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Abstract

We study how resale affects auctions with costly entry in a model where bidders possess two-

dimensional private information signals: entry costs and valuations. We establish the existence

of symmetric entry equilibrium and identify sufficient conditions under which the equilibrium is

unique. Our analysis suggests that the opportunity of resale affects both entry and bidding, and,

in particular, it induces motivation for speculative entry and resale hunting abstentions. Our

numerical results suggest that while expected entry is higher when resale is allowed, the effects of

resale on expected revenue and efficiency are both ambiguous.
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1 Introduction

Starting with the seminal work of Vickrey (1961) and continuing until recently, the auction literature

has mostly adopted the paradigm of a fixed number of bidders. This simplifying assumption has
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allowed for enormous progress in the characterization of optimal auctions and analysis of revenue

equivalence and revenue rankings of different auction formats (see, for example, Riley and Samuelson,

1981, Myerson, 1981, Milgrom and Weber, 1982). However, in many auctions the number of rivals

is not known when bids are placed.1 This observation motivated several papers (e.g., McAfee and

McMillan, 1987, Matthews, 1987, and Harstad et al., 1990) to treat the number of rival bidders

as coming from exogenously determined distributions. However, this approach with a stochastic

number of bidders still ignores an important issue. In many auctions the cost of bid preparation

or information acquisition is far from trivial. We cannot simply rank auctions by assuming a fixed

or stochastic number of bidders without accounting for the fact that different auctions are likely to

induce different entry incentives. Endogenous entry must be taken into account in order to compare

expected revenue or to design optimal auctions in those situations.

These considerations have motivated a growing literature on auctions with costly and endoge-

nous entry.2 Independent-private-value (IPV) auctions with costly entry often result in inefficient

allocation, since the auction is typically conducted among the actual bidders, which is a subset of

all potential bidders. If the bidder with the highest value is excluded from the auction, the auction

outcome is necessarily inefficient ex post.

This sort of inefficiency may create a motive for post-auction resale and such resale opportunity

affects significantly, as we shall show, bidders’ bidding behavior and entry strategies. In this paper,

we study the effect of allowing resale opportunity in an auction model where each potential bidder

possesses two-dimensional private information signals: entry cost (c) and valuation (v). When the

opportunity of resale is absent, this framework is first analyzed by Green and Laffont (1984), who

demonstrate that under a Vickrey auction the entry equilibrium is characterized by a unique entry

cutoff curve (or entry indifference curve) C(·) such that a bidder with type (c, v) enters the auction

if and only if c ≤ C(v). In such an equilibrium, it is possible that a bidder with a high value chooses

not to enter the auction, simply because her entry cost is above her entry cutoff.3 In a general

1This is the case, for example, in most of the sealed-bid procurement auctions.

2See, among others, French and McCormick (1984), Green and Laffont (1984), Samuelson (1985), McAfee and

McMillan (1987), Tan (1992), Engelbrecht-Wiggans (1993), Levin and Smith (1994), Stegeman (1996), Tan and Yi-

lankaya (2006), Ye (2004, 2007), Lu (2010), Lu and Sun (2010), and Moreno and Wooders (2011). Also see Bergemann

and Välimäki (2006) for an extensive survey of the literature.

3Following Green and Laffont’s analysis, Lu and Sun (2010) study entry implementability and derive ex ante efficient

auctions when bidders own two-dimensional private information on values and entry costs.

2



procurement setting allowing for correlations between participation costs and production costs, Gal

et al. (2007) establish the existence and uniqueness of the equilibrium entry cutoff curve.

Introducing post-auction resale into models with costly entry enriches the analysis, yet compli-

cates matters so that the existence and uniqueness of entry equilibrium are no longer obvious. The

additional difficulty emerges since, with resale, the option value for staying out is also positive and

varies with types. To make our analysis tractable, we assume that a bidder’s entry cost can only be

either high (cH) or low (cL) in this paper. With such a modeling simplification, we are able to show

that with resale, a symmetric entry equilibrium is characterized by entry thresholds (vL, vH), where

vH > vL, so that bidders with entry cost cL (henceforth often referred to as type-L bidders) will

enter the auction if and only if their values v ≥ vL, and bidders with entry cost cH (henceforth often

referred to as type-H bidders) will enter the auction if and only if their values v ≥ vH . We show

that while the opportunity of resale only affects the entry threshold for type-H bidders, it affects

both the entry threshold and bidding for type-L bidders. More specifically, type-L bidders tend to

bid more aggressively with the resale opportunity, and the lower the value, the higher the magnitude

of overbidding above value (the competition effect induced by the resale opportunity).

While the symmetric entry equilibrium is unique in the no-resale benchmark, the uniqueness

cannot be established when resale is allowed. In the case with multiple equilibria, we show that

the equilibria can be nicely ranked in the increasing order of vL, or equivalently, in the decreasing

order of vH . We also identify sufficient conditions that assure the uniqueness of the symmetric entry

equilibrium.

We compare the symmetric entry equilibrium when resale is allowed to the equilibrium when

resale is banned. Our first finding is that with resale, the entry cutoff is higher for bidders with

higher entry costs (type-H bidders), and lower for bidders with lower entry costs (type-L bidders).

This suggests that when resale is allowed, bidders with low entry costs are more likely to enter,

while bidders with high entry costs are less likely to enter. In other words, resale naturally induces

a speculative motivation for entry and a resale-hunting motivation for staying out. Speculators are

those with low entry costs and low valuations who would not enter without resale, but enter when

resale opportunity is available. Resale hunters are those with high entry costs and high valuations who

would refrain from entering when a resale market is available, but enter when resale is unavailable.

Thus, although we may be tempted to think that the additional opportunity to trade in the resale

market provides an additional motive to enter, the opposite incentive to avoid entry cost by staying
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out and buying in the resale market may more than offset it. That high-valued type-H bidders are

replaced by low-valued type-L bidders can be referred to as the displacement effect induced by the

resale opportunity.

In our model, it is difficult to work out a closed-form solution for the entry equilibrium with a

general value distribution. In order to understand how resale opportunities affect entry, expected

revenue, and efficiency, we turn to numerical computations. Our findings suggest that, while resale

increases expected entry, its effects on expected revenue and efficiency are both ambiguous. That

resale has an ambiguous effect on expected revenue has been well-documented in other auction

settings with resale (e.g., Haile, 2003 and Pagnozzi, 2007), and it can be explained in our setting

based on the competitive effect and the displacement effect induced by resale opportunities. The

ambiguous effect of resale on efficiency, however, is less trivial and somewhat counter-intuitive given

that bidders are symmetric in our setting.4

The literature on auctions with resale is relatively new. Gupta and Lebrun (1999) consider first-

price auctions with resale. Haile (2003) considers an IPV setup in which bidders only have noisy

signals at the auction stage, where the motive for resale arises when the true value of the auction

winner turns out to be low. Zheng (2002) identifies conditions under which the outcome of optimal

auctions can be achieved with resale. Garret and Tröger (2006) consider a model with a speculator,

who can only benefit from participating in the auction when she can resell the item to the other

bidder. Pagnozzi (2007) demonstrates why a strong bidder may prefer to drop out of an auction before

the price reaches her valuation, simply because she anticipates that she will be in an advantageous

position in the post-auction resale stage. Hafalir and Krishna (2008) analyze auctions with resale

in an asymmetric IPV auction environment with two bidders and show that the expected revenue is

higher under a first-price auction than under a second-price auction. In a follow-up study, Hafalir

and Krishna (2009) focus on some distribution families where the equilibrium bidding functions can

be solved in closed forms. They show that resale increases the original seller’s revenue, but the effect

of resale on social surplus is ambiguous.5 Finally, Garratt et al. (2009) show that when resale is

allowed, the English ascending auction is susceptible to tacit collusion. Our paper contributes to the

4The ambiguous effect of resale on efficiency is much easier to understand in asymmetric auctions with resale, as

demonstrated by Krishna and Hafalir (2009).

