Chapter 7

Periodic Properties of the Elements

I) <u>Development of the P.T.</u>

Generally, the electronic structure of atoms correlates w. the prop. of the elements

- reflected by the arrangement of the elements in the P.T.

A number of elements were discovered based on expected prop. of the "missing" elements.

A) Noble Gases

ns²np⁶ - very stable

B) <u>Representative Elements</u>

"last" e⁻ added to s & p orbitals

distinct & fairly regular variations in prop. w. changes in atomic #

C) d-Transition Elements

e⁻ added to d orbitals

 $ns^2(n-1)d^x$

II) Effective Nuclear Charge

Net (+) charge attracting an e⁻

 $Z_{eff} = Z - S$

S = screening constant

- avg. number of e⁻'s between nucleus & any particular e⁻

- depends on specific orbitals

Subsets of e⁻:

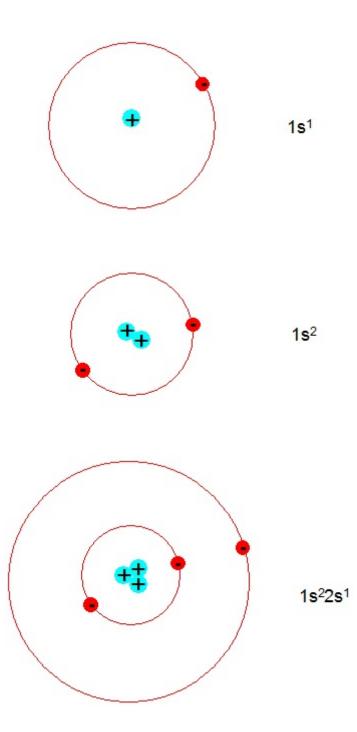
1) core e⁻

2) valence e⁻

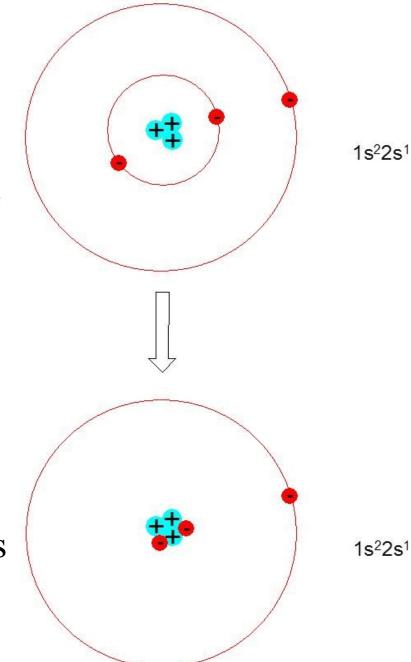
Inner e⁻ screen or shield outer e⁻ from full (+) charge

Primary interaction of e^- & nucleus is due to charge:

Coulomb's Law:

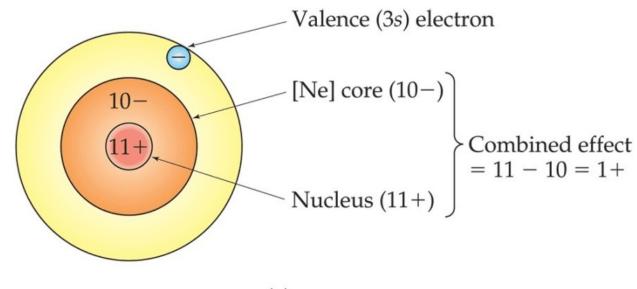

$$F = \frac{k (Q_e Q_n)}{r^2}$$

However, valence shell e⁻ do not experience full nuclear charge

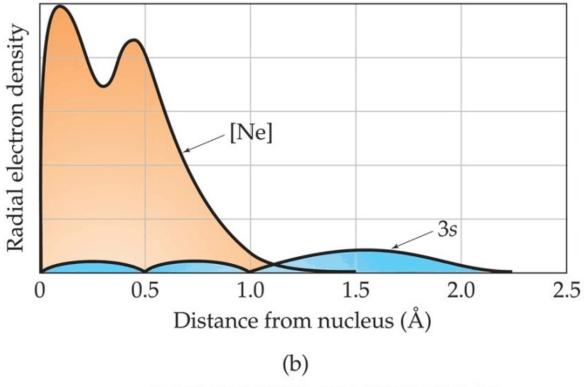

- partially shielded by the core e⁻

Compare H, He, Li:

