Chapter 2

Atoms, Molecules and Ions

- I) Atoms
 - A) Dalton's Atomic Theory
 - 1) Elements composed of minute, indivisible particles called,

Atoms

- 2) Atoms of an element are identical & different from atoms of any other elements
 - have different properties
 & different masses

3) Atoms combine in whole numbers to form compounds (molecules)

Law of Multiple Proportions

- 4) Compounds are composed of atoms of diff. elements chemically combined.
 - relative number of each type of atom is constant
 - Law of Constant Composition
- 5) In chemical rxn's, atoms are rearranged, but the number & kind of atoms is unchanged

Law of Conservation of Mass

II) Sizes of Atoms

A) Mass

mass of $H = 1.67 \times 10^{-24} g$

Define atomic mass unit

 $1 \text{ amu} = 1.6603 \text{ x} 10^{-24} \text{ g}$

Masses of atoms: 1 - 260 amu

B) <u>Radius (Volume)</u>

Atoms pictured as spherical

<u>Radii</u>

 $0.5 \ge 10^{-8} \text{ cm} \rightarrow 2.4 \ge 10^{-8} \text{ cm}$ Use nm, $0.05 \text{ nm} \rightarrow 0.24 \text{ nm}$ Also use angstrom, Å $1 \text{ \AA} = 10^{-10} \text{ m} = 10^{-8} \text{ cm}$ $\therefore 0.5 \text{ \AA} \rightarrow 2.4 \text{ \AA}$

III) Subatomic Particles

Atom is composed of smaller subatomic particles

<u>Atom</u>: smallest particle of an element that retains properties of that element

A) <u>Electron, e⁻</u>

charge = $-1.6022 \times 10^{-19} \text{ C}$ (coulomb)

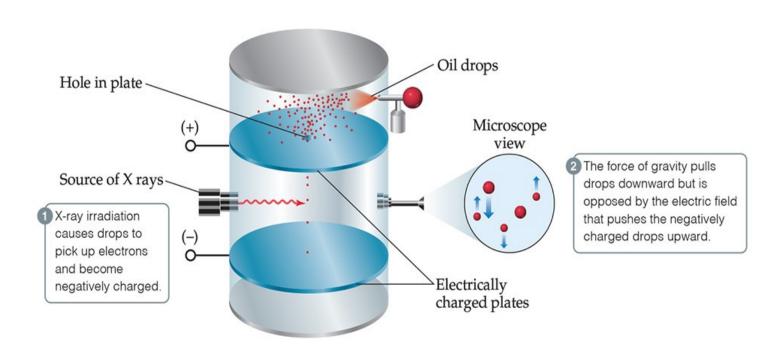
 $m_{e^-} = 9.1094 \text{ x } 10^{-28} \text{ g}$

 $= 5.486 \text{ x } 10^{-4} \text{ amu}$


1) <u>Discovery</u>

a) J. J. Thompson

Passed e⁻ through a hole in the anode of a cathode ray tube placed in a magnetic and an electric field.


Adjusted the field strengths so the e⁻ would travel in a straight line.

charge to mass ratio of: $1.76 \times 10^8 \text{ C/g}$

b) <u>Millikan</u>

Oil-drop exp - determined charge on an e^- and the mass.

© 2018 Pearson Education, Inc.

What was done and found?

1) Small drops allowed to fall between electrically charged plates.

Measured how varying voltage affected rate of fall.

- 2) Calculated charge on drops.
- 3) Always a integral multiple of:
 1.602 x 10⁻¹⁹ C

This was charge on e⁻.

