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Abstract

In auctions with private information acquisition costs, we completely characterize (socially) effi-

cient and (revenue) optimal two-stage mechanisms, with the first stage being an entry right allocation

mechanism and the second stage being a traditional private good provision mechanism. Both effi-

ciency and revenue optimality require that the second-stage selling mechanism be ex post efficient

and the number of entry slots be endogenously determined. We show that both efficient and optimal

entry can be truthfully implemented in dominant strategies, and can also be implemented via all-pay,

though not uniform-price or discriminatory-price, auctions.
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1 Introduction

The earlier literature on optimal auction design and revenue comparison generally assumes that there
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the object’s valuations.1 By taking into account endogenous entry, the nature of optimal auctions

changes dramatically.2 For example, in a standard symmetric independent private value setting with

a homogeneous and publicly known information acquisition cost, McAfee and McMillan [11] and Levin

and Smith [8] show that the optimal auction is characterized by a standard auction without imposing

a distortionary reserve price (which is strictly higher than the seller’s own valuation). This is in stark

contrast with the optimal auctions characterized by Myerson [17].

Most recently, Lu [10] and Moreno andWooders [16] extend the analysis of McAfee and McMillan [11]

and Levin and Smith [8] to a setting where information acquisition costs are heterogeneous and privately

known to the bidders. This setting is not just a theoretical extension, but is also more relevant in many

real world settings. For example, in some complex and high-valued asset sales, many aspects of pre-bid

information acquisition and analyzation are privately known to bidders (Vallen and Bullinger [22]).

More specifically, Lu [10] and Moreno and Wooders [16] consider endogenous entry, in which potential

bidders decide whether to enter the auction (and incur information acquisition costs) independently and

simultaneously. They characterize threshold entry equilibria in which each bidder enters the auction if

and only if her entry cost is lower than some endogenously determined entry threshold.

In this research we take one step further to study the (socially) efficient and (revenue) optimal

mechanisms. While Lu [10] and Moreno and Wooders [16] consider endogenous entry where the seller

does not exercise entry control, we follow the optimal mechanism design approach to allow for entry

screening through an entry right allocation mechanism. In effect, we consider two-stage mechanisms

with the first stage being the entry right allocation mechanism and the second stage being the (standard)

private good provision mechanism.

In the traditional mechanism design setting where agents are passively endowed with private in-

formation about their types, the analysis usually focuses on optimal elicitation of private information.

When costly entry is taken into account and the information acquisition costs are privately known,

mechanism design has to additionally take into account information elicitation at the information ac-

quisition stage. Mechanism design in such a setting is thus potentially challenging as it has to balance

information acquisition and information elicitation, which are interdependent: the second-stage sell-

ing mechanism has a direct effect on how effectively an (socially) efficient or (revenue) optimal set of

1See, e.g., Vickrey [23], Riley and Samuelson [18], Myerson [17], and Milgrom and Weber [15].

2See, for example, McAfee and McMillan [11], Tan [21], Engelbrecht-Wiggans [5], Levin and Smith [8], Stegeman [20],

Ye [24, 25]), and Lu [9]. Also see Bergemann and Välimäki [2] for a very insightful survey of this growing literature.
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entrants can be induced, and the first-stage entry right allocation mechanism will in turn determine

whether the final outcome can be socially efficient or revenue maximizing.

Nevertheless, we are able to completely characterize efficient and optimal two-stage mechanisms in

our setting. We demonstrate that, for both efficiency and optimality, the second-stage selling mechanism

must be ex post efficient (so, in particular, no distortionary reserve price is warranted), and the first-stage

entry mechanism should admit bidders in ascending order of their information acquisition costs with

the number of entry slots being endogenously determined: while the efficient entry rule maximizes the

expected total surplus, the optimal entry rule maximizes the expected “virtual” total surplus, which

is the total surplus adjusted for the information rent. It turns out that in our setting, efficient and

optimal entry can both be implemented in dominant strategies. In particular, efficient entry can be

implemented using the VCG (Vickrey-Clarke-Groves) payment rule. Finally, we show that efficient and

optimal entry can both be implemented via all-pay auctions. The basic idea is that, under all-pay

auctions (with appropriately set reserve prices), a profile of entry costs can be “recovered” from the

equilibrium bids, based on which the efficient or optimal entry allocation rule can be implemented.

Somewhat surprisingly, efficient and optimal entry cannot be implemented via either uniform-price or

discriminatory-price auctions.

By focusing on entry right allocation mechanisms, our research is also closely related to Fullerton

and McAfee [6], who introduce auctions for entry rights to select shortlisted contestants for the final

tournament.3 Our current approach differs from theirs in the way the set of finalists is determined:

while in their approach the number of finalists to be selected is fixed and pre-announced,4 in our entry

right allocation mechanism the selection of shortlisted bidders is contingent on the reported bid profile;

hence, the number of finalists is endogenously determined. For this reason the entry right allocation

mechanism examined in this research is more general. In fact, it resemble multi-unit auctions with

endogenously determined supply (see, e.g., McAdams [12]).

The paper is organized as follows. Section 2 lays out the model. Section 3 characterizes the socially

efficient mechanisms. Section 4 characterizes the revenue-maximizing (optimal) mechanisms. Section 5

concludes.

3Ye [25] extends their approach to study a setting of two-stage auctions.