- H: 1 e⁻ in 1s orbital & 1 proton
- He: 2 e⁻ in 1s orbital which dec. in size due to stronger e⁻ - nuc attraction, each e⁻ is attracted to 2 protons
- Li: 1s is smaller than He but 2s is bigger than H or He 1s



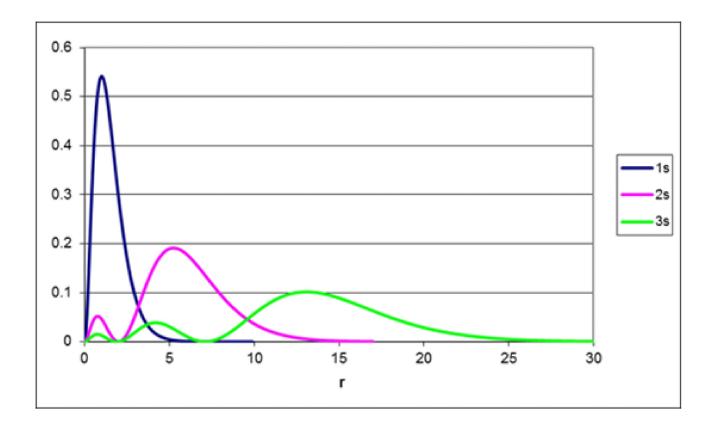
The effect for Li is the 2 core e^- "cancel" the chg of 2 protons in the nucleus.



The "effective nuclear chg" the 2s e^- interacts with is only +1

Core e⁻ shield the valence e⁻ - dec. the nuclear chg.

(a)



Copyright © 2006 Pearson Prentice Hall, Inc.

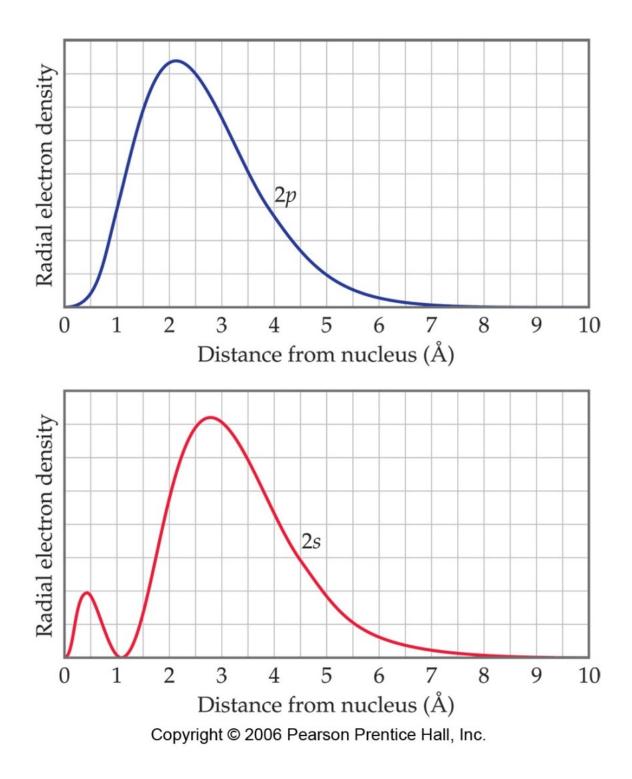
Assumes core e⁻ shield valence e⁻ completely. However, not true.

valence e⁻ can penetrate closer to the nucleus than core e⁻ for some types of orbitals

For Li the 2s orbital has a small area closer to the nucleus than the 1s orbital. Allows 2s e⁻ to be closer to nucleus than 1s e⁻ for small portion of time. When this happens the 1s e⁻ are not shielding 2s e⁻

Value of S is usually close to # core e⁻

 $Z_{eff} = Z - S$ #protons - core e⁻


Valence shell e⁻ do not screen each other effectively.

- same distance from nucleus

The "p" e⁻ do not screen "s" e⁻

The "s" e⁻ do screen "p" e⁻ somewhat due to a probability for these e⁻ to be nearer the nucleus

- penetration

A) General Trends

1) Across Row

 Z_{eff} inc. by ~1 as each atom has added 1 proton to nucleus and 1 e⁻ to valence shell (which does not screen)

 $Z_{\rm eff}$ inc.

