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Abstract

We investigate a private value auction in which a single �entrant�on winning imposes a negative

externality on two �regular�bidders. In an English auction when all bidders are active, �regular�

bidders free ride, exiting before price reaches their values. In a �rst-price sealed-bid auction incentives

for free riding and aggressive bidding coexist, limiting free riding compared to the English auction. We

�nd substantial, though incomplete, free riding in the clock auction. In �rst-price auctions, regular

bidders bid more aggressively than the �entrant� and both bid higher than in auctions with no

externality. Predictions regarding revenue, e¢ ciency, and successful entry between the two auctions

are satis�ed.
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1 Introduction

The standard literature on auctions considers isolated markets with bidders that are ex ante identical

and independent, so that losing bidders get a zero payo¤ (or the same payo¤ they have before the

auction).1 However, in cases where auctions take place within a broader economic framework this is not

always the case, as auction participants may be competitors or cooperators in the relevant aftermarket.

This paper considers the case where one of the competitors, on winning the auction, imposes a negative

externality in the aftermarket. The negative externality is identity dependent, non-reciprocal, and on

multiple competitors. We consider the simplest possible model to characterize all of these features: a

single-object private value auction with three bidders where an �entrant,�conditional on winning the

item, imposes a negative externality on two (incumbent) �regular�bidders. An example is a takeover

auction where one of the bidders is hostile, and the other bidders will be worse o¤ if the hostile bidder

wins. This negative externality is non-reciprocal since there is no externality if any of the non-hostile

bidders win. Another example is a patent auction where all but one of the bidders are incumbents who

already possess similar technologies, while the remaining bidder is a potential entrant. If the potential

entrant wins, he will add more competition to the industry and take market share from the other

bidders. On the other hand, if an incumbent wins, the market structure will remain more or less the

same and no negative externality will be imposed on the other incumbents.

We examine the e¤ect of a negative externality of this sort in both an English (clock) ascending

price auction and a �rst-price sealed-bid (FPSB) auction. Intuitively, one might expect more aggressive

(higher) bids in an auction with a negative externality. However, our equilibrium analysis shows that

conditional on all three bidders being active in the clock auction, a regular bidder with a relatively

low valuation will have incentive to drop out at a price lower than his value in an e¤ort to free ride

on a regular bidder with a higher valuation. However, once a regular bidder has dropped out, the

remaining regular bidder will bid up to his value plus the absolute value of externality. In a sense,

the clock auction provides a mechanism for the regular bidders to �coordinate� on when to free ride

and when to bid aggressively. The FPSB auction, in contrast, provides no such opportunity because of

no information revelation. In this case, both regular bidders bid more aggressively (higher) than the

potential entrant, and the entrant in turn bids more aggressively than in an ordinary auction with no

negative externality.

1See, for example, Milgrom and Weber (1982), Myerson (1981), Riley and Samuelson (1981) and Vickrey (1961).
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We conduct an experiment to examine whether the free-riding feature of the clock auction is present

in the laboratory, as well as how closely subjects follow the other equilibrium predictions. In the clock

auctions there is substantial, but far from complete, free riding on the part of regular bidders, which is

roughly consistent with what the theory predicts. Further, in the clock auctions when two bidders are

active, bids are close to equilibrium for regular bidders but not for entrants: Regular bidders drop out

close to their value when the remaining bidder is also a regular, and at their value plus the externality

when the remaining bidder is an entrant. While a number of entrants follow the dominant strategy

of bidding up to their value, a considerable number consistently bid above their value. We relate this

behavior to spitefulness, similar to results reported in Andreoni et al. (2007) in second-price auctions

when bidders�valuations are common knowledge. In the FPSB auctions, consistent with theoretical

predictions, regular bidders bid more aggressively (higher) than entrants and, as predicted, entrants

tend to bid more aggressively compared to a FPSB auction without an externality. In the experiment,

the clock auction generates higher e¢ ciency and lower revenue than in the FPSB auction, consistent

with the theory. Finally, entrants win more often in the FPSB auctions than in the clock auctions.

Thus, to the extent one can draw policy implications from the present experiment, to encourage entry

policy makers should adopt a FPSB auction rather than a clock auction.

There has been some theoretical work on closely related questions to the one investigated here.

Jehiel and Moldovanu (1995) show that negative externalities may cause delays in negotiation, and

Jehiel and Moldovanu (1996) investigate a case where a potential bidder cannot avoid the negative

externality even if he does not participate in the auction. Jehiel et al. (1996) study mechanism design

issues in auctions with negative externalities and show that the seller can sometimes obtain a greater

pro�t by not selling the item.2 Caillaud and Jehiel (1998) suggest that collusion will be imperfect if

a buyer is worse o¤ when his rival wins the object, to the point that the seller can design an auction

to bene�t from the (imperfect) collusive behavior of the bidders. Das Varma (2002) studies auctions

with identity-dependent externalities which are one-to-one and are either reciprocal or non-reciprocal.

Ettinger (2003) considers a situation where the losers of an auction care about the price paid by the

winner as a result of various types of price externalities. He shows that a second-price auction can

exacerbate the price externalities compared to a �rst-price auction. Finally, Hoppe et al. (2006)

consider a license auction among both incumbents and entrants. They also demonstrate (albeit in a

complete information setting) that free-riding may arise due to potential competition among incumbents,

2Jehiel et al. (1999) analyze auctions with externalities following a multidimensional mechanism design approach.
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which accounts for the counter-intuitive result that auctioning more licenses may not lead to a more

competitive outcome.

To the best of our knowledge, we are the �rst to investigate free riding in an auction where one speci�c

bidder can impose a negative externality on more than one bidder and to test the model experimentally.

Regarding experimental work, Goeree et al. (2012) is closest in spirit to ours. They consider a situation

where one bidder imposes a potential negative externality on two incumbent bidders in a multi-unit

demand setting where neither incumbent can purchase the entire supply on her own. As such, regular

bidders are faced with a threshold type problem. They focus on the incentive for demand reduction and

preemptive bidding in both sealed-bid and ascending price auctions.

The rest of the paper is organized as follows: Section 2 establishes the theoretical framework. Section

3 describes our experimental design and procedures. Section 4 analyzes the data and presents the main

results. Section 5 concludes.

2 Theoretical Considerations

There is a single, indivisible object to be auctioned to three risk-neutral bidders. Each bidder�s private

value is assumed to be drawn independently and identically from a uniform distribution on [0; 1]. Two

of the bidders are referred to as �regulars�or �incumbents�(R1 and R2) with private values v1 and v2.

The third bidder is the potential entrant (E) with a private value vE . There is an identity dependent

negative externality of the amount �x where x 2 (0; 1): if E wins the auction, both Rs receive a payo¤

of �x. However, if either R wins the auction, there is no externality so that losing bidders receive a

zero payo¤.

2.1 The English (Clock) Auction

In the English clock auction the price starts rising from zero. As the price rises, a bidder must decide

whether to stay or drop out at the current price. The decision to drop out is irreversible. The auction

ends when only one bidder is still active, who wins the item and pays the last drop-out price. We

assume that the identities of bidders who have dropped out are common knowledge.

As it turns out, in our setting with negative externality, both Rs may want to drop out at price

P = 0 if their values are su¢ ciently low. Unfortunately, employing the standard tie-breaking rule (ties
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broken at random) presents a technical challenge to equilibrium analysis.3 As such we introduce an

augmented auction, a second-price sealed-bid auction (SPSB) in which the high bidder wins the right

to drop out, paying the second-highest price for the right to do so.4 The losing bidder does not have

to pay anything, but must continue in the auction for at least one price increment. The augmented

auction is conducted after bidders know their valuations, and is only run if both bidders drop out at

P = 0: Given the augmented tie-breaking auction, the two remaining bidders will compete for the rest

of the auction (with probability one).5

Although the augmented auction is an unrealistic element for applications in �eld settings, we employ

it since it is necessary to have a clear equilibrium benchmark against which to evaluate potentially

interesting economic behavior. There are two potential problems with this solution. One is that it

may have prompted subjects to free ride more often, as the procedure signals that dropping at P = 0 is

something worth paying for.6 This should be kept in mind when evaluating our results. Second, the

arti�cial nature of the tie-breaking rule might be thought to impact the external validity of the results

reported. Aside from the potential impact on the extent of the free riding, we do not believe this is a

relevant consideration. In conducting the experiment we wanted to introduce a strong motivation for

free riding. Our design does this. The fact that this introduces an arti�cial element that would not be

replicated in any �eld setting is secondary to our goal of studying the impact of a strong motivation to

free ride in auctions.7 This is one of the strengths of the experimental method, being able to introduce

in a controlled environment strong forces to see their impact on behavior.

Clearly, sincere bidding remains a weakly dominant strategy for the entrant; thus in equilibrium,

3 In particular, there does not exist a symmetric equilibrium in which both Rs follow the same drop-out strategies:

suppose R2 drops when v2 � x in equilibrium. Then R1 has an incentive to deviate to B(v1) > 0 when v1 is smaller than

but su¢ ciently close to x.

4Alternatively, one could conduct an English clock auction between the two dropouts to determine who has the right to

drop out at zero price. By introducing the augmented auction to break the tie, we e¤ectively endogenize the tie-breaking

rule to ensure the existence of equilibrium in the spirit of Jackson et al. (2002) and Simon et al. (1990).

5 In equilibrium there is zero probability that bidders drop out at any higher price. As such we can use an exogenously

determined tie-breaking rule should this occur. The software was programmed to use a random tiebreaking rule.

6We are thankful to a referee for pointing this possibility out. We have no way of measuring the potential quantitative

impact at this point. We do not believe it is large, but that is an empirical matter.

7More realistically, one can think of a scenario in which two long time incumbents collude to determine who drops out

�rst, with the stronger of the two staying in as she has more resources with which to �ght the entrant, splitting the cost

of the �ght after warding o¤ entry. But this goes well beyond anything we have modeled or studied here.

5



the entrant drops out at the beginning of the auction with probability zero. Therefore, only the two Rs

may form a tie at the zero price.

