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Abstract

We study how resale affects auctions with costly entry in a model where bidders possess two-

dimensional private information signals: entry costs and valuations. We establish the existence

of symmetric entry equilibrium and identify sufficient conditions under which the equilibrium is

unique. Our analysis suggests that the opportunity of resale induces motivation for both spec-

ulative entry and bargain hunting abstentions. By following a distribution family allowing for

any degree of correlation between entry costs and valuations, we compare the equilibrium with

resale to the equilibrium without resale. Our results suggest that while efficiency is always higher

when resale is allowed, the implications for entry probability and expected revenue are ambiguous,

which, in particular, depends on the reseller’s bargaining power in the resale stage.

1 Introduction

Starting with the seminal work of Vickrey (1961), the auction literature has mostly adopted the

paradigm of a fixed number of bidders. This simplifying assumption allows for enormous progress in

the characterization of optimal auctions and analysis on revenue equivalence and revenue rankings of

different auction formats (see, for example, Riley and Samuelson (1981), Myerson (1981), Milgrom
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and Weber (1982)). However, in many auctions the number of rivals is not known when bids are

placed.1 This observation motivated several papers (e.g. McAfee and McMillan (1987), Mathews

(1987), and Harstad, Kagel, and Levin (1990 )) to treat the number of rival bidders as coming

from exogenously determined distributions. In models with such an extension, bidders may have

preferences over different auction formats, which in turn has important impact on optimal auction

designs. In addition, auctioneers may have one more design instrument regarding whether to reveal

or to conceal the number of bidders.2 However, this approach with a stochastic number of bidders still

ignores an important issue. In many auctions the cost of bid preparation or information acquisition

is far from trivial. We cannot simply rank auctions by assuming a fixed or stochastic number of

bidders without accounting for the fact that different auctions are likely to induce different entry

incentives. Endogenous entry must be taken into account in order to compare expected revenue or

to design optimal auctions in those situations.

These considerations have motivated a growing literature on auctions with costly entry.3 Independent-

private-value (IPV) auctions with costly entry often result in inefficient allocation, since the auction

is typically conducted among the actual bidders, which is a subset of all potential bidders. If the bid-

der with the highest value is excluded from the auction, the auction outcome is necessarily inefficient

ex post.

This sort of inefficiency may create a motive for post-auction resale and such resale opportunity

affects significantly, as we shall show, bidders’ bidding behavior and entry strategies. In this paper,

we study the effect of allowing resale opportunity in an auction model where each potential bidder

possesses two-dimensional private information signals: entry cost (c) and valuation (v). When the

opportunity of resale is absent, this framework is first analyzed by Green and Laffont (1984), who

demonstrate that under a Vickrey auction the entry equilibrium is characterized by a unique entry

cutoff curve (or entry indifference curve) C(·) such that a bidder with type (c, v) enters the auction

1This is the case, for example, in most of the sealed-bid procurement auctions.

2See Harstad et al. for how to implement such a scheme even when the seller does not know ex ante the actual

number of bidders. Also see Levin and Ozdenren (2004) who revisit these questions under ambiguity.

3See, among others, French and McCormick (1984), Green and Laffont (1984), Samuelson (1985), McAfee and

McMillan (1987), Tan (1992), Engelbrecht-Wiggans (1993), Levin and Smith (1994), Stegeman (1996), Tan and Yi-

lankaya (2006), Gal et al. (2007), Ye (2004, 2007), Lu (2006, 2007), and Moreno and Wooders (2008). Also see

Bergemann and Välimäki (2006) for an extensive survey of the literature.
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if and only if c ≤ C(v). In such an equilibrium, it is possible that a bidder with a high value chooses

not to enter the auction, simply because her entry cost is above her entry cutoff. Following Green

and Laffont’s analysis, Lu (2006) characterizes the symmetric entry equilibrium cutoff curves imple-

mented by the classes of ex post efficient or ex post revenue-maximizing mechanisms. In a general

procurement setting allowing for correlations between participation costs and production costs, Gal,

Landsberger, and Nemirovski (2007) establish the existence and uniqueness of the equilibrium entry

cutoff curve.4

Introducing post-auction resale into models with costly entry enriches, yet complicates the model

so that even the existence and uniqueness of entry equilibrium are no longer obvious. The additional

difficulty emerges since with resale, the option value for staying out is also positive, and varies with

types. We nevertheless show in this paper that a symmetric entry equilibrium is still characterized by

an entry cutoff curve, and we identify sufficient conditions that assure the uniqueness of equilibrium.

Integrating resale into two-dimensional model of auction with entry is quite challenging and our

analysis is done under two important simplifications. First, we focus on the case with two bidders,

and second, we assume that the resale is conducted under complete information. The restrictions of

these simplifications are discussed in Section 5.

We compare the equilibrium with resale to the equilibrium without resale. Our first finding is

that with resale, the entry cutoff is higher for types with sufficiently low values, and lower for types

with sufficiently high values. This suggests that when resale is allowed, bidders with low values are

more likely to enter, while bidders with high values are less likely to enter. In other words, resale

naturally induces a speculative motivation for entry and bargain hunting motivation for staying out.

Speculators are those with low entry costs and low valuations who would not enter without resale,

but enter when resale opportunity is available. Bargain hunters are those with high entry costs and

high valuations who would refrain from entering when a resale market is available, but enter when

resale is unavailable. Thus, although we may be tempted to think that the additional opportunity

to trade in the resale market provides an additional motive to enter, the opposite incentive to avoid

entry cost by staying out and buying in the resale market may more than offset it.

Working with a specific, yet flexible, distribution family which allows for any degree of correlation

4Moreover, they demonstrate that providing participation reimbursements can partially mitigate the problem with

entry and improve the seller’s expected revenue.
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between c and v, we obtain more precise comparison results. In the benchmark case where c and v

are independently and uniformly distributed, we show that there is a unique turning point v∗ such

that when v < v∗, the entry cutoff curve with resale lies above the entry cutoff curve without resale;

while when v > v∗, the reverse holds. So the entry comparison result is made stronger in this case:

resale induces more entry for a bidder if her value is lower than some threshold, and induces less

entry if her value is higher than that threshold.

Under different parameter values about the correlation between c and v and relative bargaining

power between the reseller (i.e., the auction winner) and buyer, we compare the equilibrium entry

probability, expected revenue, and expected surplus in the resale and no resale cases. In all the

cases we consider, resale leads to higher expected efficiency, which is consistent with our general

notion that allowing resale should help correct the inefficiency induced by costly entry. However, the

effects of resale on expected entry and expected revenue (for the original item owner) are ambiguous

depending on the relative bargaining power between the reseller and buyer in the resale stage.