5The intuition is as follows: the weak bidder bids more aggressively with resale, which hurts efficiency; on the other

hand, resale helps restore efficiency after the auction. The net effect depends on the specific distribution or parameter

values.

4



literature by being the first to integrate and analyze both entry and resale in an auction model with

two-dimensional private information, an arbitrary number of bidders, and an incomplete information

setting for the resale stage.6

The paper is organized as follows. Section 2 lays out the model. Section 3 characterizes the

equilibrium. Section 4 is devoted to comparisons of the equilibria in the two cases. Section 5

discusses some assumptions and extensions in our analysis, and Second 6 concludes.

2 The Model

There is a single, indivisible object for sale to n ≥ 2 potentially interested buyers (firms) through

an auction. The seller’s valuation is normalized to 0. It is costly for a bidder to participate in

the auction. So, unlike most auction models, in our model each bidder possesses two-dimensional

private information about her participation cost (c) and value (v). We assume that c = cL with

probability q and c = cH with probability 1− q, and 0 < cL < cH < 1;7 v is distributed according to

the cumulative distribution function F (·) on [0, 1]. We assume that for any a ∈ (0, 1], the truncated

distribution of F (·) on [0, a] satisfies the monotonic hazard rate property, that is, [F (a)− F (x)] /f(x)

strictly decreases in x for x ∈ [0, a]. We assume that a second-price sealed-bid auction is conducted,

which is without loss of generality as we will show that revenue equivalence holds among all the

standard auctions in our setting. For simplicity of analysis, we assume that the seller does not set

a reserve price other than his own reservation value 0. After the auction, the winner can conduct a

post-auction resale.8 In the resale, we assume that the winner of the item from the initial auction

(the reseller) will conduct an optimal auction (with an optimal reserve price) to resell the item.

The seller makes the selling mechanism publicly known before participation (or entry) occurs.

After learning the realizations of their private entry costs and values, the potential bidders make

entry decisions simultaneously and independently. After entry, the bidders observe the number of

other entering bidders and then bid for the item. We will consider the two scenarios when resale is

6 In Gupta and Lebrun (1999) and Pagnozzi (2007), complete information is assumed in the resale stage.

7When cL = cH = c, resale never occurs in the symmetric monotone entry equilibrium we will focus on, hence is

omitted in our analysis.

8There is no obvious reason to believe that the heterogeneous entry costs that we envision also apply to the resale.

We thus assume that the entry costs for the resale market are the same. We further assume that this cost is small, and

is hence omitted. We discuss the implications of this assumption in Section 5.

5



allowed and not allowed.

3 Equilibrium Characterizations

In this section we characterize the equilibrium in the no-resale benchmark case and in the case when

resale is allowed. We will focus on the symmetric entry equilibrium characterized by a pair of entry

thresholds, (ṽL, ṽH) in the case when resale is banned and (vL, vH) in the case when resale is allowed,

so that a bidder with a type (ck, v) enters the auction if and only if v ≥ ṽk in the no resale benchmark

and v ≥ vk in the case with resale, k ∈ {L,H}; in other words, bidders with the same entry cost

type will follow the same entry threshold in a symmetric entry equilibrium.

3.1 Entry without Resale

In this section we analyze the benchmark case when resale is banned. Since bidders are ex ante

symmetric, without loss of generality we can focus on bidder i’s entry strategy. To show that (ṽL,

ṽH) characterizes a symmetric entry equilibrium, we need to verify that there is no incentive for

bidder i to deviate from the prescribed entry strategy given that all the other bidders follow the

entry thresholds (ṽL, ṽH).

First, given that 0 < cL < cH < 1, we can rule out both ṽL = 0 and ṽH = 0 (otherwise bidders

will incur net losses with realized values lower than their entry costs). We can also rule out the

case ṽL = ṽH = 1 (otherwise a single bidder with a value higher than her entry cost would find it

profitable to deviate to enter the auction). We next show that in any symmetric entry equilibrium,

0 < ṽL < ṽH ≤ 1. Suppose in negation we have 1 ≥ ṽL > ṽH > 0 or 1 > ṽL = ṽH > 0. But then a

bidder with type (cL, ṽH) who is supposed to stay out (or be indifferent between entry and staying

out) would be strictly better off by entering, as a bidder with (cH , ṽH) is indifferent between entry

and staying out, a contradiction. Therefore, given that 0 < cL < cH < 1, it must be the case that

0 < ṽL < ṽH ≤ 1 in any symmetric entry equilibrium.

When all the other bidders follow the pair of entry thresholds (ṽL, ṽH), the ex ante probability

that a bidder enters the auction is given by:

p̃E = 1− qF (ṽL)− (1− q)F (ṽH).

Let F̃in(x) be the probability that a bidder has a value less than x conditional on entry. Then

F̃in(x) = q[F (x) − F (ṽL)]/p̃E when x ∈ [ṽL, ṽH) and F̃in(x) = [F (x)− qF (ṽL)− (1− q)F (ṽH)] /p̃E
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when x ∈ [ṽH , 1]. Let f̃in(·) be its associated density function. Similarly, let F̃out(x) be the probability

that a bidder has a value less than x conditional on staying out. Then F̃out(x) = F (x)/ (1− p̃E)

when x ∈ [0, ṽL] and F̃out(x) = [qF (ṽL) + (1− q)F (x)] / (1− p̃E) when x ∈ [ṽL, ṽH ]. Let f̃out(·) be

its associated density function.

We assume that each bidder plays the (weakly) dominant strategy to bid her value after entry.9

We use π̃(v,m, ṽL, ṽH) to denote a bidder’s expected payoff conditional on entry, given her value v,

the total number of entrants m, and the pair of entry thresholds followed by all the other bidders

(ṽL, ṽH). Then

π̃(v,m, ṽL, ṽH) =

Z v

ṽL

(v − x)f̃
(1)
in,m−1(x)dx =

Z v

ṽL

F̃
(1)
in,m−1(x)dx,

where f̃ ,(1)in,m−1(x) and F̃
(1)
in,m−1(x)dx are the density function and cumulative distribution function,

respectively, for the highest value possessed by all the other m− 1 entrants.

Given that everyone else follow the symmetric entry thresholds, the number of other entrants fol-

lows a binomial distribution; that is, Pr(m−1 entrants out of n−1 other bidders) = Cm−1
n−1 (p̃E)

m−1(1−

p̃E)
n−m. Therefore, if we use π̃(v, ṽL, ṽH) to denote the expected total payoff conditional on entry,

we have

π̃(v, ṽL, ṽH) =
nX

m=1

Cm−1
n−1 (p̃E)

m−1(1− p̃E)
n−mπ̃(v,m, ṽL, ṽH).

It can be easily verified that given (ṽL, ṽH), π̃(v, ṽL, ṽH) strictly increases in v. Therefore, given

that other bidders follow the entry thresholds (ṽL, ṽH), no bidder has an incentive to deviate from

following the same entry thresholds.

Proposition 1 In the benchmark case when resale is banned, there exists a unique symmetric entry

equilibrium characterized by the entry thresholds (ṽL, ṽH).

Proof. See Appendix.