We will focus on symmetric increasing equilibria in which both incumbent bidders follow the same

increasing bid functions in both the augmented tie-break auction and the English clock auction. In

equilibrium, let B(vi) be incumbent i�s drop-out price when the other two bidders are active and  (vi)

be his bid in the augmented tie-breaking auction. We can show the following proposition:

Proposition 1 There exists a unique symmetric increasing equilibrium in this English clock auction

augmented by a tie-breaking auction at clock price P = 0. The equilibrium  (�) and B(�) are given

below:

For x 2 (0; 1=2),

 (v) =
x2 � v2
2

, for v 2 [0; x];

B(v) =

8>>><>>>:
0, for v 2 [0; x]

v � x, for v 2 (x; 1� x]

2v � 1, for v 2 (1� x; 1]

;

for x 2 [1=2; 1),

 (v) =

8<: x2�v2
2 , for v 2 [0; 1� x)

1
2 � v, for v 2 [1� x;

1
2 ]

;

B(v) =

8<: 0, when v 2 [0; 12 ]

2v � 1, when v 2 (12 ; 1]
:

When one bidder has already dropped out, Ri with value v will stay until the clock price

P =

8<: v, if the other remaining bidder is R

minf1; v + xg, if the other remaining bidder is E
.

The entrant stays till P = vE.

Proof. See Appendix.

The equilibrium strategy of a regular bidder when all three bidders are active is shown in Figure 1.

Clearly, regardless of the magnitude of the externality (x is small or large), v > B(v) for v 2 (0; 1).

Thus the equilibrium exhibits �free riding�in the sense that the lowest valued incumbent will drop out

of the clock auction before the price reaches his or her value (and both may attempt to drop out at

zero price). The complete proof of Proposition 1 is quite tedious, but the intuition is simple: instead
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Figure 1: Equilibrium First-Drop Price of R in Clock Auction: (a) x < 0:5; (b) x � 0:5

of overbidding (and hence incurring a net loss) to prevent the entrant from winning, an incumbent

would be better o¤ by free riding on the other incumbent if the other incumbent has a better chance

of beating the entrant. More precisely, this free-riding feature is caused by the combination of the

negative externality and the dynamic nature of the clock auction: Without the dynamic nature of

the clock auction, the incumbents simply cannot free ride, as will become clear after we develop the

equilibrium for the FPSB auction.

Also note that  (v) is strictly decreasing in v, so the endogenous tie-breaking rule (the augmented

auction) is e¢ cient in the sense that it will always select the incumbent with the higher value to stay,

which improves overall e¢ ciency in the auction.

2.2 The First-Price Sealed-Bid Auction

Again we will characterize the symmetric equilibrium (�(�), (�)) where �(�) is the equilibrium bid

function for the two incumbents and (�) is the equilibrium bid function for the entrant.

Given that the other two bidders follow the proposed equilibrium strategies, incumbent 1 bids b to
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maximize his expected payo¤:

E�1 = F (��1(b))F (�1(b))(v1 � b)� x
Z 1

�1(b)

Z ��1((vE))

0
f(v2)f(vE)dv2dvE

= ��1(b)�1(b)(v1 � b)� x
Z 1

�1(b)

Z ��1((vE))

0
dv2dvE :

That �(�) is a best response to (�(�), (�)) implies @E�1=@b = 0 when evaluated at b = �(v1). This

leads to the following equation:

�
0�1(�(v1))�1(�(v1))(v1 � �(v1)) + 

0�1(�(v1))(v1 � �(v1))v1
��1(�(v1))v1 + x

0�1(�(v1))v1 = 0

Similarly, the entrant bids r to maximize his expected pro�t:

E�E = (F (�
�1(r)))2(vE � r) = (��1(r))2(vE � r):

That (�) is a best response to �(�) implies @E�E=@r = 0 when evaluated at r = (vE) or �1(r) = vE .

This leads to the following equation:

2�
0�1((vE)) � (vE � (vE))� ��1((vE)) = 0:

In equilibrium the following di¤erential equations should hold simultaneously:8<: �
0�1(b)�1(b)(v1 � b) + 

0�1(b)(v1 � b)v1 � �1(b)v1 + x
0�1(b)v1 = 0

2�
0�1(r)(vE � r)� ��1(r) = 0

(1)

where b = �(v1) and r = (vE).

Proposition 2 Under the �rst-price sealed-bid auction (FPSB), the symmetric equilibrium is character-

ized by the di¤erential equations (1) and the boundary conditions �(0) = (0) = 0, and �(1) = (1) = b

for some b 2 (0; 1). For v 2 (0; 1), �(v) > (v), i.e., incumbents bid more aggressively than the entrant

in equilibrium.

Proof. See Appendix.

Let the inverse bid functions be 'R(�) = ��1(�) and 'E(�) = �1(�). Equations (1) can be rewritten

as follows.8<: '
0
R(b)'E(b)('R(b)� b) + 'R(b)'0E(b)('R(b)� b)� 'R(b)'E(b) + x'0E(b)'R(b) = 0

2'
0
R(b)('E(b)� b)� 'R(b) = 0

(2)
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Figure 2: Equilibrium Schedules �(�), (�), and b(�) under FPSA (x = 0:7)

Figure 2 plots the schedules �(�) and (�) (based on x = 0:7), along with the equilibrium bid function

for a 3-bidder FPSB auction with no externality (given by b(v) = 2
3v).

8 As shown �(�) lies above (�),

as incumbents bid more aggressively than the entrant in order to avoid the externality. Moreover, the

entrant�s bid function lies above b(v) = 2
3v, as the aggressive bidding of the incumbents heats up the

competition, which in turn requires more aggressive bidding on the part of Es, more aggressive than

under the risk-neutral Nash equilibrium absent an externality. From the �gure, it is also clear that

incumbents bid above their values when their values are below some threshold.

In what follows we will be comparing the FPSB and English auctions with respect to revenue,

e¢ ciency, and the probability that an entrant will win the auction.9 Under the assumption of risk neu-

trality, revenue di¤erences between the two auction formats increase monotonically with increases in the

8Plotting �(�) forward starting at v = 0 is infeasible as �0(0) cannot be determined. So we plot the (numerical)

equilibrium bid schedules backward starting at v = 1. �b is determined such that �(0) and (0) are su¢ ciently close to

zero. That x = 0:7 is chosen as it is consistent with the parameter value used in our experiments.

9The results reported here are based on large sample simulations as there is no closed-form solution for the FPSB

auction. These results will not necessarily hold for smaller sample sizes like those employed in the experimental sessions.

As such, in comparing revenue, e¢ ciency, and frequency that Es win the auction, we also report predicted outcomes based

on the experimental valuations drawn. The most sensitive element with respect to small sample properties has to do

with di¤erences in average revenue. Di¤erences in revenue variance never overlap for the sample sizes employed, with the

English auction always more e¢ cient than the FPSB auction as well.
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negative externality, with substantially higher variance in revenue in the English auctions throughout.

With respect to e¢ ciency as measured by the probability with which the bidder with the highest value

wins the item (where value includes the externality for Rs), the English auction is always e¢ cient. This

follows from the fact that there will always be at least one R competing with the entrant, and this R will

remain active up to her value plus the externality. Note, however, that this e¢ ciency measure ignores

the potential implications of entry for increased competition and increased e¢ ciency in the product

market after entry. Finally, the probability with which an E wins the auction is smaller than in the

FPSB auction, as E�s value must be above any R�s value (including the negative externality) in order

to win, but this is not the case in the FPSB auction.

3 Experimental Design

Each experimental session consists of �ve auctions operating simultaneously with three bidders in each

auction. There are three sessions each for the clock and FPSB auctions with externalities and two

sessions for the FPSB with no externality (a control treatment). Instructions were read out loud with

subjects having copies to follow.10 Each session started with 3 dry runs followed by 25 paid periods. All

subjects were paid their end of experiment cash balance. Table 1 shows the number of sessions along

with the number of subjects under each auction format. Each session lasted for approximately one and

a half hours.

Private values for all bidders were drawn iid from a uniform distribution with support [0, 100]

(with integer values only), with new values drawn before each auction. The externality was set at �70

throughout. At the beginning of a session subjects were randomly assigned to be either an E or an R

(referred to as a type A and type B bidder, respectively), and remained in that role throughout. In each

auction subjects were randomly assigned to a new three-bidder market, with each market containing

one E and two Rs.

The clock auction employed a digital price clock starting at 0 and counting up by 2 every second.

The computer screen showed a bidder�s private value, the bidder�s type, the current price of the item,

and the type(s) of other active bidders. Drop-out prices and dropped bidders�types were reported as

they occurred. Before the start of the auction each bidder had the opportunity to drop out at 0 or to

bid in the auction. If more than one bidder dropped out at zero, a SPSB auction was conducted to

10A copy of the instructions along with screen shots can be found at http://www.econ.ohio-state.edu/kagel/Externality
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Table 1: Experimental Treatments

Session
Total Number of

subjects

Number of

E subjects

Number of

R subjects

Number of

groups

Number of

periods

Clock

CL1 15 5 10 5 25

CL2 15 5 10 5 25

CL3 15 5 10 5 25

FPSB

FP1 15 5 10 5 25

FP2 15 5 10 5 25

FP3 15 5 10 5 25

FPSB Ctrl

FPC1 15 0 15 5 25

FPC1 15 0 15 5 25

decide the right to drop out at zero.11 The auction stopped as soon as there was only one active bidder.

This last bidder obtained the item and paid the price at which the next-to-last bidder dropped out. At

the end of the auction, the price paid for the item and the winner�s type were announced to all bidders,

with earnings reported privately to each bidder. A complete history of these outcomes was available to

each bidder as well.12

In the FPSB auction, each bidder entered an integer bid. The bidder with the highest bid obtained

the item and paid a price equal to his bid. In the case of ties the computer randomly determined who

got the item. Losing bidders each incurred a loss of 70 if E won, and zero pro�t if an R won. Subjects

were permitted to bid above their valuations, with incumbents permitted to bid above their valuations

plus the externality, although both of these outcomes were rarely observed.13

At the beginning of each session, Es were given an initial cash balance of 500 experimental currency

units (ECUs) with Rs having a starting balance of 900 ECUs. The di¤erence in initial cash balance was

11As noted, these procedures (or something similar to them) are needed to have a well de�ned equilibrium.

12The software was programmed using zTree (Fischbacher, 2007).

13Entrants were also permitted to bid above their valuations plus the externality, as were subjects in the FPSB auctions

who were permitted to bid up to 500 ECUs.
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calibrated to account for losses due to the externality, and for expected di¤erences in auction earnings

between player types. These starting cash balances were private information so that Es would not have

been aware of the larger starting cash balances for Rs. Cash balances were 500 ECUs in the FPSB

control sessions. Subjects were paid their end of session balances in cash with ECUs converted into

Chinese yuan at the rate of 10 ECUs = 1 yuan. Earnings averaged 72 (45) yuan for Rs and 52 (54)

yuan for Es in the clock (sealed-bid) auctions. Under the prevailing exchange rate this averages out to

about $9 US dollars per subject.14 Starting cash balances were su¢ cient to insure zero bankruptcies.