4) From this and Thompson's charge:mass ratio determined mass of e⁻,

9.1094 x 10⁻²⁸ g

B) Proton, p

Matter is neutral:

removal of e⁻ leaves a (+) charged particle

remove e^- from H \Rightarrow H⁺, a proton (p)

- fundamental particle

charge = $+ 1.6022 \times 10^{-19} \text{ C}$

 $m_{p} = 1.6726 \text{ x } 10^{-24} \text{ g}$

= 1.0073 amu

 $m_p \approx 1836 m_{e^-}$

Other atoms contain > 1 p

Number of protons in atom characteristic of element

Atoms are neutral,

$$\# p = \# e^{-}$$

C) Neutron, n

Only about $\frac{1}{2}$ of mass of atoms accounted for by protons

charge = 0

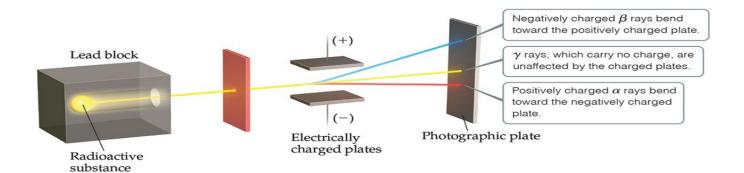
 $\mathbf{m}_{\rm n} = 1.6749 \ {\rm x} \ 10^{-24} \ {\rm g}$

= 1.0088 amu

 $\mathbf{m}_{n} \approx \mathbf{m}_{p}$

D) Summary of Subatomic Particles

particle	symbol	mass (amu)	relative charge
electron	e	0.0005486	-1
proton	p	1.0073	+1
neutron	n	1.0088	0

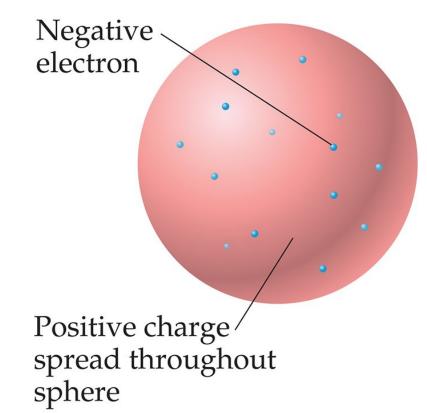

 $\mathbf{m}_{n} \approx \mathbf{m}_{p} >> \mathbf{m}_{e^{-}}$

E) Nuclear Model of the Atom

1) Rutherford

a) <u>Radioactivity</u>

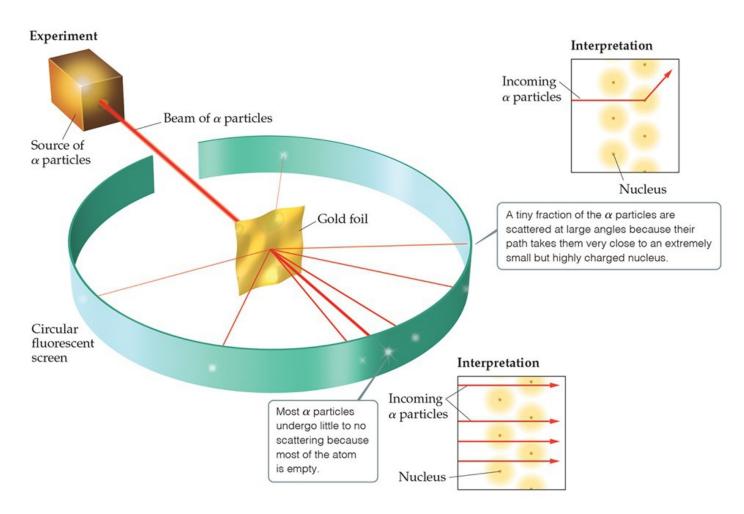
Spontaneous emission of radiation from the nucleus.


© 2018 Pearson Education, Inc.

Beta particle, β : electron, e⁻ Alpha particle, α : helium nucleus, He²⁺ Gamma ray: energy (no charge)

b) Gold-foil exp

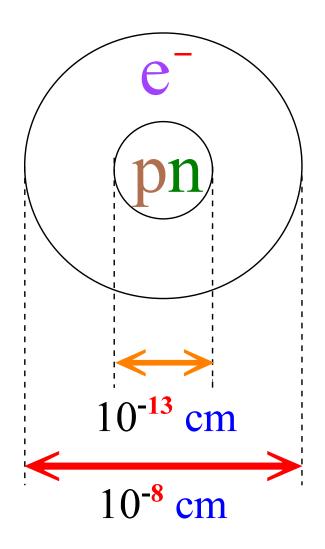
Thompson - plum pudding model


atoms have uniform (+) chg in which e⁻ are embedded like plums in pudding.