In particular, if the values of (cL, cH) induce a pair of interior entry thresholds (ṽL, ṽH), i.e.,

0 < ṽL < ṽH < 1, we must have the following indifference conditions:⎧⎨⎩ π̃(ṽL, ṽL, ṽH)− cL = 0

π̃(ṽH , ṽL, ṽH)− cH = 0
(1)

9Note that participation costs are sunk costs, which should not affect the bidding strategies (absent the resale

opportunity).
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That is, a bidder with an entry cost cL (cH) will be indifferent between entering the auction and

staying out if her value is ṽL (ṽH).10

3.2 Entry with Resale

We now augment the model just analyzed by allowing a resale stage where the auction winner may

resell the item. Similarly to the benchmark case without resale, we will focus on symmetric entry

equilibria characterized by entry thresholds (vL, vH).

A bidder’s ex ante probability of entry, pE, the value distribution function conditional on en-

try, Fin(·), and the value distribution function conditional on staying out, Fout(·), are all defined

analogously as in the no-resale case.

With resale opportunities, given that 0 < cL < cH < 1, we can again rule out the case vL = vH =

1. However, unlike in the case without resale, now either vL = 0 or vH = 0 (but not both) is possible,

given that the additional value from the opportunity of resale may more than offset the entry cost.

Following a similar argument as in the no-resale case, we can conclude that in any symmetric entry

equilibrium, 0 ≤ vL < vH ≤ 1.

To characterize symmetric entry equilibria, we start our analysis from the last stage. Given the

special features in our model, it is easily seen that in equilibrium, the initial auction winner can

only possibly benefit from resale when her value vw ∈ [vL, vH). So resale can only be initiated when

some type-L bidder wins the initial auction, and the potential buyers participating in resale must be

type-H bidders with values in [vL, vH ] who stay out of the initial auction.11 When resale is initiated,

the resale mechanism will be announced (we assume that the reseller uses an optimal auction a

la Myerson); in particular, the reserve price will be announced. Following the announcement, the

potential buyers will come to the resale and participate in bidding.

So, in our model, resale provides an opportunity for bidders with low value and low cost to

speculate: they can sell the item to a bidder with higher values who also has higher entry cost. In

the resale, the seller sets an optimal reserve price to maximize her expected payoff, with the belief

that potential buyers’ values follow the distribution Fout(·). In equilibrium, a trade in resale occurs

10 If (cL, cH) cannot induce an interior solution to the equation system (1), it has to be the case that ṽL ∈ (0, 1) and

ṽH = 1. Note that ṽL = 0 is impossible as we assume that cL > 0.

11Note that resale will never be initiated in equilibrium whenever some bidder has a value higher than vH , as the

initial auction winner must possess the highest value among all the n potential buyers.
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only when the outside bidder with the highest value can meet the reserve price.

Define w(v,m, vL, vH) to be the reseller’s expected gross payoff from resale, given her value v,

the number of entrants (including herself) m, and the entry thresholds that other bidders follow (vL,

vH). We have

w(v,m, vL, vH) = max
r∈(v,vH ]

[Fout(r)]
n−mv +C1n−m[1− Fout(r)][Fout(r)]

n−m−1r +

Z vH

r
xf

(2)
out,n−m(x)dx.

(2)

The first term reflects the reseller’s payoff when no bidder bids higher than the reserve price, the

second term reflects the reseller’s payoff when only one bidder bids higher than the reserve price, and

the third term reflects the reseller’s payoff when at least two bidders bid above the reserve price.

The optimal reserve price, r(v), is the solution to equation x = v+ (1− Fout(x)) /fout(x). When

the truncated distribution of F (·) on [0, a], a ≤ 1, satisfies the monotone hazard rate property, there

is only one solution to this equation.

Next we consider a bidder (with a value v) who stays out of the auction but participates in the

resale. Such a bidder can only have a positive expected payoff when v > r(vL), as r(vL) is the lowest

possible reserve price in the resale. Let y be the highest value among the other n−m− 1 bidders in

the resale and z be the reseller’s value (the highest value among m entrants). Then this outsider’s

expected payoff from resale is given by:

L(v,m, vL, vH) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if v ≤ r(vL)R r−1(v)

vL

R v
r(z)(v − y)f

(1)
out,n−m−1(y)f

(1)
in,m(z)dydz

+
R r−1(v)
vL

hR r(z)
0 f

(1)
out,n−m−1(y)dy

i
[v − r(z)]f

(1)
in,m(z)dz if v > r(vL)

Define

β(v,m, vL, vH) =

⎧⎨⎩ w(v,m, vL, vH) if v ≤ vH

v if v > vH
(3)

Clearly, β(v,m, vL, vH) is the expected payoff (gross of entry cost) conditional on winning the initial

auction, taking into account the additional value coming from potential resale (for those who will

initiate a resale auction with positive probability). Applying the envelope theorem in (2), we have

∂w

∂v
= Fout(r(v))

n−m (4)

Thus w(·,m, vL, vH) and hence β(·,m, vL, vH) given by (3) are strictly increasing. Below we will show

that β(·,m, vL, vH) constitutes the unique equilibrium in the class of symmetric (strictly) increasing
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equilibria in the initial auction subgame, i.e., the (reduced) subgame after the entry decisions are

made, with the resale stage being replaced by its correlated equilibrium payoffs.

Proposition 2 When resale is allowed, in the initial auction subgame there exists a unique symmet-

ric (strictly) increasing equilibrium, in which entrant bidders follow the bid function β(·,m, vL, vH).

Bidders bid above value for v ∈ [vL, vH) and the magnitude of overbidding, β(v,m, vL, vH) − v, is

decreasing in v.

Proof. See Appendix.

Given the specific information structure in our model, resale will never be initiated by a type-H

bidder, so, not surprisingly, resale has no effect on bidding for type-H bidders. However, as suggested

in Proposition 2, resale affects bidding for type-L bidders. This is reflected by overbidding above

value for those with valuations between vL and vH (who will possibly initiate resale after the initial

auction). For those bidders, Proposition 2 shows that the lower the value, the more the magnitude

of overbidding (or the stronger the effect of resale).

From Proposition 2, we can obtain the expected payoff for a bidder, denoted as π(v,m, vL, vH),

when she enters the auction with m− 1 other bidders:

π(v,m, vL, vH) =

⎧⎨⎩ β(v, 1, vL, vH) if m = 1R v
vL
[β(v,m, vL, vH)− β(x,m, vL, vH)] f

(1)
in,m−1(x)dx if m ≥ 2

Similarly as in the no-resale case, we can define the expected payoff for a bidder who enters the

initial auction, π(v, vL, vH), and the expected payoff for a bidder who stays out of the initial auction,

L(v, vL, vH).

π(v, vL, vH) =
nX

m=1

Cm−1
n−1 (pE)

m−1(1− pE)
n−mπ(v,m, vL, vH)

L(v, vL, vH) =
n−1X
m=1

Cm
n−1(pE)

m(1− pE)
n−m−1L(v,m, vL, vH)

=
nX

m=2

Cm−1
n (pE)

m−1(1− pE)
n−mL(v,m− 1, vL, vH)

It can be verified that given (vL, vH), π(v, vL, vH) − L(v, vL, vH) is strictly increasing in v, thus

again the entry equilibria are characterized by entry thresholds.

Proposition 3 When resale is allowed, a symmetric entry equilibrium always exists, and is unique

under certain conditions. In the case with multiple equilibria, for any two pairs of entry equilibrium

thresholds (v1L, v1H) and (v2L, v2H) where v1L < v2L, it must be the case that v1H > v2H .
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Proof. See Appendix.