The literature on auctions with resale is relatively new. Gupta and Lebrun (1999) consider first-

price auctions with resale, where complete information is assumed in the resale stage. Haile (2003)

considers an IPV setup in which bidders only have noisy signals at the auction stage, where the

motive for resale arises when the true value of the auction winner turns out to be low. Zheng (2002)

identifies conditions under which the outcome of optimal auctions can be achieved with resale. Garret

and Tröger (2006) consider a model with a speculator, who can only benefit from participating in

the auction when she can resell the item to the other bidder. Pagnozzi (2007) demonstrates why a

strong bidder may prefer to drop out of an auction before the price reaches her valuation, simply

because she anticipates that she will be in an advantageous position in the post-auction resale stage.

Hafalir and Krishna (2008) analyze auctions with resale in an asymmetric IPV auction environment

with two bidders and show that the expected revenue is higher under a first-price auction than it

is in a second-price auction. Finally, Garratt, Tröger, and Zheng (2009) show that when resale is

allowed, the English ascending auction is susceptible to tacit collusion. They construct equilibria that

interim Pareto dominate the standard truthful value-bidding equilibrium. Our paper contributes to

the literature by being the first to integrate and analyze both entry and resale in an auction model

with two-dimensional private information.

The paper is organized as follows. Section 2 lays out the model. Section 3 characterizes the
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equilibrium and derives sufficient conditions under which the equilibrium is unique. Section 4 is

devoted to comparisons of the equilibria in the resale and no resale cases. Section 5 concludes.

2 The Model

There is a single, indivisible object for sale to 2 potentially interested buyers (firms) through an

auction. The seller’s valuation is normalized to 0. It is costly for a bidder to participate in the

auction (e.g., it is costly to prepare blueprints, to hire experts for best bidding strategies, or simply

to establish eligibility to bid or to meet some legal requirements, etc.). So unlike most auction models,

in our model each bidder possesses two-dimensional private information about her participation cost

(c) and value (v). We assume that c and v follow a joint distribution H(c, v) on [0, 1]× [0, 1], with a

continuously differentiable density function h(c, v). We assume that a second-price sealed-bid auction

is conducted, and bidders’ evaluations are private. For simplicity of analysis, we assume that the

seller does not set a reserve price other than his own reservation value 0. After the auction, the

winner can conduct a post-auction resale.5 For ease of analysis, we assume that resale occurs under

complete information and the outcome of bargaining between the reseller (i.e., the auction winner)

and buyer is given by the Nash bargaining solution.6 That is, whenever there is a potential gain from

resale, the reseller gets λ portion and the buyer gets 1 − λ portion of the surplus, where λ ∈ [0, 1].

The parameter λ thus captures the reseller’s relative bargaining power in the resale stage. When

λ = 1/2, i.e., when the reseller and buyer have identical bargaining power, the outcome corresponds

to the symmetric Nash bargaining solution.

We assume that the seller makes the selling mechanism publicly known before participation (or

entry) occurs. After learning the realizations of their private entry costs and values, the potential

bidders make entry decisions simultaneously and independently. After entry, the bidders bid for the

item. We will consider the two scenarios when resale is allowed and not allowed.

5There is no obvious reason to believe that the heterogenous entry costs that we envision also apply to the resale.

We thus assume that the entry costs for the resale market are the same. We further assume that this cost is small, and

is hence normalized to be zero.

6Gupta and Lebrun (1999) and Pagnozzi (2007) also assume complete information in the resale stage.
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3 Equilibrium Characterizations

In this section we characterize equilibria in the no-resale benchmark case and in the case when resale

is allowed. We will focus on the symmetric entry equilibrium characterized by a twice continuously

differentiable entry cutoff curve or entry indifference curve, C̃(·) in the no resale case and C(·) in the

case with resale, so that a bidder with a type (c, v) enters the auction if and only if c ≤ C̃(v) in the

no resale benchmark case and c ≤ C(v) in the case with resale.

3.1 Entry without Resale

Since bidders are ex ante symmetric, without loss of generality we can focus on bidder 1’s entry

strategy. To show that C̃(·) : [0, 1] −→ [0, 1] characterizes a symmetric entry equilibrium, we need

to verify that there is no incentive for bidder 1 to deviate from the prescribed entry strategy given

that bidder 2 follows the same strategy.

When bidder 2 follows the entry cutoff curve C̃(·), the probability that she enters the auction is

given by:

q̃ =

Z 1

0

Z C̃(ξ)

0
dH(η, ξ).

From bidder 1’s perspective, F̃in(x) =
hR x
0

R C̃(ξ)
0 dH(η, ξ)

i
/q̃ is the probability that bidder 2 has a

value less than x conditional on entry, and efin(x) = hR C̃(x)0 h(η, x)dη
i
/q̃ is the associated density of

a value equal to x.

Similarly, F̃out(x) =
hR x
0

R 1
C̃(ξ) dH(η, ξ)

i
/(1− q̃) is the probability that bidder 2 has a value less

than x, conditional on staying out, and efout(x) = hR 1C̃(x) h(η, x)dηi /(1− q̃) is the associated density

of a value x.

We assume that each bidder plays the (weakly) dominant strategy to bid her value after entry.7

If bidder 1 with a value v enters, her payoff (from the auction alone) depends on whether bidder 2

enters. If bidder 2 stays out (with probability 1− q̃), her payoff is v (since we assume that the reserve

price is 0); if bidder 2 enters (with probability q̃), her expected payoff is given by
R v
0 (v− ξ)dF̃in(ξ) =R v

0 F̃in(ξ)dξ. Hence bidder 1’s expected payoff from entering the auction, given that bidder 2 follows

entry equilibrium C̃(·), is given by:

7Note that participation costs are sunk costs, which should not affect the bidding strategies.
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EΠ(v) = q̃

Z v

0
F̃in(ξ)dξ + (1− q̃)v.

It can be easily verified that EΠ(v) is continuous, differentiable, and strictly increasing in v. In

particular, EΠ(0) = 0 and EΠ(1) ≤ 1.

For C̃(·) to constitute a symmetric entry cutoff curve, we must have the following indifference

condition:

C̃(v) = q̃

Z v

0
F̃in(ξ)dξ + (1− q̃)v (1)

That is, if bidder 1’s cost lies exactly on the entry cutoff curve (i.e., c = C̃(v)), she should be

indifferent between entering the auction and staying out.

Note that EΠ(v) ≥ c if and only if c ≤ C̃(v). Thus, given that bidder 2 follows C̃(·), it is also

bidder 1’s best response to follow C̃(·). This implies that the solution of C̃(·) to (1) indeed constitutes

a symmetric entry equilibrium.