All subjects had no previous experience with any type of auction experiment, although some of them

may have had experience in another experiment.

An explicit control treatment was employed for the FPSB auction since subjects are known to bid

well above the risk-neutral Nash equilibrium in the absence of a negative externality (see, for example,

the many references cited in Kagel (1995)). As such a control treatment is needed to compare bidding

with and without the externality. In contrast, bidding in English clock auctions absent externalities is

known to converge to the dominant bidding strategy. This is con�rmed here by bids in the clock auction

when only two regular bidders remained active. The size of the externality employed was quite large as

earlier experimental results under a similar design with a much smaller negative externality had a very

limited impact on subject behavior, and provided little scope for learning.15

Subjects were recruited through posters from among the undergraduate students from various de-

partments at Southwestern University of Finance and Economics in Chengdu, Sichuan Province, China.

In 2011, Southwestern ranked 32 overall in China for undergraduate education, ranking 30th for fresh-

men quality based on Chinese college entrance exam scores.

14This is a little higher than the average student wage which, for local college students with a standard work load

averages between 10 and 20 yuan per hour. (The clock auctions averaged 2 hours, with the sealed bid auctions lasting

about 1.5 hours.)

15See Hu et al. (2010) for these results. This experimental design used a random tie-breaking rule in case two or more

bidders dropped out at the same time prior to the start of the auction. This does not result in a well de�ned equilibrium

bid function and was abandoned in favor of the present design. However, simultaneous drops prior to the start of these

auctions were rare (5 out of 275 auctions) so the random tie breaking rule had little impact on the outcomes. The size of

the negative externality in this earlier experiment was 20, with values drawn from the support [0, 100].
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4 Experimental Results

4.1 Bidding in Clock Auctions

In the analysis that follows, unless stated otherwise, data will be reported for the last 12 auctions in each

experimental session, after subjects have had some experience with the auction contingencies. Results

are similar to those for the entire set of auctions, but somewhat closer to equilibrium outcomes, as

there is some learning. Results for the entire set of auctions are reported in the online appendix to the

paper.16

In what follows we report the experimental results in the form of a number of conclusions followed

by the data supporting those conclusions.

Result 1 In terms of �rst dropouts, there is substantial, but far from complete free riding on the part of

Regular bidders (Rs) as the theory predicts.

Figures 3 and 4 show the �rst-drop price against values in the clock auctions for Rs and Es separately,

along with the equilibrium bid functions.17 There is a mass of bids at or close to zero, bids on the part

of Rs with values in the interval [0, 50] as the theory predicts: Rs with values less than or equal to 50

dropped before the clock auction started 34.7% of the time.18 There are also a number of drops at, or

close to value (the 45 degree line), representing a failure to free ride, even at low values. Although Rs�

stage-one drops along the 45 degree line is not the free riding the theory predicts, it stands in marked

contrast to the frequency with which Rs drop with bids above their value (or win the auction with bids

above value) when competing with Es after stage one (see Figure 6 and 7 below).

A closer examination of the data shows considerable heterogeneity in the extent to which di¤erent

subjects drop at P = 0, as well as the fact that the probability of dropping at zero is inversely related to

bidders�valuations. Over the last 12 auction rounds two out of thirty subjects (6.7%) always dropped

out at zero with valuations less than or equal to 50.19 Further, the cumulative percentage of Rs dropping

at zero 50% of the time or more (including the two who always dropped at zero) is 33.3% (10/30). In

16http://www.econ.ohio-state.edu/kagel/Externality

17This �gure excludes the 10 cases in which a bidder dropped prior to the start of the auction and lost the SPSB auction.

18 In contrast, when an R�s value was greater than 50, he/she dropped out before the clock started less than 2% of the

time. For Es with values less than or equal to 50, the overall frequency of dropping before the clock started was 13.9%.

Both of these actions represent out-of-equilibrium play.

19These two had valuations less than or equal to 50 in two and four auctions respectively.
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contrast, 26.7% (8/30) of Rs never dropped at zero with these valuations. We ran a simple probit to

determine the impact on the probability of dropping at zero with valuations less than or equal to 50 as

a function of bidder valuations.20 The coe¢ cient value for valuations is negative and signi�cant at the

1% level, with the implication that the probability of dropping at zero increases from 9.2% to 68% as

valuations drop from 50 to 0. Although not what the theory predicts (everyone with these valuations

should drop at 0), it�s what one might expect from Rs as they have no possible way of solving precisely

for the equilibrium outcome.21

Result 2 The frequency with which both Rs drop out before the start of the auction is much less than

predicted. The frequency with which the lower valued R wins the right to drop out in the tie-breaking

auction is quite low as well, substantially lower than when neither R drops out, or only one R drops

out, prior to the start of the auction. As a result e¢ ciency is substantially greater in cases where both

bidders fail to drop out prior to the start of the auction.22

There were only 10 SPSB (tie-breaking) auctions in which both Rs had values less than or equal

to 50 and both dropped out prior to the start of the auction, much less than the predicted number

of simultaneous drops, 91.23 In 3 of these 10 cases the SPSB auction achieved the e¢ cient outcome,

with the lower valued R winning the right to not participate in the auction.24 In equilibrium in the

SPSB auction bids are decreasing in value, so that a lower valued R should submit a higher bid in

order to win the right to drop out. But Figure 5 shows that bids in the SPSB do not decrease in value,

although most of the SPSB bids are located below the equilibrium bid function curve. This failure

to achieve consistently high e¢ ciency in SPSB auctions is not surprising given the results from past

20The probit had a constant and bidders�valuations as the only explanatory variables. Standard errors were calculated

with clustering at the individual subject level. All Rs were included in the probit any time they had a valuation of 50 or

less.

21There were so few �rst drops by Rs according to the equilibrium prediction for valuations greater than 50 that we did

not repeat this analysis for them. Note, sincere bidding on the part of these high valuation Rs is not unexpected given

that bidders with valuations at the upper end of the interval [0, 50] typically do not free ride (drop at zero as the theory

predicts).

22Given the low frequency with which both Rs dropped out prior to the start of the auction, the data reported on here

is for all auctions.

23There were 7 cases where an R and E both dropped prior to the start of the auction, and one case in which all three

bidders chose to drop prior to the start of the auction.

24 In one case both Rs had the same value, thereby insuring an e¢ cient drop out.
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Figure 3: First Drop Prices for Rs

Vickrey auctions (Kagel, 1995; Kagel and Levin, 2012). In contrast, when both Rs had values less than

50, but only one bidder dropped out prior to the start of the auction, the lower valued R dropped out

�rst 71% of the time; and when neither bidder dropped out prior to the start of the auction, the lower

valued R dropped �rst 62% of the time. While the latter is a direct consequence of the fact that many

Rs who failed to drop at or near zero tended to bid up to their valuations, the former is not.

Result 3 In clock auctions with two bidders being active, bids are close to equilibrium levels for Rs but

not Es: Rs tend to drop out at their value when the remaining bidder is an R, and at their value plus

the externality (70) when the remaining bidder is an E. While a number of Es followed the dominant

strategy, a considerable number consistently bid above their values.

Figures 6 and 7 show, respectively, dropouts and winning bids for those sub-auctions where the

remaining bidders were an E and an R. Two factors stand out. First, there are a large number of
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Figure 4: First Drop Prices for Es

instances in which Es, contrary to the dominant bidding strategy, dropped out with bids above their

values (68.7% of all Es dropping out second), but only a handful of auctions where Es wound up with

a winning bid above their value (6.0% of these sub-auctions).25 Second, there were large numbers of

auctions in which Rs won with bids above their value (but less than the externality; 53.6% of these

sub-auctions). There was some heterogeneity in the extent to which Es consistently bid in excess of

their value, with 60.0% of Es bidding above their value more than 50% of the time.26 In contrast, 100%

of Rs either won or bid up to their value plus the externality more than 50% of the time.

25Amending these calculations to allow for rounding error, or momentarily being distracted as the clock ticked up, to

bidding above value + 4 ECUs, these percentages become 58.2% and 4.6%, respectively. Es won 17 auctions in total, with

losses in 9 of the auctions. In 7 of these 9 auctions, Rs dropped out prior to bidding up to their value plus the externality.

In equilibrium, Es would have won 1 of these 17 auctions.

26This includes winning bids above value.
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Figure 5: Bids in SPSB Auctions

Figure 8 reports dropouts and winning bids for those sub-auctions where both bidders were Rs. In

this case Rs�behavior is generally consistent with the dominant strategy as drop out prices hover around

the 45 degree line, and there were only two auctions in which Rs won with bids above their value when

competing against another R.27

We were, quite frankly, surprised by the high frequency of Es bidding above their value. However,

there is precedence for this in the literature: Andreoni, Che, and Kim (2007) report a series of SPSB

private value auctions under varying information about rivals�values. Most relevant to our experiment

is their 1 x 4 auctions in which all four bidders had full information about each other�s values, which they

compared to their 4 x 1 treatment in which none of the bidders had any information about each other�s

values. Absent information about rivals�values 85.5% of all bids were sincere (equal to value) versus

62.5% sincere bidding in auctions with full information.28 12.0% were above value without information

27Dropped from Figure 8 are those sub-auctions in which when E dropped both Rs were still active with one or both

bidding above their value. There is an obvious incentive in these cases for Rs bidding above value to drop immediately,

which most of them did.

28Calculations are over the last 10 auctions out of the 20 conducted. Note, their subjects were undergraduates at the

University of Wisconsin.
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Figure 6: Stage-Two Bids in Clock Auctions: Both R and E Active

and 25.3% above value with full information. That is, with full information about rivals�valuations,

there was a sharp increase in bidding above value which can be attributed to spiteful bidding. While Es

in our auctions do not know Rs�values, they do know that in sub-auctions in which they are competing

with an R, the R has an incentive to bid up to their value plus the amount of the externality. This

allows Es to engage in spiteful bidding relatively safely as long as their bids stayed at or below 70, and

to do so with added risk for bids above 70. Looking back at Figure 6, this is consistent with this pattern,

as Es bidding above value tapers o¤ a bit for values above 70.29 Finally, note that there are relatively

few bids below value in Figure 6, in contrast to the 12.3% of bids below value reported in the Andreoni

et al. full information treatment, which is suggestive of greater rivalistic bidding in China compared to

Wisconsin.

