υi (θ,w(θ))) over
[
0,θ′′

]× [
w,w

]
. Then w′

i(θ)=Λi (θ,wi(θ)), i = o,n.

Following similar arguments in Step 2, we haveΛn (θ,T(θ))<Λo (θ,T(θ)) for θ ∈ (0,θ′′]. It can be ver-

ified thatΛi is continuously differentiable in the bounded closed convex domain D′ = [
0,θ′′

]×[
w,w

]
.

Invoking Lemma 1 (Birkhoff and Rota,1989, pp. 26) again, Λi satisfies the Lipschitz condition

(with L = supD′ |∂Λi/∂w(θ)|). From Step 3, we have wn(θ̂)= wo(θ̂)= 0. By a variant of Theorem 8 in

Birkhoff and Rota (page 30) again, we can conclude that wn (θ) > wo (θ) when θ ∈ [0, θ̂) and wn (θ) <
wo (θ) when θ ∈ (θ̂,θ′′]; Since θ′′ is arbitrarily given and θ′′ > θ′, we have Tn (θ)− An > To (θ)− Ao

when θ ∈ [0, θ̂) and Tn (θ)− An < To (θ)− Ao when θ ∈ (θ̂,+∞).
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