Differentiating (1), we have:

C̃ 0(v) = q̃F̃in(v) + (1− q̃) (2)

It can be easily verified that C̃(0) = 0, and from (2) that C̃ 0(1) = 1. Adapting the proof in Gal

et al. (2007), we can establish the following proposition.8

Proposition 1 There is a unique solution, C̃(·), to the following differential equation system, which

characterizes the entry equilibrium when resale is absent:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̃ 00(v) = q̃f̃in(v) =

R C̃(v)
0 h(η, v)dη

C̃(0) = 0

C̃ 0(1) = 1

The general case of the above differential equation system cannot be solved explicitly. One

exception is when both c and v follow a uniform distribution (the solution is given in Section 4).

8The assumption that h(η, v) is continuously differentiable is needed in the proof.
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3.2 Entry with Resale

We now augment the model analyzed in the previous section by allowing a resale stage in which the

auction winner may resell the item. Similarly to the benchmark case without resale, to demonstrate

that C(·) : [0, 1] −→ [0, 1] characterizes a symmetric entry equilibrium, we need to verify that there

is no incentive for bidder 1 to deviate from this prescribed entry strategy given that bidder 2 follows

the same strategy.

When bidder 2 follows the entry cutoff curve C(·), the (ex ante) probability that she enters the

auction is given by:

q =

Z 1

0

Z C(ξ)

0
dH(η, ξ). (3)

In the following analysis, we assume that the bargaining power parameter in the resale stage, λ,

is fixed; the reseller and buyer split the surplus (if any) so that the reseller obtains λ portion of the

surplus and the buyer obtains (1− λ) portion of the surplus.

Since we only consider two potential bidders, bidding one’s own value remains to be an equilib-

rium.9 Suppose Fin(·), fin(·), Fout(·),and fout(·) are all defined analogously as in the previous section.

Suppose the value bidder 1 possesses is v. When she enters the auction, the expected payoff (without

considering entry cost) is now given by:

q

Z v

0
Fin(t)dt+ (1− q)v + λ

Z 1

v
(ξ − v)fout(ξ)dξ.

The first two terms are the same as in the case without resale. But the additional term reflects the

potential gain from resale, which occurs when bidder 2, with a value higher than v, does not enter.

If bidder 1 decides not to enter the auction, she still has a chance to obtain the item through

resale. This happens when bidder 2 enters with a value lower than v. In this case, the expected gain

from resale is given by

9This is no longer the case when we consider more than two bidders. When the number of bidders n > 2, the

probability of resale is strictly greater than zero even when two or more bidders enter the auction. But then, bidding

one’s own value no longer constitutes an equilibrium, as bidders should take into account the continuation values

induced by the likely post-auction sale. The major cost of restricting our analysis to a two-bidder case is the lack of

this effect of resale on bidding strategies. We will come back to this in Section 5.
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q

Z v

0
(1− λ)(v − ξ)fin(ξ)dξ.

Let EΠ(v) denote the expected net gain from entry over not entering (net of entry cost). Then we

have:

EΠ(v) = q

Z v

0
Fin(t)dt+ (1− q)

∙Z v

0
vfout(ξ)dξ +

Z 1

v
[λξ + (1− λ)v]fout(ξ)dξ

¸
−q
Z v

0
(1− λ)(v − ξ)fin(ξ)dξ.

It can be verified that EΠ(v) is continuous, differentiable, and strictly increasing in v. So the

higher the value, the higher the expected gain from entry compared to non-entry.

Following the arguments paralleling those in the previous section, we can conclude that any

solution C(·) to the following indifference condition, should it exist, constitutes a symmetric entry

equilibrium:

C(v) = q

Z v

0
Fin(t)dt+ (1− q)

∙Z v

0
vfout(ξ)dξ +

Z 1

v
[λξ + (1− λ)v]fout(ξ)dξ

¸
−q
Z v

0
(1− λ)(v − ξ)fin(ξ)dξ. (4)

Differentiating (4), we have:

C 0(v) = λH(1, v) + (1− λ)(1− q). (5)

Let c0 denote the initial value C(0). Integrating (5) from 0 to v, we have:

C(v) = c0 + (1− λ)(1− q)v + λ

Z v

0
H(1, t)dt. (6)

Substituting v = 0 into (4)), we have:

c0 = λ

Z 1

0

Z 1

C(ξ)
ξh(η, ξ)dηdξ. (7)

The initial value of the entry cutoff curve, c0, is the equilibrium expected payoff conditional on

entry for a bidder with v = 0; such a bidder will earn zero payoff conditional on staying out, and
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when she enters, she can only win if the other bidder stays out, in which case she obtains λ portion

of the resale surplus.

The existence of a symmetric entry equilibrium boils down to the existence of a solution to the

system of equations (3), (6), and (7). In what follows we will show that such a solution exists and

under certain conditions the solution (and hence the equilibrium) is also unique.

Plugging (6) into (3) we can obtain an equation involving c0 and q. Define

γ(q, c0) =

Z 1

0

Z C(ξ)

0
dH(η, ξ)− q,

where C(ξ) is given by (6). Clearly, γ(q, c0) is continuously differentiable, and γ(0, c0) > 0, γ(1, c0) <

0. Therefore, for any c0, there is at least one q0 such that γ(q0, c0) = 0.We will show that q0 is uniquely

determined and there is a continuously differentiable function g(·) such that q0 = g(c0). Based on

this, we will argue that a symmetric equilibrium must exist. Moreover, the search for sufficient

conditions under which the symmetric entry equilibrium is unique can be facilitated by defining the

following function:

Ω(c0, q) = 1 +

Z 1

0
ξh (φ(c0, q, ξ), ξ) dξ + λ(1− λ)

∙Z 1

0
ξh (φ(c0, q, ξ), ξ) dξ

¸2
−λ(1− λ)

Z 1

0
ξ2h (φ(c0, q, ξ), ξ) dξ

Z 1

0
h (φ(c0, q, ξ), ξ) dξ, (8)

where φ(c0, q, ξ) = c0 + (1− λ)(1− q)v + λ
R v
0 H(1, t)dt.

10

Proposition 2 When resale is allowed, the system of equations (3), (6), and (7) admits at least

one solution of C(·); any solution constitutes a symmetric entry equilibrium with resale. Moreover,

the solution (and hence the symmetric entry equilibrium) is unique if for all (c0, q) ∈ [0, λ] × [0, 1],

Ω(c0, q) 6= 0.

Proof. See the appendix.

Since Ω(c0, q) is continuous in (c0, q), the sufficient condition listed in Proposition 2 is equivalent

to the requirement that Ω(c0, q) does not change sign over [0, λ]× [0, 1].