2) <u>Down Column</u>

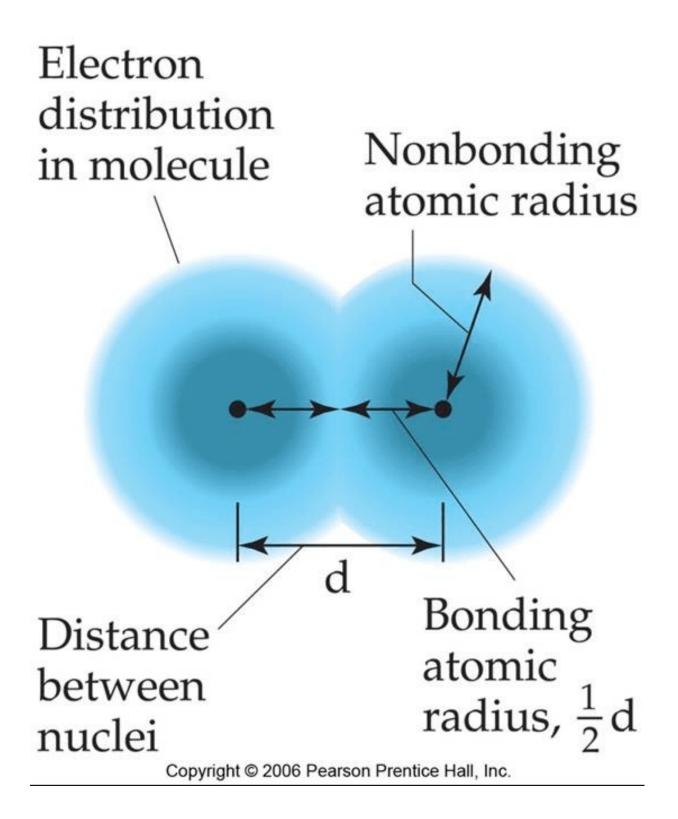
 Z_{eff} inc. <u>slightly</u> as valence shell e⁻ can penetrate better

Li	Be	В	С	Ν	Ο	F	Ne
1.3	2	3	4	5	6	7	8
Na							
2.5							
Κ							
3.3							

III) Atomic and Ionic Radii

A) Atomic Radii

1) Nonbonding


Closest approach of atoms based on gas phase collisions or crystal structures

2) Bonding Atomic Radius

Bond Length:

Distance between atoms in a covalently bound cmpd., averaged over many cmpds.

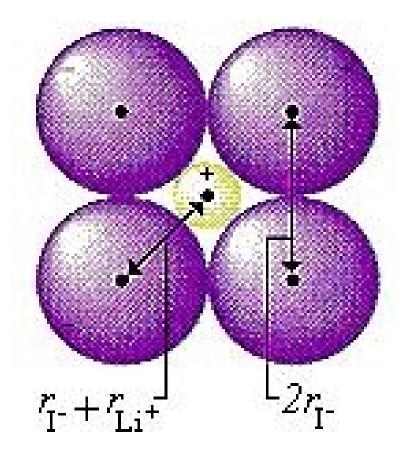
 $b.a.r = \frac{1}{2} bond length$

3) Size inc. down a group

e⁻ occupy a higher energy level w. each element down a group & n determines size of orbital and avg. radius

 \therefore Inc. n \Rightarrow Inc. atomic size

- 4) Size generally dec. across a period from left to right
 - e⁻ added to same shell
 - nuclear charge, Z_{eff}, inc. which pulls whole shell closer


