Chapter 10

Gases & Kinetic Molecular Theory

I) <u>Gases, Liqu</u>	ids, Solids	
Gases	Liquids	<u>Solids</u>
Particles far apart	Particles touching	Particles closely packed
very compressible	slightly comp.	Incomp.
D _g	<< D _ℓ	< D _s
No definite vol.	def. vol.	def. vol.
No def. shape	No def. shape	def. shape

II) Properties of Gases

A) <u>Amount (mass or moles)</u> low molar masses

Independent of vol. (V), pressure (P), temp. (T)

B) Volume

Gas takes shape of its container & completely fills it.

vol. gas = vol. container

Dependent on P & T

C) <u>Temperature</u>

Both P & V depend on T - MUST use Kelvin

D) All gases are miscible

- mix completely

homogeneous mixture

E) Pressure

Gas particles exert pressure by colliding w. walls of container

Depends on V & T

SI unit : Pascal, $1 \text{ Pa} = 1 \text{ N/m}^2$

1) Pressure Measurement

Barometer: measures pressure of atmosphere

Manometer: measures press. of gas or gas above a liquid in a vessel

a) <u>Units</u>

Standard Atmospheric Pressure

Avg. atmospheric pressure at 0°C at sea level that supports a column of Hg 760 mm high. (1 atm)

1 atm = 760 mm Hg = 760 torr

 $= 101.325 \text{ k} \text{ Pa} = 14.7 \text{ lbs/in}^2$

Copyright © 2009 Pearson Prentice Hall, Inc.

b) Ex: What would be the height of H_2O in a barometer if the atmospheric pressure were 760.0 torr? The density of H_2O is 1.00 g/mL and that of Hg is 13.6 g/mL.

Copyright © 2009 Pearson Prentice Hall, Inc.

III) Gas Laws

A) **Boyle's** Law

Volume is inversely proportional to Pressure (constant T & fixed amt. gas)

 Ex: To what pressure must a gas be compressed to get it into a 3.00 ft³ tank if it occupies 40.0 ft³ at 1.00 atm? B) Charles's Law

Volume is directly proportional to Absolute Temp. (constant P & fixed amt. gas)

Ex: A gas occupies a vol. of 12.3 L at 177°C. What is its vol. when the temp. is 27°C?

C) Avogadro's Law

Avogadro's Hypothesis:

Equal volumes of gases, at same T & P, contain equal numbers of particles.

Avogadro's Law

Volume of a gas is directly proportional to the number of moles of gas

$$\mathbf{V} = \mathbf{k}_3 \cdot \mathbf{n}$$

$$\frac{\mathbf{V}_2}{\mathbf{n}_2} = \frac{\mathbf{V}_1}{\mathbf{n}_1}$$

1) Determination of Mol. Wt.

If 2 gases have equal vol. then there are equal numbers of particles &

mass 1 molecule B (amu)	mass B (g)
mass 1 molecule A (amu)	mass A (g)
Proof	

2) Ex: There are 2 balloons at same P & T. One balloon contains H₂ & the other contains an unknown gas, B, each w. a vol. of 1 L and masses as shown below. What is the MW of B?

IV) Ideal Gas Law

Replace proportionality & rearrange

Universal Gas Constant

Ideal Gas

Hypothetical gas that behaves according to the Ideal Gas Law under all conditions

A) Standard Temp. & Pressure

Temp. & Pressure affect Volume

Need a "standard" T & P as a reference point

STP $T = 0 ^{\circ}C$ (273.15 K) P = 1 atm B) Molar Volume

Volume of 1 mole of an ideal gas, V_m , at a given T & P

At STP:

Standard Molar Volume

1 mole	—	
gas		22.41 L

1) <u>Ex</u>: What volume does 3.0 mol of gas occupy at STP?

C) Super Combined Gas Law

Alternate writing of IGL:

D) Calc. Using Ideal Gas Law

Given any three of P, V, n & T calc. the unknown quantity

 Ex: What is the pressure in a container that holds 0.452 g of NH₃, in a vol. of 400.0 mL & a temp. of 25°C? 2) Ex: A sample of gas occupies a vol. of 5.0 L at a pressure of 650.0 torr & a temp. of 24°C. We want to put the gas in a 100.0 mL container which can only withstand a pressure of 3.0 atm. What temp. must be maintained so that the container doesn't explode.

Blank Page

V) Further Applications of IGL

A) Determine MW & Molecular Formula $MF = (EF)_{n}$ $n = \frac{MF}{EFW}$

Determine EF & EFW from % composition data

Determine MW

PV = nRT $\mathcal{M} = m/n$ D = m/V

$$D = \frac{P \mathcal{M}}{R T}$$

 Ex: An unknown gas has a mass of 0.50 g. It occupies 1.1 L at a pressure of 252 torr & a temp. of 243°C. Its emp. formula is C₂H₅. What is its molecular formula?