© 2018 Pearson Education, Inc.

Rutherford:

Deflection of α -particle beams by sheets of gold foil.



© 2018 Pearson Education, Inc.

 α -particles deflected at large angles

c) Nuclear Model

Atom composed of dense nucleus, containing protons & neutrons & most of atom's mass surrounded by e⁻ in motion in mostly empty space

diameter of atoms very small IV) Composition of Atoms

A) Atomic Number, Z

Z = # of protons

Distinguishes atoms of one element from those of another

Whole number in block w. chemical symbol in P.T.

Elements in P.T. ordered by inc. atomic no.

In neutral atom, $\# p = \# e^-$

B) Mass Number, A

A = #p + #n

C) Elemental Symbol

Describes composition of nucleus

1) <u>Ex 1</u>: What does the following symbol represent?

Sometimes only show mass #

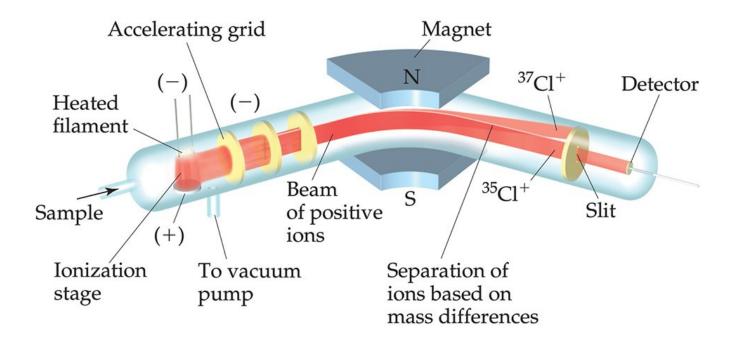
 107 Ag silver - 107

2) <u>Ex 2</u>: ¹⁹⁷₇₉Au

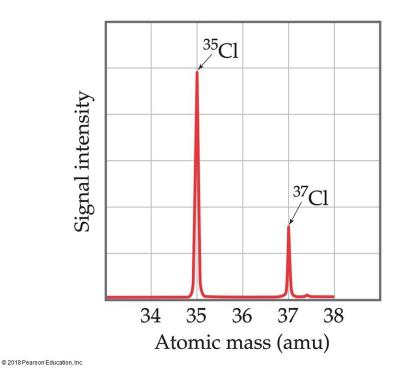
D) Isotopes

Atoms of same element which have different numbers of neutrons

- ∴ same atomic #, Z different mass #, A
- "A" distinguishes between isotopes of the same element
- Note: Isotopes of the same element have the same chemical properties
- 1) <u>Ex</u>: Naturally occurring boron consists of 2 isotopes


B) Atomic Weight

A.W. scale based on assignment of exactly 12 amu to ${}^{12}_{6}C$


A.W. is weighted average of naturally occurring isotopes expressed in amu

1) **Ex**: The two isotopes of silver are 107 Ag and 109 Ag, having natural abundances of 51.35% and 48.65%, respectively. Their isotopic masses are 106.916 & 108.914 amu, respectively. Determine the A.W. of Ag.

2) Mass Spectrometer and Isotopes

© 2018 Pearson Education, Inc.

V) Periodic Table

A) Periodic Law

<u>Mendeleev</u>: table based on idea that properties of elements are periodic functions of their A.W.

- exceptions: I & Te ; Ar & K

<u>Moseley</u>: proper correlation is with atomic number

1) Modern Periodic Law

Properties of the elements are periodic functions of their

Atomic Number

B) Modern Periodic Table

Arrangement of elements in order of inc. atomic no., placing those with similar chem. and phys. prop. in columns.

1) Groups

Vertical columns called groups or families

- elements within a group have similar prop.