So in the case of multiple equilibria, there is a natural ordering of equilibria, which is in the

increasing order of entry thresholds for type-L bidders (or equivalently, in the decreasing order of

entry thresholds for type-H bidders).12 In the proof we identify a necessary and sufficient condition

for the uniqueness of the entry equilibrium. The condition is highly technical so we refer readers

to the appendix for the details. For some limiting cases, we have identified the following sufficient

conditions (each alone is sufficient to assure that the equilibrium is unique): (1) cL and cH are

sufficiently close; (2) q is sufficiently small or sufficiently large; (3) n is sufficiently large; and (4)

cL and cH are neither too close nor too far apart, while n and q are relatively small. Conditions

(1) and (2) basically say that if bidders incur a common entry cost (or if the entry costs are almost

the same), there will be no resale; hence, the entry equilibrium is also unique (a result consistent

with Proposition 1). Condition (3) says that when n is sufficiently large, some type-H bidder or

some type-L bidder with a value higher than vH will win the item from the initial auction, which

eliminates the possibility of resale. So the symmetric entry equilibrium will also be unique.

As in the benchmark case, for cL and cH to induce interior entry thresholds for both types, i.e.,

0 < vL < vH < 1, bidders with type (vL, cL) or type (vH , cH) should be indifferent between entering

and staying out: ⎧⎨⎩ π(vL, vL, vH)− cL = 0

π(vH , vL, vH)− L(vH , vL, vH)− cH = 0
(5)

In our model, we assume that a second-price sealed-bid auction is conducted in the initial auction.

This turns out to be without loss of generality, as in our setting the revenue equivalence holds among

all standard auctions (in which the bidder with the highest bid wins the item, and the bidder with the

lowest possible value earns zero expected payoff). The reason is that all standard auctions will induce

the same entry thresholds, which guarantees the symmetric IPV setting for revenue equivalence to

hold.

Proposition 4 Given that the reseller runs an optimal auction in the resale stage, revenue equiva-

lence holds among all standard auctions conducted in the initial auction in the symmetric (entry and

bidding) equilibrium.

12This, we conjecture, may have to do with motives for speculative entry and resale hunting abstentions to be

introduced later. A lower vL implies more speculative entry, and a higher vH implies more resale hunting abstentions.

Thus, it seems intuitive that if vL decreases, vH should increase.
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Proof. See Appendix.

4 Resale versus No Resale: A Comparison

In general, it is very difficult to obtain closed-form solutions for the entry equilibrium in both the

no-resale and resale cases; nonetheless we can establish the following comparison results.

Proposition 5 Given any equilibrium entry thresholds (vL, vH) when resale is allowed, we must

have ṽL ≥ vL and ṽH ≤ vH ; in addition, if (cL, cH) induces at least one pair of interior equilibrium

thresholds in the no-resale and resale cases, we must have ṽL > vL and ṽH < vH .

Proof. See Appendix.

While resale affects bidding only for type-L bidders, it affects entry thresholds for both types.

Proposition 5 suggests that when resale is allowed, the entry threshold is lower for type-L bidders

but higher for type-H bidders. In other words, when resale is allowed, it is more likely for the

low-cost type to enter the auction, while it is more likely for the high-cost type to stay away from

the auction. For the low-cost type, bidders with v ∈ (vL, ṽL) can be referred to as entry speculators,

since they enter the auction simply because the resale opportunity is available. On the other hand,

for the high-cost type, bidders with v ∈ (ṽH , vH) can be referred to as resale hunters, as they stay

out only because the resale opportunity is available and they might be able to obtain the item from

the post-auction resale.

Closed-form solutions are generally unavailable in our model. In order to understand how resale

opportunities affect entry, revenue, and efficiency, we turn to numerical computations by following

a generalized uniform distribution family, F (x) = xα, where α ≥ 1. Our main numerical findings

suggest that expected entry is higher when resale is allowed, but the effects of resale on expected

revenue and efficiency are both ambiguous. So while resale induces more entry by type-L bidders

and less entry by type-H bidders, overall expected entry increases with resale in our numerical

examples. The ambiguous effect of resale on expected revenue can be explained intuitively in our

setting. As implied in Propositions 2 and 5, resale induces the competition effect (type-L bidders bid

more aggressively) and displacement effect (high-valued type-H bidders are replaced by low-valued

type-L bidders). While the competition effect pushes up expected revenue, the displacement effect

works in the other direction. Thus, the net impact of resale on expected revenue depends on which

effect dominates, and either effect may dominate in our setting. The ambiguous effect of resale
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on efficiency, however, goes against the notion that resale should help correct the inefficiency that

resulted from the initial auction (although the correction may not be complete due to a nontrivial

reserve price used in the resale auction). Such a notion is generally correct in settings with a fixed set

of (symmetric) bidders, but fails in our setting where the set of bidders is endogenously determined

by costly entry. The reason is that, while resale tends to increase the expected value realized from the

sale (conditional on entry), the set of entrants with resale is not necessarily optimal in maximizing

the efficiency measure in our setting (i.e., the expected value of the final item owner less the expected

total entry cost incurred). This, we believe, has to do with the displacement effect induced by resale

opportunities. Mainly due to the displacement effect, the expected value of the final item owner may

go down with resale, making it possible that welfare may also go down. This intuition is basically

confirmed in our identified cases where the welfare goes down with resale. In those cases, both the

expected value and expected entry cost go down, but the reduction in the expected value is more

than the savings in the expected entry cost, giving rise to lower efficiency when resale is allowed.

5 Discussion

Our analysis relies on several key assumptions. First, we assume that there is no participation

cost for resale. The omission of entry costs for resale would be easier to justify in the contexts

where the participation cost for resale is on a much smaller scale compared to the entry cost for

the initial auction. This would be the case, for example, when the initial auction is conducted by

some public authority that usually imposes stringent qualification requirements for bidding, while

the resale is organized by some private parties, which is presumably more decentralized and less

costly to participate.

This being said, we assume away the entry cost for resale, cR, mainly for tractability; otherwise

our analysis can easily get very involved. With cR > 0, all the endogenously determined variables,

including the equilibrium entry thresholds to the initial auction vL and vH , will also depend on

cR. The other complication is that the resale mechanism is now an auction with costly entry as

well. Since optimal auctions with costly entry are typically different from optimal auctions a la

Myerson, the optimal reserve price set by the reseller should not only take into account the traditional

tradeoff between efficiency and rent extraction, but should also induce the optimal entry, which is

characterized by the entry threshold for the resale, vR. To see how complicated the analysis of the

resale subgame would be, note that vR depends on, in particular, vw, the reseller’s value, and m, the
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number of the entrants in the initial auction.13

Other than the technical complications, with costly entry to resale, the entry equilibrium should

still be characterized by entry thresholds, and the motives for speculative entry and resale hunting

should still be present. For this reason we believe that the main insights of our analysis should carry

over, even if one can manage to work out a model with costly entry to resale.

Our analysis has also been focusing on symmetric entry equilibria, in which bidders of the same

entry cost type follow the same entry threshold. As first demonstrated by Samuelson (1985) and

Stegeman (1996), asymmetric entry equilibria, in which bidders of the same entry cost type follow

different entry thresholds, may also exist.14 While the previous work focuses on the case in which

all the bidders have the same (and publicly known) entry cost, we focus on the case in which entry

costs are private information and may differ among different bidders. However, the essence of their

analysis should carry over, and we believe that asymmetric entry equilibria should also exist in our

setting.