Blank Page

B) Stoichiometry Problems Involving Gases

Moles of reactants & products are related by balanced eqn.

Moles of gases related to P, V & T

Use Avogadro's Law to express quantities of gas in volumes

V \propto n (constant T & P) V = k n $\frac{V_2}{n_2} = \frac{V_1}{n_1}$

1) Ex 1: What volume of oxygen gas would be required to produce 0.50 L of SO₂ by the following rx.?

 $2 \operatorname{ZnS} + 3 \operatorname{O}_2(\mathbf{g}) \rightarrow 2 \operatorname{ZnO} + 2 \operatorname{SO}_2(\mathbf{g})$

2) Ex 2: When the following rxn. was carried to completion at 27°C & 0.987 atm 3.20 L of CO was produced. How many moles of Sb₄O₆ were initially present?

 $Sb_4O_6 + 6C \rightarrow 4Sb + 6CO(g)$

3) Ex 3: What vol. of $N_2(g)$ at STP would be produced by the rxn. of 0.86 g of NO(g)?

 $2 \operatorname{NO}(\mathbf{g}) + 2 \operatorname{H}_2(\mathbf{g}) \rightarrow 2 \operatorname{H}_2\operatorname{O}(\mathbf{g}) + \operatorname{N}_2(\mathbf{g})$

Remember: 1 mol gas = 22.41 L at STP

VI) Gas Mixtures & Partial Pressures

Each gas acts independently.

Total pressure depends only on the total # particles & not kind.

A) Partial Pressures

Pressure each gas would exert if it were the only gas present at same T & V as for mixture.

Dalton's Law of Partial Pressures

$$\mathbf{P_{tot}} = \mathbf{P_1} + \mathbf{P_2} + \mathbf{P_3} + \bullet \bullet \bullet$$

$$P_{tot} = \sum_{j=1}^{N} P_j$$

Assume each gas behaves ideally

$$P_{j} = n_{j} \left(\frac{R T}{V}\right)$$

 $P_{\text{tot}} = \sum_{j=1}^{N} P_j = (RT/V) \sum_{j=1}^{N} n_j = (RT/V) n_{\text{tot}}$

1) Mole Fraction

$$\chi_j = \frac{n_j}{n_T}$$

Related to partial pressures

P _j	_	n _j (RT/V)		\sim
P _T	—	n _T (RT/V)	—	λj

$$P_j = \chi_j P_T$$

2) Ex: A mixture of 40.0 g of O_2 & 40.0 g of He has a total pressure of 0.900 atm. What is the partial pressure of O_2 ?

B) Collecting Gases over Water

Gaseous product is collected in an inverted tube full of H_2O

Gas displaces the H₂O

Gas collected is "wet"

- has water vapor

 $P_{Tot} = P_{gas} + P_{H2O}$ $P_{gas} = P_{Tot} - P_{H2O}$

© 2012 Pearson Education, Inc.

1) <u>Ex</u>:

$CaH_2(s) + 2 H_2O \rightarrow Ca(OH)_2 + 2 H_2(g)$

A student collected 90.0 mL of H_2 over water at 25°C & a total pressure of 755.0 mm Hg. How many grams of CaH₂ decomposed? (The vapor pressure of H₂O at 25°C is 23.8 mm Hg.)

$P_{H2} = P_{Tot} - P_{H2O}$

VII) Kinetic-Molecular Theory

Explains behavior of ideal gases

A gas consists of molecules in constant random motion

K.E. =
$$\frac{1}{2} m (u_{rms})^2$$

 $\mathbf{u}_{\rm rms} = \text{root-mean-square (rms) speed}$ $\mathbf{u}_{\rm rms} = \left(\frac{1}{\sum_{i}^{N} s_i^2}\right)^{1/2}$

Whitten/Davis/Peck

Saunders College Publishing

<u>5 Postulates of Kinetic Theory</u>

- (1) Molecules move <u>continuously</u> and <u>randomly</u> in <u>straight lines</u> in <u>all</u> <u>directions</u> and <u>various speeds</u>.
 - -- Properties of a gas that depend on motion of molecules, such as pressure, will be the same in all directions.
- (2) Gases are composed of molecules whose <u>size</u> is <u>negligible</u> compared to the average distance between them.
 - -- <u>Most of the volume occupied by a gas is empty space</u>.
 - -- Ignore the volume occupied by the molecules.
- (3) <u>Intermolecular forces</u> (attractive and repulsive forces between molecules) are <u>negligible</u>, except when the molecules collide with each other.
 - -- A molecule continues moving in a straight line with undiminished speed until it collides with another gas molecule or with the walls of the container.
- (4) Molecular collisions are <u>elastic</u>.
 - -- Energy can be transferred between molecules but the <u>total</u> average kinetic energy remains constant.
- (5) The average kinetic energy of the molecules is proportional to the absolute temperature, K (kelvin).
 - -- At any given temperature, the molecules of ALL gases have the SAME average kinetic energy.
 - The higher the temperature, the greater the average kinetic energy.