10By Hölder’s inequality,
hR 1
0
ξh(φ, ξ)dξ

i2
≤
R 1
0
ξ2h(φ, ξ)dξ

R 1
0
h(φ, ξ)dξ (which never binds in this model). Thus

Ω(c0, q) ≤ 1 +
R 1
0
ξh(φ(c0, q, ξ), ξ)dξ.
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Note that when either the reseller or the buyer has the full bargaining power (λ = 1 or λ = 0), it

is easily seen that Ω(c0, q) > 0 for all (c0, q) ∈ [0, λ]×[0, 1] and hence the symmetric entry equilibrium

is unique (given any joint distribution H). By continuity, the uniqueness is also guaranteed when λ

is sufficiently close to 1 or 0.

The condition identified by the above proposition is not the only sufficient condition for the

uniqueness of equilibrium. In fact we can make the sufficient condition somewhat stronger, so that

it will be easier to verify. One such stronger condition is developed below.

Note that 1 +
R 1
0 ξhdξ + λ(1− λ)

hR 1
0 ξhdξ

i2
≥
h
2
p
λ(1− λ) + 1

i R 1
0 ξhdξ, and that

R 1
0 ξ

2hdξ <R 1
0 ξhdξ. So when max(c0,q)∈[0,λ]×[0,1]

R 1
0 h(φ(c0, q, ξ), ξ)dξ ≤

2
√
λ(1−λ)+1
λ(1−λ) , where λ ∈ (0, 1), we have

min(c0,q)∈[0,λ]×[0,1]Ω(c0, q) > 0, which guarantees the uniqueness of equilibrium. Note that for any

given ξ, h(η, ξ) is continuous in η over [0, 1]. Hence it achieves its maximum at some point, say,

η = m(ξ) ∈ [0, 1] (there may be multiple maximizers). An alternative (and somewhat stronger)

sufficient condition for the uniqueness of equilibrium is thus given by:

Z 1

0
h(m(ξ), ξ)dξ ≤ 2

p
λ(1− λ) + 1

λ(1− λ)
, (9)

where m(ξ) maximizes h(η, ξ) given ξ.

If there are multiple equilibria, it can be shown that the schedules of every two equilibrium entry

cutoff curves cross exactly once (when plotted in the same graph). More specifically, suppose CI(v)

and CII(v) represent two equilibria. Then there is a unique v0 ∈ (0, 1), such that CI(v) < CII(v)

when v < v0, and CI(v) > CII(v) when v > v0. To show this, without loss of generality we assume

that CI
0 < CII

0 . Then following a result established in the proof of Proposition 2, we have qI < qII .

By (5), this in turn implies C 0I(v) > C 0II(v), which means that although CI(v) starts below CII(v),

it is everywhere steeper than CII(v). By (7), we cannot have CI(v) < CII(v) for all v; otherwise

CI
0 < CII

0 cannot be true. Therefore, it must be the case that the two equilibrium schedules cross

exactly once.

3.3 Resale vs. No Resale: A Comparison

Given any continuous and differentiable joint distribution function, H(c, v), in general there are

no closed-form solutions to the equilibrium entry cutoff curves C(·) and C̃(·); nevertheless we can

establish the following comparison results.
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Proposition 3 For any λ ∈ (0, 1], C(v) > C̃(v) for v sufficiently close to 0 and C(v) < C̃(v) for

v sufficiently close to 1. Therefore, the entry indifference curve C̃(·) crosses the entry indifference

curve C(·) at least once over the range v ∈ (0, 1).

Proof. See the appendix.

In the proof, we show that C(0) > C̃(0) and C(1) < C̃(1) for any λ ∈ (0, 1]. So the proposition

follows from the continuity of the two equilibrium entry cutoff curves. Thus those bidders with

sufficiently low values can be referred to as entry speculators, as they enter the auction only because

the resale opportunity is available. Those with sufficiently large values can be referred to as bargain

hunters, as they stay out only because the resale opportunity is available and they might be able to

strike a deal in the post-auction bargaining.

For λ = 0, it can be verified that C(0) = C̃(0) and C(1) < C̃(1). So the conclusion in Proposition

3 may not follow, which is intuitive: when the reseller does not have any bargaining power, the

incentive for entry speculation is zero.

Note that we can express C̃ 0(v)− C 0(v) as follows:

C̃ 0(v)− C 0(v) = (1− λ)(q − q̃) +

"
λ

Z 1

v

Z 1

C̃(ξ)
+(1− λ)

Z v

0

Z C̃(ξ)

0

#
h(η, ξ)dηdξ. (10)

Thus when λ = 1, C̃ 0(v) > C 0(v) for all v, implying that C̃(·) crosses C(·) exactly once (by

Proposition 3). By continuity, when λ is sufficiently close to 1, i.e., when the reseller has sufficiently

large bargaining power, the types of entry speculators and bargain hunters are nicely separated by a

single value threshold.

When λ ∈ (0, 1), it is worth noting that there is a connection between the probability of entry

and the single crossing of the two entry indifference curves: from equation (10), it can be seen that

as long as q ≥ q̃ (namely, when there is more entry with resale), C̃(·) crosses C(·) exactly once.

4 Examples

To further understand the comparison, we follow a specific distribution family known as the Farlie-

Morgenstern family, which is a special case of the copula:11

11A copula is a joint distribution function of random variables that have uniform marginal distributions.
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H(c, v) = F (c)G(v){1 + α[1− F (c)][1−G(v)]}

It can be easily verified that if F and G are both U [0, 1], then the marginal distributions generated

by the F-M family are uniform distributions over [0, 1]. In that case,

H(c, v) = (1 + α)cv − αc2v − αcv2 + αc2v2,

h(c, v) = (1 + α)− 2αc− 2αv + 4αcv, and (11)

Corr(c, v) =
Cov(c, v)p

V ar(c)V ar(v)
=

α

3
.

Thus, the parameter α captures the correlation between the cost and value.

First of all, we will verify that this family satisfies the sufficient condition (9), hence the symmetric

entry equilibrium in the case with resale is unique.

When λ = 0, 1, any joint distribution induces a unique equilibrium; when λ ∈ (0, 1) and α ≥ 0,

it can be easily verified that m(v) = 0 for v ∈ [0, 12), and m(v) = 1 for v ∈ [12 , 1], thus we haveR 1
0 h(m(v), v)dv = 1 + α

2 . Since min
2
√
λ(1−λ)+1
λ(1−λ) = 8, 1 + α

2 <
2
√
λ(1−λ)+1
λ(1−λ) . Similarly, when α <

0,
R 1
0 h(m(v), v)dv = 1 −

α
2 <

2
√
λ(1−λ)+1
λ(1−λ) . Therefore, the F-M family induces a unique equilibrium

entry cutoff C(·) for any λ ∈ [0, 1].

