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Abstract

Optimal mechanism design with spectrum sharing differs from the traditional setting mainly in

that some technological constraints (e.g., non-interference constraints) need to be taken into account

explicitly. In this paper we characterize surplus-maximizing (efficient) and revenue-maximizing (opti-

mal) mechanisms in a spectrum sharing context where a principal allocates transmitted power among

a group of potentially interested users (transmitter-receiver pairs). Under regularity conditions about

value distributions and non-interference constraints, we show that efficiency (optimality) typically

involves spectrum sharing by multiple users, and the exact allocation of transmitted power is deter-

mined such that the ratio of marginal value (virtual value) over marginal cost (in terms of the cost

to the interference generated) is equal among all shared users. We show that efficient and optimal

mechanisms in our setting are actually dominant-strategy incentive compatible, and that they can

also be implemented by well-designed all-pay or discriminatory-price auctions.

Keywords: Spectrum sharing; spectrum sharing mechanisms; efficiency; optimality.

1 INTRODUCTION

With the ever-increasing demand for wireless communications, spectrum scarcity and efficient use of

wireless spectrum is becoming a major challenge. The Federal Communication Commission (FCC) has

reported that the conventional fixed spectrum assignment is no longer capable of meeting today’s wireless
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spectrum requirements. By 2020, 20 billion devices will be online – up from 8 billion today. To handle

this explosive growth, the capacity of wireless networks must triple over the next four years.1 Without

additional airwaves to handle the traffic, consumers will face more dropped calls, connection delays, and

slower downloads of data. Also, according to the spectrum usage measurements by the FCC’s Spectrum

Policy Task Force, many of the allocated spectrum bands are idle most of the time or not used in some

area.2 A promising approach to improve spectrum utilization is spectrum sharing, in which unlicensed

secondary users are allowed to utilize the radio spectrum owned by a primary owner.3

For this purpose, designing a spectrum sharing mechanism that can efficiently or optimally allocate

the spectrum bands or power to secondary users seems imperative. A well designed market mechanism

is also necessary to provide sufficient incentives for both the primary owner and secondary users to

participate in spectrum sharing.

A key challenge in economic/market analysis of spectrum sharing lies in the technological constraints

implied from spectrum sharing. For example, “sensing” applications such as radar (e.g. “radiolocation”)

and microwave radiometry (i.e. “Earth exploration satellite-passive” or “radio astronomy”) have require-

ments for spectral access that differ from standard communications applications. As both radar and

radiometer systems are vitally important for many “public good” applications (including weather moni-

toring, astronomy, air traffic control, defense, etc.), spectrum sharing with commercial users should only

be allowed when performance in existing applications is not compromised. In fact, FCC Commission-

er Michael O’Rielly openly called for more spectrum sharing studies to help mitigate interference on

increasingly crowded airwaves.4

In this paper, we explore socially efficient and revenue-maximizing (optimal) mechanisms with spec-

trum sharing. The efficient and optimal mechanism design in such a setting differs from the traditional

mechanism design mainly in that some technology constraints should be explicitly taken into account.

In this paper, we study a simple setting where the constraint is captured by a single non-interference

constraint: the interference temperature in the spectrum band should be kept under some threshold,

where interference temperature is defined to be the RF power measured at a receiving antenna per unit

bandwidth. This is the case, for example, in the sharing of spectrum bandwidth currently occupied by

1“Bringing the Sharing Economy to the Airwaves Will Boost Your Bandwidth,” by Kurt Schaubach, The IEEE Spectrum
Newsletters, Jan. 29, 2018.

2“Report of the spectrum efficiency working group,” FCC Spectrum Policy Task Force, 2002.
3Spectrum sharing is greatly facilitated by cognitive radio networks (Akyildiz et al., 2007). Advances in machine learning

algorithms and cloud computing in recent years have allowed us to create scalable software that makes real-time decisions on
spectrum sharing possible.

4“FCC’s O’Rielly Calls for More Spectrum Sharing Studies,” by Diana Goovaerts, Spectrum Week, June 28, 2017.
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microwave radiometry.

Our analysis is based on a system model introduced by Huang et al. (2006), which is motivated by the

scenario where (secondary) users would like to purchase a data service. The spectrum to be allocated is

originally licensed to an independent entity (a private firm or a government agency), either of which we

refer to as a principal. Users may transmit to receivers at different locations or co-located receivers at a

single access point. In both cases, the principal controls the amount of bandwidth and transmitted power

assigned to each user in order to keep the interference temperature at a given measurement point below

a certain threshold. As in Huang et al., we also assume that all users adopt a spread spectrum signaling

format, in which the transmitted power is evenly spread across the entire band controlled by the prin-

cipal. This allows efficient multiplexing of data streams from different sources of different applications,

and reduces the combined power-bandwidth allocation problem to a transmit power allocation problem.

Given that the object to be allocated in our model (the power) is divisible, our approach is similar to

a share auction (see, for example, Wang and Zender, 2002; and Back and Zender, 1993). As mentioned

above, our problem differs from the traditional optimal mechanism design (a la Myerson, 1981) also

in that some technological constraints are taken into account explicitly. Both features might potentially

complicate the characterization of the efficient/optimal mechanisms. Nevertheless under some regularity

conditions about the value distributions and the interference constraints we are able to fully character-

ize the efficient and optimal mechanisms. We show that the efficient (optimal) mechanisms have the

following properties:

• The efficient (optimal) allocation rule is to maximize the value (Myersonian virtual value) adjusted

by the non-interference constraint. So in particular, the user with the maximal value (virtual value)

may not secure the maximum power allocation;

• The efficient (optimal) allocation in general admits multiple users sharing the same bandwidth –

the power allocation/division will be adjusted so that the ratio of marginal value (virtual value)

over marginal cost (in terms of the interference generated) is equal among all the users who are

allocated power.

Noticeably, the efficient and optimal mechanisms we characterized are actually dominant-strategy

incentive compatible, as is the case in the traditional single-unit item allocation problem a la Myerson

(1981). This is somewhat unexpected, as the complexity of additional technological constraints does not

affect the dominant strategy implementation in our setting.
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We also explore implementations of efficient and optimal mechanisms. We demonstrate that a well-

designed all-pay auction or discriminatory-price auction can implement the efficient and optimal pow-

er allocation rules. Basically the all-pay or discriminatory-price auction should be augmented with a

pre-announced recovery function. After bids are collected from all users, the underlying “types” will be

recovered from the bids using the recovery function. Based on the recovered type profile, the efficient or

optimal allocation of power can then be implemented according to the corresponding allocation rule.