In the presence of multiple equilibria, coordination on entry is desirable. In fact, Stegeman

(1996) shows that the second-price auction achieves the highest efficiency level as long as bidders

can coordinate on an asymmetric entry equilibrium. Campbell (1998) further demonstrates that, if

preplay communication is possible, bidders’ expected payoffs can be improved in some cheap-talk

equilibrium. We believe that pre-communication should be particularly effective for our case with

multiple symmetric entry equilibria. For ease of illustration, we consider a simplest case where there

are only two potential bidders, n = 2. Suppose there are two entry equilibria, characterized by

(v1L, v1H) and (v2L, v2H), where, without loss of generality, v1L < v2L < v2H < v1H (Proposition

3). Suppose the realized types are (cL, v1) and (cH , v2), where v2L < v2 < v2H and v1L < v1 < v2L.

If both bidders coordinate on the second equilibrium, no one enters and the payoffs are both zero.

However, if bidder 2 signals that she will not enter in a preplay cheap-talk game (which is credible

as doing so never hurts and can only benefit), then bidder 1 will enter for sure (who will then win

the auction and resell the item to bidder 2). Clearly, in this example cheap talk allows bidders to

coordinate on entry and secure the best outcome. As illustrated by this simple example, the resale

13When resale is initiated, the reseller announces a reserve price (based on vw and m). The potential buyers will

then make their entry decisions simultaneously and independently.

14Following Stegeman (1996), conditions for the existence of asymmetric entry equilibria are identified by Campbell

(1998) and Tan and Yilankaya (2006) under a second-price auction, and by Cao and Tian (2010) under a first-price

auction.
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opportunities reinforce the effectiveness of the type of cheap talk as proposed in Campbell (1998).15

We assume that entry costs and valuations are statistically independent. So, we do not allow for

correlations between bidders’ two-dimensional types. One justification is that there does not seem

to be a consensus in the literature over whether the values and entry costs should be positively or

negatively correlated. But if for some reason we believe that valuations and entry costs are positively

correlated then this may be captured by a model where the values of type-H bidders are drawn from

F (·|c = cH) and the values of type-L bidders are drawn from F (·|c = cL), where F (·|c = cH) first-

order stochastically dominates F (·|c = cL). Such an environment should make a stronger case for

our main results as it will strengthen both the speculative and resale hunting incentives.

Finally, a weakness of our analysis is that we fail to obtain analytical welfare comparison results.

One may wonder that this intractability is due to the complication of maintaining incomplete infor-

mation for the resale stage. With complete information at the resale stage, however, we can employ

the standard Nash bargaining solution to determine the resale outcome, which may potentially sim-

plify our welfare analysis. In Xu et al. (2010), we provide this very analysis by modeling resale

under complete information. In addition, we further simplify the analysis by focusing on two bidders

only (n = 2). With n = 2, it is clear that resale only affects entry but not bidding strategies.16

Thus, in a sense, Xu et al. offer the simplest possible framework that models resale under complete

information. With all those simplifications, however, we still fail to obtain analytical welfare results.

Besides, given that resale is conducted under complete information and that the Nash bargaining

solution is employed, there is no efficiency loss in the resale stage, which may potentially bias the

efficiency comparison. This is likely the case as all the numerical examples in Xu et al. suggest

that welfare can only go up with resale. Given that modeling resale as complete information does

not really help with analytical welfare results and may potentially bias the welfare comparison, the

incomplete information model of resale is adopted in this present paper, as it is more realistic and

renders more complete picture of the welfare effects of the resale.

15We are not aware of any existing work on communicating entry costs via cheap talk. A closely related idea is to

run a pre-auction mechanism to elicit truthful reports on entry costs, and the set of final bidders are then determined

contingent on the reported entry cost types. Lu and Ye (2012) provide such an analysis in a model where bidders incur

private entry costs before they learn their valuations.

16When both bidders enter the auction, the outcome will be efficient so there will be no resale; when only one bidder

enters the auction, there will be no competition in bidding. In either case, bidding is not affected by the opportunity

of resale.
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6 Conclusion

In this paper we explicitly take into account the possibility of post-auction resale in an auction

model with entry where bidders possess two-dimensional private information. We demonstrate that

the symmetric entry equilibrium is characterized by entry thresholds, and we identify conditions

under which such an equilibrium is unique. We show that compared to the no-resale case, resale

opportunities make entry more likely for bidders with low entry costs and low values, and less likely

for bidders with high entry costs and high values. In other worlds, resale introduces motivation for

both speculative entry and resale hunting abstentions.

When valuations follow some generalized uniform distributions, our numerical results suggest that

allowing resale always increases expected entry, but the effects on expected revenue and efficiency

are both ambiguous. The implication is that a market regulator, whose objective is to maximize the

social surplus, should exercise caution in suggesting whether or not resale should be permitted in

auction settings similar to what is under our consideration.

Our analysis relies on several key assumptions. We have discussed the restrictions and argued

that simplifications are made mainly for ease of analysis, without compromising main results and

main insights of our analysis. Relaxation of those assumptions to allow for a more general analysis

on entry and resale is left for future research.

Appendix

Proof of Proposition 1: We will first consider the case with interior entry thresholds (0 < vL <

vH < 1) and then the case with corner solution (0 < vL < vH = 1).

Define Ỹ = {(cL, cH) : π̃(x1, x1, x2) = cL and π̃(x2, x1, x2) = cH for some x1, x2 where 0 < x1 <

x2 < 1}. That is, Ỹ is the set of all pairs of (cL, cH) that can induce interior entry thresholds. When

(cL, cH) ∈ Ỹ , it is obvious that any (ṽL, ṽH) that solves the equation system (1) is a pair of symmetric

equilibrium entry thresholds because given (ṽL, ṽH), the function π̃(v, ṽL, ṽH) is strictly increasing

in v. Next we show the uniqueness of equilibrium for this case. We can rewrite the equation system

(1) as follows:

π̃(x1, x1, x2) = [qF (x1) + (1− q)F (x2)]
n−1x1 = cL

π̃(x2, x1, x2)− π̃(x1, x1, x2) =

Z x2

x1

[qF (z) + (1− q)F (x2)]
n−1dz = cH − cL
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It can be easily verified that the signs of the first-order partial derivatives are given below:

∂π̃(x1, x1, x2)/∂x1 > 0, ∂π̃(x1, x1, x2)/∂x2 > 0,

∂[π̃(x2, x1, x2)− π̃(x1, x1, x2)]/∂x1 < 0, ∂[π̃(x2, x1, x2)− π̃(x1, x1, x2)]/∂x1 > 0.

Let D̊ = {(x1, x2) : 0 < x1 ≤ x2 < 1}. Applying the implicit function theorem, there exists a

unique, continuously differentiable function, φ(·, cL) : (0, 1)→ (0, 1), such that

{(x1, φ(·, cL)) : x1 ∈ (0, 1)} = {(x1, x2) ∈ D̊ : π̃(x1, x1, x2) = cL}. In D̊, φ(x1, cL) is strictly

decreasing in x1. Similarly, there exists a unique, continuously differentiable function, ψ(·, cH) :

(0, 1)→ (0, 1), such that

{(x1, ψ(·, cH)) : x1 ∈ (0, 1)} = {(x1, x2) ∈ D̊ : π̃(x2, x1, x2) = cH} and ψ(x1, cH) is strictly

increasing in x1.

To solve the equation system (1), we can solve from π̃(φ(x1, cL), x1, φ(x1, cL)) = cH for x1 first,

and then obtain x2 from x2 = φ(x1, cL). Based on the signs of all the first-order partial derivatives,

we have

dπ̃(φ(x1, cL), x1, φ(x1, cL))

dx1
=

∂π̃(x2, x1, x2)

∂x1
|x2=φ(x1,cL) +

∂π̃(x2, x1, x2)

∂x2
|x2=φ(x1,cL) ·

∂φ(x1, cL)

∂x1
> 0.