29When Es dropped second in these sub-auctions, their frequency of dropping above value plus 4 ECUs was 64.3% for

values less than or equal to 70 and 48.0% for values above 70.
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Figure 7: Winning Prices in Clock Auctions: Both R and E Active in Stage 2

4.2 Bidding in FPSB Auctions

Result 4 Consistent with the theory, Rs tend to bid more aggressively (higher) than Es in FPSB

auctions. Also consistent with the theory, Rs and Es tend to bid more aggressively than in the FPSB

independent private value auctions (the control treatment).

Figure 9 plots bids for Rs and Es in the FPSB auctions, along with the equilibrium bid functions.

The graph shows that Rs bid higher than Es, on average, for all valuations, with Rs�bids at lower

valuations closer to their value plus the externality than the risk-neutral Nash equilibrium (RNNE).

Figure 10 graphs bids for Rs compared to the controls, with Rs bidding higher than the controls, on

average, at all valuations. Note that Figure 10 shows the standard result for independent private value

FPSB auctions �massive bidding above the RNNE, with Rs bidding even higher than that. Figure

11 shows bids of Es compared to the controls. Es tend to bid higher than the controls, particularly at

higher valuations. This occurs in spite of the rather massive overbidding relative to the RNNE in the

controls. Finally, there is minimal bidding above value for Es and the controls, with no bids above their
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Figure 8: Stage-Two Bids and Winning Prices in Clock Auctions: Both Rs Active

value plus the externality for Rs.30

Random e¤ect regressions, with subject as the random component, reported in Table 2 con�rm these

results. In these regressions we have dropped bids for valuations less than 10 as (i) the equilibrium bid

function with externalities has its most pronounced non-linear component in the interval [0, 10], and

(ii) at low valuations there is some tendency for �throw away�bids as subjects realize they have very

little chance of winning the auction with very low valuations. Several speci�cations are reported, with

and without a v2 term. All the speci�cations treat the controls as the reference point against which to

compare R�s and E�s bids. There is a separate dummy variable with value 1 if the subject is an R, and 0

otherwise, a separate dummy with value 1 if the subject is an E, and 0 otherwise, and interaction terms

for each of the two dummies and v; and for the two dummies and the v2 term. Although including the

E*v2 and the R*v2 interaction e¤ects shows that neither of these variables is statistically signi�cant

in their own right, and results in the E*v interaction term no longer being statistically signi�cant, a

30For Es 1.67% of bids were above value. For the controls, 0.56% of all bids were above value.
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Figure 9: Bids in FPSB Auctions with Externality Present

chi-square test shows that we can reject the null hypothesis at the 1% level that (i) the E*v interaction

terms and the E*v2 interaction terms are jointly equal to zero and (ii) the R*v interaction terms and

the R*v2 interaction terms are jointly equal to zero.

Figure 12 plots the estimated bid functions for Rs, Es and the controls for the right-most speci�cation

in Table 2, our preferred speci�cation. Evaluating the estimated bid function for this speci�cation, Rs

were bidding signi�cantly more than the controls (p < 0:05) for all valuations, as the theory predicts.

Similarly, Es were bidding signi�cantly more than the controls (p < 0:05) for higher valuations (v > 53),

with the di¤erences between Es and the controls not signi�cantly di¤erent from each other for values

less than this. Finally, Rs were bidding signi�cantly more than Es at lower valuations (v < 78), with no

signi�cant di¤erences between the two at higher valuations. These results are all qualitatively consistent

with the theory, since di¤erences in bids between Es and the controls are minimal at lower valuations,

with di¤erences in bids between Rs and Es growing smaller at higher valuations. As a side note, the

negative sign for the v2 term re�ects the fact that at the very highest valuations the tendency to bid
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Figure 10: Bids in FPSB Auctions: Rs versus Controls

well above the risk-neutral NE in IPV FPSB auctions tends to be moderated (see, for example, Dorsey

and Razollini, 2003).
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Table 2: Random E¤ect Regressions. Dependent Variable: Bids in FPSB Auction

FPSB w/ & w/o Externality

Value>10

Period 14-25 14-25 14-25

Constant
1.99***

(0.65)

-1.80

(1.17)

-3.25***

(1.13)

E Dummy
-1.74

(1.55)

-1.89

(1.48)

-1.91

(2.63)

R Dummy
33.95***

(3.62)

34.02***

(3.60)

37.73***

(4.70)

Value
0.81***

(0.02)

0.99***

(0.05)

1.06***

(0.05)

E�Value
0.09***

(0.02)

0.09***

(0.02)

0.09

(0.11)

R�Value
-0.29***

(0.05)

-0.30***

(0.05)

-0.47***

(0.14)

Value2 -
-0.0016***

(0.0005)

-0.0022***

(0.0005)

E�Value2 - -
0.000017

(0.000923)

R�Value2 - -
0.0016

(0.0012)

Obs 802 802 802

R-sqrd 0.85 0.85 0.85

Standard deviations in parenthesis. ***Signi�cant at 1 percent level,

two tailed test; **Signi�cant at 5 percent level, two tailed test; * Signi�cant

at 10 percent level, two tailed test.
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Figure 11: Bids in FPSB Auctions: Es versus Controls

4.3 Revenue and E¢ ciency31

Result 5 The FPSB auctions have higher average revenue and smaller variance in revenue than the

clock auctions. The former is not statistically signi�cant at conventional levels, but the latter is.

31Statistical tests throughout this section are based on OLS regressions in which the dependent variable consists of session

average values for the variable in question and right hand side variables consist of dummy variables for the treatment

conditions. For example, with revenue as the dependent variable, right hand side variables consist of a dummy variable

for FPSB auctions with the negative externality = 1 (0 otherwise) and a dummy for the FPSB control auctions = 1 (0

otherwise), with the omitted treatment (English clock auctions) represented by the constant. Use of session value averages

for the dependent variable represents the very conservative assumption that each auction session is a single observation

because of complete autocorrelation of observations due to random re-mixing of subjects between auctions (see Frechette,

2012, for a discussion of statistical issues involved in, and alternative ways of dealing with, the typical practice of re-mixing

subjects between rounds in experiments). Given the clear theoretical predictions regarding e¢ ciency and entry rates

between the clock and FPSB auctions, one-tailed statistical tests are justi�ed and used in Table 3.
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Figure 12: Estimated Bid Functions for FPSB Auctions: v>10, including Vsq.

Table 3 compares average revenue under the two auction formats where predicted revenue is based

on auction valuations used in the experiment. Predicted revenue is higher under the FPSB auction

than under the clock auction. Actual revenue is substantially higher than predicted revenue in the

FPSB auctions, which is not unexpected given the overbidding (relative to the RNNE) typically found

in FPSB auctions without externalities. Actual revenue is substantially higher than predicted revenue

in the clock auctions as well. This is a result of Es bidding above value. Revenue is higher in the FPSB

auctions than in the clock auctions, but this di¤erence is not statistically signi�cant at conventional

levels, largely on account of bidding above value on the part of Es.32

Absent a negative externality, and assuming risk neutral bidders, the variance in revenue in English

auctions is predicted to be greater than in the FPSB auctions. With the negative externality this

32Es overbidding is present to begin with but grows substantially in frequency over time (36.4% of all E�s bids in the

�rst 13 auctions vs 58.3% in the last 12). As a result revenue is signi�cantly higher in the FPSB auctions than in the clock

auctions (p < 0:01) when calculated over all periods and over the �rst 13 periods.

25



tendency is exaggerated as the remaining incumbent bidder is willing to bid up to his value to forestall

entry, with the entrant bidding up to his value. This prediction is indeed satis�ed in our experiment

with the variance in revenue in the English auctions substantially higher than in the FPSB auctions

(743.6 versus 130.7; p < 0.01).

Finally, as expected, average revenue is signi�cantly higher in both the clock auctions and the FPSB

auctions with the negative externality than in the FPSB no externality auctions (p < 0.01 in both

cases).

Table 3: Revenue, E¢ ciency and Percent of Auctions E Win

Ascending clock FPSB Di¤erence

Actual Predicted Actual Predicted Actual Predicted

Revenue
73.00

(2.03)

63.69

(2.12)

75.99

(0.87)

67.92

(0.84)
2.99 4.23

E¢ ciency
76.67

(3.16)

100.00

(0.00)

66.11

(3.54)

85.56

(2.63)
-10.56*** -14.44

% E Win
9.44

(2.19)

0.56

(0.56)

20.00

(2.99)

17.78

(2.86)
10.56* 17.22

Notes: Standard deviation in parenthesis.

* Signi�cant at the 0.10 level. *** Signi�cant at the 0.01 level.

Result 6 The clock auctions are signi�cantly more e¢ cient than the FPSB auctions when the exter-

nality is present, and the FPSB control auctions are signi�cantly more e¢ cient than both auctions with

the externality present.

We measure e¢ ciency strictly in terms of the frequency with which the highest valued bidder wins

the auction. In calculating this, Rs�values include the cost of the externality as well as their private

value. In equilibrium the clock auction is predicted to be 100% e¢ cient because free riding only exists

in the �rst-stage of the auction, with bidders having a dominant strategy to bid up to their valuations

after that. In contrast, the FPSB auction with the externality is akin to an auction with asymmetric

valuations, so that e¢ ciency will, in general, be less than 100%.

Table 3 reports average predicted and actual e¢ ciency in the two auction formats with the externality

present, where predicted e¢ ciency is for the auction valuations actually drawn. Actual e¢ ciency is
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signi�cantly lower in the FPSB auctions than in the clock auctions, with the di¤erence reasonably close

to the predicted di¤erence, in spite of the fact that absolute e¢ ciency values are well below predicted

levels in both cases. Note that the e¢ ciency measure here excludes any potential increase in e¢ ciency

for the market in question given the predicted increase in entry for the FPSB versus the English auctions.

A more complete measure of e¢ ciency would take this e¤ect into account.

Finally, the asymmetric nature of the FPSB auctions with the externality results in substantially

lower e¢ ciency compared to the FPSB control auctions (66.1% vs 88.3%, p < 0.01). The FPSB control

auctions are signi�cantly more e¢ cient than the clock auctions as well (p < 0.05).