Despite the growing interests in trying to understand economic/market aspects of spectrum sharing

(see, for example, Huang et al., 2006; Gandhi et al., 2008; Kash et al., 2013; Khaledi and Abouzeid, 2014;

and references therein), the characterization of efficient/optimal mechanisms with spectrum sharing re-

mains unexplored.5 This paper represents a first attempt in answering such a question. Our paper thus

contributes to the theoretical literature on mechanism design. We hope that the basic insights obtained

from this research can be extended to some more general settings.

More broadly, our analysis contributes to the literature on spectrum auctions, a theoretically chal-

lenging and practically important research area in the last 20 years (see, for example, Ausubel and

Milgrom, 2002; Cramton, Shoham, and Steinberg, 2006; and Cramton, 2013). Our paper differs from

most works in this literature in that we focus on transmit power allocation problem, rather than the

bandwidth/frequency allocation problem.

The rest of the paper is organized as follows. Section 2 lays out a system model. Section 3 charac-

terizes the surplus-maximizing (efficient) and revenue-maximizing (optimal) mechanisms. Section 4 is a

discussion on how to extend our analysis to more general settings, and Section 5 concludes.

2 THE MODEL

We consider the following system model, which follows the one introduced by Huang et al. (2006) closely.

Spectrum with bandwidth B is to be shared among N spread spectrum users, where a user refers to

a transmitter and an intended receiver pair.6 Users in our model can be, for example, communication

network providers who have only secondary access to a shared portion of the spectrum. Let hi j be the

channel gain from user i’s transmitter to user j’s receiver, n0 be the parameter that determines the

5In particular, Huang et al. examine two specific auction mechanisms in allocating received power. Our paper differs from
theirs in that we follow the optimal mechanism design approach.

6The spread spectrum communications are widely used today for military, industrial, avionics, scientific, and civil uses.
The applications include jam-resistant communication systems, CDMA radios, high resolution ranging (e.g., Global Positioning
System (GPS)), WLAN (Wireless Local Area Networks), etc. (http://www.tutorialsweb.com/spread-spectrum/advantages-and-
applications-of-ss-communications.htm).
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background noise power (assumed to be the same for all users), and pi be the assigned transmit power

to user i. Then for each i, the received Signal-to-Interference plus Noise Ratio (SINR) is given by

γi = pihii

n0B+∑
j 6=i p jh ji

, i = 1,2, ..., N. (1)

To satisfy the interference temperature constraint, the total received power at a specified measurement

point must satisfy the following constraint:

N∑
i=1

pihi0 ≤ P, (2)

where hi0 is the channel gain from user i’s transmitter to the measurement point, and P is the received

power threshold to prohibit interference to a primary user. We assume that hi j, hi0, n0, B, and P are

all primitives of the model which are common knowledge. A system model with N transmitter-receiver

pairs is illustrated in figure 1.

Figure 1: A System Model for N Transmitter-Receiver Pairs

Let θi be the user-dependent parameter that can be regarded as user i’s “type,” i = 1,2, ..., N. θi is only

known to user i, hence is user i’s private information. Ex ante, we assume that θi ’s are independently and

identically distributed according to a distribution function F(·) over support [θ,θ].7 User i’s valuation of

the spectrum is given by θi log(1+γi), where log(1+γi)≡ qi is a measure for the desired Quality of Service

(QoS). Using qi, user i’s valuation of the spectrum is given by θi qi. Thus θi captures user i’s “marginal

7Our analysis allows for the more general case where θi is distributed according to potentially different Fi (·). Allowing for
the heterogeneity along the value dimension would not qualitatively alter our analysis.
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value” of the quality of services derived from spectrum sharing.

3 THE ANALYSIS

Under certain conditions, {pi}N
i=1 can be uniquely determined by

{
γi

}N
i=1 and hence {qi}N

i=1. In what follows

we will focus on the QoS allocation problem. Once qi ’s are determined, the allocated power pi ’s can be

recovered accordingly. First, the interference temperature constraint (2) can be reformulated in terms of

qi ’s:

H (q1, ..., qN )≤ P. (3)

We can then define the QoS provision possibility set:

Q= {(q1, ..., qN ) : H (q1, ..., qN )≤ P} .

For ease of analysis, we make the following assumptions:

Assumption 1. θ− 1−F(θ)
f (θ) increases in θ ∈ [θ,θ].

Assumption 2. H (q1, ..., qN ) is strictly quasi-convex in (q1, ..., qN ) ∈RN+ .

Assumption 1 is a regularity condition that ensures that bunching does not occur in the analysis of

standard screening model (e.g., Myerson, 1981). Assumption 2 implies that the QoS provision possibility

set is strictly convex given P. Assumption 2 is needed to ensure that the first order conditions in our

analysis below are both necessary and sufficient for optimization.

By the revelation principle (Myerson, 1986), we can focus on the direct mechanism in which all users

are required to report their “types.” A mechanism is characterized by QoS (or equivalently, power) alloca-

tion rule q :Θ→RN+ and payment rule m :Θ→RN , so that given a reported type profile θ̂ = (
θ̂1, ..., θ̂N

) ∈Θ,

the power allocated to user i is given by qi(θ̂) at a price mi(θ̂), i = 1,2, ..., N. The direct mechanism (q,m)

is incentive compatible if

θi ∈ argmax
θ̂i

Eθ−i

[
θi qi(θ̂i,θ−i))−mi(θ̂i,θ−i)

]
, for i = 1,2, ..., N.

Define Q i(θi) = Eθ−i qi(θi,θ−i) and Mi(θi) = Eθ−i mi(θi,θ−i) to be the interim expected allocation and

payment, respectively, for user i with report θi (while all the other users report their types truthfully).

Let Ui(θi) = θiQ i(θi)−Mi(θi) be the equilibrium (interim) expected utility for user i (with type θi). The
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following lemma is standard following the constraint simplification theorem (e.g., Milgrom, 2004):

Lemma 1. Incentive compatibility holds if and only if the following two conditions are satisfied:

1. The interim expected allocation rule Q i(θi) is nondecreasing: Q′
i(θi)≥ 0;

2. The equilibrium (interim) expected utility satisfies the envelope formula:

U ′
i(θi)=Q i(θi) or Ui(θi)=Ui(θ∗)+

∫ θi

θ∗
Q i(s)dF(s), where θ∗ ∈ [θ,θi). (4)

To maximize social surplus (efficiency), the principal chooses the mechanism to maximize the total

expected utility
∑N

i=1 Eθ [θi qi(θ)] subject to individual rationality (IR), incentive compatibility (IC), and

the non-interference constraint (3). To maximize expected revenue (optimality), the principal chooses the

mechanism to maximize the total expected payment from the users
∑N

i=1 Eθmi(θ) subject to the same set

of constraints. We start with efficient mechanisms.