4 In Fullerton and McAfee [6], they first show that for a large class of tournaments, the optimal number of contestants

is two. They then fix it as the number of entry rights to be auctioned.
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2 The Model

There are N potential bidders interested in a single item. Let N = {1, 2, ..., N} denote the set of all

the potential bidders and 2N denote the collection of all the subsets (subgroups) in N. The seller’s own

valuation for the item is v0. Bidder i has to incur an information acquisition (or, simply put, entry) cost

of ci in order to discover her value vi for the item. We assume that both ci and vi are private information

to bidder i. Ex ante, ci follows distribution G(·) with strictly positive density g(·) on support [c, c], and

vi follows distribution F (·) with a density f(·) over support [v, v].

The values of N , v0, and distributions F (·) and G(·) are all common knowledge. We assume mutual

independence across i for both ci and vi. The seller and bidders are assumed to be risk neutral.

We consider a general mechanism design framework in which the seller also exercises entry control, so

that the mechanism is conducted in two stages. The first stage is the entry right allocation mechanism,

and the second stage is the private good provision mechanism. A bidder can only acquire information

to learn her value once an entry right is granted.

In the first stage, given a profile of reports on their private entry costs, c = (c) =(c1, c2, ..., cN), the

mechanism specifies the entry right allocation rule and payment rule: the entry rule specifies probabilities

with which any given subset of bidders is admitted, p = (pg(c)), ∀g ∈ 2N, and the payment rule

x = (xi(c)) specifies the payment xi(c), i = 1, ...,N , that each bidder needs to pay.

We assume that bidders can only learn their values after being admitted, and once admitted, an

entrant bidder must incur her entry cost before she can participate in the second-stage selling mecha-

nism.5

In the second stage, a private good provision mechanism (Ω) is conducted, which is typically a

standard auction in which the object is allocated to the bidder who submits the highest bid (provided

that her bid meets the reserve price).6 Suppose g ∈ 2N is the set of entrants who are granted the

entry rights with type profile cg. Since entrants are ex ante symmetric in terms of their private values,

the expected profit to each entrant is the same under a standard auction. Note that in our setting,

conditional on entry, the expected payoffs to the seller and entrant bidders depend on g only through

5This is the case when the “due diligence” (information acquisition) process, including the access to “data room” or

“information room”, is highly controlled or closely monitored by the auctioneer (Ye [25]). As we will demonstrate, the

equilibrium expected payoff (net of entry cost) for each admitted bidder is greater than zero. Thus every admitted bidder

will indeed find it profitable to incur the cost and participate in the second-stage mechanism in equilibrium.

6We establish later that there is no loss of generality to consider standard auctions for efficient and optimal mechanisms.
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n = |g|, the cardinality of g or the number of bidders in g. For that reason, the expected revenue to

the seller and the expected profit to each entrant bidder can be written as π|g|0 (or πn0 ) and π|g| (or

πn), respectively. Given g, the expected surplus generated from the second-stage selling mechanism is

S|g| = π
|g|
0 + |g| · π|g|.

Back to the first stage (with the second stage being replaced by its correlated equilibrium payoffs),

suppose the reported cost profile is c0 and g(c
0
) is the resulting set of entrants selected. Then given

the true cost profile c, the payoff for bidder i with cost ci is given by π|g(c
0
)| − ci− xi(c

0) if i ∈ g(c
0
),

and − xi(c
0) if i /∈ g(c

0
). The seller’s total revenue is given by

PN
i=1 xi(c

0) + π
|g(c0)|
0 . The social surplus

generated from the (entire) sale is given by TSg(cg) = S|g|−
P

j∈g cj .

Also bear in mind that π|g|0 , π
|g|, and hence S|g| and TSg all depend on the second-stage mechanism,

Ω. For brevity of notation, Ω is suppressed as it should be clear in the context.

We first characterize efficient mechanisms that maximize the expected total social surplus of the

sale.

3 Socially Efficient Mechanisms

For efficiency, the social planner’s objective is to maximize the following expected social surplus subject

to the bidders’ usual individual rationality (IR) and incentive compatibility (IC) constraints:

TS = Ec
P

g∈2N
pg(c)TSg(cg) = Ec

P
g∈2N

pg(c)

"
S|g| −

P
j∈g

cj

#
. (1)

First of all, it is apparent that to maximize TS, the second-stage mechanism must be ex post efficient

(so that S|g| is maximized given any g). An immediate implication is that the reserve price in the second-

stage mechanism, r∗, must equal the seller’s value, v0; any other reserve price will lead to an inefficient

allocation of the asset with positive probability. Conditional on entry, bidders are symmetric so any

standard auction with reserve price equal to v0 is ex post efficient. Thus without loss of generality, we

can fix the second-stage mechanism to be a second-price sealed-bid auction (SPA) with reserve v0 for

the rest of the analysis in this section.

We now consider the first-best efficient entry right allocation rule. From (1), it is clear that given n,

the number of entrants to be admitted, TS is maximized if the seller admits a group g that consists of

n bidders with the lowest n costs from c. It remains to determine ñ∗, the number of entrants in socially

efficient entry.
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It has been established (e.g., Engelbrech-Wiggans [5]) that under a SPA with r∗ = v0, the following

identify holds:

Sn − Sn−1 = πn, (2)

which says that the marginal contribution to the expected surplus from a new entrant equals the

expected (private) gain for that entrant. In light of (2), when |g| = n, the total social surplus in (1) can

be rewritten as the sum of the marginal contributions to the social surplus from all the entrants:

S|g| −
P
j∈g

cj =
nX

k=1

h³
Sk − Sk−1

´
− c(k)

i
=

nX
k=1

h
πk − c(k)

i
, (3)

where c(k) denotes the kth lowest cost and S0 ≡ 0.7 Since Sk is concave in k,
¡
Sk − Sk−1¢ (= πk) is

decreasing in k;8 on the other hand, c(k) is increasing in k. Thus given any cost profile c, the socially

efficient number of entrants, ñ∗, is uniquely determined by the following conditions: πñ
∗−c(ñ∗) ≥ 0 and

πñ
∗+1 − c(ñ∗+1) < 0.