Labeled at top of column by Roman numerals (I - VIII) or Arabic numerals (1 - 8) and letter, A or B Transparency 13 Figure 2.16 Periodic table divided into metals, nonmetals, and semimetals

	8A	2 He	10 Ne	18 Ar	36 Kr	54 Xe	86 Rn		71 Lu	103 Lw
		7A	бы	17 CI	35 Br	53 I	85 At		70 Yb	102 No
		6 A	~ O	16 S	34 Se	52 Te	84 Po		69 Tm	101 Md
		5A	2 N	15 P	33 As	51 Sb	83 Bi		68 Er	100 Fm
		4A	υe	14 Si	32 Ge	50 Sn	82 Pb		67 Ho	99 Es
		3A	B	13 AI	31 Ga	49 In	81 TT		66 Dy	98 Cf
				2B	30 Zn	48 Cd	80 Hg		65 Tb	97 Bk
				1B	29 Cu	47 Ag	79 Au		64 Gd	96 Cm
,			,		28 Ni	46 Pd	78 Pt		63 Eu	95 Am
				8B	27 Co	45 Rh	77 Ir	[601]	62 Sm	94 Pu
					26 Fe	44 Ru	76 Os	[108]	61 Pm	93 Np
				7B	25 Mn	43 Tc	75 Re	[107]	PN 09	92 U
				68	24 Cr	42 Mo	74 W	[106]	59 Pr	91 Pa
				5B	23 V	41 Nb	73 Ta	• 105 Ha	58 Ce	90 1
				4B	22 Ti	40 Zr	72 Hf	104 Rf		
				3B	21 Sc	39 Y	57 La	89 Ac		etals
		2A	4 Be	12 Mg	20 Ca	38 Sr	56 Ba	88 Ra	Metals	Semimetals
	IA	1 H	3 Li	11 Na	19 K	37 Rb	55 Cs	87 Fr		

Nonmetals

CHEMISTRY: THE CENTRAL SCIENCE by Brown/Le May/Bursten

G 1991 by Prentice Hall
 A Division of Simon & Schuster
 Englewood Cliffs, New Jersey 07632

a) <u>Representative Elements</u>

(main-group elements)

1 A - 8 A

1) Specific Group Names

1 A	alkali metals
2 A	alkaline earth metals
7 A	halogens
8 A	noble or rare gases

b) Transition Metal Elements

- 1 B 8 B
 - metals

2) Periods

Horizontal rows called periods

Two long rows below main body of table are:

Inner transition elements - lanthanides & actinides

1 st period	H - He	2 elements
2 nd period	Li - Ne	8 elements
3 rd period	Na - Ar	8 elements
4 th period	K - Kr	18 elements
5 th period	Rb - Xe	18 elements
6 th period	Cs - Rn	32 elements

<u>Metals</u> solids (except Hg) metallic luster malleable & ductile good conductors of heat & electricity oxides: nonvolatile high melting

 MgO, Na_2O

Nonmetals gases or solids (except Br) variety of color & appearance solids are brittle poor conductors (insulators)

<u>oxides</u>: volatile low melting CO, CO₂, SO₂ VI) Molecular Elements & Compounds

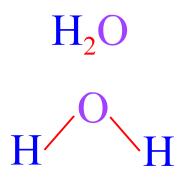
A) Molecular Substances

Group of chemically bonded atoms which has the characteristic properties of the substance

- 1) Molecular Elements
 - a) <u>Diatomics</u>

Contain 2 atoms

 H_2 2 H atoms bonded together H---H


other diatomic elements

 N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2

b) **Polyatomics**

 P_4 & S_8 O_3 - allotrope of O_2

2) <u>Molecular Compounds</u>
Molecules of compounds contain
2 or more diff. elements

2 H atoms &1 O atom

 CO_2

= 0

carbon dioxide

1 C atom & 2 O atoms 3) Molecular Formula

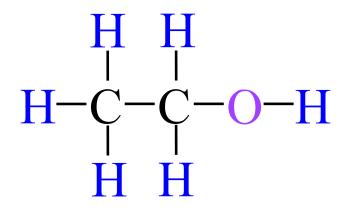
Actual number of each kind of atom in a molecule