3.1 Efficient Mechanisms

The seller’s objective is to find a mechanism that maximizes

N∑
i=1

∫ θ

θ

∫
θ−i

θi qi (θi,θ−i) f−i (θ−i)dθ−i f (θi)dθi

subject to the following constraints: IC: Q′
i(θi) ≥ 0 and (4), IR: U(θi) ≥ 0, for all θi ∈ [θ,θ], and ITC:

interference temperature constraint: (3).

Temporarily ignoring the IR and IC constraints, we have the Lagrangian

L =
N∑

i=1
θi qi (θi,θ−i)+λ(θ) (P −H (q1(θ), ..., qN (θ))) .

where λ(θ) is the Lagrangian multiplier for the ITC constraint, hence can be interpreted as the shadow

price of the ITC constraint given θ.

Differentiating L with respect to qi (θ), we obtain the first-order optimality condition

θi =λ(θ)Hqi (q1, ..., qN ) , i = 1,2, ..., N. (5)
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The interpretation of (5) is clear: at the optimum allocation q = (qi, q−i) the marginal social benefit (θi)

equals the marginal social cost (λHqi (q)) of providing qi to user i.

Combining these N equations with the binding ITC constraint:

H (q1, ..., qN )= P, (6)

we can derive the allocation rule for the efficient auction q∗∗(θ)= (
q∗∗

1 (θ) , ...q∗∗
N (θ)

)
.

Assumption 2 guarantees the interior optimum solution: q∗∗
i (θ) > 0 for all i = 1,2, ..., N. This also

suggests that efficient allocation rule does not involve market exclusion – all users will be allocated

positive amount of power. Conditions (5) also imply

θi

Hqi

(
q∗∗

1 , ..., q∗∗
N

) = θ j

Hq j

(
q∗∗

1 , ..., q∗∗
N

) for i, j = 1, ..., N, i 6= j. (7)

So the efficient allocation rule requires that power be allocated in a way that the ratio of marginal

surplus over marginal cost (in terms of the interference generated) should be equal across all users. While

in the traditional setting without interference constraints efficient allocation should favor the ones with

highest values (types), here the criterion should be based on the relative “types” that are adjusted by the

interference constraints.

Note that the full market coverage (that all users are assigned positive amount of power) is due to

the strict quasi-convexity of H. Should Assumption 2 fail, it is possible that efficient allocation involves

the “corner” solution where some users end up with no assignment (and only those with largest marginal

surplus/marginal cost ratio would be assigned positive amount of power).

Next, we identify payment rule m that truthfully implements the socially optimum allocation rule

q∗∗ (while satisfying IR). First, let Ui(θ) = 0 for all i = 1, ..., N. Then by (4), IR is satisfied for all types.

Using (4) again, we have

Eθ−i [θi qi(θi,θ−i))−mi(θi,θ−i)]=
∫ θi

θ
Q i(s)dF(s)= Eθ−i

∫ θi

θ
qi (ti,θ−i)dti.

We can thus choose the following payment rule

m∗∗
i (θ)= θi q∗∗

i (θi,θ−i)−
∫ θi

θ
q∗∗

i (ti,θ−i)dti (8)

which by construction, satisfies (4).
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Using (5) and the binding ITC, we can verify that

∂q∗∗
i

∂θi
= ∆H−i

λ ·∆H
.

where ∆H denotes the determinant of the Bordered Hessian matrix of H:

∆H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 H1 · · · Hi · · · HN

H1 H11 · · · H1i · · · H1N
...

...
...

...

Hi Hi1 · · · Hii · · · HiN
...

...
...

...

HN HN1 · · · HNi · · · HNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9)

and ∆H−i denotes the determinant of the Bordered Hessian matrix of H−i

∆H−i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 H1 · · · Hi−1 Hi+1 · · · HN

H1 H11 · · · H1i−1 H1i+1 · · · H1N
...

...
...

...
...

Hi−1 Hi−11 · · · Hi−1i−1 Hi−1i+1 · · · Hi−1N

Hi+1 Hi+11 · · · Hi+1i−1 Hi+1i+1 · · · Hi+1N
...

...
...

...
...

HN HN1 · · · HNi−1 HNi+1 · · · HNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(10)

Since H
(
q∗∗

1 , ..., q∗∗
N

)
is strictly quasiconvex in q, we have ∂q∗∗

i /∂θi > 0. Thus Q∗∗
i (θi)= Eθ−i q

∗∗
i (θi,θ−i)

is also strictly increasing in θi (the monotonicity constraint holds). Summarizing the above analysis, we

have

Proposition 1. (q∗∗,m∗∗) described above is a socially efficient spectrum sharing mechanism that sat-

isfies IR, IC, and ITC.

Note that given ∂q∗∗
i /∂θi > 0 and (8), the efficient direct mechanism (q∗∗,m∗∗) is also dominant strat-

egy incentive-compatible (Proposition 4.2, Börgers (2015)). This is similar to the traditional single-unit

item allocation problem a la Myerson (1981), where the effcient mechanism can be implemented by a

second-price sealed-bid auction (the Vickrey auction), which is a dominant-strategy IC mechanism. This
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resemblance is somewhat unexpected, as the complexity of additional noninterference constraints does

not affect the dominant strategy implementation in our setting.

That ∂q∗∗
i /∂θi > 0 also implies

∂m∗∗
i

∂θi
= θi

∂q∗∗
i

∂θi
> 0.

This implies that M∗∗
i (θi)= Eθ−i m

∗∗
i (θi,θ−i) is also strictly increasing in θi.

It turns out that the efficient mechanism can be implemented via an all-pay auction augmented by

recovery functions M∗∗−1
i (bi) , i = 1, ..., N (which is made public before the sale). More specifically, bidders

submit bids (if they so choose), and they need to pay what they bid regardless of the amount of power (qi)

being allocated. Given the bid profile b, a type profile θ will be recovered according to θi = M∗∗−1
i (bi).

The efficient power allocation rule will then be implemented accordingly.