5) Overall Trend

Inc. atomic radius

B) **Ionic** Radii

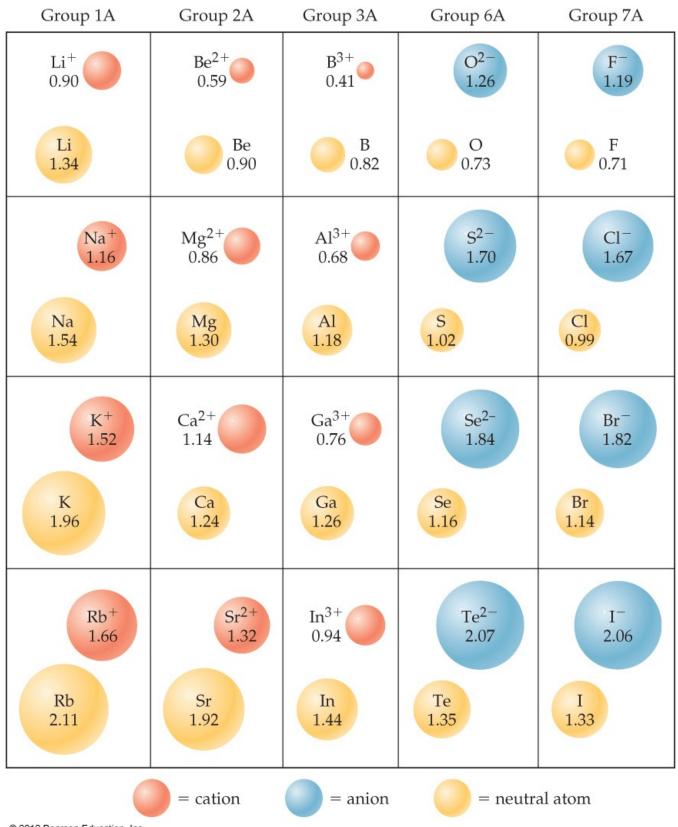
Determined from crystal structure of ionic cmpds.

Averaged interatomic distance from multiple cmpds.

1) Cations

always smaller than parent atom

Cs⁺ smaller than Cs


a) Size decreases with increasing ionic charge

 $Fe^{3+} < Fe^{2+}$; $Cu^{2+} < Cu^{+}$

2) <u>Anions</u> always larger than parent atom $Br^{-} > Br \qquad S^{2-} > S$

3) <u>Isoelectronic Series</u> Same #e⁻

$$_{16}S^{2-} > {}_{17}Cl^{-} > {}_{19}K^{+} > {}_{20}Ca^{2+}$$

 $\overline{Z_{eff}}$ inc., radius dec.

© 2012 Pearson Education, Inc.

IV) Ionization Energy, I.E.

Ionization: removal of an e⁻

I.E. : energy required to remove e⁻ from gaseous atom or ion

 $Na \rightarrow Na^{+} + e^{-} \qquad 5.1 \text{ eV}$ $Cs \rightarrow Cs^{+} + e^{-} \qquad 3.9 \text{ eV}$

e⁻ removed is from highest energy level (highest n & ℓ)

I.E. depends on avg. distance from the nucleus.

<u>First I.E</u>, I_1

Energy req. to remove the highest energy e⁻ from neutral atom

Mg (g) \rightarrow Mg⁺ (g) $I_1 = 738 \text{ kJ/mol}$

Second I.E I₂

Energy req. to remove the next highest energy e^- from ion $Mg^+(g) \rightarrow Mg^{2+}(g) = 1450 \text{ kJ/mol}$

Successive I.E. inc. in magnitude

- # e⁻ dec. (less repulsion)
- Z (# p⁺) same (greater attraction)

	\mathcal{I}_{l}	Ia	I ₃	I ₄	I ₅
Na	496 [Ne]	4560	7	inner-si	hell e-
Mg	738 34'	1450 [Ne]	7730	٦	
Al	577 342	1816 34'	2.744 [Ne]	11,600	1
Si	786 34 ² 39'	1577 3ª2	3228 32'	4354 [Ne]	16,100
P	1060 34 ² 3p ²	1890	2905	4950	6270
S	999 31 ² 3p ³	2260	3375	4565	6950

I.E. for removing e⁻ beyond valence e⁻ greater than energy involved in chem. rxns & bonding