Therefore, the first-best efficient entry right allocation rule, denoted by p̃∗ = (p̃∗g(c)), can be

characterized as follows: Bidders are admitted in ascending order of their entry costs (the lowest cost

first, the second lowest cost second, etc.) provided that the bidder’s contribution to social surplus (TSg)

is non-negative. Let g̃∗(c) denote the group being admitted according to this rule. Then i ∈ g̃∗(c) if

ci < c(ñ∗) and i /∈ g̃∗(c) if ci > c(ñ∗). If there is more than one bidder with costs exactly equal to c(ñ∗),

only one of the bidders who tied should be admitted, and we assume a random tie-breaking rule so that

each bidder who tied has equal chance to be admitted.

Three properties of efficient entry follow. First, the efficient set of entrants, g̃∗(c), is essentially

unique, as ties at c(ñ∗) occur with zero probability; Second, given c−i, if bidder i with ci is admitted

with a positive probability, then she is admitted for sure if her cost is c0i (< ci); if bidder i with ci is

excluded with a positive probability, then she is excluded for sure if her cost is c0i (> ci);9 Third, given

c−i, whenever bidder i is admitted, the number of the efficient entry slots, ñ∗, as well as the type of the

first excluded bidder, c(ñ∗+1), both remain the same (i.e., independent of ci).

It turns out that the first-best entry right allocation rule can be truthfully implemented in dominant

strategies by a Vickrey-Clarke-Groves (VCG) payment rule (Vickrey [23]; Clarke [4]; and Groves

7The surplus generated from the second-stage mechanism is zero when no one is admitted.

8See McAfee and McMillan [11].

9More precisely, if we define ĉi(c−i) = max{ck∗;−i, πk
∗+1}, where k∗ is the socially efficient number of entry slots in

the absence of bidder i and ck∗;−i is the k∗th lowest cost among (c−i), then bidder i is admitted (excluded) for sure if

ci < (>) ĉi(c−i).
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[7]). To see this, we write the (Bernoulli) utility for bidder i given the entry decision g and cost profile

c as follows:

ui(g, ci) =

⎧⎨⎩ π|g| − ci if i ∈ g,

0 if i /∈ g.

Then the expected social surplus generated can be written as TSg(c) = π
|g|
0 +

P
i∈N ui(g, ci).10 Note

that ui(g, ci) depends on other agents’ types only through the entry allocation, so this fits the standard

private value setting where the VCG mechanism applies. By making use of the identity (2), one can

verify that the VCG payment rule in our setting is given by:

x̃∗(ci; c−i) =

⎧⎨⎩ max{πñ∗ − c(ñ∗+1), 0} if i ∈ g̃∗(c),

0 if i /∈ g̃∗(c).
(4)

The VCG payment rule (4) has a very intuitive interpretation: a bidder who is admitted pays the

contribution to social surplus of the bidder that would have been admitted in her place had she been

excluded (zero if no other bidder would have been admitted in her place), and a bidder who is not

admitted pays zero.

Next we turn to the auction implementation of the efficient entry right allocation rule. We will

examine three conventional auction formats: all-pay, uniform-price, and discriminatory-price auctions.

Without loss of generality, we assume c < πN < π1 < c. So, in particular, the highest cost type that

can be possibly admitted in efficient entry is cE ≡ π1. Since bidders with costs strictly above cE should

be excluded for sure, in equilibrium, no bidders with costs strictly above cE would submit bids. In this

sense, the efficient entry rule induces a highest cost type requirement for participation.

Define x̃∗ : [c, c]→ R+ as the expected payment function under the payment rule (4):

x̃∗(ci) = Ec−i x̃
∗(ci, c−i), ci ∈ [c, c]. (5)

Clearly, x̃∗(ci) = 0 for ci ≥ cE, as even when a bidder with cost cE is admitted, her expected gain

from entry (net of her cost) would be zero. When ci < cE, x
∗(·) is strictly decreasing. To see this,

consider two cost types c0i and c00i , where c
0
i < c00i ≤ cE. Given the reported c−i, whenever bidder i with

c00i is admitted, she is also admitted with c0i in a group with the same cardinality and the type of the

first excluded bidder remains the same, in which case the payment will also be the same (properties of

efficient entry). However, there are events of c−i (with a strictly positive probability measure) where

she is not admitted with c00i (and thus pays zero), while she is admitted for sure with c0i and makes

10The seller is treated as one of the agents, whose utility (π|g|0 ) only depends on the entry decision g.
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strictly positive payments. Thus, the expected payment x̃∗(ci) is strictly higher with a lower entry cost

when ci ≤ cE.

We are now ready to describe the all-pay auction: bidders submit bids (if they so choose), and they

need to pay what they bid regardless of being admitted or not.11 Given the bid profile b = (bi), a

cost profile c = (ci) will be recovered according to ci = x̃∗−1(bi) (x̃∗−1(·) is well defined since x̃∗(·) is

strictly decreasing).12 The efficient entry right allocation rule will then be implemented accordingly.

However, somewhat surprisingly, the efficient entry rule cannot be implemented via a uniform-price or

discriminatory-price auction.

Theorem 1 Socially efficient entry can be implemented in Bayesian Nash equilibrium via an all-pay

auction described in the preceding paragraph, but not via a uniform-price or discriminatory-price auction.

Proof. See Appendix.

That the all-pay auction works in implementing efficient entry is relatively easy to understand.