Alternatively, we can consider a discriminatory-price auction augmented by the recovery function

β∗∗−1
i (bi) where

β∗∗
i (θi)= θi −

∫ θi
θ

Q∗∗
i (ti)dti

Q∗∗
i (θi)

, i = 1, ..., N.

It works as follows: each bidder submits a bid (say, bi), and will need to pay for the assigned power based

on the unit-price equal to what she bids (those who are not assigned power do not pay, which is different

from the all-pay auction counterpart). Given the bid profile b, a type profile θ will be recovered according

to θi =β∗∗−1
i (bi). The efficient power allocation rule will then be implemented accordingly.

Proposition 2. Socially efficient spectrum sharing allocation rule can be implemented in Bayesian Nash

equilibrium via an all-pay auction or a discriminatory-price auction described in the preceding para-

graphs.

Proof. See Appendix.

In the proof, we basically show that bidding according to M∗∗and β∗∗ constitutes Bayesian Nash

equilibria in the all-pay auction and discriminatory-price auction, respectively, as described above. Note

that an all-pay auction is quite robust in implementing desirable outcomes in different environments (for

example, see Fullerton and McAfee, 1999, in the settings of tournaments, and Ye, 2007, and Lu and Ye,

2018, in the settings of two-stage auctions). But the implementation of the discriminatory-price auction is

not guaranteed in many other environments (e.g., in the same settings of the tournaments and two-stage

auctions mentioned above).
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3.2 Optimal Mechanisms

We now turn to the revenue-maximizing (optimal) mechanisms. Let θ∗i be the lowest possible type that

user i would be willing to participate in the mechanism. By (4), we have

θiQ i (θi)−Mi (θi)=Ui
(
θ∗i

)+∫ θi

θ∗i
Q i (ti)dti

which implies

Mi (θi)= θiQ i (θi)−
∫ θi

θ∗i
Q i (ti)dti −Ui

(
θ∗i

)
.

Following standard techniques in mechanism design, the expected payment from user i is given by

EMi (θi) =
∫ θ

θ∗i

∫
θ−i

{
θiQ i (θi)−

∫ θi

θ∗i
Q i (ti)dti −Ui

(
θ∗i

)}
f−i (θ−i)dθ−i f (θi)dθi

=
∫
θ−i

{∫ θ

θ∗i

[
θiQ i (θi)−

∫ θi

θ∗i
Q i (ti)dti

]
f (θi)dθi

}
f−i (θ−i)dθ−i −Ui

(
θ∗i

)
=

∫
θ−i

{∫ θ

θ∗i

[(
θi − 1−F (θi)

f (θi)

)
qi (θi,θ−i)

]
f (θi)dθi

}
f−i (θ−i)dθ−i −Ui

(
θ∗i

)
.

=
∫ θ

θ∗i

∫
θ−i

(
θi − 1−F (θi)

f (θi)

)
qi (θi,θ−i) f−i (θ−i)dθ−i f (θi)dθi −Ui

(
θ∗i

)
.

To maximize the expected revenue, the seller should set Ui
(
θ∗i

) = 0 for all i = 1, ..., N. This also

guarantees that IR is satisfied due to (4). The seller’s objective therefore is reduced to find a mechanism

that maximizes
N∑

i=1

∫ θ

θ∗i

∫
θ−i

(
θi − 1−F (θi)

f (θi)

)
qi (θi,θ−i) f−i (θ−i)dθ−i f (θi)dθi

subject to the constraint that the mechanism is (1) IC: Q′
i (θi) ≥ 0 and (4), and (2) ITC: interference

temperature constraint: (3).

Following similar procedures as in the analysis for efficient mechanisms, we can derive the following

optimality condition:

θi − 1−F (θi)
f (θi)

=λ(θ)Hqi (q1, ..., qN ) , i = 1,2, ..., N, (11)

where λ(θ) is the Lagrange parameter associated with the ITC. Condition (11) basically says that the

optimal allocation rule equates marginal revenue (or virtual value a la Myerson) with marginal cost of

power provision (the “cost” from the perspective of the principal).

Given the regularity condition and that Hqi (q1, ..., qN )> 0, optimal power allocation involves market
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exclusion: all types below θ∗ are not assigned power, where θ∗ is the unique solution to θ− 1−F(θ)
f (θ) = 0.

Note that θ∗, which is also known as the optimal screening threshold, is the same for all users in our

model, as users are symmetric in terms of the value “types.”

That revenue-maximizing allocation rule involves market exclusion is different from the efficient

allocation rule, where market exclusion does not occur. Our result with the divisible good setting is

consistent with the result from single-unit auctions (e.g., Myerson, 1981).

Combining the N equations (11) with (6), we can derive the optimal power allocation rule q∗
i =

q∗
i (θ1, ...,θN ), i = 1,2, ..., N.

Conditions (11) can be rewritten as

θi − (1−F (θi)) / f (θi)
Hqi

(
q∗

1 , ..., q∗
N

) = θ j −
(
1−F

(
θ j

))
/ f

(
θ j

)
Hq j

(
q∗

1 , ..., q∗
N

) for i, j = 1, ..., N, i 6= j. (12)

So unlike in the traditional optimal mechanism design settings where allocation favors the one with

the highest virtual value, here the allocations favor those with the highest relative virtual values, which

are adjusted by the cost due to the interference: the optimality requires that the ratio of marginal revenue

over the marginal cost be equal across all users assigned positive units of power.

Following the same procedure as in the previous subsection, we can select the following payment rule:

m∗
i (θ1, ...,θN )= θi q∗

i (θ1, ...,θN )−
∫ θi

θ∗
q∗

i (θ1, ..., ti, ...,θN )dti (13)

where θ∗ is the optimal screening level.

Since H (q1, ..., qN ) is strictly quasi-convex, again we have

∂q∗
i

∂θi
= a (θi)∆H−i

λ ·∆H
> 0,

where ∆H is the determinant of the Bordered Hessian matrix of H and ∆H−i is the determinant of the Bor-

dered Hessian matrix of H−i defined in the previous subsection (but evaluated at
(
q∗

i , q∗
−i

)
instead), and

a (θi)= ∂ [θi − (1−F (θi)) / f (θi)] /∂θi > 0 (by Assumption 1). Following similar arguments for Proposition 1,

we can establish

Proposition 3. (q∗,m∗) described above is a revenue-maximizing spectrum sharing mechanism that

satisfies IR, IC, and ITC.