Therefore, as long as there exists at least one solution x∗1 to the equation π̃(φ(x1, cL), x1, φ(x1, cL)) =

cH , the solution is unique. A unique x∗1 also induces a unique x
∗
2 because ∂φ(x1, cL)/∂x1 < 0.

Now we consider the case (cL, cH) /∈ Ỹ , where entry thresholds involve some corner solution. In

this case, the following conditions must hold: π̃(ṽL, ṽL, 1) = cL, π̃(1, ṽL, 1) ≤ cH , and 0 ≤ ṽL < 1.

That is, all type-H bidders prefer staying out, and no bidder has an incentive to deviate from the

entry thresholds (ṽL, 1) (as given ṽL, π̃(v, ṽL, 1) is strictly increasing in v).

The existence of ṽL in this case is obvious given that π̃(0, 0, 1) = 0 < cL and π̃(1, 1, 1) = 1 > cL.

The uniqueness is also trivial as the solution of ṽL is unique given that ∂π̃(x1, x1, x2/∂x1 > 0.

Proof of Proposition 2: First we show that β(·,m, vL, vH) constitutes a symmetric (strictly)

increasing equilibrium bid function in the initial auction subgame. Given that everyone else bid

according to β(·,m, vL, vH), we will show that there is no incentive for a bidder with value v to

deviate from bidding β(v,m, vL, vH).

1. No incentive to overbid β(v,m, vL, vH). Clearly, over-bidding affects the outcome only when

the deviating bidder wins against some other bidder whose bid is higher than β(v,m, vL, vH).

Suppose that bidder’s value is u. Then the deviating bidder’s payment in the initial auction
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is β(u,m, vL, vH), and the value of u is fully revealed to her (since β(·,m, vL, vH) is strictly

increasing, u can be inverted from the bid). The deviating bidder can first try to resell the

item to the outsiders using an optimal auction. If the resale fails, she can sell the item to the

bidder with value u at the price u (the overbidding opens the possibility of selling the item to a

losing bidder). This procedure leads to an expected payoff of β(u,m, vL, vH), which is exactly

the payment she made to obtain the item from the initial auction. This shows that she does

not find it profitable to overbid.

2. No incentive to underbid β(v,m, vL, vH). First of all, bidding less than β(vL,m, vL, vH) is not

profitable, as this amount is the lowest possible rival bid. Assume that this bidder mimics type

v̂, vL ≤ v̂ < v and that z is the value of the highest rival. Under-bidding affects the outcome

only when v̂ < z < v, namely, when she loses while she is not supposed to.

(a) When z ≥ vH , there is no resale. The bidder is worse off by deviating.

(b) When vH ≥ z ≥ r−1(min{v, vH}), the deviant’s contingent payoff from resale (as a buyer)

will be 0 as v ≤ r(z) almost surely,17 while her equilibrium payoff will be positive.

(c) When z < r−1(min{v, vH}), w(z,m, vL, vH) is the highest rival’s bid. We will argue

that given any z, there is no benefit from deviation. Note that if the bidder in question

does not deviate, the expected payoff conditional on entry should be β(v,m, vL, vH) −

w(z,m, vL, vH) ≥ v − w(z,m, vL, vH). If she deviates, the expected payoff is:

[Fout(r(z))]
n−m(v − r(z)) + C1n−m[Fout(v)− Fout(r(z))][Fout(r(z))]

n−m−1[v −E(x|r(z) ≤ x ≤ v)]

+

Z min{v,vH}

r(z)
(v − x)f

(1)
out,n−m(x)dx

< [Fout(r(z))]
n−m(v − z) + C1n−m[1− Fout(r(z))][Fout(r(z))]

n−m−1(v − r(z))

+

Z vH

r(z)
(v − x)f

(2)
out,n−m(x)dx

= v − w(z,m, vL, vH).

So there is no profitable deviation for underbidding either. This shows that β(·,m, vL, vH) is a

symmetric equilibrium bid function in the initial auction subgame.

Next, we establish the uniqueness of the equilibrium in the claimed class. Given any sym-

metric (strictly) increasing equilibrium bid function β̃(·,m, vL, vH), we claim that β̃(·,m, vL, vH) ≥

17 If v > vH , we have vH ≥ z ≥ r−1(vH) = vH , which holds with probability zero.
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β(·,m, vL, vH). Suppose, in negation, β̃(v,m, vL, vH) < β(v,m, vL, vH) for some v ∈ (vL, vH). Then

a bidder with such a value v will be strictly better off by bidding β(v,m, vL, vH) instead. To see

this, the deviation only matters in the event that the bidder wins rather than loses the auction

simply because of the deviation. When she wins with the bid β(v,m, vL, vH), she pays an amount

strictly less than β(v,m, vL, vH). Since her expected payoff from resale is at least β(v,m, vL, vH),

the proposed deviation is profitable.18 Thus we must have β̃(·,m, vL, vH) ≥ β(·,m, vL, vH). Now we

show that β̃(·,m, vL, vH) = β(·,m, vL, vH). Suppose, in negation, β̃(v,m, vL, vH) > β(v,m, vL, vH)

for some v ∈ (vL, vH). But then a bidder with such a value v will be strictly better off by bidding

β(v,m, vL, vH): this deviation only matters in the event that she loses rather than wins the auction

simply because of the deviation. However, in that case she would have won with a payment higher

than β(v,m, vL, vH), which is her expected payoff from resale.19 By deviating to β(v,m, vL, vH) to

lose the auction, her expected payoff is at least zero: with a positive probability, her value is higher

than the winner’s optimal reserve price in resale (since β̃(·,m, vL, vH) > β(·,m, vL, vH)). So the

deviation is profitable. This shows that β(v,m, vL, vH) is the unique symmetric (strictly) increasing

equilibrium bid function in the initial auction.

Finally, note that w(vH ,m, vL, vH) = vH (when the initial auction winner’s value is vH , there is no

scope for resale). Moreover, by (4), we have ∂w/∂v = Fout(r(v))
n−m < 1. Thus, w(vH ,m, vL, vH) > v

for v ∈ [vL, vH), and w(vH ,m, vL, vH)− v is decreasing in v.

Proof of Proposition 3: Define Y = {(cL, cH) : π(x1, x1, x2) = cL and π(x2, x1, x2)−L(x2, x1, x2) =

cH for some x1, x2 where 0 < x1 < x2 < 1}. That is, Y is the set of all pairs of (cL, cH) that can

induce interior entry thresholds.

We first show that when (cL, cH) ∈ Y , any solution to the equation system (5) characterizes a

pair of equilibrium thresholds for entry.

When a bidder’s entry cost is cL and her value is lower than vL, she does not benefit from entry

because given that everyone else follows the entry thresholds (vL, vH), her expected payoff from

entry, (1 − pE)
n−1w(v, 1, vL, vH), is strictly increasing in v. When a bidder’s entry cost is cL and

her value is higher than vL, her expected payoff from staying out, L(v, vL, vH), is lower than her

18When the item is auctioned among the outsiders only, the expected payoff from resale is β(v,m, vL, vH). Since

β̃(v,m, vL, vH) < β(v,m, vL, vH), the highest losing bidder from the initial auction may also demand the item. Hence

the expected payoff is at least β(v,m, vL, vH).