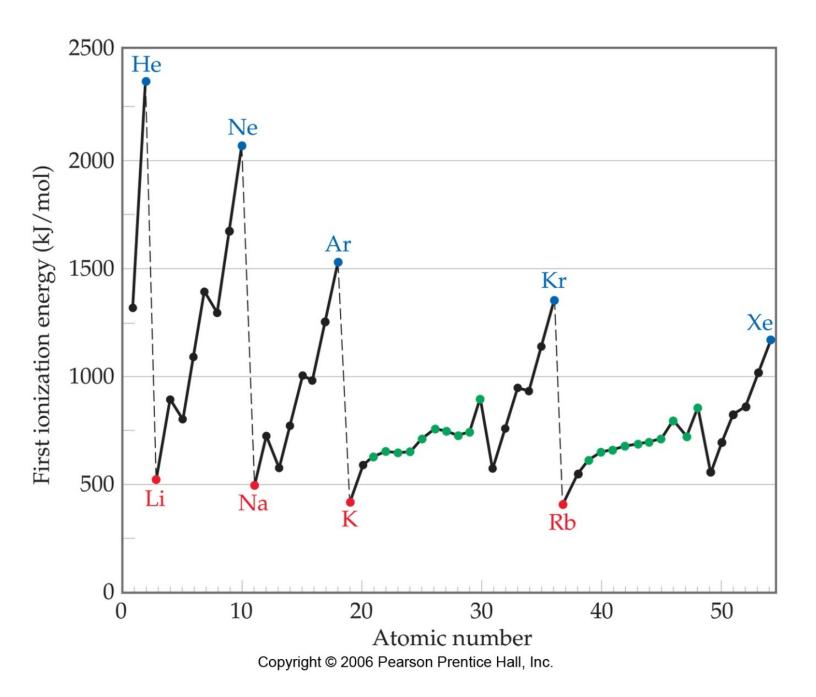
 only e⁻ outside noble-gas core involved in chem. change

Remember:

Atoms tend to lose or gain e⁻ to get filled outer shell

- e⁻ config. of a noble gas

Note


I.E. depends on avg. distance from nucleus & Z_{eff}

I.E. $\propto Z_{eff}$ I.E. $\propto 1/r$

A) Up a Group

- Dec. atomic radius
- e⁻ held more tightly
 - I.E. Inc.
- B) <u>Across a Period</u>
 Dec. atomic radius
 Z_{eff} inc. e⁻ held more tightly
 I.E. Inc
- C) <u>Summary</u>

D) Irregularities

e⁻ config. accounts for irregularities

Li \rightarrow Ne, generally inc.

However,

Be $(1s^2 2s^2) > B((1s^2 2s^2 2p^1))$

N $(1s^2 2s^2 2p^3) > O(1s^2 2s^2 2p^4)$

¹/₂-filled & filled subshells more stable

Elements at end of each transition series, Zn, Cd & Hg have higher I.E. than following element

pseudo-noble-gas

Highest I.E. for noble gases - filled s & p subshells

E) Electron Config. of Ions

1) <u>Representative Ions</u>

a) Metals

Form Cations

1) <u>s - block</u>

Groups 1A & 2A

- All valence e⁻ removed - noble-gas config.
- Na $1s^2 2s^2 2p^6 3s^1$
- Na^{+} 1s² 2s² 2p⁶ [Ne]

1) <u>p - block</u>

Groups 3A - 5A

Lose p e⁻ fairly readily (group # - 2)

Often req. too much energy to remove all val. e⁻ (group #)

- Pb [Xe] $4f^{14} 5d^{10} 6s^2 6p^2$
- Pb^{2+} [Xe] $4f^{14} 5d^{10} 6s^2$
- Pb^{4+} [Xe] $4f^{14} 5d^{10}$

Pb²⁺ more common than Pb⁴⁺

b) NonMetals

- Monatomic anions charge = (group # - 8)
 - add e⁻ to obtain noble-gas e⁻ config.
- S [Ne] $3s^2 3p^4$
- S^{2-} [Ne] $3s^2 3p^6$
- C1 [Ne] $3s^2 3p^5$
- C1⁻ [Ne] $3s^2 3p^6$

2) Transition Metal Ions

Generally, only highest energy e⁻ lost Outer s-subshell e⁻

Many tran. metals form +2 cations

- lose both s-subshell e⁻

For ions of higher charge d-subshell e⁻ are lost

a) <u>Ex 1:</u>

Group 2B Zn, Cd, Hg $(n-1)d^{10}ns^2 \rightarrow (n-1)d^{10}$ $Zn^{2+}, Cd^{2+}, Hg^{2+}$ b) <u>Ex 2:</u> Fe [Ar] $4s^2 3d^6$ Fe^{2+} [Ar] $3d^{6}$ Fe^{3+} [Ar] 3d⁵