Again, given ∂q∗
i /∂θi > 0 and (13), the optimal direct mechanism (q∗,m∗) is also dominant strate-
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gy incentive-compatible (Proposition 4.2, Börgers, 2015). Note that in the traditional single-unit item

allocation environment as studied by Myerson (1981), the optimal mechanism can be implemented by

a second-price sealed-bid auction (the Vickrey auction) with appropriately set reserve prices, which is a

dominant-strategy IC mechanism. Again, this resemblance is somewhat unexpected, given the additional

noninterference constraints in our setting.

That ∂q∗
i /∂θi > 0 also implies that

∂m∗
i

∂θi
= θi

∂q∗
i

∂θi
> 0,

which in turn implies that M∗
i (θi)= E

[
m∗

i (θi,θ−i)
]

is strictly increasing in θi.

As in the case for efficient mechanism, the optimal mechanism can also be implemented via an all-pay

auction or a discriminatory-price auction augmented by their corresponding recovery functions. Under an

all-pay auction, M∗−1
i serves as the recovery function; under a discriminatory-price auction, β∗−1

i serves

as the recovery function, where β∗
i is defined by

β∗
i (θi)= θi −

∫ θi
θ∗ Q∗

i (ti)dti

Q∗
i (θi)

, for θi ≥ θ∗, i = 1, ..., N. (14)

Again, after bids are collected, the underlying types are recovered based on the recovery function.

The optimal power allocation rule can then be implemented accordingly.8

Proposition 4. The revenue-maximizing spectrum sharing allocation rule can be implemented in Bayesian

Nash equilibrium via an all-pay auction described in the preceding paragraph.

Proof. The proof is basically the same as the proof for Proposition 2, with the only difference being that

there is an optimal screening threshold at θ∗ for the optimal mechanism.

While an all-pay auction has an arguably undesirable feature that users need to pay even if they are

not assigned any units of the good, this is not the case in our equilibrium: as long as a user submits

a strictly positive bid, she will be assigned a positive amount of power in equilibrium.9 This is due to

Assumption 2. If H is not quasi-convex, it is possible that some users would not get assignments even if

their value types are above θ∗.

It is also worth noting that under either an all-pay or a discriminatory-price auction in our imple-

mentations (both for efficiency and optimality), users follow asymmetric bid functions in equilibrium,

8Due to the optimal screening threshold, some users may not submit bids. So some underlying types may not be recovered.
But those types must be below θ∗ and hence would not affect the implementation of the optimal allocation rule.

9For those with types below the optimal screening threshold, they do not bid and hence do not pay in equilibrium.
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although they are ex ante symmetric in terms of their type distributions. The reason is that despite

symmetry in value types, they are typically asymmetric in terms of their externalities in causing inter-

ferences, which is reflected by the specific functional form of H. This also marks an interesting difference

between our analysis and the traditional auction analysis where symmetry in value distributions usually

leads to symmetric bid function in equilibrium.

3.3 An Example

Since remote sensing applications such as radar (e.g. air traffic control radar) are allocated primary

use of a significant portion of the highly desirable spectrum below 6 GHz and typically have predictable

patterns for spectral access that differs from standard communication applications such as LTE and Wi-

Fi, spectrum scarcity issues encountered in wireless cellular and broadband have led to growing interest

within both the research and regulatory communities to open radar spectrum for sharing with other

applications.

Radar systems are usually narrow-band and seldom occupy their designated entire frequency band.

Here multiple radar sites whose operating channels are interleaved across their allocated spectrum usu-

ally exploit conservative geographical separations to mitigate intra-system interference and provide the

required coverage. From the perspective of a single radar site at any given time, much of its allotted

spectrum lies idle due to the frequency and range separation, and hence representing a promising op-

portunity for non-harmful secondary transmission. The pulsed characteristics of radar signals together

with the communications system processing chain also imply a general robustness of secondary trans-

missions against radar generated interference. With moderate frequency and range separation, spectrum

sharing between a scanning ATC radar and secondary system is possible, although both of them may be

ultimately subject to quantified performance degradations due to the impact each has on the other.

Below we present an example analysis of primary/secondary spectrum sharing for radar. The primary

user (the observing system) is assumed to be an ATC radar working in L-Band. The secondary users are

assumed to support the OFDM physical layer, which is a mainstream technology universally adopted

in the most popular wireless cellular standard. Here we assume that both secondary users are Wi-Fi

systems. The transmit power of the ith secondary system is denoted as pi. The propagation loss between

the transmitter of the ith secondary system and the receiver of the jth secondary system is denoted as

hi j. The power spectrum density of the receiver thermal noise is denoted as n0, receiver bandwidth is

denoted as B. The maximum allowable interference power at the radar receiver is denoted as P, which
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depends on the receiver sensitivity.

The receivers of secondary users are assumed to have receiver bandwidths set to be 160 MHz (B =
1.6×108), which is a typical channel bandwidth specially designed for Wi-Fi systems. We also assume

that the site planning is performed for the newly introduced secondary systems such that proper system

isolation through range separation, frequency separation or phase encoding is achieved. It follows that

the inter-system channel gain (hi j, with i 6= j) is always smaller than the corresponding intra-system

channel gain (hi j, with i = j). More specifically, we assume h11 = 2×10−9, h22 = 3×10−9, and h12 = h21 =
1×10−11. The propagation loss between the primary system and the secondary systems takes typical

values for LOS propagation with a range in tens of kilometers, and the propagation loss for secondary

systems takes values for NLOS propagation with a range in hundreds of meters (h10 = 3×10−12, h20 =
4×10−12). We pick a value that is slightly larger than the receiver thermal noise power for the maximum

tolerable interference at each receiver (P = 10−12). In addition, we set n0 = 3.726× 10−21, which is a

physical constant under room temperature. We also assume that the user type θi is uniformly distributed

over [0,1]. Suppose the two secondary users’ types are given by θ1 = 0.6, θ2 = 0.8, we will calculate the

specific power allocation according to efficient and optimal mechanisms characterized in the preceding

subsections.

First, the equation γi = pihii/
[
n0B+∑

j 6=i p jh ji
]
, i = 1,2, ..., N, can be rewritten as

 h11
γ1

−h21

−h12
h22
γ2

 p1

p2

= n0B

 1

1


we can solve for p1 and p2 in terms of γ1 and γ2:10

p1 =
n0B

(
h22
γ2

+h21

)
h11
γ1

h22
γ2

−h21h12
, p2 =

n0B
(

h11
γ1

+h12

)
h11
γ1

h22
γ2

−h21h12
.