Basically, under an all-pay auction bidders bid the expected VCG payment, which is strictly decreasing

in their costs. Thus, in equilibrium their true cost profile (for those who participate in the auction) can

be recovered and efficient entry can be implemented. However, that neither a uniform-price auction nor

a discriminatory-price auction works has to do with the endogenously determined nature of the number

of entry slots in our setting. Under a uniform-price auction, in equilibrium each bidder is supposed to

bid an amount equal to her expected gain from entry conditional on being the marginal entrant. But this

implies that whenever ci = πk, k = 1, 2, ..., N , bidder i should bid zero, as whenever she is admitted as the

marginal entrant, the number of entry slots is exactly k (hence zero gain from entry). So no equilibrium

bid function under a uniform-price auction can be strictly monotonic and the implementation fails.

Under a discriminatory-price auction, on the other hand, we can show that any equilibrium bid function

should exhibit jumps at ci = πk in a way that the required direction of monotonicity is violated. This

is, again, due to the fact that the number of entry slots is endogenously determined: the probability

of being admitted for a bidder exhibits jumps at points ci = πk, k = 1, 2, ..., N . When the number of

entry slots is fixed, however, one can verify that all of the three conventional auctions, including the

11Note that for an all-pay auction to implement efficient entry, a trivial reserve price (at zero) is necessary: any other

reserve price may not guarantee efficiency in our setting.

12 If bidder i does not bid, bi = ∅. We define x̃∗−1(∅) = c, and x̃∗−1(b) = c for b > x̃∗(c). Note that not everyone submits

a bid and the true cost profile recovered may be truncated; nevertheless, efficient entry can be implemented in equilibrium.
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uniform-price and discriminatory-price auctions, work in implementing the desirable entry.13

4 Revenue-Maximizing Mechanisms

Let gi denote a generic subset in 2N that includes bidder i. Given type ci and report c0i, bidder i’s

expected payoff is given by

Πi(c
0
i; ci) = Ec−i

" P
gi∈2N

pgi(c0i; c−i)(π
|gi| − ci)− xi(c

0
i; c−i)

#
.

We consider incentive compatible (IC) direct mechanisms in which bidders report their types truthfully,

i.e. c0i = ci. Thus in equilibrium,

Πi(ci) ≡ Πi(ci; ci) = Ec−i

" P
gi∈2N

pgi(ci; c−i)(π
|gi| − ci)− xi(ci; c−i)

#
. (6)

By the envelope theorem,14 IC implies

Πi(ci) = Πi(c) +

Z c

ci

Qi(c̃i)dc̃i, (7)

where

Qi(ci) = Ec−i
P

gi∈2N
pgi(ci; c−i)

is the probability that bidder i is admitted with type ci.

The following lemma provides a necessary and sufficient condition for the IC mechanism, the proof

of which is standard and is hence omitted.

Lemma 1 A mechanism (p,x) is incentive compatible if and only if (i) Qi(ci) decreases in ci, and (ii)

(7) holds.

13To guarantee a fixed number, say, k, entry slots, we need to modify the rule so that negative bids are allowed (which are

meant for entry subsidies). It is easily verified that under a uniform-price auction, each bidder bids πk− ci in equilibrium,

which is strictly decreasing. Invoking the payoff equivalence, one can verify that the equilibrium bid functions under the

all-pay and discriminatory-price auctions are also strictly decreasing.

14Πi(c
0
i; ci) may not be differentiable in c0i (e.g., when xi(c

0
i; c−i) exhibits jumps at some c

0
i). But Πi(c

0
i; ·) is linear and

hence absolutely continuous on [c, c] for all c0i ∈ [c, c]; besides, ∂Πi(c
0
i; ci)/∂ci is bounded. Thus the envelope theorem still

applies (Milgrom and Segal [14, Theorem 2]).
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The seller’s total expected revenue consists of the second-stage (auction) revenue and first-stage

entry fee payments, thus is given by

ER = Ec

" P
g∈2N

pg(c)π
|g|
0 +

P
i∈N

xi(c)

#
. (8)

By Lemma 1, we have

EciΠi(ci) = Πi(c) +

Z c

c

∙Z c

ci

Qi(c̃i)dc̃i

¸
g(ci)dci = Πi(c) +

Z c

c

G(ci)

g(ci)
Qi(ci)g(ci)dci

= Πi(c) +Ec

"
G(ci)

g(ci)

P
gi∈2N

pgi(c)

#
. (9)

From (6), we have P
i
EciΠi(ci) = Ec

" P
g∈2N

pg(c)
P
j∈g
(π|g| − cj)−

P
i
xi(c)

#
. (10)

Using (9) into (10), we have

Ec
P
i
xi(c) = Ec

P
g∈2N

pg(c)
P
j∈g

∙
π|g| − G(cj)

g(cj)
− cj

¸
−
P
i
Πi(c). (11)

Substituting (11) into (8), we have

ER = Ec
P

g∈2N
pg(c)

"
S|g| −

P
j∈g

µ
cj +

G(cj)

g(cj)

¶#
−
P
i
Πi(c). (12)

To maximize the expected revenue (12) while maintaining the IR condition, we should set Πi(c) = 0

for all i (by (7)). Thus a bidder with the highest cost type should make zero expected profit.

It is worth noting that S|g| and
P

j∈g (cj +G(cj)/g(cj)) are separable in the expression of expected

revenue (12). The implication is that regardless of the set of entrants, to maximize expected revenue,

the second-stage selling mechanism must be (ex post) efficient. As a direct consequence, the reserve

price in the second-stage auction, r∗, should be v0.