V) Electron Affinity, EA

Energy associated with the gain of an e⁻ by a gaseous atom or ion

A) First EA

 $Cl(g) + e^- \rightarrow Cl^-(g) = EA = -349 \text{ kJ/mol}$

Energy released for most neutral atoms & all positive ions

greater attraction for $e^- \Rightarrow$ more neg. EA

B) Second EA

 $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$ EA = +710 kJ/mol

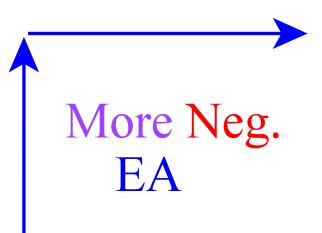
2nd e⁻ must be forced onto a neg. charged ion which requires energy

Н -73							He > 0
Li -60	Be > 0	В -27	C -122	N > 0	O -141	F -328	Ne > 0
Na -53	Mg > 0	Al -43	Si -134	Р -72	S -200	Cl -349	Ar > 0
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr > 0
Rb -47	Sr -5	In -30	Sn -107	Sb -103	Те -190	I -295	Xe > 0
1A	2A	3A	4A	5A	6A	7A	8A

Copyright © 2006 Pearson Prentice Hall, Inc.

A) Periodic Trends in EA

Generally, parallels variation in atomic size


 not as well-established as other trends (exceptions)

e⁻ placed into outer shell

closer it gets to nucleus
 & greater Z_{eff}

larger neg. EA

C) <u>Summary</u>

1) Exceptions

a) 2nd period

F: -328 kJ/mol Cl: -349 kJ/mol

True for other 2nd period elements

Small size of 2nd period elements

e⁻ enters small outer shell

Adding an e⁻ places it very close to other 2s and 2p e⁻ resulting in stronger e⁻ - e⁻ repulsions.

b) Other Exceptions

Adding an e⁻ to stable e⁻- config.