When α = 0, c and v independently follow uniform distributions. Since it represents perhaps the

simplest benchmark, we examine this case first.

For the no resale scenario, the differential equation system can now be simplified into the following

system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̃ 00(v) = C̃(v)

C̃(0) = 0

C̃ 0(1) = 1

From C̃ 00(v) = C̃(v), we have C̃(v) = Aev +Be−v and C̃ 0(v) = Aev −Be−v.

Making use of the two boundary conditions, we can solve the equilibrium entry cutoff curve:

C̃(v) =
e

e2 + 1
(ev − e−v).

For the resale case, the equilibrium can also be solved explicitly, which is given by:
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C(v) = c0 + (1− λ)(1− q)v +
λv2

2
, where

c0 =
λ(λ2 − 7λ+ 60)
12(λ2 − λ+ 18)

, and q =
λ2 + 2λ+ 12

2(λ2 − λ+ 18)
.

It can be easily verified that both c0 and q increase in λ; namely, c00(λ) > 0, q0(λ) > 0. Thus

in this case, when the reseller’s bargaining power increases, entry becomes more attractive, entry

probability increases, and it is also more likely for the lowest possible bidder (in terms of the value

type) to enter the auction.

It turns out that Proposition 3 can be made more precise for this benchmark case with indepen-

dent and uniform distributions.

Proposition 4 When c and v are independently and uniformly distributed over [0, 1]× [0, 1], for any

λ ∈ (0, 1], there exists a cutoff value v∗(λ) ∈ (0, 1), such that C(v) > C̃(v) when v ∈ (0, v∗(λ)), and

C(v) < C̃(v) when v > v∗(λ).

Proof. See the appendix.

When λ is sufficiently large (λ > λ∗, for some λ∗ ∈ (0, 1)), we can show that q(λ) > eq. By
appealing to (10), Proposition 4 follows immediately. When λ ∈ (0, λ∗], however, the argument

becomes quite tedious and the detailed proof is relegated to the appendix.

The comparison of the symmetric equilibrium entry cutoff curves is plotted below. For the case

with resale, we plot the equilibrium entry cutoff curves for λ = 1
4 ,
1
2 and

3
4 .

From the above figure, the cutoff value v∗ increases in λ. So in this case, as the reseller’s

bargaining power increases, the (value) range over which a bidder enters the auction only because

the opportunity of resale is available (speculative entry) becomes larger.

Now coming back to the case with the general correlation parameter α, we can derive the dif-

ferential equation system characterizing the equilibrium for the case without resale, which is given

by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̃ 00(v) = (1 + α− 2αv)C̃(v) + (2αv − α)C̃2(v)

C̃(0) = 0

C̃ 0(1) = 1

(12)
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Figure 1:

For the case with resale, the equilibrium entry indifference curve can be solved explicitly, which

is given by:

C(v) = c0 + (1− λ)(1− q)v + λ
v2

2
, where (13)

c0 = λ

Z 1

0

Z 1

C(ξ)
ξh(η, ξ)dηdξ, and q =

Z 1

0

Z C(ξ)

0
h(η, ξ)dηdξ

where h is given in equation (11).

Based on the equilibrium entry cutoff curves, we compare the expected efficiency, ES (the ex-

pected total surplus generated from the sale, taking into account the entry costs incurred), and

expected revenue (to the original item owner), ER, under both cases.

For the case with α = 0, if we express the expected revenue and efficiency as functions of λ, they

are given by:
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ERR =
λ6 − 44λ5 + 6043λ4 + 2568λ3 + 121032λ2 + 36288λ+ 580608

30240(λ2 − λ+ 18)2
, and

ESR =
−41λ6 + 124λ5 − 719λ4 + 2148λ3 + 129600λ2 − 42336λ+ 2576448

30240(λ2 − λ+ 18)2
.

It can be verified that ERR is increasing in λ; thus as the reseller’s bargaining power increases,

expected revenue also increases. It can be verified that ESR is concave in λ. Therefore, ESR(λ) ≥

min{ESR(0), ESR(1)}. Based on this, it can be shown that resale is always more efficient than the

no resale benchmark.

When comparing with the no resale benchmark case, it can be verified that expected revenue

generated is lower when λ ≤ λ∗, where λ∗ ≈ 0.5856.

From (12) and (13), we can analogously compute the entry probability, expected revenue, and

expected surplus given different values of α. The following table reports the results given 5 correlation

parameter values (α = 1, 1/2, 0, −1/2, −1), and 5 relative bargaining power parameter values (λ = 1,

3/4, 1/2, 1/4, λ = 0).
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α q̃ q ERNR ERR ESNR ESR

1 0.335 0.4373 0.0538 0.0654 0.1857 0.2433

1
2 0.343 0.4263 0.0603 0.0704 0.2123 0.2574

λ = 1 0 0.352 0.4167 0.0676 0.0762 0.2384 0.2720

−12 0.362 0.4087 0.0757 0.0828 0.2499 0.2871

−1 0.372 0.4024 0.0848 0.0902 0.2879 0.3026

1 0.335 0.4050 0.0538 0.0580 0.1857 0.2454

1
2 0.343 0.3992 0.0603 0.0640 0.2123 0.2588

λ = 3
4 0 0.352 0.3947 0.0676 0.0708 0.2384 0.2729

−12 0.362 0.3917 0.0757 0.0783 0.2499 0.2876

−1 0.372 0.3903 0.0848 0.0867 0.2879 0.3029

1 0.335 0.3721 0.0538 0.0518 0.1857 0.2431

1
2 0.343 0.3722 0.0603 0.0585 0.2123 0.2571

λ = 1
2 0 0.352 0.3732 0.0676 0.0661 0.2384 0.2716

−12 0.362 0.3755 0.0757 0.0744 0.2499 0.2868

−1 0.372 0.3790 0.0848 0.0836 0.2879 0.3025

1 0.335 0.3401 0.0538 0.0470 0.1857 0.2364

1
2 0.343 0.3460 0.0603 0.0542 0.2123 0.2521

λ = 1
4 0 0.352 0.3526 0.0676 0.0623 0.2384 0.2683

−12 0.362 0.3601 0.0757 0.0711 0.2499 0.2848

−1 0.372 0.3685 0.0848 0.0808 0.2879 0.3015

1 0.335 0.3096 0.0538 0.0437 0.1857 0.2251

1
2 0.343 0.3212 0.0603 0.0511 0.2123 0.2441

λ = 0 0 0.352 0.3333 0.0676 0.0593 0.2384 0.2630

−12 0.362 0.3459 0.0757 0.0683 0.2499 0.2816

−1 0.372 0.3589 0.0848 0.0782 0.2879 0.3001

Some relatively clear patterns follow from the table. First, given α, in the case with resale,