Since log(1+γi)≡ qi, γi = exp(qi)−1, we can further write

p1 =
n0B

(
h22

exp(q2)−1 +h21

)
h11

exp(q1)−1
h22

exp(q2)−1 −h21h12
, p2 =

n0B
(

h11
exp(q1)−1 +h12

)
h11

exp(q1)−1
h22

exp(q2)−1 −h21h12

10The condition required is ∣∣∣∣∣
h11
γ1

−h21

−h12
h22
γ2

∣∣∣∣∣ 6= 0.
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The constraint
∑N

i=1 pihi0 ≤ P can now be rewritten as

n0B
(

h22
exp(q2)−1 +h21

)
h11

exp(q1)−1
h22

exp(q2)−1 −h21h12
h10 +

n0B
(

h11
exp(q1)−1 +h12

)
h11

exp(q1)−1
h22

exp(q2)−1 −h21h12
h20 = H (q1, q2)≤ P

1. Efficient allocation. Solving from

θ1

Hq1 (q1, q2)
= θ2

Hq2 (q1, q2)
H (q1, q2) = P

we have

q∗∗
1 = 4.2600, q∗∗

2 = 5.9523

p∗∗
1 = 0.0856, p∗∗

2 = 0.1857

2. Optimal allocation. Solving from

θ1 − (1−F (θ1)) / f (θ1)
Hq1 (q1, q2)

= θ2 − (1−F (θ2)) / f (θ2)
Hq2 (q1, q2)

H (q1, q2) = P

we have

q∗∗
1 = 2.7312, q∗∗

2 = 6.7703

p∗∗
1 = 0.0211, p∗∗

2 = 0.2342

4 EXTENSIONS

In the preceding analysis we assume that the distribution of the users’ types satisfies a regularity condi-

tion (Assumption 1). Moreover, we assume deterministic channel gain structure (hi j ’s are deterministic).

In this section we demonstrate how we can extend our analysis to the settings where either of these

assumptions is relaxed.
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4.1 Analysis With General Type Distributions

Assumption 1 ensures that the monotonicity constraint Q′
i (θi) ≥ 0 is nonbinding. When Assumption 1

fails, it is possible that the monotonicity constraint can be binding and the solution may involve bunching

(i.e., there exist intervals over which the allocation of power is constant). Taking into account the mono-

tonicity constraint explicitly and letting wi (θi,θ−i) = ∂qi (θi,θ−i) /∂θi, the seller’s revenue-maximization

problem is as follows:

max
(q1,...,qN )

N∑
i=1

∫ θ

θ∗i

∫
θ−i

(
θi − 1−F (θi)

f (θi)

)
qi (θi,θ−i) f−i (θ−i)dθ−i f (θi)dθi

Subject to

Q′
i (θi)=

∫
θ−i

∂qi (θi,θ−i)
∂θi

f−i (θ−i)dθ−i =
∫
θ−i

wi (θi,θ−i) f−i (θ−i)dθ−i∫
θ−i

wi (θi,θ−i) f−i (θ−i)dθ−i ≥ 0

H (q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )) ≤ P

The Hamiltonian for this program is

H (θi, qi (θi,θ−i) ,wi (θi,θ−i) ,λi (θi) ,λ (θ))=


∑N
i=1

[(
θi − 1−F(θi)

f (θi)

)
qi (θi,θ−i)+λi (θi)wi (θi,θ−i)

]
+λ(θ) [P −H (q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN ))]


By Pontryagin’s maximum principle, the necessary conditions for an optimum

[
qi (θi,θ−i) ,wi (θi,θ−i)

]
are

given by

1.

H
(
θi, qi (θi,θ−i) ,wi (θi,θ−i) , q−i (θi,θ−i) ,w−i (θi,θ−i) ,λi (θi) ,λ (θ)

)
≥ H

(
θi, qi (θi,θ−i) ,wi (θi,θ−i) , q−i (θi,θ−i) ,w−i (θi,θ−i) ,λi (θ) ,λ (θ)

)

2. Except at points of discontinuity of qi (θi,θ−i), we have

dλi (θ)
dθi

=−
[
θi − 1−F (θi)

f (θi)
−λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)]
, i = 1, ..., N. (15)
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3. The transversality conditions λi
(
θ
)=λi

(
θ
)
= 0 are satisfied.

Integrating equation(15), we have

λi (θi)=
∫ θ

θi

[
θi − 1−F (θi)

f (θi)
−λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)]
dθi.

The first condition above requires that wi (θi,θ−i) maximize

H
(
θi, qi (θi,θ−i) ,wi (θi,θ−i) , q−i (θi,θ−i) ,w−i (θi,θ−i) ,λi (θ) ,λ (θ)

)
subject to wi (θi,θ−i)≥ 0. This requirement implies λi (θi)≤ 0, or

∫ θ

θi

[
θi − 1−F (θi)

f (θi)
−λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)]
dθi ≤ 0.

Whenever λi (θ)< 0 we must have

wi (θi,θ−i)=
∂qi (θi,θ−i)

∂θi
= 0.

Thus we have the following complementary slackness condition:

∂qi (θi,θ−i)
∂θi

·
∫ θ

θi

[
θi − 1−F (θi)

f (θi)
−λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)]
dθi = 0

for all θi ∈
[
θ,θ

]
.

It follows from this condition that if qi (θi,θ−i) is strictly increasing over some interval, then it must

coincide with qs
i , the solution that would have been derived following the procedure introduced in Section

3.2. To see this conclusion, note that wi (θi,θ−i)= ∂qi (θi,θ−i) /∂θi > 0, hence λi (θi)= 0 and dλi (θi) /dθi = 0,

which implies

θi − 1−F (θi)
f (θi)

=λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)
.

But this is precisely the condition that defines qs
i . It therefore only remains to determine the bunching

intervals over which qi (θi,θ−i) is constant. Suppose
[
θ1,θ2]

is such an interval.

Consider Figure 2. To the left of θ1 and to the right of θ2, we have

λi (θi)= 0 and wi (θi,θ−i)=
∂qi (θi,θ−i)

∂θi
= ∂qs

i (θi,θ−i)
∂θi

> 0.
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0iw =

Figure 2: An Illustration of Bunching

For any θ between θ1and θ2, we have

λi (θi)< 0 and wi (θi,θ−i)= 0.

By continuity of λi (θi), we must have λi
(
θ1)=λi

(
θ2)= 0, so that

∫ θ2

θ1

[
θi − 1−F (θi)

f (θi)
−λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)]
dθ = 0. (16)

In addition, at θ1and θ2 we must have qs
i
(
θ1,θ−i

) = qs
i
(
θ2,θ−i

)
. This follows from the continuity of

qi (θi,θ−i). Thus we have two additional equations, allowing us to determine the two additional unknowns

θ1and θ2.