Theorem 2 To maximize expected revenue, the second-stage mechanism must be ex post efficient (e.g.,

a standard auction with reserve equal to v0).

In a general private value setting where agents can acquire information before participating in a

mechanism, Bergemann and Välimäki [1] show that the VCG mechanism provides efficient incentives

for information acquisition ex ante and implements the efficient allocation conditional on the private

information ex post. Theorem 2 suggests that in our setting, the VCG mechanism (which is ex post
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efficient) can even provide “optimal” incentives for information acquisition to maximize expected revenue

ex-ante.

Thus, when entry is taken into account, no distortionary reserve price is needed for the sale. This

result is quite robust as it is also identified in the settings with publicly known and identical information

acquisition costs (e.g., McAfee and McMillan [11], and Levin and Smith [8]). In those settings, bidders

will enter until their expected profits (net of entry costs) are driven down to zero, so the expected revenue

is the same as the expected total surplus, which invalidates the need to introduce a distortionary reserve

price. In our setting with private and heterogeneous information acquisition costs, bidders who enter

do make positive expected profits due to their private information about their costs (which is reflected

by the total information rent
P

j∈g G(cj)/g(cj)), so the previous intuition does not apply. However, in

our current setting, the total information rent (
P

j∈g G(cj)/g(cj)) is independent of the second-stage

mechanism (as the values are independent of the costs). As such, the seller can choose the second-stage

mechanism independently to maximize the total surplus (TSg(cg) = S|g| −
P

j∈g cj) given any set of

entrants,15 leading to the same choice of second-stage mechanism as if the bidders’ private information

rent were not a concern.16

In what follows, we fix the second-stage mechanism as an ex post efficient mechanism. By the

revenue equivalence, without loss of generality we may simply assume that the second-stage mechanism

is a SPA with a reserve equal to v0. Define the expected virtual surplus in the spirit of Myerson [17]:

vg(c) = S|g| −
P
j∈g

µ
cj +

G(cj)

g(cj)

¶
= TSg(cg)−

P
j∈g

G(cj)

g(cj)
, (13)

which is the expected social surplus generated from the sale less the information rent to the bidders

given the set of entrants, g.

To maximize ER, it is optimal to allocate the entry rights to a group g∗(c), such that

g∗(c) ∈ argmax
g

vg(c),

provided vg
∗(c)(c) ≥ 0.17

15Note that the total cost
P

j∈g cj is subtracted from the revenue expression, thus the seller indirectly bears all the

information acquisition cost in equilibrium. This is a common feature in the literature with costly entry (see, for example,

Ye [25]).

16 In settings where the information rent is correlated with the mechanism, it is no longer clear whether ex post mechanism

remains to be optimal.

17 If vg(c)(c) < 0 for any g(c), no bidder should be admitted.
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We denote this optimal entry rule by p∗ = (p∗g(c)). To facilitate our characterization of the

optimal entry right allocation rule, we maintain the following regularity condition for the rest of the

paper:18

Assumption 1 The virtual cost H(c) = c+ G(c)
g(c) increases with c.

With Assumption 1, the optimal entry right allocation rule is characterized below.

Theorem 3 To maximize expected revenue, the bidders should be admitted in ascending order of their

costs or virtual cost (the lowest cost first, the second lowest cost second, etc.) provided that the bidder’s

contribution to the expected virtual surplus defined in (13) is positive.

Proof. Suppose the entry slots are awarded to any group g with n bidders. Then the expected virtual

surplus is given by

vg(c) = S|g| −
P
j∈g

H(cj).

By Assumption 1, if any group with size n is admitted to maximize vg(c), this group must consist

of the bidders with the n lowest costs. Thus, in the optimal entry right allocation mechanism, bidders

should be admitted in ascending order of their costs provided that the bidder’s contribution to the

expected virtual surplus is non-negative.19

Note that for a bidder’s contribution to the expected virtual surplus, π|gi|−H(ci), to be non-negative,

the contribution to the total surplus, π|gi| − ci, has to be positive as well. We thus have the following

result immediately:

Corollary 1 Optimal entry is lower than efficient entry.

So the revenue-maximizing entry is distorted from the efficient entry, which is a nice illustration of

the classical trade-off between efficiency and information rent extraction.

Similarly to efficient entry, for every c, the optimal number of entrants n∗ is uniquely determined

by the following two conditions: πn
∗ −H(c(n∗)) ≥ 0 and πn

∗+1 −H(c(n∗+1)) < 0.

18When this regularity condition fails, the technique of smooth pasting is required to identify optimal mechanisms

(Myerson [17]).

19Similarly to (3), we can write:

vg(c) =
nX

k=1

h³
Sk − Sk−1

´
−H(c(k))

i
=

nX
k=1

h
πk −H(c(k))

i
So the kth entrant’s contribution to the virtual surplus is (πk −H(c(k))), k = 1, 2, ..., n.
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Let g∗(c) denote the optimal set of entrants. The three properties of the efficient entry rule can be

easily adapted for the optimal entry rule in a straightforward manner.

Define ĉ(n) to be the cutoff (cost) type for the positive marginal contribution to the virtual surplus

given the number of entry slots n, that is, ĉ(n) solves πn −H(ĉ(n)) = 0.20 Note that ĉ(n) < πn.

We now look for an IC payment scheme that truthfully implements the optimal entry right allocation

rule. Given that Πi(c) = 0, we have from (7),

Πi(ci) =

Z c

ci

Qi(c̃i)dc̃i = Ec−i
P

gi∈2N

Z c

ci

pgi(c̃i; c−i)dc̃i. (14)

Substituting (14) into (6), we identify the following payment rule as a natural candidate:

x∗i (ci; c−i) =
P

gi∈2N
p∗gi(ci; c−i)(π

|gi| − ci)−
P

gi∈2N

Z c

ci

p∗gi(c̃i; c−i)dc̃i, (15)

where the value of p∗gi(c) is determined by the optimal entry right allocation rule.