Result 7 Es win more often in the FPSB auctions than in the clock auctions.

Table 3 reports the proportion of auctions won by Es. Es are predicted to win substantially more

often with the FPSB auctions compared to the clock auctions, with this result just failing to achieve

statistical signi�cance at the 5% level (p = 0.052). Given the weak power of this test due to the limited

number of experimental sessions, it is worth noting that using session averages for all the auctions

within a given experimental condition, entry is signi�cantly greater in the English auctions at better

than the 5% level. Thus, to the extent one can draw policy implications from the present experiment,

our results indicate that if policy makers want to encourage entry they should adopt the FPSB auction

rather than the clock auction.

5 Conclusion

This paper investigates theoretically and experimentally the e¤ect of a negative externality on bidding

strategies in an English clock auction and a �rst-price sealed-bid auction with two incumbents and one

potential entrant. On the theoretical front, the equilibrium analysis shows that in the English auction

one of the incumbents will typically engage in severe free riding. When this happens, the remaining

incumbent bids quite aggressively to deter entry, bidding up to his value plus the potential cost of the

negative externality. In the �rst-price sealed-bid auction, free riding and aggressive bidding coexist

for incumbents as there is no way for bidders to implicitly coordinate their actions as in the English

auction, resulting in incumbents bidding more aggressively than the potential entrant in order to avoid

the externality. This in turn induces the entrant to bid more aggressively than in an auction with no

externality present.
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We observe substantial, though far from complete free riding in the English clock auction treatment.

Further, in those sub-auctions where the remaining incumbent competes against the entrant, incumbents

bid reasonably close to the equilibrium level predicted, well above their private value in order to deter

the entrant. While bids are close to equilibrium levels for regulars they are not for entrants, with many

of the latter bidding well above their valuations. Looking at the extant literature indicates that this

is not some odd behavior of our sample population, but rather it re�ects rivalistic bidding of the sort

found in Andreoni et al. (2007) in second-price sealed-bid auctions when all bidders�valuations are

common knowledge. Bidding in the �rst-price auctions, while well above the levels predicted under the

risk-neutral Nash equilibrium, tends to satisfy the qualitative predictions of the equilibrium with regular

bidders bidding higher than entrants, and both regular bidders and entrants bidding higher than in a

�rst-price auction with no externality present. Qualitative predictions regarding higher revenue and

lower e¢ ciency in the sealed-bid versus clock auctions, along with the likelihood of the entrant winning

the auction, are satis�ed in the data as well.

Our model follows the literature using the term �externality� to measure the negative payo¤ to

an incumbent when losing the auction. Perhaps a more proper term might be �post-auction e¤ects.�

Extensions can be made to enrich the post-auction interactions, so that the �externality�would be a

variable endogenously determined by the post-auction game. Investigation of this issue is left for future

research.
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Appendix

Proof of Proposition 1

Derivation of B(�)

It is obvious that remaining active until the price reaches his value is a (weakly) dominant strategy for

the entrant (E). It is also clear that the equilibrium bidding strategies after one bidder has dropped out

should be the ones speci�ed in the proposition.

We will �rst derive the form of B(�) using the necessary equilibrium conditions (we will verify the

su¢ ciency later). Suppose that incumbent 1 (R1) drops at B(v̂1) while incumbent 2 (R2) follows B(�),

where v̂1 is su¢ ciently close to v1. Clearly, R1 cannot bene�t from dropping higher than B(1) when

the other two bidders are still active. So we only need to consider v̂1 < 1. Let �(v1; v̂1) be the change

in R1�s expected payo¤s (from dropping at B(v̂1) instead of B(v1)). We �rst discuss the case where

x < 1=2.

1. v1 2 [1�x; 1). If he deviates upwards, his payo¤ changes only when v2 2 (v1; v̂1) and vE > B(v2).

If he deviates downwards, it only a¤ects his payo¤ when he prevents another bidder (R2 or E)

from dropping between B(v1) and B(v̂1). Hence,

�(v1; v̂1) =

8>>><>>>:
Z v̂1

v1

Z 1

B(v2)
(v1�vE)dvEdv2, when v̂1 > v1Z v1

v̂1

Z 1

B(v2)
(vE�v1)dvEdv2+

Z B(v1)

B(v̂1)

Z v1

B�1(vE)
(v2�v1)dv2dvE , when v̂1 < v1

For B(�) to constitute a symmetric equilibrium, we must have the following �rst-order conditions:

lim
v̂1!v+1

@�(v1; v̂1)

@v̂1
=

1

2
[1�B(v1)] � [2v1 � 1�B(v1)] = 0

lim
v̂1!v�1

@�(v1; v̂1)

@v̂1
=

1

2
[1�B(v1)] � [�2v1 + 1 +B(v1)] = 0

Thus we must have B(v1) = 2v1 � 1 for v1 2 [1� x; 1).

2. v1 2 [r; 1� x), where r is the minimum value for an incumbent to drop above price zero. In other

words, r is the (equilibrium) cuto¤ value under which an incumbent will drop out at the beginning

of the clock auction (when the price equals 0). We do not impose any constraint on r for the

moment.
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If he deviates upwards and the dropped bidder happens to be R2, we have v2 2 (v1; v̂1), and

the identities of the two remaining bidders will change from R2 and E to R1 and E and the

deviation payo¤s can be obtained accordingly; if the dropped bidder happens to be E, we have

vE 2 (B(v1); B(v̂1)), and the identities of the two remaining bidders will change from R2 and E

to R2 and R1. If she deviates downward, the situations can be analogously examined. Taking all

together, we have

�(v1; v̂1) =

8>>>>>>><>>>>>>>:

Z v̂1

v1

Z v2+x

v1+x
(�x)dvEdv2 +

Z v̂1

v1

Z v1+x

B(v2)
(v1 � vE)dvEdv2, when v̂1 > v1Z v1

v̂1

Z v1+x

v2+x
(�x� v1 + vE)dvEdv2 +

Z v1

v̂1

Z v2+x

B(v2)
(vE � v1)dvEdv2

+

Z B(v1)

B(v̂1)

Z v1

B�1(vE)
(v2 � v1)dv2dvE , when v̂1 < v1

For B(�) to constitute an equilibrium, we must have

lim
v̂1!v+1

@�(v1; v̂1)

@v̂1
=

1

2

n
[v1 �B(v1)]2 � x2

o
= 0

lim
v̂1!v�1

@�(v1; v̂1)

@v̂1
=

1

2
[v1 + x�B(v1)] � [�v1 + x+B(v1)] = 0

Since B(v1) = v1 + x cannot be the equilibrium strategy, we must have B(v1) = v1 � x for v1 2

[r; 1� x), which also implies that r = x.

For the case x � 1=2, the analysis is essentially the same except that there is a change in the supports

of the piecewise function B(v): the second segment now vanishes because x � 1� x. The lower bound

of the second segment should now be 1=2 instead of 1� x due to the continuity of B(v), which implies

that the incumbent with v = 1=2 should be indi¤erent.

Note that B(v) so derived is unique. This means that should a symmetric equilibrium strategy exist,

it must be uniquely determined for v � x. It�s also worth noting that the uniqueness and the functional

form of B(�) are independent of the tie breaking rule at P = 0.

Derivation of  (�)

Let w(v) be the expected contingent payo¤ for an incumbent with value v who loses the augmented

auction. We have

w(v) =

Z minf1;v+xg

0
(v � vE)dvE +

Z 1

minf1;v+xg
(�x)dvE =

8<:
(v+x)2

2 � x, for v � 1� x

v � 1
2 , for v > 1� x
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Suppose  (v) is strictly decreasing in v. R1 with value v1 bids  (v̂1) to maximize

E�(v̂1; v1) =

8<:
R v̂1
0 w(v1)dv2=x+

R x
v̂1

h
� (v2) +

R 1
minf1;v2+xg(�x)dvE

i
dv2=x, for x < 1

2

2
R v̂1
0 w(v1)dv2 + 2

R 1
2
v̂1

h
� (v2) +

R 1
minf1;v2+xg(�x)dvE

i
dv2, for x � 1

2

(3)

The cuto¤ value for R2 to drop out at zero price is x when x < 1=2 and 1=2 when x > 1=2, and

that is why we need to analyze the equilibrium separately for two cases above. This is illustrated by

the equilibrium schedules in Section 2.1. In equation (3), 1=x is the density function of v2 conditional

on v2 < x (and 2 is the density function of v2 conditional on v2 < 1=2).

For  (�) to constitute a symmetric equilibrium, we must have @E�(v̂1; v1)=@v̂1jv̂1=v1 = 0, which

leads to, when x < 1
2 ,

 (v) =
x2 � v2
2

, for v 2 [0; x];

and when x � 1
2 ,

 (v) =

8<: x2�v2
2 , for v 2 [0; 1� x)

1
2 � v, for v 2 [1� x;

1
2 ]

For consistency check,  (v) so derived is indeed decreasing in v. Also note that  (v) = 0 at v = x

when x < 1=2 and at v = 1=2 when x � 1=2.33 Substituting the expressions of  (v) into (3) and then

di¤erentiating E�(v̂1; v1) with respect to v̂1, we have

sgn

�
@E�(v̂1; v1)

@v̂1

�
=

8<: sgn
n
(v1 � v̂1)

�
v1+v̂1
2 + x

�o
, for v < 1� x

sgnfv1 � v̂1g, for v � 1� x

which is positive when v̂1 � v1 and negative when v̂1 � v1. This shows that  (v) given above is the

unique symmetric equilibrium bid function in the augmented auction.

Therefore, if both incumbents are to drop at zero when their values are both below x when x < 1=2

and below 1=2 when x � 1=2, then in the augmented auction no party has an incentive to deviate from

bidding  (�) should the other follow  (�).

Veri�cation of Equilibrium B(�)

We will consider incumbent 1 (R1) whose value is v1. Given that the other incumbent (R2) follows B(�)

and the entrant (E) stays till the price reaches his value, we will evaluate the change in his expected

33 It is easily seen that an incumbent with v = x when x < 1=2 and v = 1=2 when x � 1=2 is indi¤erent between dropping

out at zero and staying (but droping out immediately after the clock starts). For incumbents who are not suppposed to

drop at price zero in equilibrium, their optimal bids in the augmented auction should be zero.
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payo¤ by deviating to drop at B(v1 � ") instead of B(v1), where " > 0 and v1 � " 2 [0;minfv1 + x; 1g].