19 If she bids β̃(v,m, vL, vH) and wins, all the other entrant bidders have values lower than v (as β̃(·,m, vL, vH) is

strictly increasing). So the demand in the resale auction will only come from the outsiders.
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equilibrium payoff, π(v, vL, vH) − cL (as π(v, vL, vH) − L(v, vL, vH) is strictly increasing in v and

π(vL, vL, vH) − L(vL, vL, vH) = cL). Similarly, bidders with entry cost cH do not have incentive to

deviate from the entry threshold vH .

When (cL, cH) ∈ (0, 1)× (0, 1)\Y , i.e., when (cL, cH) fails to induce interior entry thresholds for

both types H and L, the equilibrium is determined by one of the following three cases (involving at

least one corner threshold):

1. All type-L bidders prefer entry (vL = 0): π(0, 0, vH) ≥ cL, π(vH , 0, vH) − L(vH , 0, vH) = cH ,

and 0 < vH ≤ 1. No bidder has an incentive to deviate because π(v, 0, vH)−L(v, 0, vH) strictly

increases in v.

2. All type-H bidders prefer staying out (vH = 1): π(vL, vL, 1) = cL, π(1, vL, 1) − L(1, vL, 1),

0 ≤ vL < 1. No bidder has an incentive to deviate because π(v, vL, 1) strictly increases in v.

3. vL = 0 and vH = 1, i.e., all type-L bidders enter the initial auction and all type-H bidders stay

out.

Hence an entry equilibrium involving corner solution always exists.20 The uniqueness of equilib-

rium is also obvious.

We next turn to the uniqueness of the equilibrium with interior thresholds for both types. We

will identify conditions under which the equilibrium is unique.

To simplify notation, we substitute vL = x1 and vH = x2 into the equation system (5) to

obtain ⎧⎨⎩ π(x1, x1, x2)− cL = 0

π(x2, x1, x2)− L(x2, x1, x2)− cH = 0
(6)

As in the proof of Proposition 1, we will employ the implicit function theorem. Based on the two

indifference conditions in (6), we will first solve x2 in terms of x1 to obtain η(x1, cL) and ϕ(x1, cH),

respectively. The solution(s) for x1 is then obtained by equating η(x1, cL) and ϕ(x1, cH). We will

identify conditions under which the solution for x1 (and hence the solution for the equilibrium) is

unique.

In (6), it is obvious that ∂π(x1, x1, x2)/∂x1 > 0 and ∂π(x1, x1, x2)/∂x2 > 0 when x1 6= x2. The

reason is as follows: π(x1, x1, x2) is the expected payoff for a bidder with value x1, when the pair

20The characterization is due to the conditions ∂π(vL, vL, vH)/∂vL > 0 and ∂ [π(vH , vL, vH)− L(vH , vL, vH)] /∂vH >

0 when vL 6= vH , which are demonstrated below.
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of thresholds is (x1, x2). Fixing x2, when x1 increases to x1 + ε, we have π(x1 + ε, x1 + ε, x2) >

π(x1, x1 + ε, x2) > π(x1, x1, x2). The second inequality is due to two effects: first, the chance for a

bidder to enter alone is higher when the lower threshold is x1 + ε; second, conditional on entering

alone, a bidder’s expected payoff from resale is higher: even if she still uses the optimal reserve price

(in the resale) when the lower threshold is x1, her payoff from resale is higher than before (with the

lower threshold x1, the potential buyers in resale are those with cH and v ∈ (x1, x2); with threshold

x1 + ε, in addition to those bidders, potential buyers also include the bidders with cL and v ∈ (x1,

x1+ ε)). In the resale, the previously set reserve price can generate an expected payoff which cannot

be higher than the current maximal payoff. Therefore, we have π(x1, x1 + ε, x2) > π(x1, x1, x2).

Fixing x1, when x2 increases, π(x1, x1, x2) also increases: the probability for one to enter alone

increases and the expected payoff from resale conditional on entering alone also increases. We also

have

∂[π(x2, x1, x2)− L(x2, x1, x2)]/∂x1 = (n− 1)qf(x1){[qF (x1) + (1− q)F (x2)]
n−2x2

+

Z x2

x1

[qF (x1) + (1− q)F (r(x))]n−2[r0(x)− 1]dx}

> (n− 1)qf(x1){[qF (x1) + (1− q)F (x2)]
n−2x2

−[qF (x1) + (1− q)F (x2)]
n−2(x2 − x1)}

= (n− 1)qf(x1)[qF (x1) + (1− q)F (x2)]
n−2x1

> 0.

∂[π(x2, x1, x2)− L(x2, x1, x2)]/∂x2 = (n− 1)(1− q)f(x2)[qF (x1) + (1− q)F (x2)]
n−2x2

+[qF (x1) + (1− q)F (x2)]
n−1

> 0

By the implicit function theorem, there exists a unique, continuously differentiable function η(·, cL),

such that {(x1, η(x1, cL)) : x1 ∈ (0, 1)} = {(x1, x2) ∈ D̊ : π(x1, x1, x2) = cL} and a unique, con-

tinuously differentiable function ϕ(·, cH), such that {(x1, ϕ(x1, cH)) : x1 ∈ (0, 1)} = {(x1, x2) ∈ D̊ :

π(x2, x1, x2)− L(x2, x1, x2) = cH}.

Applying the chain rule, given cL and cH , both η(x1, cL) and ϕ(x1, cH) are decreasing in x1.

Since x1 is obtained by η(x1, cL) = ϕ(x1, cH), without further information, the uniqueness for x1

is not straightforward. However, in the case with multiple equilibria, for any two entry equilibrium
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thresholds (v1L, v1H) and (v2L, v2H), if v1L < v2L, it must be the case that v1H = η(v1L, cL) >

η(v2L, cL) = v2H , that is, there is a natural ranking for the multiple equilibria.

Next we derive sufficient conditions under which the pair of equilibrium entry thresholds is unique.

As mentioned above, to solve the equation system (6) is equivalent to identifying the intersection(s)

between η(x1, cL) and ϕ(x1, cH) (the existence has already been established). Since both η(x1, cL)

and ϕ(x1, cH) are, given cL and cH , decreasing in x1, an immediate sufficient condition is that

∂η(x1, cL)/∂x1 < ∂ϕ(x1, cL)/∂x1 or ∂η(x1, cL)/∂x1 > ∂ϕ(x1, cL)/∂x1 for any x1 ∈ (0, 1).

If we define

∆(x1, q, n, cL, cH) , ∂π(x1, x1, x2)

∂x1
|x2=η(x1,cL) ·

∂[π(x2, x1, x2)− L(x2, x1, x2)]

∂x2
|x2=ϕ(x1,cH)

−∂π(x1, x1, x2)
∂x2

|x2=η(x1,cL) ·
∂[π(x2, x1, x2)− L(x2, x1, x2)]

∂x1
|x2=ϕ(x1,cH),

the necessary and sufficient condition for the uniqueness is that ∆(x1, q, n, cL, cH) does not change

the sign at any x1 where η(x1, cL) = ϕ(x1, cH) (otherwise there would be multiple solutions for x1).

Hence any condition under which

∆̄(x1, x2, q, n) , ∂π(x1, x1, x2)

∂x1
· ∂[π(x2, x1, x2)− L(x2, x1, x2)]

∂x2

−∂π(x1, x1, x2)
∂x2

· ∂[π(x2, x1, x2)− L(x2, x1, x2)]

∂x1

does not change sign for any (x1, x2) ∈ D̊ is a sufficient condition for the uniqueness. Moreover, if

∆̄(x1, x2, q, n) does not change sign for any (x1, x2) ∈ D̂, where D̂ ⊂ D̊, we have that the corre-

sponding set of (cL, cH) generates a unique pair of equilibrium thresholds.