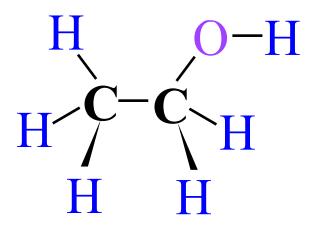
 C_6H_6 Benzene C_2H_5OH Ethanol

4) Empirical Formula

Relative number of atoms of each kind in a molecule

- smallest whole-number ratio of atoms


C₁H₁ Benzene or acetylene


Subscripts in a molecular formula are always some integer multiple of subscripts in empirical formula 5) <u>Structural Formula</u>

Gives an idea about the structure of the molecule

Ethanol

 C_2H_6O or C_2H_5OH

VII) Ionic Substances

A) Ions

particle that contains more or fewer e⁻ than protons

: Has NET electrical charge

Total charge =
$$\# p - \# e^-$$

1) <u>Anion</u>

Negative ion resulting from gain of 1 or more e⁻ by neutral atom

a) <u>Ex</u>:

 $_{35}$ Br + e⁻ → Br⁻ Br⁻ has 1 extra e⁻ than Br

(**#** p does NOT change)

b) <u>Ex</u>:

$_{16}S + 2e^{-} \rightarrow S^{2-}$

* Formation of anions is a property of nonmetals

2) Cation

Positive ion resulting from loss of 1 or more e⁻ by neutral atom

a) <u>Ex</u>:

 $_{19}K \rightarrow K^+ + e^-$

 $_{30}$ Zn \rightarrow Zn²⁺ + 2 e⁻

* Formation of cations is a property of metals

3) Predicting Charge Using P.T.

Representative Elements

IA – VIIIA

gain or lose e⁻ to achieve same
e⁻ as nearest noble gas

 Br^- 36 $e^- \Rightarrow Kr$

 $S^{2-}, Cl^{-}, K^{+}, Ca^{2+}$ 18 $e^{-} \Rightarrow Ar$

isoelectronic series

(same **#** e⁻)

a) <u>Cation Groups</u> charge = group # I A = +1 Li⁺ II A = +2 Mg²⁺

a) <u>Special Cations</u> A1 +3 Zn +2 Ag +1

2) <u>Anion Groups</u> charge = group # - 8 $VA = -3 N^{3-}$ $VIA = -2 O^{2-}$ $VIIA = -1 F^{-}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1													-	-	-	-	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.81 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	81.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

6	Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
7	Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ^{12}C)

B) Ionic Compounds

Oppositely charged ions held together by electrostatic attractions

Combinations of metals & nonmetals

Crystalline solids (salts)

1) Formula Units

Compounds are electrically neutral

total(+) chg = total(-) chg

NaCl neutral (cation)(anion)

Formula shows simplest ratio of ions

- empirical formula

NOT a molecule 3-D arrangement of ions

a) <u>Ex</u>: Cmpd. formed from Ca^{2+} & CO_3^{2-}

Ca CO₃ cation anion

VIII) Naming Ions

A) Monatomic Ions

1) <u>Cations</u> Use name of element followed by "ion"

- K⁺ potassium ion
- Zn^{2+} zinc ion
- 2) Anions

Add "ide" to root of element's name

Br	bromide	ion
S ²⁻	sulfide	ion

B) Stock System & Older System

Many metals have more than one possible charge

- transition metals

- representative metals

Fe ²⁺
Fe ³⁺
Cu^+
Cu^{2+}
Sn^{2+}
Sn^{4+}

Stock

iron (II) iron (III) copper (I) copper (II) tin (II) tin (IV) Older ferrous ferric cuprous cupric stannous stannic

C) Polyatomic Ions

Group of chemically bonded atoms with an overall charge

1) Polyatomic Anions ending in -ide

OH⁻ hydroxide ion

CN[−] cyanide ion

2) Polyatomic Cations

$\mathrm{NH_4}^+$	ammonium	ion
H_3O^+	hydronium	ion
$\mathrm{Hg_2}^{2+}$	mercury (I)	ion

3) Misc. Polyatomic Anions

MnO_4^-	permanganate ion
-----------	------------------

- $C_2H_3O_2^-$ acetate ion
- CrO_4^{2-} chromate ion

 $Cr_2O_7^{2-}$ dichromate ion

4) Polyatomic Anions - Oxyanions

Carbonate CO_3^{2-}

Chlorate ClO_3^-

Nitrate NO_3^-

Phosphate PO_4^{3-}

Sulfate SO_4^{2-}

a) <u>Vary Number of Oxygens</u>

Prefixes & suffixes indicate changes made to base anion.