expected entry (q) and expected revenue (ERR) both increase in λ, while expected surplus (ESR)

first increases, then decreases in λ when λ becomes sufficiently high. The intuition seems to be clear:

a higher λ means more potential gain for the auction winner, which induces more entry. Higher entry
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leads to higher expected revenue; thus the expected revenue also increases in λ. However, when λ

is sufficiently high, entry becomes excessive compared to the social optimum; thus expected surplus

decreases as λ increases from 3
4 to 1 (for all α). This suggests that the expected efficiency is concave

in λ, as showed for the benchmark case α = 0 above. Note that as λ increases from 3
4 to 1, the

magnitude by which ESR decreases becomes smaller as α decreases. The intuition is that as α

decreases, a bidder with a low value is more likely to incur a high entry cost, thus the excessive entry

disappears gradually.

Given λ, for the no-resale scenario, q̃ decreases in α. This is intuitive as a lower α implies that

given v, the associated entry cost is more likely to be lower, which makes entry more likely. In the

resale scenario, q increases in α when λ is high (34 and 1) and decreases in α when λ is low (0, 14

and 1
2). Intuitively, this has to do with the two effects that a change in α may have on entry. When

α increases, a bidder with a higher value is more likely to incur a higher entry cost thus has more

incentive to stay out, while a bidder with a lower value is more likely to have a lower entry cost thus

has more incentive to enter. The latter effect dominates the former effect when λ is high, exactly

because this is when the incentive for speculative entry is the strongest. When λ is low, the opposite

occurs and hence higher λ leads to lower entry.

When λ is fixed, both expected revenue and expected efficiency are decreasing in α in both the

resale and non-resale cases. In the no-resale case, that α being lower means that an entrant is more

likely to have a lower c and a higher v, which more likely contributes to higher expected surplus

and expected revenue. In the resale case, a lower α corresponds to a lower possibility of speculative

entry and bidders with higher values are more likely to enter the auction, leading to higher expected

surplus and expected revenue.

By comparing the resale and non-resale cases, several observations are also in order. First, for

all the cases reported, efficiency is always higher when resale is allowed. This is consistent with

our initial intuition that allowing resale should help correct inefficiency caused by entry. However,

the comparisons of expected entry and expected revenue depend on the values of the bargaining

parameter λ. With resale, the expected entry is higher when λ is high (12 ,
3
4and 1), ambiguous when

λ = 1
4 , and lower when λ = 0). For the expected revenue, it is higher when λ =

3
4 , 1, and lower when

λ = 0, 14 ,
1
2 .

So while resale always increases efficiency, it reduces expected revenue when λ is not sufficiently
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large (e.g., λ = 0, 14 ,
1
2). This is not surprising in our model with only two bidders: while allowing

resale may potentially increase competition in bidding and push up the revenue, this effect is absent

here as whenever both bidders enter the auction, they know that the auction outcome is efficient

and there will not be a post-auction resale. It is an open question whether our revenue comparison

carries over to the setting with more than two bidders.

5 Concluding Remarks

In this work we explicitly take into account the possibility of post-auction resale in an auction model

with entry where bidders possess two-dimensional private information. We demonstrate that the

symmetric entry equilibrium is characterized by an entry cutoff curve, just as in the case when resale

is absent, and we identify conditions under which such an equilibrium is unique. Our comparison

results suggest that resale makes entry more likely for a bidder with a low value, and less likely for

a bidder with a high value.

By following a specific distribution family which allows for any degree of correlation between

entry costs and values, we can either analytically derive or numerically compute the equilibria in

both situations when resale is allowed and not allowed. Our comparative static results suggest

that allowing resale always increases the expected efficiency, which is consistent with our general

intuition about the role resale can play in auctions with costly entry. So allowing resale is always

beneficial from the social point of view. However, the effects of allowing resale on expected entry

and expected revenue are ambiguous. For example, when the reseller has very low bargaining power,

allowing resale reduces both entry and expected revenue; but when the reseller has sufficiently large

bargaining power, allowing resale increases both entry and expected revenue. This finding suggests

that the effects of allowing resale can be quite subtle on entry and expected revenue, suggesting that

a seller’s incentive to allow resale or not (if he can so choose) is completely nontrivial.

We have focused on second-price auctions in our analysis. But our results should not be altered if

alternative auction formats are considered. This is due to revenue equivalence: as long as the resale

mechanism is fixed, any standard auction (first-price, second-price, or all-pay auction) will induce

exactly the same entry cutoff curve, which will in turn result in the same set of entrants.

One main restriction in our model is that we assume complete information in the resale stage
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(so that we can employ the Nash bargaining solution). Note that this assumption is perhaps less

restrictive than it appears if we take into account the fact that, in our model with entry, the reseller

behaves as if she knows quite a lot about the potential buyer: not only is her value higher than that

of the reseller’s, her value must also lie above the equilibrium entry cutoff curve (so the updated

distribution of the buyer’s value is much sharper in the resale stage). This being said, we assume

complete information in the resale stage mainly for tractability of analysis; otherwise even when the

post-auction resale takes the form of the simple take-it-or-leave it offer, we will encounter enormous

complexity in deriving the differential equation system to characterize the equilibrium (for example,

the boundary condition will be endogenously determined). Also note that given our assumption,

there is no efficiency loss in our resale stage, which may potentially bias our efficiency comparison.12

Despite all the restrictions, we demonstrate that our main results hold for any bargaining parameter

λ ∈ (0, 1]. Thus as long as there is some potential gain from resale to the reseller, our main insights,

though based on the complete information setup in the resale stage, should be fairly robust.

The other restriction in our analysis is that we only consider two bidders. As mentioned in the

text, this simplification abstracts away an important effect of resale on bidding. Thus in a sense

our current framework controls for the effect of resale on bidding and allows us to focus on its effect

on entry only. To understand the compound effect of resale, however, extending our analysis to the

case with more than two bidders is desirable. It turns out that with n > 2, however, it is hard to

characterize equilibrium using an ODE system.13 Despite all the technical difficulties, future research

should extend our current analysis to a more general setting.

12 It is not clear, though, whether our resale mechanism also leads to higher entry efficiency level through the induced

entry cutoff curve.

13More specifically, we can no longer derive the form C0(v) = g(C(0)(v), ..., C(k−1)(v), v) as in the case n = 2 to

characterize entry equilibrium.
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Appendix

Proof of Proposition 2:

Note that by (7), c0 = 0 only when λ = 0, in which case C(v) is linear, and the uniqueness of q0

is easily established. Also by (7), c0 < 1. Therefore, c0 ∈ (0, 1) when λ > 0.

