Chapter 5 - Thermochemistry

Study of energy changes that accompany chemical rx's.

I) Nature of Energy

Energy ≡ Capacity to do work

Mechanical Work

$$w = F x d$$

Heat energy

- energy used to cause the temperature of an object to inc.

A) Units of Energy

$$w = F \times d$$

$$= (m \times a) \times d$$

$$= (kg \times m/s^{2}) \times m$$

$$\downarrow$$

$$= (kg \cdot m^{2})/s^{2} = N \times m$$

$$= joule, J (SI unit)$$

calorie (cal)

original def: amt. of energy reg. to raise temp. of 1g of water by 1°C, from 14.5 °C to 15.5 °C

$$1 \text{ cal} = 4.184 \text{ J}$$

Cal - nutritional calorie

1 kcal

B) Kinetic & Potential Energy

1) Kinetic Energy

$$KE = \frac{1}{2} \text{ m } \text{v}^2$$

Energy due to motion

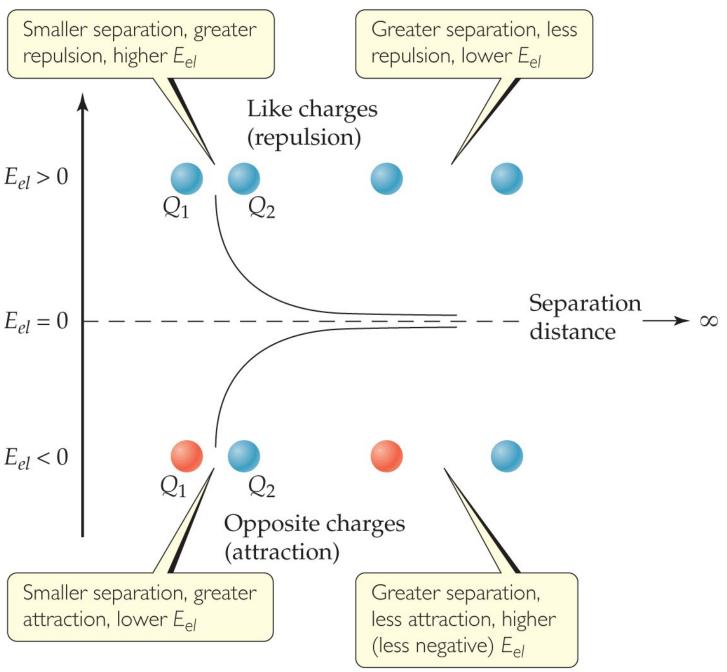
SI units:

Energy =
$$kg (m/s)^2 = J$$

2) Potential Energy

Energy stored in an object by virtue of its position or composition

Chemical energy is due to composition of substances


Electrostatic P.E.

Interaction between charged particles

$$\mathbf{E}_{el} = \frac{\kappa \, \mathbf{Q}_1 \, \mathbf{Q}_2}{\mathbf{d}}$$

Q = charge

d = distance between particles

© 2012 Pearson Education, Inc.

C) System and Surroundings

System = portion we single out for study

- focus attention on changes which occur w/in definite boundaries

<u>Surroundings</u> = everything else

System: Contents of rx. flask

Surround.: Flask & everything outside it

<u>Agueous soln. rx</u>:

System: dissolved ions & molecules

Surround: H_2O that forms the soln.

II) First Law of Thermodynamics

Law of <u>Conservation</u> of <u>Energy</u>:

Energy can be neither created nor destroyed but may be converted from one form to another.

Energy lost = Energy gained by system by surroundings

A) Internal Energy, E

E = total energy of the system

Actual value of E cannot be determined

ΔE , change in energy, can be determined

$$\Delta$$
 = final state - initial state

$$\Delta E \equiv E_f - E_i$$

Sign of ΔE is important

$$E_f > E_i$$
, $\Delta E > 0$ system gained energy

$$E_f < E_i$$
, $\Delta E < 0$ system lost energy

Systems tend to go to lower energy state

more stable products

i.e. rx's in which $\Delta E < 0$

B) Thermodynamic State & State Functions

Thermodynamic State of a System

defined by completely specifying ALL properites of the system

- P, V, T, composition, physical st.