Given (θ1, ...,θN ), suppose ∂qi (θi,θ−i) /∂θi = 0 for θi ∈
[
θ1,θ2]

. We have

qi (θi,θ−i)= qs
i
(
θ1,θ−i

)
for θi ∈

[
θ1,θ2]

. Suppose ∂q j
(
θ j,θ− j

)
/∂θ j = ∂qs

j
(
θ j,θ− j

)
/∂θ j > 0 for j 6= i. Then we have
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θ j −
1−F

(
θ j

)
f
(
θ j

) =λ(θ)Hq j

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)
for j 6= i.

We also have

H
(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)= P

Combining these N+1 equations, we can solve for all qi (θ1, ...,θN ) and λ (θ1, ...,θN ). It is easily verified

that

∂qi (θ1, ...,θN )
∂θi

= ∂q j (θ1, ...,θN )
∂θi

= ∂λ (θ1, ...,θN )
∂θi

= 0, for θi ∈
[
θ1,θ2]

.

So equation (16) leads to

∫ θ2

θ1

[
θi − 1−F (θi)

f (θi)

]
dθi/

(
θ2 −θ1)=λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)
.

At θ1and θ2, we have qs
i
(
θ1,θ−i

) = qs
i
(
θ2,θ−i

) = qi (θ1, ...,θN ) for θi ∈
[
θ1,θ2]

(by the continuity of

qi (θi,θ−i)). So we have

θ1 − 1−F
(
θ1)

f
(
θ1

) =
∫ θ2

θ1

[
θi − 1−F (θi)

f (θi)

]
dθi/

(
θ2 −θ1)= θ2 − 1−F

(
θ2)

f
(
θ2

) (17)

Define the virtual value or marginal revenue v (θ)= θ− 1−F(θ)
f (θ) . In the case when the regularity condi-

tion holds, we have derived the following optimality condition in Section 3.2:

v (θi)=λ(θ)Hqi (q1, ..., qN ) , i = 1,2, ..., N,

In the general case allowing for general type distributions, v (θ) may not always increase in θ. We

need to iron v (θ) to get v (θ) following the procedure described above. When v (θ) decreases in θ over some

intervals, we can use (17) to determine bunching endpoints θ1and θ2. Let

v (θ) = θ1 − 1−F
(
θ1)

f
(
θ1

) , if θ ∈ [
θ1,θ2]

v (θ) = θ− 1−F (θ)
f (θ)

, otherwise
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Now we can derive the following optimality condition for the general case:

v (θi)=λ(θ)Hqi

(
q1 (θ1, ...,θN ) , ..., qN (θ1, ...,θN )

)
, i = 1,2, ..., N, (18)

Combining the N equations (18) with the binding ITC constraint, we can derive the optimal allocation

rule q. Once q is identified, we can follow similar procedures as described in Section 3. 2 to derive

the payment rule m. Proposition 3 can then be extended to accommodate the case with general type

distribution:

Proposition 5. (q,m) is a revenue-maximizing spectrum sharing mechanism that satisfies IR, IC, and

ITC in the case with general type distribution.

Intuitively, when the regularity condition fails, the optimal allocation rule needs to be modified as

follows: the optimality requires that the ratio of average marginal revenue over the marginal cost be

equal across all users assigned positive units of power.

4.2 The Stochastic Channel Gains

Unlike in the preceding analysis, we now assume that hi j ’s and hi0’s are stochastic. Let hi j be the s-

tochastic channel gain from user i’s transmitter to user j’s receiver, and hi0 be the stochastic channel

gain from user i’s transmitter to the measurement point. Ex ante, we assume that hi j ’s are independent-

ly distributed according to distribution function G i j(·) over support [h,h], and hi0’s are independently

distributed according to distribution function G i0(·) over support [h,h].

Given hi j ’s and hi0’s, the received Signal-to-Interference plus Noise Ratio (SINR) is again given by

γi = pihii

n0B+∑
j 6=i p jh ji

, i = 1,2, ..., N. (19)

The interference temperature constraint, however, now requires that the expected total received power

at a specified measurement point satisfy the following condition:

N∑
i=1

pi

∫ h

h
hi0dG i0(hi0)≤ P. (20)

Given type θi and γi, user i’s valuation of the spectrum is now given by the expected utility θiE
(
log(1+γi)

)
,

where E
(
log(1+γi)

)≡ qi is a measure for the expected desired Quality of Service (QoS). As before, under
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certain regular conditions, {pi}N
i=1 can be uniquely determined by {qi}N

i=1. So the interference temperature

constraint (2) can be reformulated in terms of qi ’s:

H (q1, ..., qN )≤ P.

We can then define the QoS provision possibility set:

Q= {(q1, ..., qN ) : H (q1, ..., qN )≤ P} .

Starting from here, the analysis can be carried out as in our main model.

5 CONCLUSION

In this paper we study socially efficient and revenue-maximizing mechanisms in a special radio spectrum

sharing environment. The mechanism design problem in such a setting is different from the traditional

setting mainly in that we need to explicitly take into account a non-interference constraint. Incorporating

such a constraint may potentially complicate the analysis; nevertheless under some regularity conditions

we are able to fully characterize both the socially efficient and revenue optimal mechanisms. Unlike in

the traditional mechanism design literature where the allocation is determined by the values or virtual

values alone, in our setting the allocation depends on relative values or virtual values, which are ad-

justed by a term reflecting the marginal cost in terms of the externality caused to the interference. The

efficient and optimal allocation rules identified thus have intuitive economic interpretations. We show

that both efficient and optimal mechanisms are also dominant strategy incentive-compatible, and that

they can both be implemented via some well-designed all-pay or discriminatory-price auctions equipped

with recovery functions.

Our model is stylized, but can be generalized along some directions (as discussed in Section 4). Anoth-

er important extension is to allow for multi-dimensional technological constraints implied by spectrum

sharing. For example, in the radar application, restrictions in time, frequency, and location impose mul-

tiple constraints, and they should all be taken into account in designing a viable market for spectrum

sharing (Johnson et al., 2014). A direct implication is that optimal mechanisms involve allocation of not

only power but also frequency bands or time intervals, which is more challenging than the case analyzed

in this current paper. Despite the complications, we believe that some general insights obtained from
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this current model should still be robust. In particular, we expect that for the revenue-maximizing mech-

anisms, the principal should still maximize a generalized virtual value adjusted by all the constraints,

and the power or bandwidth will be allocated to the extent that each recipient will contribute to the same

ratio of marginal virtual value over marginal cost (in terms of the negative externalities caused to the

interference). Given the technical difficulties, this is left for future research.