When i /∈ g∗(c), clearly x∗i (ci; c−i) = 0. When i ∈ g∗(c) with |g∗(c)| = n∗, let ĉ =min{c(n∗+1), ĉ(n∗)}.

Given c−i, in equilibrium bidder i will be admitted for sure in a group with cardinality n∗ whenever her

cost is lower than ĉ, and will be excluded whenever her cost is higher than ĉ. We thus have for i ∈ g∗(c)

with |g∗(c)| = n∗,

x∗i (c) = [π
|g∗(c)| − ci]− [min{c(n∗+1), ĉ(n∗)}− ci] = max

n
πn

∗ − c(n∗+1), π
n∗ − ĉ(n∗)

o
. (16)

It is easily seen that the above optimal payment rule is nondiscriminatory (it depends on the

reported profile of c only). Thus we can drop the subscript i to write

x∗(ci; c−i) =

⎧⎨⎩ max
©
πn

∗ − c(n∗+1), π
n∗ − ĉ(n∗)

ª
if i ∈ g∗(c)

0 if i /∈ g∗(c)
. (17)

The above payment rule x∗ takes a form similar to the VCG payment rule (4), except that a

nontrivial “reserve price” πn
∗ − ĉ(n∗) is imposed for each realized n∗; as a result, the rent of the

marginal type admitted (ĉ(n∗)) is fully extracted in optimal entry. As under the VCG payment rule, a

bidder’s report affects her payment only through the entry right allocation under payment rule (17), so

not surprisingly, the payment rule x∗ defined in (17) also implements the optimal entry right allocation

rule p∗ in dominant strategies.

Theorem 4 The optimal entry right allocation rule p∗ is truthfully implementable by payment rule x∗

in dominant strategies.

20Given Assumption 1 and the assumption that c < πN < π1 < c, the solution of ĉ(n) is unique for n = 1, 2, ...,N.
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Proof. See Appendix.

We now turn to the auction implementation of the optimal entry rule. In optimal entry, the highest

cost type that can be possibly admitted is cR ≡ ĉ(1) = H−1(π1). Thus cR can be regarded as the highest

cost type that would participate in an (optimal) auction for entry rights. Note that cR = H−1(π1) <

π1 = cE (Corollary 1).

Define x∗ : [c, c]→ R+ as the expected payment function under the payment rule x∗:

x∗(ci) = Ec−ix
∗(ci, c−i), ci ∈ [c, c]. (18)

Clearly, x∗(ci) = 0 for ci > cR. For type cR, she can only be admitted when all the other bidders

have costs strictly higher than cR (with probability [1−G(cR)]
N−1), in which case she pays π1 − cR =

G(cR)/g(cR). Thus x∗(cR) = [1−G(cR)]N−1G(cR)/g(cR). When ci < cR, by following exactly the same

procedures for the case of efficiency, we can show that x∗(·) is strictly decreasing.

Thus, just as efficient entry can be implemented by an all-pay auction, the optimal entry can be

implemented by an (optimal) all-pay auction (with reserve price rA = [1−G(cR)]
N−1G(cR)/g(cR)) in

which bidders with cost lower than cR bid according to x∗(·) in equilibrium. The following result is the

counterpart of Theorem 1 in the context of revenue maximization.

Theorem 5 The revenue-maximizing entry rule can be implemented in Bayesian Nash equilibrium via

an all-pay auction with reserve price equal to rA = [1−G(cR)]N−1G(cR)/g(cR), but not via any uniform-

price or discriminatory-price auction.

Proof. See Appendix.

The intuitions for Theorem 5 parallel those for Theorem 1. Basically, while x∗−1(·) can serve

as the cost recovery function in an optimal all-pay auction, no cost recovery function exists under a

uniform/discriminatory price auctions that implements optimal entry: the required monotonicity fails,

this time, at marginal entrant’s types ci = ĉ(k) = H−1(πk), k = 1, 2, ..., N .

5 Conclusion

This paper studies two-stage mechanisms with an emphasis on entry right allocation mechanisms in a

setting where bidders’ information acquisition costs are privately known to the bidders. In such a setting

we are able to completely characterize both the (socially) efficient and (revenue) optimal mechanisms.
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We demonstrate that both efficient and optimal entry can be implemented in dominant strategies, and

they can also be implemented via all-pay auctions with appropriately set reserve prices.

Our analysis of two-stage selling mechanisms can shed new light on the practice of two-stage auctions,

which are commonly used in high-valued and complex asset sales, procurements, takeovers, and merger

and acquisition contests.21 A feature common to all these two-stage auctions is that there is a pre-

qualifying stage to screen the bidders,22 which corresponds to the entry right allocation mechanism

analyzed in our framework. While our current model is somewhat special in the sense that bidders’

pre-entry “types” are simply their information acquisition costs, we expect that some insights obtained

from our current analysis are robust enough to carry over to more general settings where bidders’ pre-

entry “types” are correlated to their final valuations for the object for sale. A complete characterization

of optimal mechanisms in such a setting is technically challenging, which is left for future research.

Appendix

Proof of Theorem 1: To show that the efficient entry rule can be implemented by the described

all-pay auction (with a trivial reserve price at zero), it only remains to show that in the (reduced)

all-pay auction game, it is a symmetric strictly monotone Bayesian Nash equilibrium (BNE) for each

bidder with a cost lower than cE to bid according to x̃∗(·) defined in (5).