1) State Function

prop. of a system determined by specifying its state.

depends only on its present conditions & NOT how it got there

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

independent of path taken to carry out the change

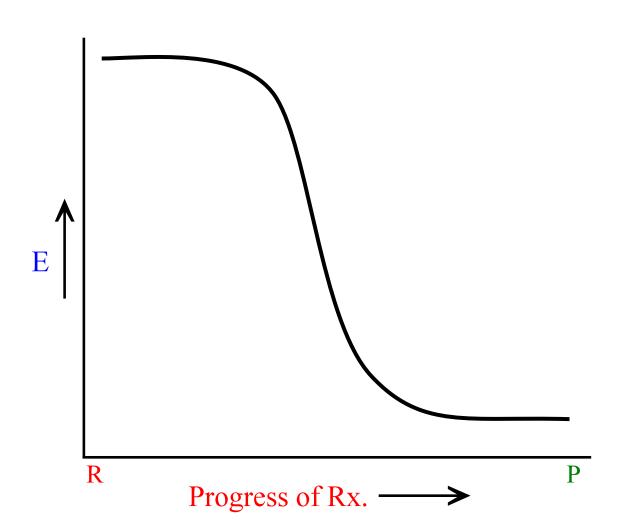
- Also is an extensive prop.

C) Relating <u>AE</u> to <u>Heat & Work</u>

2 types of energy exchanges occur between system & surroundings

Heat & Work

- + q: heat absorbed, endothermic
- q: heat evolved, exothermic
- + w: work done on the system
- w: work done by the system

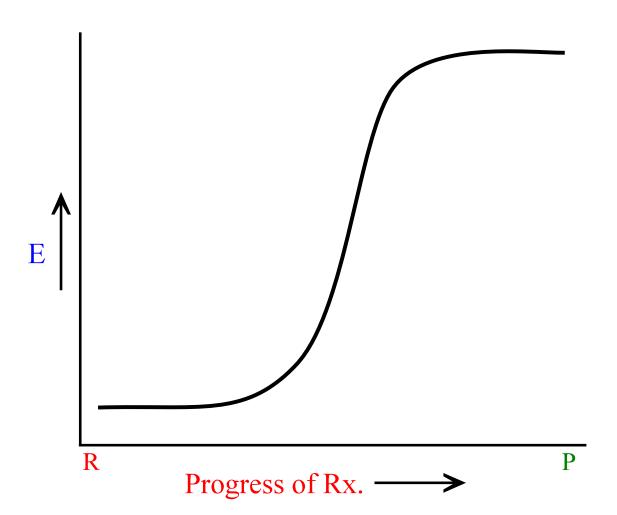

1) First Law

$$\Delta E = q + w$$

1) Exothermic Reactions

heat is released

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell) + heat$$



2) Endothermic Reactions

heat is absorbed

- reaction requires input of energy

$$2 H_2O(\ell) + \text{heat} \rightarrow 2 H_2(g) + O_2(g)$$

III) Enthalpy

In ordinary chem. rx., work generally arises as a result of pressure-volume changes

Inc. vol. & system does work against pressure of the atmosphere

P·V has dimensions of work:

$$P \cdot V = (F/A)V = (kg \cdot m/s^2 \cdot m^2) m^3 = (kg \cdot m^2)/(s^2) = J$$