Dropping at a price higher than v1 + x or 1 is obviously a dominated strategy. We will �rst examine

the upward deviation, followed by the downward deviation.

We consider the case x < 1=2 �rst.

1. Upward deviation. R1�s deviation will a¤ect the auction outcome only when it allows another

bidder to drop �rst at P 2 (B(v1); B(v1 + ")). We discuss three sub-cases in order:

1.1. v1 2 [0; x]. R1 is supposed to drop at P = 0. We will consider two possibilities for v2: v2 2 [0; x]

and v2 2 (x; 1] and show that it is not pro�table for R1 to deviate regardless of the value of v2.

1.1.a. v2 2 [0; x]. R2 drops at zero in equilibrium. If v2 < v1, both the tie breaking rule and the

deviation to B(v1+ ") > 0 will make R1 stay with E, and the auction outcome will stay the same.

If v2 � v1, we already show that there is no incentive to deviate from  (�) conditional on dropping

out, so we only need to rule out the possibility of dropping at a price strictly above zero. The

auction outcome will be di¤erent if either of the two events occurs: the outcome changes from R2

winning against E to E winning against R1 or from R2 winning against E to R1 winning against

E. Note that by this deviation, R1 can avoid paying  (v2), which is his equilibrium payment in

the augmented auction. The change in R1�s expected payo¤ is given byZ x

v1

Z v2+x

v1+x
(�x)dvEdv2 +

Z x

v1

Z v1+x

0
(v1 � vE)dvEdv2 +

Z x

v1

�(v2)dv2

= �1
3
(x� v1)(2x2 � xv1 � v21) � 0:

Therefore the deviation will make R1 worse o¤ if v2 2 [0; x].

1.1.b. v2 2 (x; 1]. When the current price is 0, R1�s deviation to dropping at B(v1 + ")(> 0) instead of

0 will a¤ect the outcome only when it allows another bidder to drop �rst at P 2 (0; B(v1 + ")).

There are two possible cases: v1 + " 2 (x; 1� x] and v1 + " 2 (1� x; 1].

When v1 + " 2 (x; 1� x], if R2 drops �rst after the deviation, it implies that v2 2 (x; v1 + ") and

vE 2 (v2� x; 1]. The two remaining bidders will change from R2 and E to R1 and E. The auction

outcome could be a¤ected in either of the two events: the outcome changes from R2 winning

against E to E winning against R1; or from R2 winning against E to R1 winning against E. If

instead E drops �rst after the deviation, we have that vE 2 (0; v1 + " � x) and v2 2 (vE + x; 1].
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The two remaining bidders will change from R2 and E to R2 and R1. R2 will win in both cases;

thus R1�s payo¤ will be zero. To sum up, the change in R1�s expected payo¤ is given byZ v1+"

x

Z v2+x

v1+x
(�x)dvEdv2 +

Z v1+"

x

Z v1+x

v2�x
(v1 � vE)dvEdv2

=
1

2

Z v1+"

x
(v1 � v2) � (v1 � v2 + 4x)dv2 < 0:

Since v2 2 [v1; v1 + "] and " � x, we have v1 � v2 and v1 � v2 � �x. Therefore R1 will be worse

o¤ from the deviation. When v1 + " 2 (1 � x; 1], the argument is similar as above except that

2v2 � 1 is R2�s bid function when v2 2 (1 � x; v1 + "). It can be demonstrated analogously that

the change in R1�s expected payo¤ is also negative.

1.2. v1 2 (x; 1 � x). We will consider two possible cases: v1 + " 2 (v1; 1 � x) and v1 + " 2 [1 � x; 1).

(v1 + " = 1 is not possible because of the restrictions that v1 < 1� x and " � x.)

1.2.a. v1 + " 2 (v1; 1 � x). If R2 drops �rst after the deviation, it implies that v2 2 (v1; v1 + ") and

vE 2 (v2�x; 1]. The identities of the two remaining bidders will change from R2 and E to R1 and

E. Such a deviation can change the outcome in two possible events: the outcome changes from

R2 winning against E to R1 winning against E, and R1�s payo¤ changes from 0 to v1 � vE ; from

R2 winning against E to E winning against R1, and R1�s payo¤ changes from 0 to �x. If E drops

�rst after the deviation, it implies that vE 2 (0; v1+ "�x) and v2 2 (vE +x; 1], and the identities

of the two remaining bidders will change from E and R2 to R1 and R2. The fact that R2 is active

when the price has reached B(v1) implies that v2 � v1. R2 will win in both cases and R1�s payo¤

is not a¤ected by the deviation. Therefore, The change in R1�s expected payo¤ is given byZ v1+"

v1

Z v1+x

v2�x
(v1 � vE)dvEdv2 +

Z v1+"

v1

Z v2+x

v1+x
(�x)dvEdv2

=
1

2

Z v1+"

v1

(v1 � v2) � (v1 � v2 + 4x)dv2;

which is negative for the same reason as above. Therefore R1 will be worse o¤ from the

deviation.

1.2.b. v1 + " 2 [1� x; 1). If R2 drops �rst after the deviation, it implies that either v2 2 (v1; 1� x) and

vE 2 (v2 � x; 1], or v2 2 [1� x; v1 + ") and vE 2 (2v2 � 1; 1]. The identities of the two remaining

bidders will change from R2 and E to R1 and E. Such a deviation can change the outcome in two

possible ways: the outcome changes from R2 winning against E to R1 winning against E, and R1�s
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payo¤ changes from 0 to v1 � vE ; from R2 winning against E to E winning against R1, and R1�s

payo¤ changes from 0 to �x. If bidder E drops �rst after the deviation, it implies that either

vE 2 (0; 1 � 2x) and v2 2 (vE + x; 1], or vE 2 [1 � 2x; 2(v1 + ") � 1) and v2 2 (vE+12 ; 1]. The

identities of the two remaining bidders will change from E and R2 to R1 and R2. The fact that

R2 is active when the price has reached B(v1) implies that v2 � v1. R2 will win in both cases and

R1�s payo¤s will both be zero. Combining these two cases, the change in R1�s expected payo¤ is

given by Z 1�x

v1

Z v1+x

v2�x
(v1 � vE)dvEdv2 +

Z 1�x

v1

Z v2+x

v1+x
(�x)dvEdv2 +Z v1+"

1�x

Z v1+x

2v2�1
(v1 � vE)dvEdv2 +

Z v1+"

1�x

Z 1

v1+x
(�x)dvEdv2

=
1

2

Z 1�x

v1

(v1 � v2) � (v1 � v2 + 4x)dv2 + x
Z v1+"

1�x
(v1 + x� 1)dv2

+
1

2

Z v1+"

1�x

�
v21 � x2 + (2v1 � 2v2 + 1) � (1� 2v2)

�
dv2;

which is negative for the same reason as above. Therefore R1 will be worse o¤ from the deviation.

1.3. v1 2 [1 � x; 1). If R2 drops �rst after the deviation, it implies that v2 2 (v1; v1 + ") and vE 2

(2v2 � 1; 1]. The identities of the two remaining bidders will change from R2 and E to R1 and

E. Such a deviation will change the auction outcome from R2 winning against E to R1 winning

against E, and R1�s payo¤ changes from 0 to v1�vE . If E drops �rst after the deviation, it implies

that vE 2 (2v1 � 1; 2(v1 + ")� 1) and v2 2 (vE+12 ; 1]. The identities of the two remaining bidders

will change from E and R2 to R1 and R2. R2 will win in both cases and R1�s payo¤s will both be

zero. The change in R1�s expected payo¤ is thus given byZ v1+"

v1

Z 1

2v2�1
(v1 � vE)dvEdv2 = 2

Z v1+"

v1

(1� v2)(v1 � v2)dv2;

which is non-positive because v1 � v2 and v2 � 1. Therefore when v1 2 [1� x; 1), R1 will not be

better o¤ from an upward deviation.

We have thus shown that for all v1 2 [0; 1], incumbent 1 will not be better o¤ from any upward

deviation.

2. Downward deviation. Incumbent 1�s deviation will a¤ect the auction outcome only when it pre-

vents another bidder from dropping �rst at P 2 (B(v1 � "); B(v1)). We only need to consider two
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possible cases: v1 2 (x; 1� x] and v1 2 (1� x; 1], as we have proved that conditional on dropping

out, incumbents with values less than x will follow  (�).

2.1. v1 2 (x; 1�x]. We will �rst consider the deviation of dropping at B(v1�") = 0, and then consider

the downward deviation of dropping at a price above zero, i.e., B(v1 � ") 2 (0; B(v1)).

2.1.a. v1�" � x. Let �(v1; v̂1) be the deviation payo¤ for R1 by mimicking type v̂1. We have �(v1; v1) >

�(x; x). If v2 � x, there is no pro�table downward deviation to dropping at zero, as type x

does not have an incentive to deviate downward, and that type v1 and type x receive exactly the

same payo¤ when deviating downward. If v2 > x, the deviation will a¤ect the outcome only if it

prevents R2 or E from dropping �rst at P 2 [0; B(v1)). If R2 is the one being prevented, we have

v2 2 (x; v1) and vE 2 (v2 � x; 1]. The identities of the remaining bidders will change from R1 and

E to R2 and E. The auction outcome can be a¤ected in two ways: the outcome changes from R1

winning against E to E winning against R2 or from R1 winning against E to R2 winning against

E. If bidder E is prevented from dropping �rst, it implies that vE 2 [0; v1�x) and v2 2 (vE+x; 1].

The identities of the remaining bidders will change from R1 and R2 to E and R2. The outcome

can be a¤ected in two ways: the outcome changes from R1 winning against R2 to R2 winning

against E or from R2 winning against R1 to R2 winning against E. Given all these, the change in

R1�s expected payo¤ is given byZ v1

x

Z v1+x

v2+x
(�x� v1+vE)dvEdv2+

Z v1

x

Z v2+x

v2�x
(vE�v1)dvEdv2+

Z v1�x

0

Z v1

vE+x
(v2�v1)dv2dvE

= �1
2

Z v1

x
(v1�v2) � (v1�v2+4x)dv2�

1

2

Z v1�x

0
(�v1+x+ vE)

2dvE

which is negative since v2 � v1. Therefore R1 will be worse o¤ from the deviation.

2.1.b. B(v1� ") 2 (0; B(v1)). If R2 is prevented from dropping �rst, it implies that v2 2 (v1� "; v1) and

vE 2 (v2 � x; 1]. The identities of the remaining bidders will change from R1 and E to R2 and E.