Given that everyone else bids according to x̃∗(·), bidder i maximizes the following objective function

by choosing her bid b:

bΠ(b, ci) = Ec−i

³
π|g̃

∗(x̃∗−1(b),c−i)| − ci

´
· 1{i∈g̃∗(x̃∗−1(b),c−i)} − b, (19)

where the indicator function 1{i∈g̃∗(x̃∗−1(b),c−i)} = 1 if i ∈ g̃∗(x̃∗−1(b), c−i), and 0 otherwise.

We next apply the constraint simplification theorem23 to demonstrate that x̃∗(·) constitutes a sym-

metric increasing BNE in this (reduced) entry game. This can be verified in the following steps:

1) x̃∗(·) is strictly decreasing as shown in the text.

2) Since a lower ci (≤ cE) has strictly higher probability of being admitted and that x̃∗(·) is strictly

decreasing, ∂bΠ/∂ci = Pr©i ∈ g̃∗(x̃∗−1(b), c−i)
ª
is strictly increasing in b, i.e., bΠ(b, ci) satisfies the strict

and smooth single crossing differences property.

21See Ye [25] for industry examples of two-stage auctions.

22See Boone and Goeree [3] for an interesting analysis of pre-qualifying auctions.

23See, for example, Theorem 4.3 in Milgrom [13], pp. 105.
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3) Let Π(ci) be the equilibrium payoff for type ci ∈ [c, cE] under the VCG mechanism with payment

rule (4). By the envelope theorem, we have

Π(ci) = Ec−i

h³
π|g̃

∗(ci,c−i)| − ci

´
· 1{i∈g̃∗(ci,c−i)} − x̃∗(ci, c−i)

i
=

Z cE

ci

Pr {i ∈ g̃∗(s, c−i)} ds. (20)

Substituting b = x̃∗(ci) into (19), we have bΠ(x̃∗(ci), ci) = Π(ci) because, by construction, x̃∗(ci) =
Ec−i x̃

∗(ci, c−i). In particular, we have bΠ(x̃∗(cE), cE) = Π(cE) = 0. By invoking (20), the following

envelope formula is verified for x̃∗(·):

bΠ(x̃∗(ci), ci) = −Z cE

ci

bΠ2(x̃∗(s), s)ds.
4) It is also easily verified that bidding outside the range of x̃∗(·) cannot lead to higher expected payoff.

Thus all the sufficiency conditions for the constraint simplification theorem are satisfied and x̃∗(·)

indeed constitutes a symmetric monotone BNE.

We next show that efficient entry cannot be implemented by a uniform-price auction (equipped with

a reserve price equal to zero). This is equivalent to showing that in the (reduced) uniform-price auction

of entry rights, there does not exist an equilibrium in which each bidder (with a cost lower than cE)

bids according to a symmetric strictly monotone bid function, say, βU (·) : [c, cE]→ R+.

Suppose, in negation, such an equilibrium exists. We consider its associated direct game in which

bidders are required to report their costs directly. Suppose that everyone else reports their types c−i

truthfully. Let’s consider bidder i’s report c0i given her true cost ci ∈ (πK+1, πK ] for some K ≥ 1. For

necessity of equilibrium we only consider local deviations so c0i ∈ (πK+1, πK ]. Let k∗ be the number of

entry slots under the efficient entry rule in bidder i’s absence, and let ck;−i denote the kth lowest cost

among (c−i). We consider the following cases:

1) max{ck∗;−i, πk
∗+1} ≤ πK+1, then bidder i cannot be admitted for sure with any c0i ∈ (πK+1, πK ];

2) max{ck∗;−i, πk
∗+1} > πK , then bidder i must be admitted for sure with any c0i ∈ (πK+1, πK ], and the

report does not affect the payment, which is the bid from the first excluded bidder (with type ck∗;−i or

ck∗+1;−i); moreover, i is admitted in a group whose cardinality does not depend on c0i ∈ (πK+1, πK ];

3) max{ck∗;−i, πk
∗+1} = πK , so either ck∗;−i = πK (a zero probability event and hence can be omitted

from our consideration) or k∗ = K − 1 and ck∗;−i ≤ πk
∗+1 < ck∗+1;−i. In the latter case, bidder i is

admitted for sure with any c0i ∈ (πK+1, πK ], in which case ck∗+1;−i is the type of the first excluded

bidder;

4) max{ck∗;−i, πk
∗+1} ∈ (πK+1, πK), i.e., ck∗;−i ∈ (πK+1, πK) and k∗ = K. In this case, bidder i can
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only be admitted with c0i ∈ (πK+1, ck∗;−i], in which case she crowds out the bidder with ck∗;−i and hence

pays βU (ck∗;−i).

This shows that bidder i’s report c0i ∈ (πK+1, πK ] affects her expected payoff only in case 4) above.

Thus the expected payoff for bidder i can be written as follows:

Π(c0i, ci) = Ec−i
£
πK − ci − βU (cK;−i)

¤
· 1{c0i<cK;−i<πK} + (Terms independent of c0i)

=

Z πK

c0i

£
πK − ci − βU (c)

¤
gK;N−1(c)dc+ (Terms independent of c0i),

where gK;N−1(·) is the density function of cK;−i. gK;N−1(c) > 0 over (c, c) as we assume g(c) > 0 over

[c, c].

Incentive compatibility thus implies the following first order condition:

∂Π

∂c0i
|c0i=ci = −

£
πK − ci − βU(ci)

¤
gK;N−1(ci) = 0.