Constant Pressure

$$w = - P \Delta V$$

Negative because work done by system

$$\Delta E = q - P \Delta V$$

A) ΔE at Constant Volume

$$\Delta E = q_v$$

B) ΔE at Constant Pressure:

$$\Delta \mathbf{E} = \mathbf{q_p} - \mathbf{P} \Delta \mathbf{V}$$

$$q_p = \Delta E + P\Delta V$$

C) Enthalpy, H

$$H = E + PV$$

Change in enthalpy at constant P is:

$$\Delta H = \Delta E + P \Delta V$$

&

$$\Delta H = q_p$$

Can think of as heat content

state fnc. & is extensive

IV) Enthalpies of Reaction

$$\Delta H_{rxn} = H_{products} - H_{reactants}$$

A) Exothermic Rx's

$$H_p < H_r$$
, $\Delta H_{rxn} < O$, exothermic

Heat is evolved

2 H₂(g) + O₂(g) → 2 H₂O(
$$\ell$$
) Δ H = -572 kJ

Thermochemical eqn.

Physical states are given and energy associated w. rx. written to right

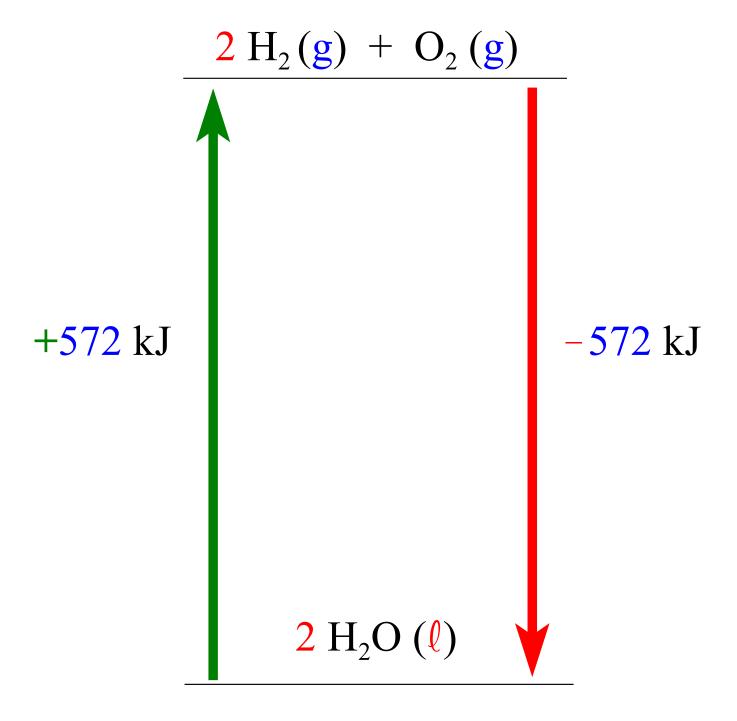
- MUST give physical states

If product is $H_2O(\mathbf{g})$, $\Delta H = -484kJ$

∆H corresponds to molar quantities given in eqn. as written

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$$
 $\Delta H = -286 \text{ kJ}$

B) Endothermic Rx's


$$H_p > H_r$$
, $\Delta H_{rxn} > O$, endothermic

Heat is absorbed

2 H₂O(
$$\ell$$
) → 2 H₂(g) + O₂(g) Δ H = +572kJ

Reverse of previous rx.

Enthalpy Diagram

C) Guidelines

1) Enthalpy is extensive

Multiply a rxn by some factor the ΔH is multiplied by that factor

2)
$$\Delta H_{reverse} = -\Delta H_{forward}$$

3) Enthalpy is a state function

ΔH depends on the states of reactants and products.

D) Determining ΔH for a Rx.

Convenient sample sizes are reacted & conv. factors are used to obtain the heat energy

1) Ex 1: When 36.0g of Al reacts w. excess Fe₂O₃ how much heat is released?

2 Al(s) + Fe₂O₃(s)
$$\longrightarrow$$
 2 Fe(s) + Al₂O₃(s)

$$\Delta H_{rxn} = -847 \text{ kJ}$$

?
$$kJ = 36.0 \text{ g Al x} \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} \frac{847 \text{ kJ}}{2 \text{ mol Al}} = 56\underline{5}.08 \text{ kJ} = 565 \text{ kJ}$$

VII) Calorimetry

Exp. method of obtaining $\Delta H \& \Delta E$

Heat evolved or absorbed by system will be reflected in the surroundings.