A) Ideal Gas

Hypothetical gas which conforms to all the assumptions of the K.M.T.

B) <u>Real Gases</u>

Obey K.M.T. (behave ideally) at high temp. & low pressure

High Temp: K.E. great enough to overcome I.A.F.

Low Pressure: few particles in a large volume

C) Molecular Speeds

Distribution of KE & u is dependent on Temperature

1) Ex: Calc. the speed of a molecule of O_2 that has the avg. KE at room temp, 20°C.

$$\mathbf{u} = \left(\frac{3 \text{ RT}}{\mathcal{M}}\right)^{1/2}$$

D) Qualitative Interpretation of Gas Laws

Pressure caused by collisions of molecules w. container's walls

- frequency of collisions/unit area
- force/collision

Molecular conc. & avg. speed determines the freq. of coll.

Avg. molecular speed determines avg. force/coll.

1) Boyle's Law

T constant \Rightarrow KE constant \Rightarrow u constant

∴ avg. molecular force/coll. remains constant

Inc. Volume

Molecular conc. dec.

- freq. of coll./unit area dec.

 \therefore P dec.

1) Charles's Law

T inc. \Rightarrow KE inc. \Rightarrow u inc.

- inc. force/coll.

- inc. freq. of coll.

Keep P constant

Volume must inc. so the # molecules/unit vol. & freq. of coll. will dec.

 \therefore T inc., V inc.

VIII) Diffusion & Effusion

A) Diffusion

Dispersion of a gas throughout a vessel

Why does it take so long for a gas to diffuse?

- have molecular collisions

Avg. distance traveled between collisions is called the mean free path

Higher density of gas Smaller m.f.p.

B) Effusion

Bas escapes through a small hole in a container

rate of effusion & U

rau

 $r \ll \left(\frac{3RT}{2m}\right)^{1/2}$

Graham's Law of Effusion

(at constant T&P)

Figure 10.14 Effusion of gases

(a)

(b)

© by Prentice Hall A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632

1) Compare rates of effusion of 2 diff. gases $\frac{r_{i}}{c_{2}} = \frac{u_{i}}{u_{a}} = \frac{\left(\frac{3RT_{i}}{M_{i}}\right)^{2}}{\left(\frac{3RT_{a}}{M_{a}}\right)^{2}}$ $\frac{r_i}{r_a} = \int \frac{T_i \mathcal{M}_a}{T \mathcal{M}_a}$ At constant T. $\frac{r_i}{r_2} = \frac{m_2}{m}$

2) Ex: The rate of effusion of an unknown gas is 2.91 times faster than that of NH₃. What is the molecular wt. of the gas?

Real gases deviate from ideality at, High P, Low T

Some assumptions made in

KMT are FALSE

Molecular volumes are negligible
Molecules do not interact

Remember, for an ideal gas

 $\frac{PV}{nRT} = 1$, at all P

A) van der Waals Equation $\left(P + \frac{n^2 a}{V^2}\right)\left(V - nb\right) = nRT$ $\frac{ideal}{Law} = \frac{nRT}{i} = \frac{nRT}{i}$ $P = \frac{nRT}{V - nb}$ <u>Ma</u> 1/2 $P_m > P_i$ Pm < P;

1) Nb term

correction for finite molecular volume

available = Vm - nb

units for b: _____

b inc. w. Mw or complexity of structure

Can be estimated from liquid density & MW

Pideal & Prov as a function of Vcontainer For 1.0 md Nalg) at 298K (25°C). (in atm)				
(L)	Pideal	NRT V-nb	$\left(\frac{n}{V}\right)^{2}a$	Prw
10	2.446	2.456	0.0139	2.442
1.0	24.5	25.5	1.39	24.1
0.50	48.9	53.08	5.56	47.5
0.10	245	402	139	263
0.050	489	2245	556	1689
a = 1.39 Latin b= 0.0391 4md				

B) Calculations

 Ex: The pressure of 2.50 mol of Xe in a 2.000 L flask is 31.6 atm at 75°C. Is the gas behaving ideally?