We do not give the expression for ∆̄(x1, x2, q, n) here because doing so would be tedious. Never-

theless we can evaluate the following cases:

1. When cL = cH , η(x1, cL) = ϕ(x1, cH) = x1 and x2 = x1:

∆̄(x1, x2, q, n) = (1− pE)
n−1∂π(x1, x1, x2)

∂x1

+(n− 1)(1− q)f(x2)(1− pE)
n−2[qF (x1) + (1− q)F (r(x1))]

n−1x2

> 0.

This condition implies that when cL and cH are sufficiently close, the solution to the equation

system (5) is unique.

22



2. We also have

lim
q→0
∆̄(x1, x2, q, n) > (n− 1)f(x2)(1− pE)

n−2[qF (x1) + (1− q)F (r(x1))]
n−1x2 > 0

lim
q→1
∆̄(x1, x2, q, n) = lim

q→1
(1− pE)

n−1∂π(x1, x1, x2)

∂x1
> 0

These two conditions imply that when q is sufficiently small or sufficiently large,∆(x1, q, n, cL, cH) >

0.

3. Taking the limit, we have21

lim
n→∞

∆̄(x1, x2, q, n) = lim
n→∞

−(n− 1)3q(1− q)f(x1)f(x2)(1− pE)
n−2x2

·
Z x2

x1

[qF (x1) + (1− q)F (r(x))]n−2 r0(x)

∙
(1− pE)

qF (x1) + (1− q)F (r(x))
− n− 2

n− 1

¸
dx

= 0−

This condition implies that when n is sufficiently large, ∆̄(x1, x2, q, n) < 0.

4. Define M(x1, x2, n) =
R x2
r(x1)

h
(n− 1) qF (x1)+(1−q)F (x2)

qF (x1)+(1−q)F (r(x)) − (n− 2)
i
f(x1)
f(x) dx. When the following

inequality holds: Z x2

x1

[qF (x1) + (1− q)F (r(x))]n−2[1− r0(x)]dx

≤ (1− pE)
n−2x2

Z x2

x1

∙
qF (x1) + (1− q)F (x2)

qF (x1) + (1− q)F (r(x))
− n− 2

n− 1

¸
dx,

∆̄(x1, x2, q, n) > 0 as long as (1−pE)n−1/[qF (x1)+(1−q)F (r(x1))]n−1 ≤ (1− q) / [qM(x1, x2, n)]+

1. These two conditions can be satisfied when x1 and x2 are not too close nor too far apart

(which also means that cL and cH are not too close nor too far apart), and q, n are relatively

small.

Proof of Proposition 4: We will show that in the symmetric (entry and bidding) equilibrium, all

standard auctions will lead to the same expected payoffs (revenue equivalence).

First we claim that given the same induced entry thresholds, say, (vL, vH), revenue equivalence

holds. To see this, given m, the number of entrants induced by the thresholds (vL, vH), the reseller

faces n−m outside bidders with values independently drawn from Fout(·). As the resale mechanism is

fixed (which is an optimal auction), the reseller’s expected payoff from resale is the same. Similarly,

21Several other terms are omitted below, as those terms converge to 0 much faster.
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for outside bidders, the expected payoff conditional on staying out is also invariant across different

(standard) auction formats. In the initial auction, the m entrants’ values are independently drawn

from Fin(·). Hence the symmetric IPV paradigm applies and the revenue equivalence follows. Since

revenue equivalence holds given any realized m, it also holds ex ante (before m is realized); in other

words, an auction induces the same expected payoffs as long as it induces the same entry thresholds.

But auctions with the same expected payoffs (for the seller and bidders) will indeed induce the

same symmetric entry thresholds. Thus the claim established in the preceding paragraph and the

same entry thresholds are self-enforcing, implying that revenue equivalence holds in the symmetric

(entry and bidding) equilibrium among all standard auctions.

Proof of Proposition 5: First we show that if at least one pair of equilibrium thresholds are

interior, we have ṽL > vL and ṽH < vH . We will proceed by ruling out all the other cases:

1. ṽL ≤ vL and ṽH ≤ vH . If this is true, we immediately have 1− p̃E ≤ 1− pE. This implies that

cL = (1− p̃E)
n−1ṽL ≤ (1− pE)

n−1vL < (1− pE)
n−1w(vL, 1, vL, vH) = cL, a contradiction.

2. ṽL ≥ vL and ṽH ≥ vH . Because ṽH ≥ vH , we know the bidder with type (cH , vH) has a higher

payoff in the resale than in the no-resale case. However, this cannot happen when ṽL ≥ vL

and ṽH ≥ vH both hold. To see why, if ṽL ≥ vL and ṽH ≥ vH , there will be more entrants

with resale; Moreover, type-H bidders bid their values, which is the same as in the no-resale

case, while type-L bidders bid more aggressively (Proposition 2). Therefore, the expected

payoff conditional on entry for the bidder with vH can only be lower in the resale case, a

contradiction.

3. ṽL ≤ vL and ṽH ≥ vH . Since ṽL ≤ vL, we have π(ṽL, vL, vH) ≤ cL. Since π(ṽL, vL, vH) =

(1−pE)n−1w(ṽL, 1, vL, vH) and w(ṽL, 1, vL, vH) > ṽL, we have (1−pE)n−1ṽL < π(ṽL, vL, vH) ≤

cL = (1 − p̃E)
n−1ṽL. We thus have pE > p̃E . Next we consider the equilibrium payoff for

a bidder of type (ṽH , cH) in the resale case. Her expected payoff conditional on entry is

π̃(ṽH , ṽL, ṽH) in the no-resale case and is π(ṽH , vL, vH) in the resale case, while π(ṽH , vL, vH) ≥

cH and π̃(ṽH , ṽL, ṽH) = cH . This implies that by entering the auction, this bidder will have

a higher expected payoff in the resale case. However, we will argue that bidders bid more

aggressively in the resale case. First, in the resale case type-L bidders with v ∈ (vL, ṽH)

bid their expected payoff from resale instead of their own values, and these bidders also enter

the auction in the no-resale case. Second, type-L bidders with v ∈ (ṽL, vL) stay out in the
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resale case. However, this effect of reduced competition is more than offset by the entry of

type-H bidders with v ∈ (vH , ṽH), as in a probability sense, there will be more type-H bidders

with v ∈ (vH , ṽH) than type-L bidders with v ∈ (ṽL, vL), given pE > p̃E as established above.

Therefore, the bidder with ṽH faces more entry by other bidders and will make a strictly higher

expected payment in every winning event, contradicting π(ṽH , vL, vH) ≥ π̃(ṽH , ṽL, ṽH).

Next we show that when equilibrium thresholds involve some corner solution(s), we have ṽL ≥ vL

and ṽH ≤ vH . As demonstrated in the proof of Proposition 3, when (cL, cH) fails to induce interior

entry thresholds for both types H and L, the equilibrium is determined by three cases (involving at

least one corner threshold).

In the first case (vL = 0 and vH ∈ (0, 1]), 0 = vL ≤ ṽL holds trivially, and vH ≥ ṽH is also true. If

we suppose not, similar arguments paralleling those in the second case above lead to contradiction.

In the second case (vH = 1 and vL ∈ [0, 1)), 1 = vH ≥ ṽH holds trivially, and vL ≤ ṽL is also true.

If we suppose not, similar arguments paralleling those in the first case above lead to contradiction.

In the third case (vL = 0 and vH = 1), 0 = vL ≤ ṽL and 1 = vH ≥ ṽH hold trivially.
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