Need surr. Heat Capacity, C

$$C = \frac{q}{\Delta T}$$

Quantity of heat required to raise the temp. of an object by 1 °C

Unit: $(J/^{\circ}C)$ or (J/K)

C_m - molar heat capacity

heat capacity per mole, J/mol•°C

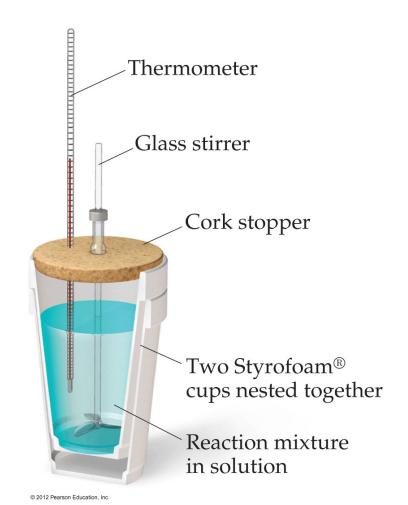
heat capacity per gram, J/g•°C

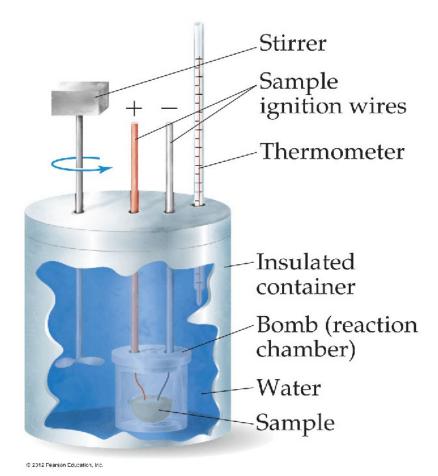
$$C_s \text{ of } H_2O = 4.184 \text{ J/g} \cdot ^{\circ}C$$

$$q = C \times \Delta T$$

$$q = n \times C_m \times \Delta T$$

$$q = m \times C_s \times \Delta T$$


$$q_{gained} = - q_{lost}$$


Calorimeter

 $\Delta H (q_p)$

Bomb Calorimeter

 $\Delta E (q_v)$

A) Ex 1: What amt. of heat has been absorbed by 1.000 kg of water if its temp. inc. from 18.22 °C to 22.73 °C?

$$q = m \times C_s \times \Delta T$$

= $(1.000 \times 10^3 g) (4.184 J/g \cdot ^{\circ}C)(22.73 - 18.22)$

= 18,869.84 J

= 18.9 kJ (3 s.f.)

4.51 °C

B) Ex 2: A 0.562 g sample of graphite is placed in a bomb calorimeter & ignited in the presence of excess O₂ at 25.00 °C & 1 atm. The temp. of the calorimeter rises to 25.89 °C. The heat capacity of the calorimeter & contents is 20.7 kJ/°C. What is ΔH at 25.00 °C and 1 atm?

$$C(graphite) + O_2(g) \rightarrow CO_2(g)$$

$$q_{\text{(lost by rxn)}} = -q_{\text{(gained by calor. \& contents)}}$$

$$q_{rxn} = - C_{cal} \Delta T$$

$$= - (20.7 \text{ kJ/°C})(25.89 \text{ °C} - 25.00 \text{ °C})$$

$$= -18.4 \text{ kJ } (q_v \text{ or } \Delta E \text{ for } 0.562 \text{ g})$$

Want kJ/mol,

$$\frac{kJ}{?} = \frac{-18.4 \text{ kJ}}{\text{mol}} = \frac{12.0 \text{ g C}}{0.562 \text{ g C}} \times \frac{12.0 \text{ g C}}{1 \text{ mol C}}$$