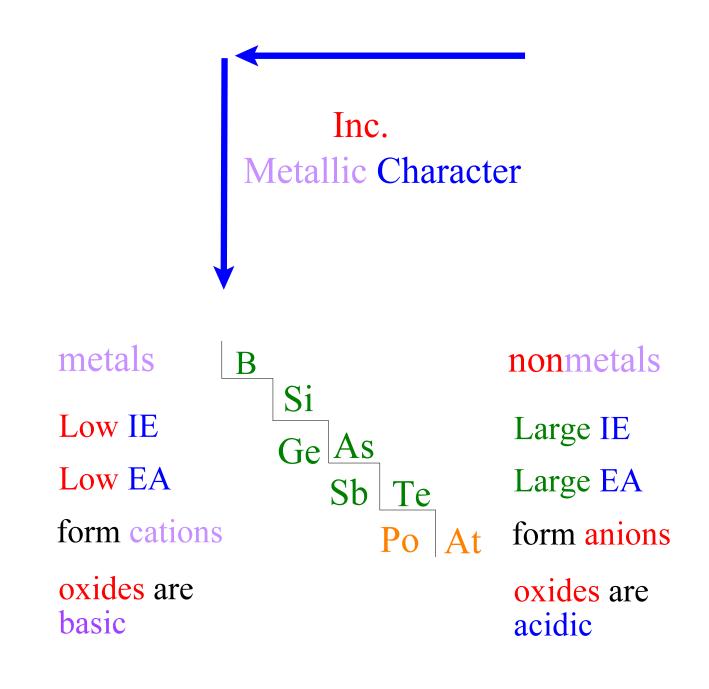
1) <u>Group 2A</u>

full s subshell

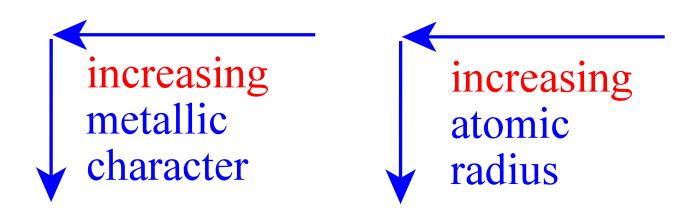
added e⁻ goes into p subshell

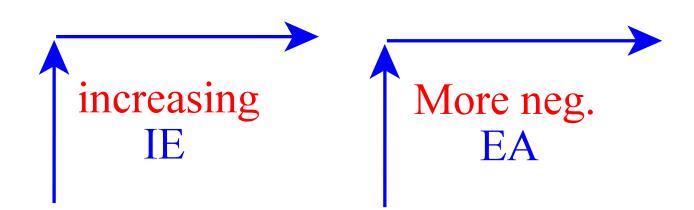
2) <u>Group 5A</u>

 $\frac{1}{2}$ - filled p valence subshell

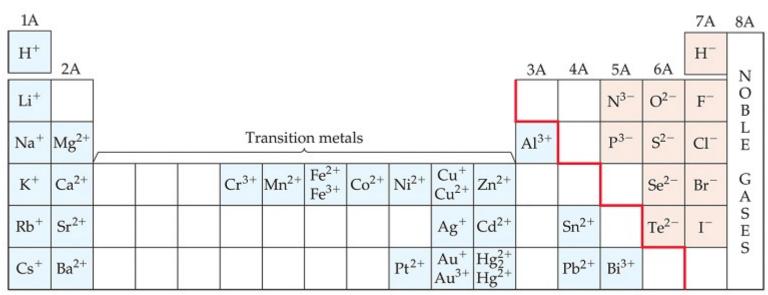

added e⁻ pairs w. another e⁻ in occupied p orbital & experiences repulsions

3) <u>Group 8A</u>


filled valence shell


e⁻ goes into next higher shell

VI) Metals, Nonmetals, Metalloids


Summary of Periodic Trends

A) Metals

- chgs for 1A & 2A ions = grp #
- for p-block chgs = grp# or (grp# 2)
- transition metals: highly variable

Copyright © 2006 Pearson Prentice Hall, Inc.

1) Reactions with nonmetals

- form ionic cmpds

$$Zn + S \longrightarrow ZnS$$
or
$$2 Ca + O_2 \longrightarrow 2 CaO$$

<u>Note</u>: these are redox reactions, metal is oxidized (loses e⁻) due to low IE and nonmetal is reduced (gains e⁻) due to do high EA.

2) Metal oxides are basic

3) Other Properties:

- luster (shiny)
- malleable (pound into thin sheets)
- ductile (drawn into a wire)
- good conductors of heat & electricity

B) Nonmetals

- 1) React with metals to give ionic cmpds
- 2) React w. other nonmetals to give molecular cmpds:

 $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$

 $S(s) + O_2(g) \rightarrow SO_2(g)$

3) Oxides are acidic

 $CO_2 + H_2O \rightleftharpoons H_2CO_3$ $P_4O_{10} + 6 H_2O \rightarrow 4 H_3PO_4$ 4) Other Properties:

- not lustrous (dull)

- vary widely in color & appearance
- not malleable & ductile
- poor conductor of heat & elect.

C) Metalloids

Located between metals & nonmetals

- have prop. of both
- Don't form ions easily
 IE too high to form cations
 EA not neg. enough to form anions
- form molecular cmpds w. nonmetals

VII) Grp 1A & 2A - Active Metals

A) Grp 1A: Alkali Metals

- soft & low densities (Li, Na & K are less dense than water) due to the large size of the atoms.
- 2) valence shell e⁻ configuration is ns¹ one e⁻ easily lost to form M⁺ ions with a noble gas e⁻ configuration.
- 3) react rapidly with O_2 and H_2O so must be stored under oil

Reactivity with H₂O inc. down grp

3) Preparation

- Reduction of salt req. elect. energy

 $2 \operatorname{LiCl}(\ell) \rightarrow 2 \operatorname{Li}(s) + \operatorname{Cl}_2(g)$

Li is used in Al alloys for aircrafts and in batteries.

- Na used in replacement rxns to produce other reactive metals

 $Na(\ell) + KCl(\ell) \rightarrow NaCl(\ell) + K(\ell)$

4) Reaction w. nonmetals

Ionic cmpds $2 \operatorname{Li}(s) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{LiCl}(s)$ $2 \operatorname{Na}(s) + H_2(g) \rightarrow 2 \operatorname{NaH}(s)$ $2 \text{ K(s)} + \text{ S(s)} \rightarrow \text{ K}_2 \text{S(s)}$ 5) Reaction w. Oxygen $4 \text{Li} + \text{O}_2 \rightarrow 2 \text{Li}_2\text{O}$ oxide $2 \text{ Na} + \text{O}_2 \rightarrow \text{Na}_2\text{O}_2$ peroxide $K + O_2 \rightarrow KO_2$ superoxide

B) Grp 2A: Alkaline Earth Metals

- 1) harder, more dense, less reactive than grp 1A due to smaller size & larger Z_{eff} .
- 2) valence shell configuration is ns² and loss of 2 e⁻ results in a M²⁺ ion with a [NG] e⁻ configuration.
- 3) Mg, Ca most abundant & impt.