1) Suffixes

-ate base anion

-ite 1 less O-atom than -ate

Nitrite NO_2^{-}

2) <u>Prefixes</u>

per- (over) 1 more O-atom than -ate

hypo- (under) 1 less O-atom than -ite

3) <u>Ex 1</u>:

 ClO_{4}^{-} ClO_{3}^{-} ClO_{2}^{-} ClO^{-} Cl^{-}

perchlorate chlorate chlorite hypochlorite chloride

4) <u>Ex 2</u>: What is bromate, perbromate, hypoiodite?

5) <u>Ex 3</u>: What is SO_3^{2-} ?

Note: Overall charge on the "family" of anions remains same

b) <u>Addition of H⁺ to</u> <u>-2 or -3 Oxyanion</u>

Resulting species still charged - anions

 $CO_3^{2-} + H^+ \rightarrow HCO_3^-$ bicarbonate or hydrogen carbonate

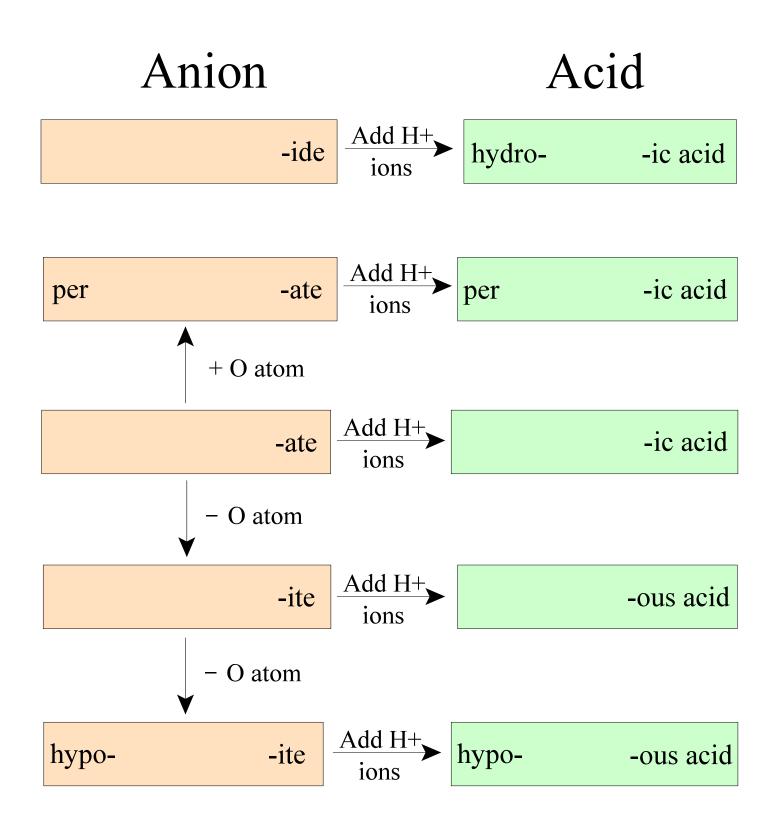
 $PO_4^{3-} + H^+ \rightarrow HPO_4^{2-}$ monohydrogen phosphate

 $HPO_{4}^{2-} + H^{+} \rightarrow H_{2}PO_{4}^{-}$ dihydrogen phosphate

c) <u>Acids</u>

 H^+ combines with anion to produce a neutral compound \Rightarrow

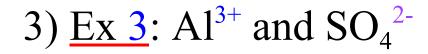
Acid


Not ionic but ionize in H_2O to produce H^+ (H_3O^+)

HCl (g) $\stackrel{\text{H}_2\text{O}}{\rightarrow}$ H⁺(aq) + Cl⁻(aq)

1) <u>Binary Acids</u>
 Hydrogen + nonmetal
 -ide ⇒ -ic acid
 Precede name with hydro-

HF(aq) hydrofluoric acid


Summary of Acid/Anion Naming

IX) Formulas & Names of Ionic Compounds

1) Ex 1: What compound is formed from Ca^{2+} and CO_3^{2-} ?