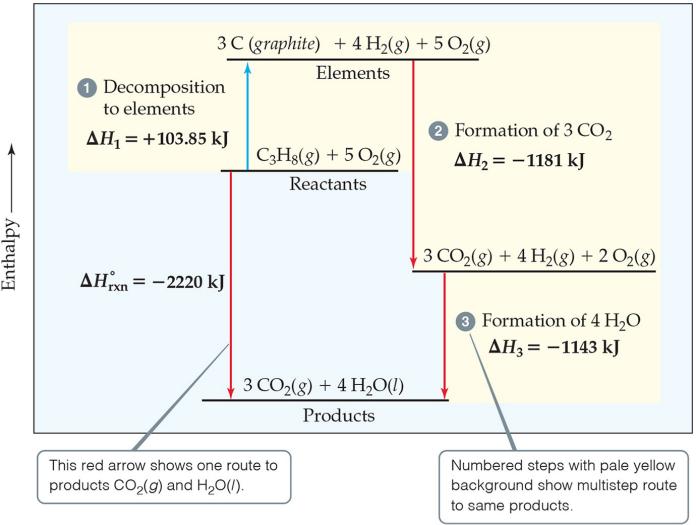
$$= -3.93 \times 10^{2} \text{ kJ/mol}$$

$$\Delta E = -3.9 \times 10^2 \text{ kJ/mol}$$

since no change in moles of gas

$$\Delta H = \Delta E$$

VI) <u>Hess's Law</u>


 ΔH is a state fnc.

Same whether the process occurs as a single step or as a series of steps

The ΔH_{rxn} is the sum of the ΔH 's for the individual steps.

$$\Delta H_{rx} = \sum_{Steps} \Delta H_{steps}$$

- * Add chem. eqn's for steps to get overall rxn.
- * Add $\Delta H_{\text{steps}} \Rightarrow \Delta H_{\text{rxn}}$

© 2018 Pearson Education, Inc.

A) Ex 1 : What is $\triangle H$ for

$$Ca(OH)_2(s) + SO_3(g) \rightarrow CaSO_4(s) + H_2O(g)$$

We know the following:

$$Ca(OH)_2(s) \rightarrow CaO(s) + H_2O(g)$$
 $\Delta H_1 = +109 \text{ kJ}$

$$CaO(s) + SO_3(g) \rightarrow CaSO_4(s)$$
 $\Delta H_2 = -401 \text{ kJ}$

$$Ca(OH)_2(s) + CaO(s) + SO_3(g) \rightarrow \Delta H_{rxn} = -292kJ$$

$$CaSO_4(s) + CaO(s) + H_2O(g)$$

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2$$

B) Ex 2 : Want $\triangle H$ for rxn.

$$C_2H_2(g) + 5N_2O(g) \rightarrow 2CO_2(g) + H_2O(g) + 5N_2(g)$$

Have:

$$2 C_2H_2(g) + 5 O_2(g) \rightarrow 4 CO_2(g) + 2 H_2O(g)$$

$$\Delta H_{1a} = -2512 \text{ kJ}$$

$$N_2(g) + \frac{1}{2} O_2(g) \rightarrow N_2O(g)$$
 $\Delta H_{2a} = +81.6 \text{ kJ}$

Adjust eqn's so they are in proper amt's and the correct directions so they add up to the desired eqn.

ALL substances NOT appearing in desired eqn. MUST cancel.