APPENDIX

Proof of Proposition 2: To show that the efficient allocation rule can be implemented by the described

all-pay auction (with a trivial reserve price at zero), it only remains to show that it is a Bayesian Nash

equilibrium (BNE) for users to bid according to
(
M∗∗

1 , ..., M∗∗
N

)
.

Given that everyone else bids according to M∗∗
−i (·), bidder i maximizes the following objective function

by choosing her bid b:

Π̂(b,θi)= Eθ−i

[
θi q∗∗

i (M∗∗−1
i (b),θ−i))

]−b = θiQ∗∗
i (M∗∗−1

i (b))−b

We next apply the constraint simplification theorem11 to demonstrate that bidding according to(
M∗∗

1 , ..., M∗∗
N

)
constitutes a BNE in this all-pay auction game. This can be verified in the following

steps:

1) M∗∗
i (·) is strictly increasing as shown in the text.

2) Since Q∗∗′
i (·)> 0, Π̂(b,θi) satisfies the strict and smooth single crossing differences property.

3) By construction of M∗∗
i , it verifies the envelope formula.

4) It is also easily verified that bidding outside the range of M∗∗
i (·) cannot lead to higher expected payoff.

Thus all the sufficiency conditions for the constraint simplification theorem are satisfied and M∗∗ =(
M∗∗

1 , ..., M∗∗
N

)
indeed constitutes an BNE in the described all-pay auction game.

The implementation via the described discriminatory-price auction can be demonstrated analogously.

It now remains to show that it is an BNE for users to bid according to
(
β∗∗

1 , ...,β∗∗
N

)
, where β∗∗

i is given

by (14).

Given that everyone else bids according to β∗∗
−i (·), bidder i maximizes the following objective function

11See, for example, Theorem 4.3 in Milgrom [13], pp. 105.
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by choosing her bid b:

Π̂(b,θi)= Eθ−i

[
(θi −b)q∗∗

i (β∗∗−1
i (b),θ−i))

]= (θi −b)Q∗∗
i (β∗∗−1

i (b))

1) It is easily verified that β∗∗
i (·) is strictly increasing.

2) Since Q∗∗′
i (·)> 0, Π̂(b,θi) satisfies the strict and smooth single crossing differences property.

3) β∗∗
i verifies the envelope formula: Π̂(β∗∗

i (θi),θi)= (θi −β∗∗
i (θi))Q∗∗

i (θi)=
∫ θi
θ

Q∗∗
i (ti)dti.

4) It is also easily verified that bidding outside the range of β∗∗
i (·) cannot lead to higher expected payoff.

Thus all the sufficiency conditions for the constraint simplification theorem are satisfied and β∗∗indeed

constitutes an BNE in the described discriminatory-price auction game.

24



REFERENCES

[1] Ausubel, Lawrence and Paul Milgrom, “Ascending Auctions with Package Bid-

ding,” Frontiers of Theoretical Economics: Vol. 1: No. 1, Article 1, 2002.

http://www.bepress.com/bejte/frontiers/vol1/iss1/art1

[2] Akyildiz, I. F., W. Y. Lee, M.C. Vuran, and S. Mohanty, “Next Generation/Dynamic Spectrum Ac-

cess/Cognitive Radio Wireless Networks: A Survey,” Computer Networks 50 (13), 2007, pp. 2127-

2159.

[3] Back, K and J.F. Zender, “Auctions of Divisible Goods: On the Rationale for the Treasury Experi-

ment,” Review of Financial Studies 6, 1993, pp. 733-764.

[4] Börgers, Tilman, An Introduction to the Theory of Mechanism Design, Oxford University Press,

2015.

[5] Cramton, Peter, “Spectrum Auction Design,” Review of Industrial Organization, 42 (2), 2013, pp.

161-190.

[6] Cramton, P., Y. Shoham, and R. Steinberg (eds.), Combinatorial Auctions, MIT Press, 2006.

[7] Fullerton, R. and P. McAfee, “Auctioning Entry into Tournaments,” Journal of Political Economy107,

1999, pp. 573-605.

[8] Gandhi, S., C. Buragohain, L. Cao, H. Zheng, and S. Suri, “Towards Real-Time Dynamic Spectrum

Auctions,” Computer Networks 52, 2008, pp. 879-897.

[9] Huang, J., Berry, R., and Honig, M., “Auctions-Based Spectrum Sharing,” Mobile Networks and

Applications 11, 2006, pp. 405-418.

[10] Johnson, J., C.J. Baker, H. Wang, L. Ye and C. Zhang, “Assessing the Potential for Spectrum Sharing

between Communications and Radar Systems in the L-Band Portion of the RF Spectrum Allocated

to Radar,” IEEE ICEAA Conference, August, 2014.

[11] Kash, I., R. Murty, and D. Parkes, “Enabling Spectrum Sharing in Secondary Market Auctions,”

IEEE Transactions on Mobile Computing 13 (3), 2013, pp. 556 - 568.

[12] Khaledi, M., A. Abouzeid, “Auction-Based Spectrum Sharing in Cognitive Radio Networks with

Heterogeneous Channels,” Working paper, 2014.

25



[13] Lu, Jingfeng, Lixin Ye, “Optimal Mechanisms With Costly Information Acquisition,” Working Paper,

2018.

[14] Milgrom, Paul, Putting Auction Theory to Work, Cambridge University Press, 2004.

[15] Myerson, Roger, “Optimal Auction Design,” Mathematics of Operation Research 6, 1981, pp. 58-73.

[16] Myerson, Roger, “Multistage Games with Communication,” Econometrica 54 (2), 1986, pp. 323-358.

[17] Wang, J. and J. F. Zender, “Auctioning Divisible Goods,” Economic Theory 19, 2002, pp. 673-705.

[18] Ye, Lixin, “Indicative Bidding and a Theory of Two-Stage Auctions,” Games and Economic Behavior

58, 2007, pp. 181-207.

26


	Introduction
	The Model
	The Analysis
	Efficient Mechanisms
	Optimal Mechanisms
	An Example

	Extensions
	Analysis With General Type Distributions
	The Stochastic Channel Gains

	Conclusion