By (3), q ∈ (0, 1) since C(v) 6= 0, 1. Therefore, when λ > 0, (c0, q) ∈ (0, 1)× (0, 1).

Next, from ∂γ(q, c0)/∂q = −(1− λ)
R 1
0 ξh(φ(c0, q, ξ), ξ)dξ− 1 < 0 for any c0, we conclude that q0

is unique for any given c0. Moreover, by the implicit function theorem, in the open set (0, 1)× (0, 1),

there exists a continuously differentiable function g(·) such that q0 = g(c0).

It is easily verified that g(·) is strictly increasing in c0 (the expression of g0(c0) is derived below).

Plug q = g(c0) back into (6), then C(v) can be expressed in terms of c0 and v.We will sometimes

write C(v) as C(v, c0) to emphasize its dependence on c0:

C(v, c0) = c0 + (1− λ)(1− g(c0))v + λ

Z v

0
H(1, t)dt (14)

After plugging (14) into (7), (7) becomes an equation involving c0 only. To demonstrate that the

solution of c0 exists, we define:

S(c0) = λ

Z 1

0

Z 1

C(ξ,c0)
ξh(η, ξ)dηdξ − c0

Note that

λ

Z 1

0

Z 1

C(ξ,c0)
ξh(η, ξ)dηdξ ∈ (0, λ) for λ > 0.

It is clear that for any λ > 0,we have S(0) > 0, and S(1) < 0. Thus there exists at least one

c0 ∈ (0, 1) such that S(c0) = 0 (when λ = 0, c0 = 0 is the solution). Define the set Γ = {c0 ∈ [0, 1] :

S(c0) = 0}, then Γ 6= ∅.

Therefore, the existence of C(v) is guaranteed. Based on the arguments preceding Proposition

2, we conclude that there exists at least one symmetric entry equilibrium when resale is available.

We next identify sufficient conditions under which the equilibrium is unique. Equivalently, we

identify sufficient conditions under which Γ is singleton.

One sufficient condition for Γ to be singleton is that S0(c0) > 0 whenever S(c0) = 0 or S0(c0) < 0
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whenever S(c0) = 0 (by the single crossing lemma)14. Intuitively, if the derivatives evaluated at the

crossing points are positive (or negative), then there is single crossing since S(c0) is continuously

differentiable. We evaluate S0(c0) next.

S0(c0) = −λ
Z 1

0
ξh(C(ξ, c0), ξ)[1− (1− λ)g0(c0)ξ]dξ − 1

= −λ
Z 1

0
ξh(C(ξ, c0), ξ)dξ + λ(1− λ)g0(c0)

Z 1

0
ξ2h(C(ξ, c0), ξ)dξ − 1

where

g0(c0) =

R 1
0 h(C(ξ, c0), ξ)dξ

1 + (1− λ)
R 1
0 ξh(C(ξ, c0), ξ)dξ

.

Therefore,

S0(c0) = − 1

1 + (1− λ)
R 1
0 ξh(C(ξ, c0), ξ)dξ

×⎡⎣ 1 + R 10 ξh(C(ξ, c0), ξ)dξ + λ(1− λ)
hR 1
0 ξh(C(ξ, c0), ξ)dξ

i2
−λ(1− λ)

R 1
0 ξ

2h(C(ξ, c0), ξ)dξ
R 1
0 h(C(ξ, a), ξ)dξ

⎤⎦ .
Clearly, one sufficient condition for the uniqueness of the equilibrium is that the numerator in

the above expression is either strictly positive or strictly negative for any c0 ∈ Γ.15

We can thus state a sufficient condition for the uniqueness of the symmetric equilibrium based

on the function Ω(c0, q) defined by (8) in the text.

By (7), c0 ∈ [0, λ) ⊆ [0, λ], hence (c0, q) ∈ Γ× g(Γ) ⊆ [0, λ] × [0, 1]. The equilibrium is unique if

for all (c0, q) ∈ [0, λ]× [0, 1], Ω(c0, q) 6= 0 (which implies that either Ω(c0, q) > 0 or Ω(c0, q) < 0, by

the continuity of Ω).

Proof of Proposition 3:

14Page 124, Milgrom (2004).

15Alternatively, we can combine (6) and (7) to get c0 = f(q), and obtain C(v, q) by using (6). We can then plug

it into (3) to get q. This alternative approach leads to exactly the same form for the numerator because C(v, c0) =

C(v, f−1(c0)) = C(v, q).
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It is easily verified that for any λ > 0, C(0) > 0 = C̃(0). Hence by the continuity of C̃(·) and

C(·), when λ > 0, C(v) > C̃(v) for v sufficiently close to zero. We next show that C(1) < C̃(1).

Suppose in negation, C(1) ≥ C̃(1).

We will first argue that it cannot be the case that C(v) ≥ C̃(v) for all v ∈ [0, 1]; otherwise we

can argue that if C̃(·) characterizes the entry equilibrium under the regime without resale, then C(·)

cannot characterize the entry equilibrium under the regime with resale. To see that, we can compare

the entry incentive of a bidder with type (C(1), 1) in the game with resale and the entry incentive of

a bidder with type (C̃(1), 1) in the game without resale. If C(·) and C̃(·) characterize entry equilibria

under both regimes, then both types (C(1), 1) and (C̃(1), 1) should be indifferent between entry and

staying out, given that the other bidder follows the proposed equilibria C(·) and C̃(·), respectively.

This means that the expected net gain from entry over staying out for type (C(1), 1), which is

C(1), is not lower than that for type (C̃(1), 1), which is C̃(1). But this is impossible: while both

types (C(1), 1) and (C̃(1), 1) will win for sure upon entry (in their respective games), the expected

payment conditional on winning for type (C(1), 1) must be higher than that for type (C̃(1), 1) (since

C(v) ≥ C̃(v)); on the other hand, the expected gain for type (C(1), 1) from staying out is strictly

positive given that resale occurs with strictly positive probability. Consequently, the expected net

gain from entry (over staying out) for type (C(1), 1) should be strictly lower than C̃(1), the expected

net gain from entry (over staying out) for type (C̃(1), 1), a contradiction.

Therefore ∃v̂ ∈ [0, 1), such that C(v̂) < C̃(v̂). Since by assumption, C(1) ≥ C̃(1), there must exist

at least one crossing between v̂ and 1. Let v0 be the last crossing. This means that C(v0) = C̃(v0)

and C(v) > C̃(v),∀v ∈ (v0, 1].