The auction outcome can be altered in two ways: the outcome changes from R1 winning against E

to E winning against R2 or from R1 winning against E to R2 winning against E. If E is prevented

from dropping �rst, it implies that vE 2 (v1 � " � x; v1 � x) and v2 2 (vE + x; 1]. The identities

of the remaining bidders will change from R1 and R2 to E and R2. The auction outcome can be

altered in two ways: the outcome changes from R1 winning against R2 to R2 winning against E or

from R2 winning against R1 to R2 winning against E, and R1�s payo¤ is not a¤ected. Therefore,
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the change in R1�s expected payo¤ is given byZ v1

v1�"

Z v1+x

v2+x
(�x� v1+vE)dvEdv2+

Z v1

v1�"

Z v2+x

v2�x
(vE�v1)dvEdv2+

Z v1�x

v1�"�x

Z v1

vE+x
(v2�v1)dv2dvE

= �1
2

Z v1

v1�"
(v1�v2) � (v1�v2+4x)dv2�

1

2

Z v1�x

v1�"�x
(�v1+x+ vE)

2dvE

which is negative since v2 � v1. Therefore R1 will be worse o¤ from the deviation.

2.2. v1 2 (1� x; 1]. We consider three cases in order.

2.2.a. B(v1 � ") = 0. If v2 � x, based on the same arguments in 2.1.a. we can show that R1 does not

have an incentive to deviate. If v2 > x, the deviation will a¤ect the auction outcome only if it

prevents R2 or E from dropping �rst at P 2 [0; B(v1)). If R2 is prevented from dropping �rst, it

implies that either v2 2 (x; 1�x] and vE 2 (v2�x; 1], or v2 2 (1�x; v1) and vE 2 (2v2�1; 1]. The

identities of the remaining bidders will change from R1 and E to R2 and E. The auction outcome

can be a¤ected in two ways: the outcome changes from R1 winning against E to E winning against

R2 or from R1 winning against E to R2 winning against E. If E is prevented from dropping �rst, it

implies that either vE 2 [0; 1�2x) and v2 2 (vE+x; 1], or vE 2 (1�2x; 2v1�1] and v2 2 (vE+12 ; 1].

The identities of the remaining bidders will change from R1 and R2 to E and R2. The auction

outcome can be altered in two ways: the outcome changes from R1 winning against R2 to R2

winning against E or from R2 winning against R1 to R2 winning against E. Therefore, the change

in R1�s expected payo¤ from dropping at 0 instead of B(v1) is given byZ 1�x

x

Z 1

v2+x
(�x� v1 + vE)dvEdv2 +

Z 1�x

x

Z v2+x

v2�x
(vE � v1)dvEdv2 +

Z v1

1�x

Z 1

2v2�1
(vE � v1)dvEdv2

+

Z 1�2x

0

Z v1

vE+x
(v2 � v1)dv2dvE +

Z 2v1�1

1�2x

Z v1

vE+1

2

(v2 � v1)dv2dvE

= �1
2

Z 1�x

x
(v1 � v2) � (v1 � v2 + 4x)dv2 � 2

Z v1

1�x
(v1 � v2) � (1� v2)dv2

�1
2

Z 1�2x

0
(�v1 + x+ vE)2dvE �

1

8

Z 2v1�1

1�2x
(1� 2v1 + vE)2dvE

which is clearly negative. Therefore, R1 will be worse o¤ from the deviation.

2.2.b. B(v1 � ") 2 (0; 1 � 2x]. Based on similar arguments as in case 2.1, the change in R1�s expected
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payo¤ is given byZ 1�x

v1�"

Z 1

v2+x
(�x� v1 + vE)dvEdv2 +

Z 1�x

v1�"

Z v2+x

v2�x
(vE � v1)dvEdv2 +

Z v1

1�x

Z 1

2v2�1
(vE � v1)dvEdv2

+

Z 1�2x

v1�"�x

Z v1

vE+x
(v2 � v1)dv2dvE +

Z 2v1�1

1�2x

Z v1

vE+1

2

(v2 � v1)dv2dvE

= �1
2

Z 1�x

v1�"
(v1 � v2) � (v1 � v2 + 4x)dv2 � 2

Z v1

1�x
(v1 � v2) � (1� v2)dv2

�1
2

Z 1�2x

v1�"�x
(�v1 + x+ vE)2dvE �

1

8

Z 2v1�1

1�2x
(1� 2v1 + vE)2dvE ;

which is obviously negative. Therefore R1 will be worse o¤ from the deviation.

2.2.c. B(v1�") 2 (1�2x;B(v1)). That B(v1�") > 1�2x implies that both incumbents can win against

E. If R2 is prevented from dropping �rst, it implies that v2 2 (v1 � "; v1) and vE 2 (2v2 � 1; 1].

The identities of the remaining bidders will change from R1 and E to R2 and E. The deviation

will change the auction outcome from R1 winning against E to R2 winning against E, and R1�s

payo¤ changes from v1 � vE to 0. If E is prevented from dropping �rst, it implies that vE 2

(2(v1�")�1; 2v1�1] and v2 2 (vE+12 ; 1]. The identities of the remaining bidders will change from

R1 and R2 to E and R2. The auction outcome can be altered in two events: the outcome changes

from R1 winning against R2 to R2 winning against E, and R1�s payo¤ changes from v1 � v2 to 0;

or from R2 winning against R1 to R2 winning against E, and R1�s payo¤ is not a¤ected. Putting

together, if R1 drops at B(v1�") > 1�2x instead of staying till B(v1), the change in his expected

payo¤ equals Z v1

v1�"

Z 1

2v2�1
(vE � v1)dvEdv2 +

Z 2v1�1

2(v1�")�1

Z v1

vE+1

2

(v2 � v1)dv2dvE

= �2
Z v1

v1�"
(v1 � v2) � (1� v2)dv2 �

1

8

Z 2v1�1

2(v1�")�1
(1� 2v1 + vE)2dvE ;

which is obviously negative. Therefore, when v1 2 (1 � x; 1], R1 can only be worse o¤ from any

downward deviation.

Next, we consider the case x � 1=2. The analysis will be similar to the case of x < 1=2 above.

1. Upward deviation. When the price has reached B(v1) and no bidder has dropped yet, we consider

R1�s upward deviation to dropping at B(v1 + "). R1�s deviation will a¤ect the auction outcome

only if it allows another bidder to drop �rst at price P 2 (B(v1); B(v1 + ")). We will consider

three possible cases: v1 2 [0; 1� x), v1 2 [1� x; 12 ], and v1 2 (
1
2 ; 1).
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1.1. v1 2 [0; 1 � x). Suppose R1 drops at B(v1 + ") > 0 instead. We will consider two possibilities of

v2: v2 2 [0; 12 ] and v2 2 (
1
2 ; 1].

1.1.a. v2 2 [0; 12 ]. R2 drops at zero. If R1 follows B(v1) = 0, the two Rs will tie at zero and the tie-

breaking rule will let the bidder with higher value stay. If v2 < v1, both the tie-breaking rule and

the deviation to B(v1+ ") > 0 will make bidder 1 stay with E, and the auction will have the same

outcome. If v2 � v1, the tie-breaking rule will make R2 stay and the upward deviation will make

R1 stay. The auction outcome can be a¤ected in two ways: the outcome changes from R2 winning

against E to E winning against R1, and R1�s payo¤ changes from 0 to �x; or from R2 winning

against E to R1 winning against E, and R1�s payo¤ changes from 0 to v1 � vE . Given these, R1�s

change in expected payo¤ from dropping at B (v1 + ") > 0 instead of B(v1) = 0 is given byZ 1�x

v1

Z v2+x

v1+x
(�x)dvEdv2 +

Z 1
2

1�x

Z 1

v1+x
(�x)dvEdv2 +

Z 1
2

v1

Z v1+x

0
(v1 � vE)dvEdv2

= x

Z 1�x

v1

(v1 � v2)dv2 + x
Z 1

2

1�x
[v1 � (1� x)] dv2 +

1

2

Z 1
2

v1

(v21 � x2)dv2,

which is negative as all the integrands above are negative. Therefore R1 will be worse o¤ from

the deviation.

1.1.b. v2 2 (12 ; 1]. R2 will drop at 2v2�1 > 0. When the current price is 0, R1�s deviation to B(v1+") > 0,

i.e., v1 + " 2 (12 ; v1 + x], instead of dropping at 0 will a¤ect the auction outcome only when it

allows another bidder to drop �rst at price P 2 [0; B(v1+")). If R2 drops �rst after the deviation,

it implies that v2 2 (12 ; v1 + ") and vE 2 (2v2 � 1; 1]. The two remaining bidders will change

from R2 and E to R1 and E. The auction outcome could be a¤ected in two ways: the outcome

changes from R2 winning against E to E winning against R1, and R1�s payo¤ changes from 0 to

�x; or from R2 winning against E to R1 winning against E, and R1�s payo¤ changes from 0 to

v1 � vE . If instead bidder E drops �rst after the deviation, it implies that vE 2 (0; 2(v1 + ")� 1)

and v2 2 (vE+12 ; 1]. The two remaining bidders will change from R2 and E to R2 and R1. In both

cases R2 will win and R1�s payo¤ will be zero. Given all these, R1�s change in expected payo¤

from dropping at B (v1 + ") > 0 is given byZ v1+"

1
2

Z 1

v1+x
(�x)dvEdv2 +

Z v1+"

1
2

Z v1+x

2v2�1
(v1 � vE)dvEdv2

=

Z v1+"

1
2

[v1 � (1� x)] dv2 +
1

2

Z v1+"

1
2

�
v21 � x2 + (2v1 � 2v2 + 1) � (1� 2v2)

�
dv2;
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which is negative (as can be easily veri�ed). So R1 will be worse o¤ from the deviation.

1.2. v1 2 [1� x; 12 ]. Again we consider two possibilities of v2: v2 2 [0;
1
2 ], or v2 2 (

1
2 ; 1].

1.2.a. v2 2 [0; 12 ]. If R1 stays in the auction, he is certain to win against E. If v2 < v1, for the same

reason as in the case x < 1=2, R1�s upward deviation to B(v1 + ") > 0 will not a¤ect the auction

outcome. If v2 2 (v1; 12 ], the deviation to B(v1 + ") > 0 could change the auction outcome from

R2 winning against E to R1 winning against E, and R1�s payo¤ changes from 0 to v1 � vE . R1�s

change in expected payo¤ from dropping at B (v1 + ") > 0 instead of B(v1) = 0 equalsZ 1
2

v1

Z 1

0
(v1 � vE)dvEdv2 =

Z 1
2

v1

(v1 �
1

2
)dvEdv2;

which is negative. Therefore R1 will be worse o¤ from the deviation.