So βU (ci) = πK − ci for any ci ∈ (πK+1, πK ], K ≥ 1. But this implies that βU (πK) = 0 for all

K = 1, 2, ..., N . This is a violation of the required strict monotonicity and hence efficient entry cannot

be implemented via a uniform-price auction.

Finally, we demonstrate that efficient entry cannot be implemented via a discriminatory-price auction

either. We will show this by invoking the payoff equivalence theorem (Myerson [17]), which implies, in

our setting, that the expected payment for any given type is the same in any efficient entry mechanism

where a bidder with the highest possible cost (cE) to participate makes zero expected payoff. Suppose

βD : [c, cE] → R+ constitutes a symmetric strictly decreasing bid function in the equilibrium in the

(reduced) entry game induced by a discriminatory-price auction (with reserve price equal to zero).

Since the reserve price is zero, the expected payoff for type cE bidder is also zero. Thus as long as βD

constitutes a symmetric monotone BNE, by the payoff equivalence, we must have:

βD(ci) =
x̃∗(ci)eQ(ci) , ci ∈ [c, cE], (21)

where eQ(ci) = Pr {i ∈ g̃∗(ci, c−i)} is the probability of winning an entry slot for a bidder with type ci
in equilibrium, and x̃∗(·) is given by (5).

Notice that by the efficient entry allocation rule, the probability of winning, eQ(ci), must exhibit
jumps at ci = π1, π2, ..., πN (these are also the only points where eQ(·) is discontinuous). More specifically,
we have eQ(π1−) = eQ(π1+) + Pr©c1;−i > π1

ª
, eQ(πk−) = eQ(πk+) + Pr©ck−1;−i < πk−1 and πk < ck;−i

ª
,

k = 2, ..., N − 1, and eQ(πN−) = eQ(πN+) + Pr©cN−1;−i < πN−1
ª
.

17



However, it can be verified that x̃∗(·) is continuous over [c, cE].24 But then by (21), βD(·) has to

exhibit jumps at ci = πk, k = 1, 2, ..., N , and for those points, we must have βD(c+i ) > βD(c−i ), which is

a clear violation of the required monotonicity. So discriminatory-price auctions also fail to implement

efficient entry.

Proof of Theorem 4: First consider the case in which, given c−i, the reported cost profile from all

but bidder i, bidder i is admitted to a group with, say, n∗, entrants by reporting ci truthfully. By

misreporting c0i, as long as she is still admitted, she is admitted to the same group with n
∗ entrants, and

the first excluded type also remains the same (properties of optimal entry). Thus her expected payoff

remains the same. If, however, by misreporting c0i she is excluded, then her payoff will be zero. This

shows that she has no incentive to misreport in this case.

If by reporting truthfully bidder i is excluded according to p∗, then ci ≥ c(n∗+1) > ĉ(n∗ + 1), where

n∗ is the number of admitted bidders, and her payoff will be zero. If she misreports a cost such that

she is still excluded (and thus pays zero), her payoff remains zero. Suppose she reports a cost c0i that

is low enough for her to be included in g∗(c0i, c−i). We must have |(g∗(c0i, c−i))| = n∗ (the previously

admitted bidder with type c(n∗) is crowded out) or |(g∗(c0i, c−i))| = n∗ + 1 (no previously admitted

bidders are crowded out). Note that these are the only two possible cases, as all the other bidders with

costs higher than c(n∗+1) can never be admitted according to p∗. If |(g∗(c0i, c−i))| = n∗, bidder i would

pay max{πn∗ − ĉ(n∗), πn
∗ − c(n∗)} ≥ πn

∗ − c(n∗+1) ≥ πn
∗ − ci. This results in a negative expected

payoff for her. If |(g∗(c0i, c−i))| = n∗ + 1, bidder i would pay max{πn∗+1 − ĉ(n∗ + 1), πn
∗+1 − c̃}, where

c̃ = c(n∗+1) if ci > c(n∗+1), and c̃ = c(n∗+2) if ci = c(n∗+1). Recall that ci ≥ c(n∗+1) > ĉ(n∗ + 1). Thus if

ci > c(n∗+1), min{ĉ(n∗ + 1), c̃} ≤ c(n∗+1) < ci, which results in a negative expected payoff for bidder i;

if ci = c(n∗+1), min{ĉ(n∗ + 1), c̃} ≤ c(n∗+2) < ci, which also results in a negative expected payoff.

Proof of Theorem 5: The proof for the all-pay auction implementation should look almost the same

as in the proof of Theorem 1, with cE being replaced by cR; in particular, the envelope formula is

verified for x∗(·) as it satisfies (6) by construction.

24The verification is somewhat tedious, but the intuition is clear: Since eQ(·) only jumps at ci = π1, π2, ..., πN , we only

need to check the continuity of x̃∗(·) at those points. Take a sufficiently small � > 0, and consider a bidder with types

c+i = πk + � and c−i = πk − �. Clearly, there is a jump in winning probability when moving from type c+i to type c
−
i . But

when she wins only because of the cost reduction, she must have become the last one to join the group with k entrants.

Therefore her payoff is πk− c−i = �, which goes to zero as �→ 0. As such, it does not take a jump in the expected payment

(the bid) in order to guarantee the continuity in expected payoff (an equilibrium requirement).
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For uniform-price and discriminatory-price auctions,25 we can consider ci, c
0
i ∈ (ĉ(k + 1), ĉ(k)] and

demonstrate that the required monotonicity fails at points ci = ĉ(k) = H−1(πk), k = 1, 2, ..., N . The

rest of the arguments should look exactly the same as in the proof of Theorem 1.
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