2) <u>Ex 2</u>: NH_4^+ and S^{2-}

4) <u>Ex 4</u>: Sn^{4+} and O^{2-}

5) <u>Ex 5</u>: Write the formula for manganese (IV) oxide.

6) <u>Ex 6</u>: Write the formula for iron(II) sulfite.

X) Binary Molecular Compounds

2 diff. elements

nonmetals

or

nonmetals & semimetals

Usually, element further to left & lower in column in PT (less electronegative) given first

- B Si,C As,P,N H Se,S I,Br,Cl O F 3A 4A 5A * 6A 7A * 7A
 - SiC silicon carbide
 - NO nitrogen monoxide
 - H₂S hydrogen sulfide

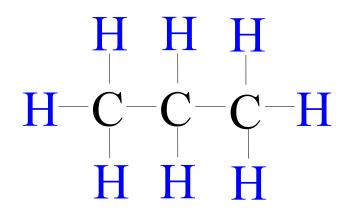
A) Same Element; Multiple Compounds

Greek prefix indicates number of atoms of each element

 N_2O

 N_2O_4

 SO_2


SO₃

XI) Simple Organic Compounds

Hydrocarbons: C & H

A) <u>Alkanes</u>: $C_n H_{(2n+2)}$

methane	CH_4	
ethane	C_2H_6	CH_3CH_3
propane	C_3H_8	$CH_3CH_2CH_3$

but-, pent-, hex-, hept-, oct-, non-, dec-4 10

B) Functional Groups

Hydrogens replaced with "functional groups"

1) Alkenes:

ethene $CH_2 = CH_2$ (ethylene)

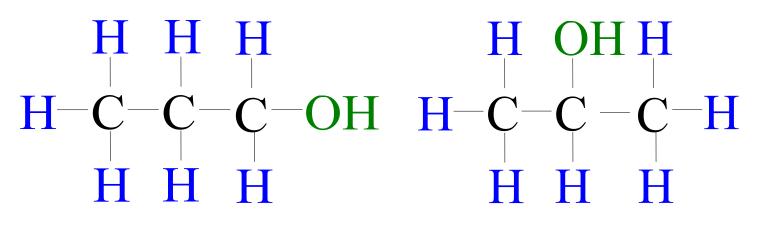
2) <u>Alkynes:</u>

ethyne CH≡CH (acetylene) 3) <u>Alcohols</u>: **R**-OH ($\mathbf{R} = \mathbf{Carbon} \operatorname{grp}$)

methanol (methyl alcohol)

ethanol (ethyl alcohol)

1- propanol (propyl alcohol)


2-propanol (isopropyl alcohol) CH₃OH

CH₃CH₂OH

CH₃CH₂CH₂OH

 $CH_3CH(OH)CH_3$

Isomers: Same molecular formula but different arrangement

Structural isomers

4) Ethers: R-O-R

dimethyl ether CH₃OCH₃ (methoxy methane)

diethyl ether CH₃CH₂OCH₂CH₃ (ethoxy ethane)

Functional grp isomers w. alcohols

5) <u>Aldehydes:</u> X-CHO (X = H, C grp)

C=O group (carbonyl) HCHO formaldehyde

6) <u>Ketones:</u> R-CO-R CH_3COCH_3 acetone

7) <u>Carboxylic acids</u>: X-CO₂H carboxyl group: H-CO₂H formic acid (methanoic acid) CH_3CO_2H acetic acid (ethanoic acid) 8) <u>Amines:</u> $-NX_2$ (X = H, C) Organic analogues of NH₃ (ammonia) CH₃NH₂ methyl amine (amino methane) $(CH_3)_2NH$ dimethyl amine