Divide eqn. 1a by 2 (also ΔH)

$$C_2H_2(g) + \frac{5}{2} O_2(g) \rightarrow 2 CO_2(g) + H_2O(g)$$

$$\Delta H_{1b} = -1256 \text{ kJ}$$

Reverse eqn. 2a and multiply by 5

$$5 \text{ N}_2\text{O}(g) \rightarrow 5 \text{ N}_2(g) + \frac{5}{2} \text{ O}_2(g)$$

$$\Delta H_{2b} = -408 \text{ kJ}$$

Add & Cancel

$$C_2H_2(g) + 5N_2O(g) \rightarrow 2CO_2(g) + H_2O(g) + 5N_2(g)$$

$$\Delta H_{rxn} = \Delta H_{1b} + \Delta H_{2b}$$

$$= -1256 \text{ kJ} + -408 \text{ kJ}$$

$$= -1664 \text{ kJ}$$

C) Note:

In using Hess's Law:

1) If an eqn. is multiplied by a factor, ΔH is multiplied by the same factor.

2) If an eqn. is reversed, sign of ΔH changes

3) All substances NOT appearing in desired eqn. MUST cancel

VII) Enthalpy of Formation

Enthalpy change for the formation of a compound from its elements

 $\Delta H_{\mathbf{f}}$

A) Standard enthalpy change

Enthalpy change when all reactants and and products are in their standard states

 ΔH°

1) Standard State

Most stable state of a substance in its pure form under standard pressure (1 atm) & some specified temp. of interest (usually 25 °C)

- 2) Thermochemical Standard States
 - A) solid or liquid

Pure substance at 1 atm

b) gas

pressure of 1 atm

c) species in solution

Conc. of 1 M

B) Standard Enthalpy of Formation

ΔH for the rxn in which 1 mole of a cmpd. is formed from its elements with ALL substances in their standard states (in kJ/mol)

$$\Delta H_{\mathbf{f}}^{\circ}$$

Note: $\Delta H_f^{\circ} = 0$ for an element in its standard state

$$\Delta H_{\mathbf{f}}^{\circ}$$

$$1/2 N_2(g) + 3/2 H_2(g) \rightarrow NH_3(g) - 46.2$$

$$Na(s) + \frac{1}{2} Cl_2(g) \rightarrow NaCl(s) - 411.0$$

$$C(graphite) \rightarrow C(diamond) + 1.897$$

Thermodynamic Quantities at 298.15 K

	ΔH_f°	ΔG_f°	S°
Substance	(kj/mol)	(kj/mol)	(j/mol-K)
Aluminum			
Al(s)	0	0	28.32
$AlCl_3(s)$	-705.6	-630.0	109.3
$Al_2O_3(s)$	-1669.8	-1576.5	51.00
Barium			
Ba(s)	0	0	63.2
$BaCO_3(s)$	-1216.3	-1137.6	112.1
BaO(s)	-553.5	-525.1	70.42
Beryllium			
Be(s)	0	0	9.44
BeO(s)	-608.4	-579.1	13.77
$Be(OH)_2(s)$	-905.8	-817.9	50.21
Bromine			
Br(g)	111.8	82.38	174.9
$Br^{-}(aq)$	-120.9	-102.8	80.71
$Br_2(g)$	30.71	3.14	245.3
$\mathrm{Br}_2(l)$	0	0	152.3
HBr(g)	-36.23	-53.22	198.49

C) Determine ΔH_{rxn}° from ΔH_{f}°

$$\Delta H_{rxn}^{\circ} = \sum_{prod.} n \Delta H_{f}^{\circ} - \sum_{react.} m \Delta H_{f}^{\circ}$$

n = coef. in bal. eqn. for each product

m = coef. in bal. eqn. for each reactant

1) Ex1: Find ΔH_{rxn}° for the following rx. using Hess's Law and ΔH_{f}° .