4) <u>Rxn with O_2 </u>

All produce expected oxide, except Ba, i.e.

 $2 \text{ Ca} + \text{O}_2 \rightarrow 2 \text{ CaO}$

Ba forms the peroxide:

 $Ba + O_2 \rightarrow BaO_2$

5) <u>Rxn with H_2O </u>

 $Ca(s) + H_2O(\ell) \rightarrow Ca(OH)_2(aq) + H_2(g)$

Reactivity increases down the group: Be (no reaction), Mg slowly, Ca more rapid. Heat generated.

6) <u>Rxn with H₂</u>: Ionic Hydrides

 $Ca(s) + H_2(g) \rightarrow CaH_2(s)$

VIII) Selected Nonmetals

A) Hydrogen

1) H₂ bond energy, 463 kJ/mol - stable

2) Isotopes

¹H (99.9%) protium
²H (0.01%) deuterium, labels
³H tritium, radioactive

3) High IE (1312 kJ/mol)

Shares e⁻ in covalent bonds

4) Gains e⁻

Forms hydrides, H⁻

B) Oxygen

1) O_2 - odorless, colorless gas 21% of air

2) allotropes O_2 and O_3 (ozone) $3 O_2(g) \rightarrow 2 O_3(g) \quad \Delta H^\circ = 284.6 \text{ kJ}$ 3) <u>Ions</u> Ω^{2-} oxides O_2^{2-} peroxides (unstable) $2 H_2O_2(aq) \rightarrow 2H_2O(\ell) + O_2(g) + 196.1 \text{ kJ}$ O_2 superoxides (rescue masks)

C) <u>Sulfur</u>

$$S_8$$
 - ring, yellow solid
 S^{2-} sulfides
 $S(s) + O_2(g) \rightarrow SO_2(g) \rightarrow SO_3(g)$
Acid rain

D) Nitrogen

N₂ - odorless, colorless gas 78% of air, very stable

1) Cmpds with H

NH₃, N₂H₄ (hydrazine, rocket fuel)

2) <u>Cmpds with O</u>

NO, NO₂, N₂O, N₂O₄, HNO₂, HNO₃ Formed in Combustion, Acid rain

E) Phosphorous

 P_4 - strained tetrahedral, solid

found in rocks, sand, soft drinks - generally as phosphates

P₄O₆, P₄O₁₀, H₃PO₃, H₃PO₄

- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
 - energy storage in biology

F) Halogens (X₂)

High EA, form X^{-} $F_2(g), Cl_2(g), Br_2(\ell), I_2(s) - redox rxns$ Fluorocarbons, ChloroFluorocarbons $CFCs : CF_3CF_3, CCl_2F_2$ - Refrigerants, greenhouse gases Teflon - CF₂CF₂, Roy Plunkett (Ohio) $Cl_2(g) + H_2O(\ell) \rightarrow HCl(g) + HOCl(aq)$ OCl hypochlorite used in pools $F_2(g)$ - very reactive, exothermic rxns $2 F_2(g) + H_2O(\ell) \rightarrow 4 HF(g) + O_2(g)$ $2 F_2(g) + SiO_2(s) \rightarrow SiF_4(g) + O_2(g)$

G) <u>Carbon</u>

Solid - covalent bonding diamonds, graphite, C_{60} ("buckyball") CO, CO₂, H₂CO₃ (blood buffer) Hydrocarbons - CH4, C2H6, etc. Biological molecules

H) Silicon

Solid

Semiconductors

 SiO_2 - sand, glass

Silicates - SiO_4^{2-} (asbestos)

Silicones - $(SiOR_2)_n$ - caulk, implants

I) Boron

Octet exception Rocket fuel Diborane - $B_2H_6 + O_2 \rightarrow B_2O_3 + H_2O + 2030 \text{ KJ}$ J) <u>Noble Gases</u> Monatomic Full s and p subshells High IE, dec. moving down grp - mostly unreactive, except Xe XeF_2 , XeF_4 , XeF_6 , XeO_3 , XeO_4