Note that for any v ∈ [0, 1],

C̃ 0(v)− C 0(v) =

Z v

0

Z C̃(ξ)

0
h(η, ξ)dηdξ +

Z 1

0

Z 1

C̃(ξ)
h(η, ξ)dηdξ − λ

Z v

0

Z 1

0
h(η, ξ)dηdξ

−(1− λ)

Z 1

0

Z 1

C(ξ)
h(η, ξ)dηdξ

=

"
(1− λ)

Z v

0

Z C(ξ)

0
+λ

Z 1

v

Z 1

C̃(ξ)
+(1− λ)

Z 1

v

Z C(ξ)

C̃(ξ)

#
h(η, ξ)dηdξ.

Because the sum of the first two integrals is positive, we have:
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C̃ 0(v)− C 0(v) > (1− λ)

Z 1

v

Z C(ξ)

C̃(ξ)
h(η, ξ)dηdξ. (15)

That C(v) > C̃(v),∀v ∈ (v0, 1] thus implies that C̃ 0(v0)−C 0(v0) > (1−λ)
R 1
v0
R C(ξ)
C̃(ξ)

h(η, ξ)dηdξ > 0,

which is a contradiction because when v0 is the last intersection point and C(v) > C̃(v),∀v ∈ (v0, 1],

we should have C̃ 0(v0) ≤ C 0(v0). The proposition follows from the continuity of the entry cutoff curves.

Proof of Proposition 4:

It can be verified that q0(λ) > 0. Since eq is independent of λ, there exists a cutoff λ∗ ∈ (0, 1] such

that q(λ) ≥ eq if and only if λ ≥ λ∗ (our computation suggests that λ∗ ≈ 0.2409). By the arguments

following equation (10), we conclude that when λ ≥ λ∗, there must be a single crossing between two

entry indifference curves.

It remains to argue that the crossing is unique for λ ∈ (0, λ∗]. Since q(1/4) > eq, λ∗ < 1/4. So

the rest of the proof it suffices to argue that the crossing is unique for λ ∈ (0, 1/4].

Let D(v) = C̃ 0(v)− C 0(v). Then

D0(v) =
e

e2 + 1
(ev − e−v)− λ, (16)

D00(v) =
e

e2 + 1
(ev + e−v) > 0.

Since D0(v) is increasing in v, D0(0) < 0, and D0(1) > 0 when λ ∈ (0, 1/4], there is a unique

v∗ (λ) ∈ (0, 1) such that D0(v∗ (λ)) = 0. Therefore, D(v) is convex, decreasing when v < v∗ (λ) and

increasing when v > v∗ (λ). v∗ (λ) can be solved explicitly from equation (16), and it can be verified

that v∗(λ) is increasing in λ.

Proposition 3 establishes that there should be at least one crossing. If D(v∗(λ)) > 0, then

D(v) > 0 for all v ∈ [0, 1] and hence the crossing is unique. Note that

D(v∗(λ)) =
e

e2 + 1
(ev

∗(λ) + e−v
∗(λ))− λv∗(λ)− (1− λ)(1− q(λ)).

It can be verified that D(v∗(λ)) is strictly increasing in λ for λ ∈ (0, 1/4], and that D(v∗(0)) < 0 and

D(v∗(1/4)) > 0. Thus there is a unique λ∗∗ ∈ (0, 1/4) such that D(v∗(λ∗∗)) = 0 (our computation

indicates that λ∗∗ ≈ 0.027). Therefore, when λ ∈ (λ∗∗, 1/4], the crossing is unique.
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It remains to show that the crossing is unique for λ ∈ (0, λ∗∗].

We now consider λ ∈ (0, λ∗∗]. Since C̃(0) < C(0) and C̃(1) > C(1), at the first crossing point

v = v1, it must be the case that C̃ 0(v1) > C 0(v1), or D(v1) > 0. Clearly, v1 > v∗(λ) leads

to a unique crossing. Moreover, to argue that v1 > v∗(λ), it suffices to show D(0) ≤ 0, where

D(0) = 1− q̃ − (1− λ)(1− q(λ)).

Since q0(λ) > 0, D(0) is increasing in λ. Since D(0) < 0 when λ = 0 and D(0) > 0 when λ = λ∗∗

(when λ = λ∗∗, D(0) > D(v(λ∗∗)) = 0), there is a unique λ∗∗∗ ∈ (0, λ∗∗) such that D(0) = 0 when

λ = λ∗∗∗. Therefore, when λ ∈ (0, λ∗∗∗], D(0) ≤ 0 thus the crossing is unique (our computation

shows that λ∗∗∗ ≈ 0.0253).

Now it remains to show that the crossing is unique when λ ∈ (λ∗∗∗, λ∗∗], where λ∗∗ ≈ 0.027 < 0.1

(since it can be verified that D(v(0.1)) > 0). It thus suffices to show that for λ ∈ (λ∗∗∗, 0.1],

v1(λ) > v∗(λ). The rest of the proof is completed in the following steps:

1. It can be shown that C(v) is increasing in λ (given v) for (λ, v) ∈ (0, 0.1] × [0, ṽ] for some

ṽ ∈ (0, 1]. Hence for 0.1 > λ1 > λ2 > 0, v1(λ1) > v1(λ2) as long as v1(λ2) ∈ [0, ṽ]. Therefore,

for any λ2 < λ∗∗∗ such that v1(λ2) ∈ [0, ṽ], v1(λ) is bounded below by v1(λ2) for λ ∈ (λ∗∗∗, 0.1].

2. For λ ∈ (0, 0.1], v∗(λ) < v∗(0.1).

3. If there exists a λ2 ∈ (0, λ∗∗∗) such that v1(λ2) ∈ [0, ṽ], then as long as v1(λ2) > v∗(0.1), for

λ ∈ (0, 0.1] we have v1(λ) > v1(λ2) > v∗(0.1) > v∗(λ).

Thus the proof is completed once such a λ2 exists. A simple calculation shows that ṽ > 0.6.16

Any number in the interval (0, λ∗∗∗) satisfies the requirement since v1(λ∗∗∗) is less than 0.5.

In summary, for any λ ∈ (0, 1], the schedule of C(v) crosses the schedule of C̃(v) only once.

16We obtain ṽ by solving ∂C(v,λ)
∂λ

> 0 for (λ, v) ∈ (0, 0.1] × [0, ṽ]) and v∗(0.1) < 0.16. Any number in (0, λ∗∗∗) is a

candidate for λ2 because v1(λ2) is sufficiently smaller than ṽ and larger than v∗(0.1) for λ2 ∈ (0, λ∗∗∗) (we have argued

that there is a unique crossing for λ ∈ (0, λ∗∗∗) thus we can estimate the value).
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