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O(\ell) + 2 SO_2(g)$$

 ΔH° (kJ/mol)

(a)
$$H_2(g) + S(s) \rightarrow H_2S(g)$$
 - 20.2

(b)
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$$
 - 285.8

(c)
$$S(s) + O_2(g) \rightarrow SO_2(g)$$
 - 296.9

Need to:

Rev. eqn. (a) and \times 2

Add eqn. (b) \times 2

Add eqn. (c) \times 2

$$2H_2S(g) \rightarrow 2H_2(g) + 2S(s)$$

 $\Delta H_{rxn} = -2 \cdot (-20.2) = +40.4 \text{ kJ}$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(\ell)$$

$$\Delta H_{rxn} = 2(-285.8) = -571.6 \text{ kJ}$$

$$2S(s) + 2O_2(g) \rightarrow 2SO_2(g)$$

$$\Delta H_{rxn} = 2(-296.9) = -593.8 \text{ kJ}$$

$$2H_2S + 2H_2 + 2S + 3O_2 \rightarrow$$

 $2H_2 + 2S + 2H_2O + 2SO_2$

$$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$$

$$\Delta H_{rx} = (+40.4) + (-571.6) + (-593.8)$$

= - 1125 kJ

a) Use ΔH_f° instead

$$\Delta H_{rxn}^{\circ} = \left[2 \Delta H_{f}^{\circ} (H_{2}O) + 2 \Delta H_{f}^{\circ} (SO_{2}) \right]$$
$$- \left[2 \Delta H_{f}^{\circ} (H_{2}S) + 3 \Delta H_{f}^{\circ} (O_{2}) \right]$$

$$= [2(-285.8) + 2(-296.9)]$$

$$-[2(-20.2) + 3(0)]$$

$$= -1125 \text{ kJ}$$

2) Ex 2: Useful when considering organic cmpds. for which ΔH_f° can not be determined directly.

What is ΔH_f° for benzene?

$$6 \text{ C(s)} + 3 \text{ H}_2(g) \rightarrow \text{ C}_6 \text{H}_6(\ell)$$
 $\Delta \text{H}_6^{\circ} = ?$

This rx. does not happen.

Use of exp. heat of combustion

$$C_6H_6(\ell) + 15/2 O_2(g) \rightarrow 6 CO_2(g) + 3 H_2O(\ell)$$

$$\Delta H_{rxn}^{\circ} = -3271 \text{ kJ}$$

$$\Delta H_{rxn}^{\circ} = \left[6 \Delta H_{f}^{\circ} (CO_{2}) + 3 \Delta H_{f}^{\circ} (H_{2}O) \right]$$
$$- \left[\Delta H_{f}^{\circ} (C_{6}H_{6}) + 15/2 \Delta H_{f}^{\circ} (O_{2}) \right]$$

$$-3271 \text{ kJ} = \begin{bmatrix} 6 (-393.5) + 3 (-285.8) \end{bmatrix}$$
$$- \begin{bmatrix} \Delta H_f^{\circ} (C_6 H_6) + 15/2 (0) \end{bmatrix}$$

$$-3271 \text{ kJ} = [-3218.4] - [\Delta H_f^{\circ} (C_6 H_6)]$$

$$\Delta H_f^{\circ} (C_6 H_6) = [-3218.4] - (-3271)$$

= + 52.6 kJ

VIII) **Bond Enthalpy**

Energy changes in chem. rxns. are related to changes in forming & breaking bonds.

Assign an enthalpy to a specific bond - the bond dissociation energy (BDE) or bond enthalpy (BE).

Energy required to dissociate one mole of bonds in the gas phase (kJ/mol)

A) Homonuclear Molecules

$$H_2(g) \rightarrow 2 H(g) \qquad \Delta H = D(H-H) = 436$$

$$Cl_2(g) \rightarrow 2 Cl(g) \Delta H = D(Cl-Cl) = 242$$

H-H bond is stronger than Cl-Cl bond

 $H_2(g)$ is more stable and less reactive

B) Polyatomic Molecules

Average BE values for a particular bond from several molecules

1) Atomization

H-O-H(g)
$$\rightarrow$$
 2 H(g) + O(g)
 Δ H = 926 kJ/mol

Avg. for an O-H bond:

$$D(O-H) = 926/2 = 463 \text{ kJ/mol}$$

2) Not same as individual ΔH 's:

H-O-H(g)
$$\rightarrow$$
 H(g) + O-H(g)
 Δ H = 501 kJ/mol
O-H(g) \rightarrow H(g) + O(g)
 Δ H = 425 kJ/mol

Due to H₂O and OH having diff. e⁻ config. (arrangement of e⁻)

Not same in all molecules w. OH bond

 variation is slight and get BE by taking an average from several molecules

TABLE 5.4	Average	Bond	Enthalpies	(kJ/mol)	
------------------	----------------	-------------	-------------------	----------	--

С—Н	413	N—H	391	о—н	463	F—F	155
C-C	348	N-N	163	0-0	146		
C = C	614	N-O	201	0=0	495	Cl—F	253
C-N	293	N—F	272	O-F	190	Cl—Cl	242
C-O	358	N—Cl	200	o-cl	203		
C=O	799	N—Br	243	O—I	234	Br—F	237
C-F	485					Br—Cl	218
C-Cl	328	н—н	436			Br —Br	193
C—Br	276	H—F	567				
C-I	240	H—Cl	431			I—Cl	208
		H—Br	366			I—Br	175
		н—і	299			I—I	151

© 2018 Pearson Education, Inc.

NOTE:

$$D(O = O) \neq 2 D(O-O)$$

C) Estimating ΔH_{rxn} from BE

$$\Delta H_{rxn} = \Sigma BE(bonds broken) -$$

 Σ BE(bonds formed)

1) Ex: Determine ΔH_{rxn}

$$2 \text{ NH}_3(g) + 3 \text{ Cl}_2(g) \rightarrow \text{N}_2(g) + 6 \text{ HCl}(g)$$

$$D(N-H) = 391 \text{ kJ/mol}$$

$$D(C1-C1) = 242 \text{ kJ/mol}$$

$$D(N \equiv N) = 941 \text{ kJ/mol}$$

$$D(H-C1) = 431 \text{ kJ/mol}$$

Blank Page

2) Ex: Determine ΔH_{rxn}

Can consider only the bonds broken and formed

$$H = C = C + Br_2 - H - C - C - H$$
 $D(C = C) = 614 \text{ kJ/mol}$
 $D(Br - Br) = 193 \text{ kJ/mol}$
 $D(C - C) = 348 \text{ kJ/mol}$
 $D(C - Br) = 276 \text{ kJ/mol}$

$$\Delta H = \{D(C = C) + D(Br-Br)\} - \{D(C-C) + 2 D(C-Br)\}$$

$$= \{614 + 193\} - \{348 + 2(276)\}$$

$$= -93 \text{ kJ}$$

IX) Foods and Fuels

A) Fuel Values of Foods

Carbohydrate: 4 kcal/g (17 kJ/g)

Fat: 9 kcal/g (38 kJ/g)

Protein: 4 kcal/g (17 kJ/g)

Represents heat released in a combustion rxn but reported as positive numbers.

Excess energy stored as Fats:

- 1) insoluble in H₂O helps with storage in the body.
- 2) produce more energy per gram

3) Ex: 28 g of a cereal with 120 mL of skim milk provides 8 g of protein, 26 g of carbohydrates and 2 g of fat. Estimate the fuel value (caloric content).

B) Fuels

1) Fossil fuels

Hydrocarbons (C_xH_y) with a few other elements: O, N, S

Natural Gas: CH₄, C₂H₆,

 C_3H_8, C_4H_{10}

Fuel Value: 49 kJ/g

Petroleum: mostly C_xH_v with

some O, N, S

Fuel Value: 45 kJ/g (oil)

48 kJ/g (gasoline)

Coal: $mostly C_xH_v$ with

some O, N, S

Fuel Value: 32 kJ/g

Combustion Reactions

$$C_xH_y + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$
(Unbalanced)

$$C_xH_yS_z$$
 get SO_2 (H_2SO_3)
and SO_3 (H_2SO_4)
 $C_xH_yN_z$ get nitrogen oxides
(HNO_3)

Acid Rain