1.2.b. v2 2 (12 ; 1]. R2 will drop at 2v2�1 > 0. When the current price is 0, R1�s deviation to B(v1+") > 0,

i.e., v1+" 2 (12 ; v1+x], instead of dropping at 0 will a¤ect the auction outcome only when it allows

another bidder to drop �rst at the price of P 2 [0; B(v1+ "). If R2 drops �rst after the deviation,

it implies that v2 2 (12 ; v1 + ") and vE 2 (2v2 � 1; 1]. The two remaining bidders will change from

R2 and E to R1 and E. The auction outcome could be changed from R2 winning against E to R1

winning against E, and R1�s payo¤ changes from 0 to v1� vE . If instead bidder E drops �rst after

the deviation, it implies that vE 2 (0; 2(v1+")�1) and v2 2 (vE+12 ; 1]. The two remaining bidders

will change from R2 and E to R2 and R1. In both cases R2 will win and R1�s payo¤ will be zero.

Given all these, R1�s change in expected payo¤ from dropping at B (v1 + ") > 0 is given byZ v1+"

1
2

Z 1

2v2�1
(v1 � vE)dvEdv2 = �2

Z v1+"

1
2

(v2 � v1) � (1� v2)dv2;

which is negative because v2 � v1 and v2 � 1. Hence bidder 1 will be worse o¤ from the

deviation.

1.3. v1 2 (12 ; 1). When the price has reached B(v1) = 2v1�1 > 0 and no bidder has dropped, it implies

that both R1 and R2 could win against E, and R2 has a higher value than R1. We consider R1�s

upward deviation by dropping at B(v1 + ") 2 (2v1 � 1; 1]. If R2 drops �rst after the deviation, it

implies that v2 2 (v1; v1+") and vE 2 (2v2�1; 1]. The identities of the two remaining bidders will

change from R2 and E to R1 and E. Such a deviation will change the outcome from R2 winning
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against E to R1 winning against E, and R1�s payo¤ changes from 0 to v1 � vE . If E drops �rst

after the deviation, it implies that vE 2 (2v1 � 1; 2(v1 + ")� 1) and v2 2 (vE+12 ; 1]. The identities

of the two remaining bidders will change from E and R2 to R1 and R2. In both cases R2 will win

and R1�s payo¤ will be zero. Given all these, R1�s change in expected payo¤ from dropping at

B (v1 + ") instead of B(v1) is given byZ v1+"

v1

Z 1

2v2�1
(v1 � vE)dvEdv2 = 2

Z v1+"

v1

(1� v2)(v1 � v2)dv2;

which is negative as v1 � v2 and v2 � 1. Therefore when v1 2 [1� x; 1), R1 will not be

better o¤ from an upward deviation.

Finally, when v1 = 1, R1 will not stay at a price above 1 as doing so can only increase the chance of

winning with a negative pro�t.

2. Downward deviation. When the price has reached B(v1 � ") with v1 � " 2 [0; v1) and no bidder

has dropped yet, we consider R1�s downward deviation of dropping at B(v1 � "). R1�s deviation

will a¤ect the auction outcome only when it prevents another bidder from dropping �rst at P 2

(B(v1 � "); B(v1)). We will focus on the case v1 2 (12 ; 1] as this is the range of v1 where a downward

deviation is relevant. By following B(�), R1 is supposed to drop at 2v1 � 1 > 0. We will �rst

consider the deviation of dropping at B(v1 � ") = 0, and then consider the downward deviation

of dropping at a positive price, i.e., B(v1 � ") 2 (0; B(v1)).

2.1. B(v1�") = 0. If v2 � 1
2 , R1 and R2 will both drop at price zero. The tie-breaking rule will let R1,

i.e., the bidder with a higher value, stay in the auction. Therefore the deviation makes no di¤erence

to the auction outcome (R1 bidding against E starting from price zero). If v2 > 1
2 , the deviation

will a¤ect the auction outcome only if it prevents R2 or E from dropping �rst at P 2 [0; B(v1)). If

R2 is prevented from dropping �rst, it implies that v2 2 (12 ; v1) and vE 2 (2v2�1; 1]. The identities

of the remaining bidders will change from R1 and E to R2 and E. The auction outcome will change

from R1 winning against E to R2 winning against E, and R1�s payo¤ changes from v1 � vE to 0.

If E is prevented from dropping �rst, it implies that vE 2 [0; 2v1 � 1) and v2 2 (vE+12 ; 1]. The

identities of the remaining bidders will change from R1 and R2 to E and R2. The auction outcome

can be a¤ected in two ways: the outcome changes from R1 winning against R2 to R2 winning

against E, and R1�s payo¤ changes from v1�v2 to 0; or from R2 winning against R1 to R2 winning

against E, and R1�s payo¤ is not a¤ected. Given all these, R1�s change in expected payo¤ from
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dropping at 0 instead of B(v1) is given byZ v1

1
2

Z 1

2v2�1
(vE � v1)dvEdv2 +

Z 2v1�1

0

Z v1

vE+1

2

(v2 � v1)dv2dvE

= 2

Z v1

1
2

(1� v2)(v2 � v1)dv2 �
1

8

Z 2v1�1

0
(1� 2v1 + vE)2dvE ;

which is negative since v2 � v1. Therefore bidder 1 will be worse o¤ from the deviation.

2.2. B(v1 � ") 2 (0; B(v1)). When the price has reached B(v1 � ") > 0, i.e., v1 � " 2 (12 ; v1), we

consider a deviation of dropping at B(v1 � "). The deviation will a¤ect the auction outcome

only if it prevents R2 or E from dropping �rst at P 2 (B(v1 � "); B(v1)). If R2 is prevented

from dropping �rst, it implies that v2 2 (v1 � "; v1) and vE 2 (2v2 � 1; 1]. The identities of the

remaining bidders will change from R1 and E to R2 and E. The auction outcome will change from

R1 winning against E to R2 winning against E, and R1�s payo¤ changes from v1 � vE to 0. If E

is prevented from dropping �rst, it implies that vE 2 (2(v1 � ") � 1; 2v1 � 1) and v2 2 (vE+12 ; 1].

The identities of the remaining bidders will change from R1 and R2 to E and R2. The auction

outcome can be a¤ected in two ways: the outcome changes from R1 winning against R2 to R2

winning against E, and R1�s payo¤ changes from v1 � v2 to 0; or from R2 winning against R1 to

R2 winning against E, and R1�s payo¤ is not a¤ected. Given all these, R1�s change in expected

payo¤ from dropping at B(v1 � ") 2 (0; B(v1)) is given byZ v1

v1�"

Z 1

2v2�1
(vE � v1)dvEdv2 +

Z 2v1�1

2(v1�")�1

Z v1

vE+1

2

(v2 � v1)dv2dvE

= 2

Z v1

v1�"
(1� v2) � (v2 � v1)dv2 �

1

8

Z 2v1�1

2(v1�")�1
(1� 2v1 + vE)2dvE ;

which is negative since v2 � v1. Therefore bidder 1 will be worse o¤ from the deviation.

We have thus shown that, when v1 2 (12 ; 1], R1 will be worse o¤ from any downward deviation.

In summary, given that bidder 2 follows B(�) and bidder E bids his value, it is not pro�table for

bidder 1 to deviate (either upward or downward) from following B(�); hence the speci�ed equilibrium

is veri�ed.

Proof of Proposition 2

The derivation preceding to the proposition shows that the equilibrium has to satisfy the di¤erential

equations (1). We now argue that the boundary condition is given by �(0) = (0) = 0. That (0) = 0
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is obvious given �(0) = 0. Now suppose �(0) = b > 0, then we must have (b) = b: if (b) < b, there is

no chance for the entrant of type b to win, so (b) � b; if (b) > b, type b entrant may win only to lose

money, which is inconsistent with any equilibrium. Thus when �(0) = b > 0, we must have (b) = b.

However, given that R2 follows � and E follows  in which �(0) = (b) = b > 0, we claim that R1 with

v1 = 0 will have an incentive to deviate from bidding �(0) = b: by bidding b, R1 wins only if he wins

the tie-break over R2 in the event of vE � b and v2 = 0, in which case he incurs a net loss (due to the

overbidding). By deviating to bidding at zero, R1 will lose for sure and avoid a loss in such an event.

For all the other events, R1 is indi¤erent between bidding b and 0. As such, R1 is strictly better o¤ to

deviate from bidding �(0) = b when v1 = 0. This shows that in any symmetric increasing equilibrium,

we must have the boundary condition �(0) = (0) = 0.

Next we show that �(1) = (1) = b for some b < 1 and �(v) > (v) for all v 2 (0; 1).

1. �(1) = (1) = b for some b < 1.

Clearly, (1) � �(1) must hold because (1) > �(1) is strictly dominated for an entrant with vE =

1. Now suppose (1) < �(1) holds in equilibrium. Let �(v1; v̂1) denote R1�s expected payo¤ when

he bids �(v̂1) given that his type is v1 and that R2 follows �(�). Then �(v1; v̂1) must be maximized

at v̂1 = v1. However, at �(v1) = (1), we can show that limv̂1!v�1
@�(v1;v̂1)
@v̂1

< limv̂1!v+1
@�(v1;v̂1)
@v̂1

,

contradicting that �(v1; v̂1) achieves the maximum at v̂1 = v1. Finally (1) < 1; otherwise the

entrant with v = 1 has an incentive to underbid.

2. Incumbents bid more aggressively than the entrant.

Whenever �(v�) = (v�) = b� and v� 6= 0, from the second equation in the system (1), we have

�0(v�) =
2(v� � b�)

v�
<
2(v� � b� + x)

v�
= 0(v�): (4)

Note that the above inequality also holds at v� = 1. So �(1) = (1) and �0(1) < 0(1). Suppose the

set fv 2 (0; 1) : �(v) = (v)g is non-empty, and let v�� = maxfv 2 (0; 1) : �(v) = (v)g. It must be the

case that �0(v��) > 0(v��), which contradicts (4). Therefore, it has to be the case that �(v) > (v) for

all v 2 (0; 1).
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